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In WEYL'S' space-timgeometnthereappearsin additionto thewell known quadatic
differentialform, which specifieshe metricat eachpoint, anothedinearform:

Godxo + § - dX = ¢ - dx,

which specifieghe metricalinterrelationshigbetweenpoints. Its geometricakignificance
is that,it givesthe changen the“measure’(Masszahlpf thedisplacement (the absolute
squareof theinterval) under“congruentdisplacementto neighboringpointsby

1) dl = —I¢-dx.

WEYL discoveredthat throughboth together(metric and metrical interrelationship)an

affine connectiorfor theworld (i.e., a definitionof vectorparalleltransport)s determined
if onealsodemandshatfor paralleltransportof avector its modulusis to be congruently
transported. For congruenttransportof a displacementlong a world line — e.g., for

paralleltransporbf avectoralongsuchadisplacement— the measurés multiplied by the

factor

(2) e o,

wheretheline integral is to be takennaturallyalongtheworld line, uponwhichit signifi-
cantlydependssothatthe quantities

3) f=0x9,

do not vanishidentically. As Physics,the affine connectiongiven above constitutesthe
gravitationalfield andf aretheelectromagneti€ields. If thesituation,includingthechoice
of coordinatesjs suchthatin a world patch, at leastapproximately Xo is the time (in
secondspndX areCartesiarcoordinategin cm), then¢, up to a constantjs proportional
to theusualelectromagnetipotentials:

-

A
(4) vV, -

Let uswrite the constantasy ‘e wheree is the electronchagein electrostatiaunits; that
is:
_ €
¢0 =Y leVa ¢ ==Y lEAa
sothat ¢o hasthe units of sec!, eV of ‘enemgy’ andy of ‘work’ (g cn? sec’l). The
“displacementactor” Eqg. (2) becomes:

Date 5 October1922.
1See:WEYL, H., Raum Zeit, Materie (Springer Berlin, 1921). Denotedas“RZM” below.
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5) e f(vdt—,&-dx)‘

The characteristiof quantumorbits, mentionedn thetitle, andto me especiallynote-
worthy, is thatthosewhich are‘“real,” thatis thatleadto obsened enegiesand spectral
lines,arealsothosefor which the ‘displacementactor’ Eq. (5), arisesasanintegerfactor
of y~h (which from the above considerationsurnsout to be a whole number)for all ap-
proximateperiodsof the system.l wish to considerfirst someparticlarexamplesasthere
area numberof conditionsto be addedto the storyin its simpleform givenabove. Then
I would like to discussthe significanceof theseconditions,although,to be honest| have
notyetachiezedmuch.

A. UndisturbedKeplerorbits? Let usbegin ignoringrelativity, which shallbe considered
belown (underE). For this casetheonly ‘real’ quantumconditior? is
(6) J=2tT =nh,

wheret in the period,fis the averagekinetic enegy.
LetV bethepotentialof the positive chaigeof ahydrogemucleuswhichthenvanishes
atinfinity. Then,asis well known, (we take e asawhole number)

- 1 —
() T=3e,
whichin Eg. (6) gives:
— T
©) e = e/ Vdt = nh.
0

Thus, the exponentof the displacementactor, Eq. (5), is —nh/y for oneperiod. The
only extra conditionin this caseis the normalizationof the additive constanin V.

B. Zeemareffect. Mechanicallythis amountsto introducingthe LARMOR pressionwith
frequeng (numberof completeprecessiomotationspersecond)

1 eH
©) 9  4mmc
Quantuntheoreticallytheabose conditionpersistsandsecureshe“whole numberchar
acterof the displacemenéxponent”(asa brierf mannerof speaking¥or thefirst periodr,
atleastapproximatelyCloserexaminationshovsthatEg. (8) remainsvalid upto quadratic
termsin H in sofar asthe LARMOR theoremholdsstill for this approximatiorfor thero-
tatedcoordinateorigin both mechanicallyandquantumtheoreticallyjust asit doesfor the
motionlesscaseA. If we now examinewhethemwholeintegerspertainto the secondoeriod
9, we canignoretheV term, asit givesa whole numbercontribution (namely asmary
times— nh, asthe simple Larmor cycle rotates).Now, the secondquantumconditionis
known, thatis, from the surfacemomentaboutthefield axis
f _n'h
T 2

(10) 2m

2prof. WEYL haswritten methatthis propositionwasknown to Prof. FOKKER, alreadytwo yearsago,and
thatit leadhim to imaginaryvaluesof ¢. Seebelow.

3Herewe arefollowing BoHR's formulation,in particularhis theoryof perturbedperiodicsystemsasthey
weretreatedn partll of thestill uncompletedProceedingsf the Copenhageikdemy Naturw u. Mathem.Art.
8 SeriedV, 1,2 (1918).Citedbelonv as“BoHRl.c”
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wheref is theprojectionof theelliptical surfaceon the planeof the equator FromEq. (9)
and(10) onegets

(11) Hi 2.8 th,
T C

H f is thework (Kraftflus) throughtheellipse,sothat
(12) Hf:/(mx/?\)ndf://i-dx,

T
gives,with Eq. (11), for thewhole LARMOR cycle
(13) S A-d=nn

CJ®)

thatis, the additionalquantumconditionsupportsthe exact “whole numbercharacter’of
theextramagnetidermsin thedisplacemengxponentextendedoverthe LARMOR period.

C. Starkeffect* Mechanicallyin this casethereappearsa secularvariationin both the
positionandform of the KEPLER orbit; still the secularvariation(in the approximation
in which the experimentis analyzed)is periodic, that is, whenthe KEPLER ellipse has
completeda secularcycle andretalenthe sameform, it finds itself at the sameposition.
The cycle path canbe bestdescribedasfollows. If one specifiesthe centerof-massof

theusualK EPLER orbit takinginto consideratiorthe dwell time of the electronat various
positionsalongthe orbit (i.e., the “electrical centerof-mass”),then onefinds the middle
point of the line betweerthe chages. The ‘electrical centerof mass’executesharmonic,
in generaklliptical, motionin a planeperpendiculato thefield direction. Then,according
to theabove, the form of the KEPLER mustchangenotin its size(i.e., neitherthe enegy

nor cycle time), ratheronly its eccentricity which is determinedby the electrical‘center
of gravity. Thethenpositionof the orbital planeis determinedn sofar as,althoughthe
totalangulamomentumandeccentricityvary, thecomponentin thefield directionremain
constant.

The supplementargiuantumcondition consists then, in, that the distanceof the nu-
cleusfrom the above mentionedplaneperpendiculato the field direction,in which the
electrical‘centerof mass’executedts seculatharmonicmotion, cantake on only certain
discretevalues. A more corvenientformulation of this quantumconditioncanbe gotten
from BOOR'’ s theoryof periodicsystemsThe additionalenegy, which simply equalsthe
potentialenepgy of the electronin anexternalfield for a KEPLER period(the averageis a
secularconstant}— the additionalenegy, in my view, is relatedto the seculaperiodd in
exactly the samerationasthetotal enegy to the periodof anharmonicoscillator, thatis

(14) AE = n’h%,

whereAE is theadditionalenegy, andr’ is awhole number Now whenV’, the potential
of the exterior field, underthe conditionsmentionabove is so normedthatit vanishesn
thenucleusthenoneseesasilythat

— e [t+t
(15) AE = —éV' = —¥/ Vdt.
t
FromEgs.(14)and(15)it followsthat
ey rt+t t-+1
(16) - / Vidt = e / V'dt = —r'h.
t t

4BoHR, I.c. 14,p. 69.
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A glanceat Eq. (5) revealsthatwith the “whole number”characteof the electronicterm
in thedisplacemengéxponentis demonstratetbr theseculalSTARK period— in complete
analogyto theresultfor the LARMOR periodin the ZEEMAN effect.

With the ZEEMAN effect we were able, by virtue of the especiallysimple character
of the secularperturbationfrom the whole numbercharacterof the additionalterm, to
infer thewholenumbercharactepf thedisplacemenéxponent.Herethatinferencewould
be too hasty asthe averageof the nuclearpotential,V, over a KEPLER ellipse suffers
perturbationsof the first order which during a secularperiod, 8, could accumulatdo a
finite contritution ® To becompletelycertain let usreturnto theexplicit form of thecentral
guantumconditionof the perturbeccase Let q bethe electrons orthogonakoordinatesp
themomentumsothat

t+9
an [ p-at=nn
t
whered now — moreprecisely— is theanexactquasiperiodof the systemafterwhichto

high precisionthe coordinateandmomentarepeat.As a consequenci mustbethe case
that

t+1 ¢
| g ead=o
Thus,in steadof Eq. (17), onecanalsowrite:
t41
(18) /t (q-p)dt = —nh;
or, if
U=—-eV+V),
thepotentialenepy is, asfollows becaus®f the equationof motionfrom Eq. (18)

(19) /t ™ (q-0U)dt = nh,

The two termsof U are homogeneous$unctionsof g, in factV is homogeneousf
degree—1 andV of degree+1. Thereforeit follows from Eq. (19) that

(20) / eV —V')dt = nh
t

Consideringeq. (16), it follows

t+T
21) / e(V +V')dt = (n—2r)h,
t

which completeghe proof. — Regardingthe STARK effect, we emphasizegainthe ne-
cessityof normalizationof the potentialwith whichit vanishesn thenucleus.

SNote that BoHR hasshavn — asfollows directly from the constang of V' —, thatthe averageof thetotal
enegy function of the unperturbed EPLER orbit suffers only secondorder perturbations.Here, however, the
issueconcernsnly potentialenegy, andthe perturbingfield destrgs the simplerelation, Eq. (7) betweerthe
two enegy contritutions.
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D. CombinedSTARK and ZEEMAN effectwith parallel axe$. Accordingto BOHR's the-
ory of perturbedperiodic systemspnegetsfor superimposethomogeneouslectricand
homogenoumagnetidields,whentheperturbatiorfrom bothfieldsis of roughlythesame
magnitudeyvell defineddiscretequantizedrbitsonly whenthefield axesareparallel’ We

restrictoursehes,therefore o this case.ln mechanicatermswe have heresimply oneof

the above consideredotationsof the STARK effect cycle with respecto a LARMOR ro-

tation, Eq. (9), of the axis crossing,whereit is to be keptin mind that the LARMOR

frequeny dependsonly from the electronconstantsand magneticfield strengthand not

from form or orientationof the orbit sothat L ARMOR rotationis uniform. In additionthe
guantumconditionsare superposedsoto speak.The large half axesof the KEPLER EL-

LIPSES areallowed to have the samevalue, asunperturbecatoms,for the distancefrom

the nucleusat which the electricalcenterof-massoscillates,.e., the samevalueasin the
pureSTARK effect; the magnetidield constrainghe componentsf angulatmmomentumin

thefield direction(which in the pure STARK effect wereconstanbut not quantized)how

to be whole numbermultiplesof 7 asin the ZEEMAN effect. The total perturbationis,

naturallynolongerpurely periodic,rathertherearisestwo, in generalunreconcilablesec-
ular periodsof nearlythe samemagnitude:in one LARMOR precessiorof the comoving

coordinategseproducethe form andorientationof KEPLER ellipseswith periodd¢ of the

STARK effect, while the ellipsesharmonicallypassthroughthe electricalcenterof-mass
with LARMOR period 9, aboutthe field direction. In that with relationsto the rotating
systemand quantummechanicallyexactly the samerelationshipgprevail asfor the pure
STARK effectwith respecto a stationarysystemandinsofar asthe electricfield by cause
of LARMOR rotationis transformednto itself, oneeasily seeshatthe first two quantum
conditionsleadto

t+39s
22) / e(V +V')dt = nh.
t

With regardto magneticquantization recall that both KEPLER periodsandthe angular
momentuniFlaachenmomenth thefield direction,andthereforealsotheprojectionof the
KEPLER ellipseon the equatorialplaneor the magneticwork aroundthe KEPLER ellipse
aresecularconstants. Fromthis is follows from the magneticquantizationconditionjust
asin 8B, that

e - =

23) € / A-dk=n'h,
cJey

whenintegratedover a LARMOR cycle. Thatthe KEPLER ellipse doesnot returnto its
original form andorientation,doesnot affect matters.

Egs. (22) and(23) eachrepresenbnly a part of the “displacemenfactor” (22) is he
electriccontributionand(23) themagnetigpart. Moreoverthey pertainto entirelydifferent
timeintervals,ds andd, for which neitherconstitutesa quantunperiod. Thelattercanand
doesin generalcompriseto a certainapproximatiormultiples of theseperiodswhenever
thefollowing nearlyholds:

Ngds = n|3| =9.
If herewe chosens asa whole number andthenn; so thatthis relationshipis satisfied
exactly, multiply Eq. (22) by n and(23) by n; andsubtracthem,we get

(24) e/( )(V+V’)dt—%,&-a>><=(nsn—n|n’)h.
9

6BOHR, N.,l.c.p.91.
7BOHR, N.,l.c., p.93.
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Herewe find ontheleft (upto thefactor-y~1) thewhole displacementactorfor the quasi
periodd; on theright thereis a whole multiple of h, thatis a whole numberto the same
approximatiorasallowedby the sameapproximatiorof 8. While n’ is theusualmagnetic
guantumnumber thus,atleastfor low lying orbits,is a smallwhole number;smalldevia-

tionsof n; away from beingawholenumbemwill beby multiplicationby r’ insignificantly
enlaged. (This is not sofor n, which is a very large numberof the orderof the number
of KEPLER rotationsduringa STARK period;this doesno damageasns is exactly awhole

numberandmustbe sochoserthatthe phasethatwithin a KEPLER orbit reproduceghem-
seles.) It seemssomavhatunsatisfyingthatthe derivationof Eq. (24) requiresa certain
linear combinationof boththe “true” (i.e., necessaryo determinethe enegy) conditions
Egs. (22) and (23). Thus,it seemgo methat Egs. (22) and(23) aresingularly neces-
saryto determineEq. (24) for eachquasi-period.For exampleif ng = 7, nj = 12 gives
a quasi-periodthenin generalnot ns = 70, nj = 120, rathermaybens = 69, nj = 118

anothey abouttentimeslarger However, onemay not take high multiples of the secular
periodfor suchconsiderationsasquadrationemberf fieldsdo not enter wherelessthe

approximationg€omesinto questionthanthe physicalcoherencef a quantumorbit.

E. Relativisticmassalteration. lin sections§B, C, D we have neglectedto considerwhat
happensn thesecasesto exposethe electronto the perturbationfrom the externalfield
taken aslarge in comparisorto the relativistic massperturbationcausedoy the pure pe-
riodic KEPLER orbit. Takingit into the calculation,the force free atomalreadyhastwo
periods,the short, KEPLER oneT, andthe periodd of the perihelionrotation. For T the
“whole numbercharacteof thedisplacementactor”is satisfiedby thesamequantumcon-
ditionsasin the nonrelatvistic case.The questionariseswhetherit pertainsto 3. If one
fixes® moresharply asa quasi-periodthatis, sothatthe coordinatesndmomentanearly
reproducghemseles,thenthefollowing, expressedn polarcoordinatesholds:

t+9
25) | (p+ oyt =i,

[r,$ arepolarcoordinatespy, py the correspondingnomentafq. (25) is awhole number
linear combinationof the usual“radial” and“azimuthal” quantumconditions,andis the
numberof the ¢-rotationsexactly one larger than the r-oscillations]. The integrandis
invariantunderpointtransformationsthusthe Euclideanvariantis

t+3 ) )
(26) /t (Pek+ pyy)dt = r'h.

For this onecan,giventhat (xpx + ypy) returnsto its initial value,write:

t+39 . .
27) /t (Xix+ ypy)dt = —r'h,

Px, Py arein relatvistic mechanicshe negative partial derivativesof the potentialeneny,
namely—eV andarehomogeneoum x, y of thefirst degree.Thereforet follows from Eq.
(27)

t+9

(28) evdt = n'h.
t

This demonstratetherectitudeof our propositionfor unperturbedelatistic orbits.
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The ZEEMAN effect with Relatvity taken into account is rathersimple, it bringsup
simply the relativistic rosettein the LARMOR rotation. Thereare two secularperiods,
asin 8D with two parallelfields.Thetreatmenthereis fully analoguethatit repeats—it
canbe understoodwithout calculationand leadsnaturally againto a verification of our
propagation.

The STARK effectwith relativity, which KRAMERS® treatedrecentlyin a beautifulpa-
per, | have netyetanalyzedrom this viewpoint; neverthelesstherecanbelittle doubtthat
thesituationis very similarto thatfor the ZEEMAN effect,andin 8D.

Thecaseconsideredn §D with Relatiity, to my knowledge hasnot beeninvestigated,
however (becausef rotationalsymmetry)mustleadto well definedquantumorbits. It is
still of little interest.

Discussionand conclusions. In summarywe have consideredhefollowing. If anelec-
tron on its way along an orbit wereto take an “interval” alongwith it, which with the
motiondid notchangethenfor theinterval, consideredrom anarbitrarystartingpoint, its
measuravould appeato be multiplied by whole multiple of thefactor

(29) ev,

oncefor eachpassagef the startingpoint.

It is difficult to imagine,thatthis resultis only anaccidentakonsequencef the quan-
tum conditionsand without deeperphysicalsignificance. The someavhatimpreciseform
of theapproximationwhich hasemeged,changesothing;we do know, thatthequantum
orbits are physically definedlacking completeprecisiort® for two reasonsfirst because
of radiationreaction which surelydoesnotexist in the classicakelectrodynamid¢orm, but
which is surely of the sameorderquantummechanicallyalso, otherwisethe decaytime
could not be calculatecorrectly*®. [For example,in the ZEEMAN effect thefield strength
guadratidermscanbeignoredin principle; andin the STARK effect belongsif relatiity
is takeninto accountno longerto the separablgroblemd?]

Thatanelectronreally carriesan“interval” along,is morethanquestionablelt is well
possiblethatit is “frozen” in its progressionn the sensausedby WEY L3, It canbe, that
theconditionof our propositionis to be found, in thefactthatfor electronsnotall tempos
areequallypossible but dependsomehav on the quasi-periodf the orbit.

Onefeelstemptedto guesswhich value the universalconstanty might have. There
aretwo well known constantswith the units of action,namelyh and€?/c (for my part, |
amcorvincedthatthey aremutuallyindependent)Werey ~ €?/c, the universalfact (29)
would bea verylargenumbel on theorderof e1°%, the otherpossibility, y ~ h, suggests
theimaginaryvalue

h

Y= o1

8a. SOMMERFELD, Phys.Z.17, 491 (1916),wasfirst to treatthis problem,seealso: P. DEBYE, evendap.
507.

9. KRAM ERS, Z.f. Phys.3, 199(1920).

10N BoHR, I.c. pp. 50,61,66,97.

11A . SOMMERFELD andW. HEISENBERG, ZS.f. Phys.10, 393(1922).

124, A. KRAMERS, ZS.f. Phys.3, 201(1920).

13wevL, , RZM, p. 280.

1421'[e2/(hc) is the so-callediine structureconstanequaling7.29 x 103
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wherethenthe universalfactor(29) would be nearlyunity andthe measureof aninterval
carriedalongwould repeatitself eachquai-period.l do not presumeo decideif this sort
of thingis meaningfulin the Wey L world geometry
Moreover, it is naturalto considerthate, h, c arenot the only universalconstants.If
oneaddsto this list the gravitational constank anda universalmassthatof the electron,
Me, say thent®
e

— ~ 10t
kmg
he?
kmg
a“universalquantumof action” of the orderof 10'2 erg./sec.— We wish alsorecall that
outof justdimensionakonsiderationslone little canbe determined.

Translatedy A. F. KRACKLAUER (©2006

Thiswould render

ZURICH

15see:WEYL, RZM p. 238.



