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Bell’s inequalities and EPR-B experiments:
are they disjoint?
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Abstract. It is shown that practical constraints of a fundamental nature preclude the application of Bell Inequalities to
data from do-able EPR-B experiments. Thus, the violation of these inequalities by data from such experiments is without
significance for the questions posed by EPR orBELL. Further, other implicit, misguided assumptions in analysis of this issue
are discussed and a counterexample to conventional opinion in the form of a local realistic model and simulation of EPR-B
experiments is displayed.

MOTIVATION AND BACKGROUND

Covert hypotheses are the bane of logical reasoning. Bell’s theorem provides a stark example. In fairness toBELL, he
never stated what has become known as a ‘theorem’. What he did do, however, is state very clearly what has the form
of a conclusion of a theorem:

In a theory in which parameters are added to quantum mechanics to determine the results of individual
measurements, without changing the statistical predictions, there must be a mechanism whereby the setting
of one measurement device can influence the reading of another instrument, however remote. Moreover, the
signal involved must propagate instantaneously, so that such a theory could not be Lorentz invariant.[1, p.
20]

This statement, as it stands, may be technically incontestable. This is so thanks to the phrase: “parameters are added
to quantum mechanics”. Strictly taken, this statement requires that an alternate explanation remain faithful to all the
baggage that comes with quantum mechanics (QM), includingVON NEUMANN ’s measurement theory (vNMT), with
superposition of mutually exclusive outcomes and the concept of ‘wave collapse’. That is, although such quantum
features may be where the source of the limitation lies in the first instance, modifications should be restricted simply
to adding additional parameters to QM.

What is legitimately arguable, however, is that an altered statement, i.e., a change inBELL ’s definition of the
task, is definitely not true. The facilitating alteration is to replace the phrase extracted above with: “parameters are
added tothose ofquantum mechanics”. This change admits consideration of alternative theories free of vNMT, i.e.,
superposition, wave collapse and the like. Returning to pre-quantum physics precludes from the start the philosophical
and interpretational issues that continue to plague QM interpretations. In addition, this modification seems to be
in accord with contemporary understanding, in that virtually all literature onBELL ’s analysis of theEINSTEIN,
PODOLSKY and ROSEN (EPR) conundrum, tacitly interpretsBELL ’s statement to mean that all “local realistic”
alternatives, vice just extended QM with additional variables, are excluded. Actually, in the end, all a successful
extension of QM must provide is accurate numerical results for measurable physical quantities.

CRITICAL REVIEW OF INEQUALITY DERIVATIONS

In this spirit, let us reexamine the derivation of a Bell Inequality, now with the intention of assuring that every step
is sensible from the point of view of pre-quantum physics. To facilitate this approach, let us jump immediately to the



EPR-B (EPR as modified byBOHM) variant as applied to polarization phenomena, as they have no taint of quantum
structure, in contrast to ‘spin’. (The physics of such experiments is very well known; it shall not be repeated here
again. See,e.g.: [2])

First, recall a mathematical technicality concerning the product of two Dirac delta functions, which is essential for
what follows. It is that the integral of the product of two delta functions displaced from one another, is zero; i.e.:Z

dx f(x)δ(x− l)δ(x−m) = 0, (1)

wheneverl 6= m.
The derivation of a Bell Inequality starts fromBELL ’s fundamentalAnsatz:

P(a, b) =
Z

dλρ(λ)A(a, λ)B(b, λ), (2)

where, perexplicit assumption:A is not a function ofb; nor B of a; and each represents the appearance of a
photoelectron in its wing, anda andb are the corresponding polarizer filter settings.1 This is motivated on the grounds
that a measurement at stationA, if it respects ‘locality’, so arguesBELL, can not depend on remote conditions, such as
the settings of a remote polarizer. In addition, each, by definition, satisfies

|A| ≤ 1, |B| ≤ 1, (3)

which in this case effectively restricts the analysis to the case of just one photoelectron per time window per detector.
Eq. (2) encodes the desideratum, that when the hidden variables are averaged out, the usual results from QM are to be
recovered.

The λ above inBELL ’s analysis stands for a hypothetical set of “hidden variables”, which, if they exist, should
render QM deterministic. This set may include many different types of variables, such as discrete, continuous, tensor
or whatever.

Extraction of inequalities proceeds by considering differences of two such correlations where(a, b), i.e., the
polarizer axis of measuring stations, left and right, differ:

P(a, b)−P(a, b′) =
R

dλρ(λ)[A(a, λ)B(b, λ)−A(a, λ)B(b′, λ)], (4)

to which zero in the form:

A(a, λ)B(b, λ)A(a′, λ)B(b′, λ)−A(a, λ)B(b′, λ)A(a′, λ)B(b, λ) = 0, (5)

is added to get:

P(a, b)−P(a, b′) =
R

dλρ(λ)A(a, λ)B(b, λ)[1±A(a′, λ)B(b′, λ)]− R dλρ(λ)A(a, λ)B(b′, λ)[1±A(a′, λ)B(b, λ)],
(6)

which, in turn, upon taking absolute values and in view of Eqs. (3),BELL wrote as:

|P(a, b)−P(a, b′)| ≤ R dλρ(λ)[1±A(a′, λ)B(b′, λ)]+
R

dλρ(λ)[1±A(a′, λ)B(b, λ)]. (7)

Then, using Eq. (2), and the normalization condition
R

dλρ(λ) = 1, he got, for example:

|P(a, b)−P(a, b′)|+ |P(a′, b′)+P(a′, b)| ≤ 2, (8)

a ‘Bell inequality’.
Now, however, if theλ are a complete set2, thereby rendering everything deterministic so that all probabilities

become Dirac or Kronecker delta distributions, then theA’s andB’s in Eq. (6) are pair-wise; that is to say as individual

1 After-the-fact note: Bell’s notation, e.g.,P(a,λ) makes no distinction between variables, herea, and conditioning parameters, hereλ, customarily
separated by a vertical bar rather than a comma. This oversight is the source of much confusion, and possibly even the prime cause of his ‘error.’ In
this paper, Bell’s notation is retained whenever referring directly to his formulas.
2 After-the-fact note: Bell used a single symbol:λ to denote what could be a complicated set of variables of possibly different types even. Thus, a
“particular values forλ” means that each entity in the whole set must have a value.



events comprising the generation at the source of one pair, are non-zero for distinct values ofλ, which, by virtue of
completeness, do not coincide for distinct events,i.e., for different pairs. That is, for each pair of settings(a, b) and
iteration of the experiment, there exists a unique set of values,λ(a,b) say, for whichA(a|λ(a,b))B(b|λ(a,b)) is non-zero
(±1 in the discrete case,±∞ in the continuous case). In other words, each productA(a|λ(a,b))B(b|λ(a,b)) can be written
in the form f (x)δ(x−λ(a,b)), so that all quadruple products

A(a|λ(a,b))B(b|λ(a,b))A(a|λ(a′,b′))B(b|λ(a′,b′)), (9)

are of the form:
f (x)δ(x−λ(a,b))g(x)δ(x−λ(a′,b′)), (10)

wherex is a dummy variable of integration to run over all admissible values ofλ. Therefore, such terms with pair-wise
different values ofλ(ab) in Eq. (6), i.e., when eithera 6= a′ or b 6= b′, are, in accord with Eq. (1), identically zero
under integration overλ. This annihilates two terms on the left of Eq. (8), so that the final form of this Bell Inequality,
resulting from the above complex of hypotheses,(i.e., no vNMT) is actually, for example, the trivial identity[3, 4]:

|P(a, b)|+ |P(a′, b′)| ≤ 2. (11)

Transferring this whole argument to a purely classical venue, precludes certain complications that are difficult or
impossible to evade in QM. An example here is that the expressionsA(a|λ(a,b)) andB(b|λ(a,b)) as quantum objects
are superpositions of possible outcomes for various values ofλ(a,b). Indeed, the source signal for a quantum model
of an EPR experiment is the singlet state which is considered to be a superposition of mutually exclusive outcomes.
On occasion this notion is extended such that information for so-called “counterfactual” measurements is considered
contained in wave functions. That is, wave functions are presumed to have within them whatever is needed to give
measurement results for both the settinga, and also for the settinga′, distinct froma, if, contrary to fact, ithad been
measured.

This notion relates to the issue of “reality”, which is the philosophical position briefly captured byEINSTEIN’s
declared preference: the moon is in fact ‘there’, even when nobody is looking. From this position, the possibility that
a wave function has no material identity before somebody “looks”,i.e., before it is collapsed by measurement, is
excluded from the start. In other words, in a classical model of EPR experiments, ‘reality’ is encoded into the model
by the assumption that instead of a superposition of possible outcomes as represented by the singlet state, the states
are just a (random) selection of the base states that go into the superposition. While it is imaginable that the source
signal could encompass information needed to determine the measurement outcome for different settings on each side
separately, it seems clear that the vertical::horizontal ambiguity between the two terms of the singlet state can not be
maintained under local realism. Presumably, just which basis state (term) represents any particular pair can be specified
by one of theλ parameters.

CRITICAL REVIEW OF ABSTRACT INEQUALITIES

Besides the above line of analysis, there is a more abstract approach that, seemingly, is even independent of the
specific physics of any EPR experiment. It is based on the character of dichotomic sequences of the sort produced by
such experiments. It proceeds as follows:

Consider four dichotomic sequences comprised of±1’s and lengthN: a, a′, b andb′ (a, b here are unrelated to those
above) . Now compose the following two quantitiesaibi + aib′i = ai(bi + b′i) anda′ibi −a′ib

′
i = a′i(bi −b′i), sum them

over i, divide byN, and take absolute values before adding together to get:

| 1
N ∑N

i aibi + 1
N ∑N

i aib′i |+ | 1
N ∑N

i a′ibi − 1
N ∑N

i a′ib
′
i | ≤ 1

N ∑N
i |ai ||bi +b′i |+ 1

N ∑N
i |a′i ||bi −b′i |; (12)

or, in compact notation:

|< ab> + < ab′ > |+ |< a′b >−< a′b′ > | ≤< |a||b+b′|> + < |a′||b−b′|> . (13)

The right side equals2, so this is in fact a Bell inequality. [4]
Here the question is: what do the physical circumstances of an EPR experiment dictate with regard to these terms?

First, it is obvious that each term on the left individually is a correlation. Thus, the first term is the correlation of the
appearance of photoelectrons right and left for the settings regimea andb. The second term then, is the correlation



thatwouldobtain if instead ofb the one settinghadbeenb′, i.e., it is acounterfactualcorrelation. Likewise between
the other two settings.

In reality, however, in a do-able experiment, only two of the product sequences can be taken as data. The other two
would require a perfectly faithful replay of a factor sequence. In principle, if hidden variables can be manipulated, not
just passively known, then it might be possible to carry out exactly such a replay to obtain, for example, that factor
sequenceb′ that is also correlated witha. As a practical task, however, this seems to be impossible, so that the best that
can be obtained from do-able experiments would be only one or the other, eitherb or b′ would be correlated witha so
that then eitherb′ or b respectively, would be random or uncorrelated with respect toa. Of course, for the uncorrelated
factor sequence,b′ say, it is true that< ab′ >= 0. (This is most easily seen, perhaps, by recalling that the percentage
of +1’s, say, in the sequenceb′ will be proportional tocos2(β) whereβ is the angle that the signal polarization makes
with the polarizer setting yielding sequenceb′. Now if the two sides are uncorrelated, this proportionality factor will be
sin2(β) in half the iterations so that the sum of observed+1’s will be constant or equal to a purely random, uncorrelated
distribution.) Applying this reasoning to all terms in Eq. (12), then, nullifies two of them, so that the inequalityfor
experimental outputis revealed to be of the same form as Eq. (11);e.g.,

|< ab> |+ |< a′b′ > | ≤ 2, (14)

a trivial tautology.
To further illustrate the logical impossibility of relating data taken from a do-able experiment with sequences

required for Eq. (12), consider the following. Suppose there is a string of data available from an experiment. It will be
comprised of four virtually equal length subsets, one for each setting combination; let the first subset be denoteda1b1,
the seconda2b′2, etc. (and where another serial or iteration counter subscript is implied). Now, it is obvious that for a
particular setting, the percentage of+1’s in the total of long enough samples will be equal;i.e., the number fora1 equals
the number fora2 etc.; so that one can imagine re-sortinga2 so that it has nearly the identical pattern asa1. Denote
the re-sorted version as̃a2. Thus, the re-sorted second term in Eq. (12), for example, becomesa2b′2 ⇒ ã2b̃′2 ∼= a1b̃′2.
Likewise the third and fourth terms become:a′3b′3 ⇒ ã′3b̃′3 ∼= ã′3b̃′2 anda′4b4 ⇒ ã′4b̃4

∼= ã′3b̃4, respectively, so that the
right side of Eq. (13) becomes:

< |a1||(b1 + b̃′2)|> + < |ã′3||(b̃′2− b̃4)|> . (15)

Obviously, asb1
∼= b̃4 is not necessarily true identically, that is by cause of physical requirements from the experiment’s

setup, the loop can not be closed and the whole expression can not be limited always (nor even mostly) to being≤ 2.
What this means in toto is, that even if Eqs. (8) and (12) are regarded as valid sufficient constraints on correlations

imposed by “local realism”, they can not be applied in experiments that can be done. That is in short: Bell inequalities,
vís-a-vís the modified statement above(no vNMT), and EPR experiments, are disjoint. The violation of Bell inequali-
ties by both calculations done with QM and by data taken in past experiments can not be given significance, because
the data streams do not meet the conditions of derivation of Bell Inequalities.

ALTERNATE CRITICISMS

Quite independent of this line of reasoning, which, to this writer’s best information, originated withDE LA PEÑA,
CETTO andBRODY in 1972[5] and continues to the present[6–8], the extraction of Bell Inequalities has been criticized
on completely different grounds byJAYNES[4, 9]. His point is that Eq. (2) results from a misconstrual of Bayes’
formula or the ‘chain rule’ for conditional probabilities, namely:

ρ(a, b, λ) = ρ(a|b, λ)ρ(b|λ)ρ(λ), (16)

whereρ(a, b, λ) is a joint probability distribution andρ(b|λ) is aconditionalprobability distribution.JAYNES points
out thatBELL takes it that the presence of the variableb in the factorρ(a|b, λ) implies instantaneous action-at-a-
distance. This is true, however, only for the quantum case for which it is understood according toVON NEUMANN ’s
measurement theory that wave functions are superpositions of the possible outcomes (even when mutually exclusive)
whose ambiguity is resolved by collapse precipitated by the act of measurement. Eq. (16), however, for application in
non-quantum circumstances implies no more than that there was acommon causefor a coincidencein the past light
cones of both measuring stations, a precondition which in QM is preempted by superposition.

The upshot is again that Eq. (2) does not pertain to non-quantum models; it is not a faithful encoding of locality as
needed for theories not employing the irreality of wave functions interpreted according toVON NEUMANN ’s theory.



Either of these arguments lifts the ban imposed byBELL ’s analysis on local realistic alternatives to QM. It turns
out, however, this is not the end of toxic covert hypotheses vexing this issue. Another one was concealed inBOHM’s
modification.[10] Originally EPR considered aGedankenexperiment in phase space, which in QM is spanned by the
operatorŝx andp̂. Because realizing the experiment as envisioned was virtually impossible,BOHM proposed changing
venue to polarization space spanned byv̂, vertical, andĥ horizontal, (with an intermediate stop at spin-mechanics—
which shall be ignored for the moment). This was done without noticing that while phase space operators do not
commute (ultimately because of Heisenberg uncertainty), for a fixed direction of propagation,i.e., fixedk vector, the
latter do commute.3 Thus, polarization space is a venue without quantum structure (i.e.,Heisenberg uncertainty) and
can not, therefore, be used for the purpose of plumbing the mysteries of QM.[4, 13]

A COUNTEREXAMPLE

Building on this understanding, it is possible to construct a model of EPR-B experiments that is fully local and realistic,
but that nevertheless, delivers the correlations as calculated by QM and measured in experiments, contrary to the
(modified) statement ofBELL ’s conclusion.

The basic premise of the model is that EPR-B correlations arise from purely non quantum structure and can,
therefore, be accurately calculated using the classical formula for high order correlations:

Γ(N)(r1, t1, . . . , rN, tN) =
< ∏1

j=N E∗j (r j , t j)∏N
j=1E j(r j , t j) >

(∏N
j=1 < |E j(r j , t j)|2 >)(1/2)

. (17)

The application of this definition to any particular experimental setup is not always transparent. Essentially it calls for
an average of the tensor products squared of the output signals normalized by the intensity of the input signals. For an
EPR-B setup, the following MuPAD[11] routine calculates the full correlation using Eq. (17):

//**********begin: eprb.mb**********

Matrix:=Dom::SquareMatrix(2): vector:=Dom::Matrix(): //Function definitions.

Proj:=z->Matrix([[cos(z),sin(z)],[-sin(z),cos(z)]]): //Projection operator defined.

Sl:=n->vector(2,1,[[n],[1-n]]): Sr:=n->vector(2,1,[[n-1],[n]]): //Source signals defined.

El:=(n,z1)->Proj(z1)*Sl(n): Er:=(n,z2)->Proj(z2)*Sr(n): //Detector inputs calculated.

//Numerator for correlation function defined:
Num:=(n,m,o,p,q,z1,z2)->(-1)^c*El(n,z1)[m]*Er(n,z2+c*PI/2)[o]*
Er(n,z2+c*PI/2)[p]*El(n,z1)[q]:

//Denominator left implicit, as for the above sources it equals 1.

//Calculate correlation; inner 4 sums over the physically realizable products
//of output signals; sum on "n" over input signals; sum on "c" to effect the
//weighted sum over "like" and "unlike" combinations to get setup correlation.

_plus(sum(_plus(_plus(_plus(_plus(Num(n,m,o,m,o,z1,z2)
$ m=1..2) $ o=1..2) $ p=1..2) $ q=1..2),n=0..1) $ c=0..1)/2^3: simplify(%);

//**********end**********

The essential difference between classical and quantum correlations in Eq. (17) is that in the quantum version the
factorsE(r, t) are creation or annulation operators and do not commute, whereas in the classical version they are simply

3 Here many are misled often by the fact that whenk is not fixed, it induces the non-commutivity of rotation on the sphere onto thev̂ andĥ vectors
orthogonal to it; this non-commutivity is a geometric effect, totally unrelated to QM.



scalar functions and do commute. It is easy to verify with the above routine that the factorsE(r, t) can be rearranged
arbitrarily without affecting the outcome, namely:−cos(2(θl −θr)), thereby confirming that EPR-B correlations are
non quantum in nature.

The structure of an EPR-B experiment can be simulated to give a data-point-by-data-point (or photoelectron-by-
photoelectron) exposition of the structure.[12, 13] It is best described in reverse order, so to speak.

The EPR-B experiment consists of a source emitting pairs of photons in the singlet state. As here a classical model
is sought, instead of the singlet state comprised of a superposition, it is taken that one of two classical states, namely
a horizontal pulse to the left and a vertical pulse to right, or vice versa, is randomly emitted. Then, after the source
signal is determined, a random selection of two angular values of the axis of the polarizer filters left and right is made.
Finally, these signals as modified by Malus’ Law are sent to detectors.

In the usual way, the final step in the analysis of data taken in an EPR-B experiment, is to calculate the CHSH
contrast:

S= k12+k11+k21−k22, (18)

where the individual terms,ki j are the correlation functions when the polarizer on the left has angular settingθi and
that on the right,θ j . Recall that “Bell’s theorem” is taken to state that|S| ≤ 2 for all local realistic theories.

From classical optics, the individual terms,ki j , for the intensity correlations for the signals passing through the
polarizers, according to Malus’ Law are given by:

κ =
2cos2(θr −θl )−2sin2(θr −θl )
2cos2(θr −θl )+2sin2(θr −θl )

. (19)

From the fact that the angles from both sides appear in each term, one might be tempted to conclude that a certain
non-local effect is involved in determining the values of these correlations. However, this is actually not the case. Each
term in Eq. (19) can be expanded using the following trigonometric identities:

cos(θr −θl ) = cos(θr)cos(θl )+sin(θr)sin(θl ),
sin(θr −θl ) = sin(θr)cos(θl )−cos(θr)sin(θl ). (20)

Each of the factors in Eq. (20) in turn, is related, again by Malus’ Law, to the data stream according to, for example:

cos(θl ) = limN→∞
√

Nsl/N, (21)

for positive counts, whereNls is the total number of “hits” or photoelectrons registered in the left,l , detector when
a signal (pulse) from the source polarized ins mode, andN is the total number of pulses in this regime intercepted
by that detector. In typical experiments for which there are two possible angles for the polarizers on each side and
two polarization modes (vertical or horizontal) given to the pulses by the source, it follows thatN = T/8 whereT is
the total number of pairs considered. Clearly, the compliment of Eq. (21);i.e., 1−cos2(θl ), gives the probability of a
non-hit.

This simulation was realized with the following SCILAB[18] routine:

//**********begin: eprb_sim.sl**********

xbasc(); //clear graphic window.
getf(’cor_fun.sl’); //Load subroutine.
N=1000; //Set number of iterations.

//Initialize counters:
N11lc=0;N11ls=0;N11rc=0;N11rs=0;N10lc=0;N10ls=0;N10rc=0;N10rs=0;fcor00=0;fcor10=0;
N00lc=0;N00ls=0;N00rc=0;N00rs=0;N01lc=0;N01ls=0;N01rc=0;N01rs=0;fcor01=0;fcor11=0;

a1=0;a2=%pi/4;b1=%pi/8;b2=-%pi/8; //Set polarizer angles:

for n=1:N;
t1=0; t2=0; p1=0; p2=0; //Initialize keys.
if rand()<.5 then k=1; else, k=0; end; //Select source signal and set its key.



if rand()<.5 then a=a1; else a=a2; end; //Select left polarizer angle.
if a==a1 then t1=1; else, t2=1; end; //Set key.
if rand()<.5 then b=b1; else b=b2; end; //Select right polarizer angle.
if b==b1 then p1=1; else p2=1; end; //set key

//Record signs of angles:
sa=sign(cos(a)); sb=sign(cos(b)); sc=sign(sin(a)); sd=sign(sin(b));

//Given angles, apply Malus’ Law to register a "hit" and set counts:
if rand()<k*cos(a)^2 then X=1; else, X=0; end;
if rand()<k*sin(b)^2 then Y=1; else, Y=0; end;
if rand()<(1-k)*sin(a)^2 then W=1; else, W=0; end;
if rand()<(1-k)*cos(b)^2 then Z=1; else, Z=0; end;

//Following 4 blocks update hit counters & correlation calculation
//for the 4 combinations of key (angle) settings, only 1 block responds per trial.

//Block 1:
if k*t1*p1*(X)==1 then N11lc=N11lc+1; end;
if k*t1*p1*(Y)==1 then N11rs=N11rs+1; end;
if (1-k)*t1*p1*(W)==1 then N11ls=N11ls+1; end;
if (1-k)*t1*p1*(Z)==1 then N11rc=N11rc+1; end;

if t1*p1==1 then cor11(n)=Kor(N11lc,N11rc,N11ls,N11rs,sa,sb,sc,sd,n); ...
else, cor11(n)=fcor11; end; fcor11=cor11(n);

//Block 2:
if k*t1*p2*(X)==1 then N10lc=N10lc+1; end;
if k*t1*p2*(Y)==1 then N10rs=N10rs+1; end;
if (1-k)*t1*p2*(W)==1 then N10ls=N10ls+1; end;
if (1-k)*t1*p2*(Z)==1 then N10rc=N10rc+1; end;

if t1*p2==1 then cor10(n)=Kor(N10lc,N10rc,N10ls,N10rs,sa,sb,sc,sd,n); ...
else, cor10(n)=fcor10; end; fcor10=cor10(n);

//Block 3:
if k*t2*p1*(X)==1 then N01lc=N01lc+1; end;
if k*t2*p1*(Y)==1 then N01rs=N01rs+1; end;
if (1-k)*t2*p1*(W)==1 then N01ls=N01ls+1; end;
if (1-k)*t2*p1*(Z)==1 then N01rc=N01rc+1; end;

if t2*p1==1 then cor01(n)=Kor(N01lc,N01rc,N01ls,N01rs,sa,sb,sc,sd,n); ...
else, cor01(n)=fcor01; end; fcor01=cor01(n);

//Block 4:
if k*t2*p2*(X)==1 then N00lc=N00lc+1; end;
if k*t2*p2*(Y)==1 then N00rs=N00rs+1; end;
if (1-k)*t2*p2*(W)==1 then N00ls=N00ls+1; end;
if (1-k)*t2*p2*(Z)==1 then N00rc=N00rc+1; end;

if t2*p2==1 then, cor00(n)=Kor(N00lc,N00rc,N00ls,N00rs,sa,sb,sc,sd,n); ...
else, cor00(n)=fcor00; end; fcor00=cor00(n);

//Compute CHSH contrast up to "n", and iterate:
D(n)=+cor01(n)+cor11(n)+cor10(n)-cor00(n); n=n+1; end;



//plot CHSH contrast (red) & correlations:
plot2d([cor11,cor10,cor01,cor00,D])

//**********begin: cor_fun.sl**********

function [cor]=Kor(a,b,c,d,sa,sb,sc,sd,n);
//Calculate the cos (or sin) of the angle using Malus backwards:

f1=sa*a^.5; f2=sb*b^.5; f3=sc*c^.5; f4=sd*d^.5,

//Compute the system correlation using Malus forwards:
//where, e.g., cos(th_l-th_r)^2 =[cos(th_1)*cos(th_r)+sin(th_r)*sin(th_l)]^2
cor=((f1*f2 + f3*f4)^2 -(f1*f4 - f3*f2)^2)/(n/8)^2;

//**********end**********

The critical point here is that all the informa-
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1: Figure: Results from a typical run of the EPR-B simulation. The
upper curve is the CHSH contrast, the lower four curves are the
individual correlations.

tion needed to evaluate Eq. (21) is provided by
thedelayedsignal from the source, the local po-
larizer setting, and noise at the detector. The last
contribution is the one from previously ‘hidden
variables’, here identified and displayable (in a
simulation). Nothing is needed from remote lo-
cations. It is only in the calculation of the corre-
lations after-the-fact that information from both
sides is mixed; there is no role for non-local in-
teraction at the detection events. Further, all of
the implied processes are described by conven-
tional, non-quantum physics.4

The simulation gives precisely the result for
the right side of Eq. (8) calculated for settings
on one side ofa = 0, π/2, and on the other of
b = ±π/4, namely:2

√
2.[13] See: Figure. Its

simple existence disprovesBELL ’s assertion by
counterexample.

This is not the first attempt to construct local-
realistic models of EPR type experiments; see for example:[14–16]. These other simulations, however, all use tailored
physical models of the detection process in which both channels are not identical; in this sense they are artificial.
Alternately, instead of detector symmetry, other features, for example: fair sampling, can be sacrificed.[17] In any case,
these modifications were introduced to obtain a model that isbothlocal realistic,anddoes not violate Bell Inequalities.
The latter stipulation, however, on account of ‘disjointness’,inter alia, is unnecessary. While these models are valid
technical counterexamples, evidently because of implausible detection physics, they have not attracted all the attention
they deserve.

The advantage of simulation is that it fosters abandonment of simple trust in formalism in favor of “physical
insight”. That is, the very act of creating a simulation routine forces one to consider in detail physical models for
the processes involved; it forces one to examine various alternatives, until one that yields output mimicking data as
seen in laboratory experiments is found. While success is not proof that a physical model is “really” faithful to a
phenomenon, unsuccessful models as they stand can be eliminated.

As an illustration, consider a renowned conundrum billed as illustrating, in a particularly “simple but rigorous way,
precisely what was extraordinary about quantum correlations”.[19] One of the fundamental inputs into this conundrum
is use of the ‘rotational invariance’ of the singlet state, which, by all currently accepted formalistic reasoning, means
that regardless of the orientation perpendicular to thek-vector, EPR-pairs measured in orthogonal directions, are
perfectly anticorrelated.

The impossibility of arranging for this to happen is glaringly obvious to one doing simulations, even while getting

4 Because spin is homeomorphic to polarization, at root its spacial deportment must also be geometric in character, a point reinforced by the fact
that so-called Pauli spin matrices were in use as Stokes’ operators decades before spin was discovered.



output consistent with laboratory results is easily possible—thereby undermining claims of the inevitability of quantum
mysticism. In other words, while it is possible to set up an arrangement such that, for an arbitrarily chosen direction, the
results are perfectly anticorrelated, it is not possible, having made this choice, to then get perfect anticorrelation results
in other orientations, because such measurements will exhibit scatter or statistical results governed by Malus’ Law.
(Calculation shows, however, that a random bias angle, fixed for each, but different between pairs, has no effect on the
statistics of large ensembles of pairs.) The rub here consists in assuming that the quantum formalism actually requires
turning a specific possibility into an universal ineluctability. However, there is no foundation for this assumption to be
found in any precept of QM; it is simply an unexamined legend. When it is abandoned, as simulation forces one to do,
the conundrum collapses.

This particular legend engenders much confusion throughout expositions of QM in relation to spin. One reads in
virtually every textbook that were spin measurable in more that one direction, the result would be dichotomic in each
direction. In fact, there is no support for this notion. One may take it, without fear of contradiction, that spin is actually
the resolution ofZitterbewegungin terms of clock- and counterclockwise rotation about magnetic field lines, where
the proportion of these two components is regulated byBoltzmann’s thermodynamic factor. This “spin” motion then
manifests itself via its coupling with larger scale motion about the same field line. Thus, while it is possible to resolve
the Zitter motion about any axis; the observable coupling is restricted to B-field directions. If this model of spin is
accepted, it is obviously ontological nonsense to consider spin in more than one direction at once for the same reason
that there can never be more than a single B-field direction at once. Thus, the notion of measurements at angles to the
axis of rotation, is oxymoronic because spin coupling itself is about the very magnetic field line being used to measure
it; measuring at alternate angles rotates the system coordinates, not just an exterior measurement device.

CONCLUSIONS

Fostered by the demands of simulation,‘physical insight’, instead of blind hope and faith in abstract formalism, forces
identification of implicit hypothetic suppositions that have been insinuated into modern physics theories. Among such
covert implicit (and misguided) suppositions pertaining to EPR-B/BELL analysis are the following:

Hidden null terms: Failure to identify null terms in the derivation of a Bell-Inequality;
Statistical independence:Locality misencoded as statistical independence;
Data incompatibility: Failure to observe that irrepeatability precludes taking relevant data;
Rotational invariance: Misinterpretation of the rotational invariance of a singlet state, and;
Geometric non-commutivity: Failure to see that non-commutivity of Pauli spin operators is actually due to the

geometric non-commutivity of generators of rotations on a sphere.

Recognition of any one of these covert assumptions underminesBELL ’s conclusion that an extention of QM neces-
sarily involves non-locality. The model and simulation displayed above exhibit in detail just how EPR-B experiments
can be described using only local realistic concepts from classical physics.

The ultimate conclusion is, that the challenge posed by EPR to find a local realistic completion for QM, is not
hopeless, quixotic reverie.
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