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Abstract
Entanglement, including ‘quantum entanglement’, is a consequence of
correlation between objects. When the objects are subunits of pairs which in
turn are members of an ensemble described by a wavefunction, a correlation
among the subunits induces the mysterious properties of ‘cat-states’.
However, correlation between subsystems can be present in purely
non-quantum sources, thereby entailing no unfathomable behaviour. Such
entanglement arises whenever the so-called ‘qubit space’ is not afflicted with
Heisenberg uncertainty. It turns out that all optical experimental realizations
of the Einstein, Podolsky and Rosen (EPR) Gedanken experiment in fact do
not suffer Heisenberg uncertainty. Examples will be analysed and
non-quantum models for some of these described. The consequences for
experiments that were to test EPRs contention in the form of Bell’s theorem
are drawn: valid tests of EPR’s hypothesis have yet to be done.

Keywords: Entanglement, non-locality, EPR correlations, Bell’s theorem,
quantum mechanics

1. Introduction

The above title needs ‘disentangling’. The quantum
wavefunction of entangled, i.e. of correlated subsystems,
cannot be written as the product of the wavefunctions for the
subsystems. Likewise, the probability of correlated events
cannot be written as the product of probabilities for two
independent events. The latter fact is elementary and very well
understood; it presents absolutely no mystery, but in contrast,
the same fact is utterly impenetrable in quantum mechanics
(QM).

What is the difference?
It arises from the following considerations. In probability

theory, the probability for joint events is given in general by
Bayes’ formula

P (a, b) = P (a)P (b|a) (1)

where P (b|a) is the conditional probability that the event
b occurs given that event a has been seen [1]. When the
two events are correlated, in other words are not statistically
independent, then (1) cannot be written as the product
of independent probabilities, P (a)P (b), that is, they are
‘entangled’. This is a statement about the knowledge that the
observer has about the joint events; it is an epistemic statement,
and, as such, the dependence of P (b|a) on a is devoid of
communicative implications.

Now, in QM, according to the Born interpretation, the
modulus squared of a wavefunction, i.e. ψ∗(x)ψ(x), is the
probability that the object to which it pertains will be found
in the infinitesimal volume d3x. This straightforward concept
is complicated, however, by the peculiarity of QM, namely,
a wavefunction is known empirically to diffract at boundaries
just like water or electromagnetic waves and this seems to make
sense only if wavefunctions have ontic substance. In turn,
this appears to vest a causative relationship into conditional
probabilities computed from wavefunctions for correlated
events. That is, if wavefunctions are onta, then when a
measurement collapses one member of a correlated pair, then
the onta of the other member must likewise instantly collapse
also, even if it is located at a space-like displacement—in
contrast to the fundamental precept of special relativity that
no physical interaction can transpire faster than the speed of
light. On the other hand, were a wavefunction only a symbol
for information, as are expressions in probability theory, such
a collapse would not violate physics precepts. In short,
entanglementQM is somehow ontic, but entanglementProb is
epistemic. In this light the title is: Is (in the microscopic
domain) entanglementP rob always entangledQM? The purpose
of this paper is to argue that in virtually all of the crucial
experimental tests of Bell’s theorem that the answer is: no!

Born’s interpretation of the wavefunction has led many, in
particular Einstein, Podolsky and Rosen (EPR), to argue that
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the necessity for probabilistic concepts in QM arises because
the theory is limited fundamentally by ignorance; i.e. that
QM should be ‘extendable,’ at least in principle, so as to
encompass the heretofore missing information, perhaps using
‘hidden variables’. The tactic taken by EPR was to show that
‘Heisenberg uncertainty’ (HU) is not something novel, that is,
that basic logic regarding correlated objects demands that the
missing information be due to simple ignorance. This they did
by considering the symmetrical disintegration of a stationary
particle into twin daughters. For each separate daughter, the
HU principle implies that both the position and momentum
cannot be simultaneously known to arbitrary precision. Some
go on to argue that this is so, because they in fact do not
exist simultaneously. EPR countered, arguing (in the author’s
rendition) that in the case of such a disintegration one can
measure the position of one daughter and the momentum of the
other to arbitrary precision, and thereafter call on symmetry
to specify to equal precision the momentum of the first and
position of the second. What can be specified in principle to
arbitrary precision, EPR argued, must be an ‘element of reality’
that enjoys the status of onta. In any case, EPR intended that
their Gedanken experiment should expose the true character of
HU, that in the end it could evidence ignorance, not something
fundamentally new [2].

For the purposes of an experimental realization of
EPR’s Gedanken experiment, however, the difficulties in
finding a suitable particle source of the sort envisioned,
are daunting. Thus, Bohm proposed a change of venue;
instead of momentum–position, he suggested using the
(anti)correlated spin- 1

2 states of daughter particles derived from
the disintegration of a boson [3]. His motivation, apparently,
was that it should be easier to construct an appropriate source,
and easier to measure the dichotomic values of the daughters.
Ultimately, this proposal too, turned out to be impractical, but
the algebraically isomorphic situation with polarized ‘photons’
from a cascade transition, or from parametric down conversion
is workable, and several such experiments have been done [4].

2. EntanglementQM versus entanglementProb

The fundamental premise of this paper is that Bohm’s transfer
of venue introduced a major error. It is the following:
the space of the variables for either spin or polarization, in
contrast to phase space where EPR formulated their Gedanken
experiment, is not afflicted with HU. There is no HU in the
plane of the spin or polarization vector. Neither {Ex, Ey}
nor {σx, σy} are Hamiltonian canonically conjugate variables;
their creation and annihilation operators commute. Anti-
commutation of spin operators arises here for the same reason it
does for angular momentum operators in classical mechanics,
i.e. for geometrical vice dynamical reasons. Thus, while they
do share some of the characteristics of the variables of phase
space, they do not share the one relevant for the argument of
EPR. Where there is no HU, there is no QM, all is ruled by
classical physics.

This fact has a number of immediate consequences, the
most salient of which is that probabilities of these variables do
not exhibit the quantum phenomena that ultimately demands
that QM probabilities have an ontic character. This means,
in particular, that conditional probabilities of these variables

do not imply causality. Thus, Bell’s argument, that because
there is to be no causal relationship between the two detection
events, the probability relationship between them cannot take
the form

P (a, b) =
∫

P (a|b, λ))P (b|λ)P (λ) dλ (2)

which, in turn, implies that (1) must read

P (a, b|λ) = P (a|λ)P (b|λ) (3)

which does not follow for this class of experiments, because,
in fact there need be no causative link between these variables.
In other words, Bell’s encoding of ‘locality’ with respect to
these variables is not justified in these circumstances [5]. A
conditional probability involving a state of polarization as
a ‘condition’ is an epistemic statement about the state of
knowledge, not an ontic statement about EPR’s ‘elements
of reality’. A correlation here indicates no more than that
both daughters share a common cause in the intersection
of their past light cones. In short, statements about joint
probabilities between such states do not imply the existence
of superluminal causal relationships; the non-factorizability
of their wavefunction is no more problematic than that of
probabilities of correlated events. Insisting nonetheless, on
the validity of (3), therefore, is equivalent to precluding all
correlations.

Moreover, independent of Bohm’s displacement, what-
ever is correlated cannot be encoded by ‘hidden variables’, λ,
without also being ‘visible’ in the instrument readings a and
b, because if it is not so visible, it cannot be a matter of con-
cern to observers. Bell’s reasoning would have been standard
statistical analysis had it pertained to the case in which a new
‘λ-meter’ could be introduced into the experiment; instead, it
is an effort to infer the existence of hidden λ, using only the
a- and b-meters. That is to say, as a statistics proposition, (3)
is dubious on its own merits. See [6] for further incisive and
original analysis of this very point1.

3. Non-quantum models of EPR-Bohm (EPR-B)
experiments

In view of the facts developed above, which imply that
experiments exploiting polarization that are intended to test
EPR (or Bell inequalities), in so far as they are not cast in a
space suffering HU, should be modelable classically. This is
indeed the case, and the most common types of EPR-Bohm
(EPR-B) experiments are presented below. These include
those based on polarization and a second category in which
orthogonality of the signals is achieved by other means, usually
as pulses with a phase offset. This latter category includes
the ‘Franson’-, ‘Ghosh and Mandel’- and ‘Suarez–Gisin’-type
experiments.

3.1. ‘Clauser–Aspect’-type experiments

In these experiments the source is a vapour, typically of
mercury or calcium, in which a cascade transition is excited by
either an electron beam or an intense radiation beam of fixed
1 I thank Barry Schwartz for this reference.
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orientation. Each stage of the cascade results in emission of
radiation (a ‘photon’) that is polarized orthogonally to that of
the other stage. In so far as the sum of the emissions can
carry off no net angular momentum, the separate emissions
are antisymmetric in space. The intensity of the emission is
maintained sufficiently low so that at any instant the likelihood
is that radiation from only one atom is visible. Photodetectors
are placed at opposite sides of the source, each behind a
polarizer with a given setting. The experiment consists of
measuring the coincidence count rate as a function of the
polarizer settings [7, 8].

A model consists of simply rendering the source
and polarizers mathematically, and a computation of the
coincidence rate. Photodetectors are assumed to convert
continuous radiation into an electron current at random times
with Poisson distribution but in proportion to the intensity
of the radiation. The coincidence count rate is taken to be
proportional to the fourth-order coherence function evaluated
at the detectors.

The source is assumed to emit a double signal for which
individual signal components are anticorrelated and, because
of the fixed orientation of the excitation source, confined to the
vertical and horizontal polarisation modes; i.e.

S1 =
[

cos

(
n

π

2

)
, sin

(
n

π

2

)]

S2 =
[

sin

(
n

π

2

)
, − cos

(
n

π

2

)] (4)

where n takes on the values 0 and 1 with an even, random
distribution. The transition matrix for a polarizer is given by

P (θ) =
[

cos2(θ) cos(θ) sin(θ)

sin(θ) cos(θ) sin2(θ)

]
(5)

so the fields entering the photodetectors are given by

E1 = P (θ1)S1

E2 = P (θ2)S2.
(6)

Coincidence detections among N photodetectors (here N = 2)
are proportional to the single-time, multiple location second-
order cross correlation [9], i.e.

P (θ1, θ2, . . . θN ) = <
∏N

n=1 E∗(rn, θ)
∏1

n=N E(rn, θ) >∏N
n=1 < E∗

n(rn)En(rn) >
(7)

where < · > indicates an average over the ensemble. It is easy
to show that the denominator consists of constant factors of the
form (cos2(a) + sin2(a)) so that it equals 1. The final result of
the above is

P (θ1, θ2) = 1
2 sin2(θ1 − θ2) or 1

2 cos2(θ1 − θ2) (8)

where the first variant pertains to correlations between
symmetric detectors and the latter asymmetric, in the usual
way. This is immediately recognized as the so-called
‘quantum’ result for the coincidence rates, which yield
correlations that violate Bell inequalities. (Of course, it is also
Malus’ law, thereby being in total accord with the premise of
this paper.)

Figure 1. Schematic of the experimental set-up for the measurement
of four-photon GHZ correlations. A pulse of laser light passes a
nonlinear crystal twice to produce two entangled photon pairs via
parametric down conversion. Coincidences between all four
detectors are used to study the nature of quantum entanglement.

3.2. ‘GHZ’ experiments

A number of proposed experiments involving more than two
particles, many stimulated by analysis of Greenburger, Horne
and Zeilinger (GHZ), are expected to reveal QM features
with particular alacrity [10]. One of the most recent, which
has the great virtue of being experimentally realizable, is
that performed by Pan et al [11]. (See figure 1.) Two
independent signal pairs are created by down-conversion in
a crystal pumped by a pulsed laser. The laser pulse passes
through the crystal creating one pair, which is then reflected off
a movable mirror to repass through the crystal in the opposite
direction creating a second pair. One signal from each pair is
fed directly through polarizers to photodetectors (signals A1

and B1). The other signals from each pair, A2 and B2, are
directed to opposite faces of a polarizing beamsplitter (PBS),
(e.g., a beamsplitter which reflects vertically and transmits
horizontally polarized signals) after which the signals are
passed through adjustable polarizers into photodetectors. The
path lengths of signals 2 and 3 are adjusted to compensate
for the time delay in the creation of the pairs. By moving the
mirror, the compensation can be negated to permit studying the
coincidence dependence on the degree of interference caused
by simultaneous ‘cross-talk’ between channels 2 and 3.

The principle results reported in [11] are the following.
Of all the 16 possible regimes setting: θi = 0 or
π/2, only {0, π/2, π/2, 0} and {π/2, 0, 0, π/2} yield a
(substantial) four-fold coincidence count, C; the regime
{π/4, π/4, π/4, π/4} occurs with an intensity C/4 and the
regime {π/4, π/4, π/4, −π/4} with zero intensity. Further,
both of the latter regimes yield an intensity of C/8 when the
time between pair creation is so large that that there is no ‘cross-
talk’ between channels 2 and 3. (Actually, the data deviate
from these values by small amounts attributable to noise.)

Equation (7) was implemented as follows: the crystal is
assumed to emit a double signal for which individual signal
components are anticorrelated and confined to the vertical and
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Figure 2. The upper curve shows the effect on the intensity of
four-fold coincidences of skewing (rotating) all polarizers through a
given angle in units of π -radians starting from the state
{π/2, 0, 0, π/2}. The lower curve shows the same effect when one
of the polarizers is rotated in the opposite direction. The middle
curve shows the effect of either of these skewing schemes when the
timing is such that the crossover signals do not arrive simultaneously
with the reflected signals. Note that the values at π/4 coincide with
those observed. This diagram differs from figure 4 in [11] in that it
shows the split of these regimes as a function of polarizer skew for
fixed delay rather than as a function of delay for fixed skew.

horizontal polarization modes; i.e.

A1 =
[

cos

(
n

π

2

)
, sin

(
n

π

2

)]

A2 =
[

sin

(
n

π

2

)
, − cos

(
n

π

2

)]

B1 =
[

cos

(
m

π

2

)
, sin

(
m

π

2

)]

B2 =
[

sin

(
m

π

2

)
, − cos

(
m

π

2

)]

(9)

where n and m take the values 0 and 1 with a flat random
distribution. The PBS is modelled using the transition matrix
for a polarizer, (5), where θ = π/2 accounts for a reflection
and θ = 0 a transmission. Thus the final field impinging on
each of the four detectors is

E1 = P (θ1)A1

E2 = P (θ2)(P (0)B2 − P (π/2)A2)

E3 = P (θ3)(P (0)A2 − P (π/2)B2)

E4 = P (θ4)B2

(10)

which, using (7), does not result in a simple expression.
However, it can be easily numerically computed to obtain the
same results as reported by Pan et al, or extended to other
regimes, such as that shown in figure 2.

The splitting or separation of the curves at a skew angle of
π/4 as shown in figure 2 is interpreted (see [11]) as evidence
of the quantum character of these four-fold coincidences. In
fact it is even taken to exhibit ‘teleportation’. Of course,
the existence of a classical model for these coincidences, in
particular the splitting, puts sharp doubt on that claim. As Bell
inequalities for four-fold experiments have not been derived
(presumably they would have 16 terms and be quite ungainly),

Figure 3. In a ‘Franson’ type experiment two identical pulses are
directed through two interferometers, each comprised of a short path
and a long path in which there is an additional adjustable phase
shifter. By using fast coincidence comparison detectors,
coincidences between pulses that traversed unequal paths can be
excluded. The resulting interference is a function of the adjustable
phase shifters.

it is not convenient to try to discriminate between quantum and
classical behaviour on that basis (ignoring for the moment, the
issue of the validity of (2)). In any case, because the model
described above is at the more basic logical level of classical
physics than the ‘no-go theorems’, they cannot impugn its
validity. The model is ‘up stream’, as it were, and constitutes
a counter-example to such no-go theorems2.

3.3. ‘Franson’ experiments

Experiments of this type exploit phase shifts between pulses
in the form of time offsets to define the orthogonal states
played by the two states of polarization in the set-ups
described above [13]. The original ‘Franson’ experiment
measures the correlation between two detectors positioned
after interferometers which divide identical incoming pulses,
such that half take a short route and half take a long route which
includes an adjustable delay. (See figure 3.)

There are two direct ways of modelling this set-up
classically. One would be to write out terms for the long-
and short-route pulses that had a time-separated modulation
or time-limited coherence. Such separated pulses, when
multiplied together and integrated, give zero, because regions
where they are finite do not overlap, thereby fulfilling
the definition of orthogonality in a Hilbert space sense.
This approach has the disadvantage of leading to ungainly
expressions. A much simpler tactic is to assign the signals
in the long and short paths to orthogonal dimensions of a
vector space; the resulting calculations are then transparent
and devoid of irrelevant, gratuitous complexity. For example

El = [exp(−i(kx − ωt) + φ), exp(−i(kx − ωt))]/23/2

Er = [exp(−i(kx − ωt) + ψ), exp(−i(kx − ωt))]/23/2

(11)
where φ and ψ are the extra phase shifts introduced in the
long paths; one factor of 1/

√
2 is the normalization, and two

more are due to the beamsplitters. Then, using (7), with the
convention that the tensor product be replaced by a vector inner
product; i.e.

P (φ, ψ) = (E∗
r · E∗

l )(El · Er)

(E∗
r · Er)(E

∗
l · El)

(12)

2 Although not necessary for the argument herein, we nonetheless hold that
Kochen–Specker-type theorems which do not involve inequalities and that
seemingly cover multi-fold GHZ coincidences are afflicted with assumptions
that do not conform to the physics in EPR-B experiments. See [12].
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Figure 4. Plot of the relative interference intensity pattern as a
function of phase shift (in units of π ) in one arm in a Brendel-type
experiment. This curve closely matches that observed by Brendel
et al in an experiment in which the total spread was 10% of the
pulse carrier frequency; as a result, the modulation curve node
occurs at approximately 20π , as was observed.

(to algebraically enforce the orthogonality between pulses in
the calculations that phase shifts enforce in the experiment)
directly gives the observed correlation as a function of the
phase shifts:

P (φ, ψ) = 1
8 (1 ± cos(φ − ψ)) (13)

which exhibits the oscillations with 100% visibility
characteristic of idealised versions of these experiments. (The
plus sign in (13) holds for symmetric detector paths, the minus
for asymmetric.)

‘Ghosh–Mandel’-type experiments are a variation of the
‘Franson’ version in which the phase shift is achieved by
path-length differences instead of time offsets; otherwise, the
formulae are structurally identical [14].

3.4. ‘Brendel’ experiments

In the above experiment the radiation source was taken to be
ideal, that is, it produced two signals of exactly the same
frequency with no dispersion. In some experiments, such
as described in [15], the source used was a nonlinear crystal
generating two correlated but not necessarily identical pulses,
which satisfy ‘phase matching conditions’ so that if one signal
in frequency is above the mean by s (spread), the other is down
in frequency by the same amount. This leads to an additional
phase shift at the detectors which is also proportional to those
already there; i.e. sφ and −sψ , so that

Er = [exp(−i(kx − ωt) + ψ(1 + s)), exp(−i(kx − ωt)]

El = [exp(−i(kx − ωt) + φ(1 − s)), exp(−i(kx − ωt)].
(14)

Since the value of s is different for each pulse (photon) pair,
the resulting signal is an average over the relevant values of s:

1

2s

∫ s

−s

P (φ, ψ, s) ds (15)

where P (φ, ϕ, s) is computed as for ‘Franson’ experiments.
The final result closely matches that observed by Brendel et al.
(See figure 4.)

3.5. ‘Suarez–Gisin’ experiments

In experiments of this type, one of the detectors is set in motion
relative to the other. By doing so with appropriately chosen
parameters, it is possible to arrange the situation such that
each detector precedes the other in its own frame [16, 17].
Thus, not only is the ‘collapse’ of the wavepacket ‘nonlocal’,
it occurs such that there is also ‘retrocausality’. In the
model proposed herein, however, this complication (paradox)
cannot arise in the first instance. All the properties of each
pulse are determined completely at the common point at
which the signals are generated. Properties measured at
one detector in no way determine those at other detectors,
regardless of the order in which an observer receives reports
of the results from various detectors, and regardless of what
conditional probabilities the observer might write to describe
their hypothetical or real knowledge.

4. Conclusion

The model or explanation of the experiments described above
is fully classical. It uses no special property peculiar to QM.
The two states in these experiments (polarization or phase-
displaced pulses) are not canonically conjugate dynamical
variables; they do not, therefore, exhibit HU, and the
model does not bring any in. The essential formulae are
a straightforward application of second-order (in intensity)
coherence theory, which is really just a generalization of wave
interference. That this model faithfully describes the outcomes
of these experiments, in addition to being a counter-example
to claims that these experiments cannot be clarified using
non-quantum physics, is a demonstration that they are not
relevant to EPR’s argumentation, and therefore, to date no
such experiment could have established that non-locality has
a role to play in the explanation of the natural world. It shows
that there is no justification for ascribing an ontic meaning
to conditional probabilities in the circumstances of these
experiments, which, in turn, undermines the rationale for Bell’s
encoding of non-locality. When his encoding is withdrawn,
no Bell inequality can be extracted. A manifestation of this
fact is that the coincidence probabilities used in all these
models violate Bell inequalities, which, of course they should
so do, because the derivation of the inequalities depends on the
unintentional implicit assumption, contrary to fact, that there
is no correlation [6].

There are, of course, two arenas where HU is in evidence:
phase space and ‘quadrature space’. In principle, a test of
EPR’s contentions formulated in these arenas could show
different results—at least in so far as it would not rely on Bell
inequalities.

To a large extent, the model proposed herein is ‘obvious’.
It might be asked: why then has it not been proposed long
ago? The answer involves issues resulting from the perceived
need to maintain an ontic ambiguity with respect to the identity
of wavefunctions until the moment of measurement, at which
time this identity ambiguity is resolved by a ‘collapse’. This
need results from the tactic of describing particle beams
with wavefunctions in order to account for their wave-like
diffraction. That is, the wave-like navigation of particle
beams in combination with their incontestable particle-like
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registration in detectors, has been explained, or at least
encoded, calling on ‘dualism’, ‘wave-collapse’ and so on3.
The experiments described herein, however, employ optical
phenomena for which there is no need to invoke a particulate
character. Wave beams diffract naturally. And, particulateness
in photodetectors can be, indeed must be, attributed to the
fact that they, because of the discrete nature of electrons,
convert continuous radiation into a digitized photocurrent.
The conceptual contraptions of ‘duality’ and ‘collapse’ are
just not needed to explain the behaviour of radiation beams,
even correlated sub-beams. There is no reason why these
experiments could not be carried out in spectral regions
in which it is possible to track the time development of
electromagnetic fields, thereby avoiding the peculiarities of
photodetectors. In fact, for simple ‘Clauser–Aspect’-type set-
ups, this has been done [19]. The results conform with ours
and show that classical optics is not taxed to clarify EPR-B
correlations.

Note: An electronic file with MAPLE routines for the
above is available upon request.
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