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In WEYL ’s1 space-timegeometrythereappears,in additionto thewell known quadratic
differentialform, which specifiesthemetricat eachpoint,anotherlinearform:

ϕ0dx0
���ϕ � d �x � ϕ � dx �

which specifiesthemetricalinterrelationshipbetweenpoints. Its geometricalsignificance
is that,it givesthechangein the“measure”(Masszahl)of thedisplacementl (theabsolute
squareof theinterval) under“congruentdisplacement”to neighboringpointsby

(1) dl ��� lϕ � dx �
WEYL discoveredthat throughboth together(metric and metrical interrelationship)an
affineconnectionfor theworld (i.e.,a definitionof vectorparalleltransport)is determined
if onealsodemandsthatfor paralleltransportof a vector, its modulusis to becongruently
transported.For congruenttransportof a displacementalong a world line — e.g., for
paralleltransportof avectoralongsuchadisplacement— themeasureis multipliedby the
factor

(2) e	 
 ϕ � dx �
wheretheline integral is to betakennaturallyalongtheworld line, uponwhich it signifi-
cantlydepends,sothatthequantities

(3) f � ∇ � ϕ �
do not vanishidentically. As Physics,the affine connectiongiven above constitutesthe
gravitationalfield andf aretheelectromagneticfields.If thesituation,includingthechoice
of coordinates,is suchthat in a world patch,at leastapproximately, x0 is the time (in
seconds)and �x areCartesiancoordinates(in cm), thenϕ, up to a constant,is proportional
to theusualelectromagneticpotentials:

(4) V ��
�
A
c
�

Let uswrite theconstantasγ 	 1e wheree is theelectronchargein electrostaticunits; that
is:

ϕ0 � γ 	 1eV � �ϕ ��� γ 	 1e
c

�
A �

so that ϕ0 hasthe units of sec	 1, eV of ‘energy’ and γ of ‘work’ (g cm2 sec	 1). The
“displacementfactor,” Eq. (2) becomes:

Date: 5 October1922.
1See:WEYL , H., Raum,Zeit,Materie, (Springer, Berlin, 1921).Denotedas“RZM” below.
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(5) e	 e
γ

��

vdt 	 �A � dx� �
Thecharacteristicof quantumorbits,mentionedin thetitle, andto meespeciallynote-

worthy, is that thosewhich are“real,” that is that leadto observedenergiesandspectral
lines,arealsothosefor which the‘displacementfactor,’ Eq. (5), arisesasanintegerfactor
of γ 	 1h (which from theabove considerationsturnsout to bea wholenumber)for all ap-
proximateperiodsof thesystem.I wish to considerfirst someparticlarexamplesasthere
area numberof conditionsto beaddedto thestory in its simpleform givenabove. Then
I would like to discussthesignificanceof theseconditions,although,to behonest,I have
notyet achievedmuch.

A. UndisturbedKeplerorbits.2 Let usbegin ignoringrelativity, which shallbeconsidered
below (underE). For this case,theonly ‘real’ quantumcondition3 is

(6) J � 2τT̄ � nh�
whereτ in theperiod,T̄ is theaveragekinetic energy.

LetV bethepotentialof thepositivechargeof ahydrogennucleus,whichthenvanishes
at infinity. Then,asis well known, (we takee asawholenumber)

(7) T̄ � 1
2

eV̄ �
which in Eq. (6) gives:

(8) eτV̄ � e
� τ

0
Vdt � nh�

Thus,the exponentof the displacementfactor, Eq. (5), is � nh� γ for oneperiod. The
only extraconditionin this caseis thenormalizationof theadditiveconstantin V.

B. Zeemaneffect. Mechanicallythis amountsto introducingthe LARMOR pressionwith
frequency (numberof completeprecessionrotationspersecond)

(9)
1
ϑ
� eH

4πmc
�

Quantumtheoreticallytheaboveconditionpersistsandsecuresthe“wholenumberchar-
acterof thedisplacementexponent”(asa brierf mannerof speaking)for thefirst periodτ,
atleastapproximately. CloserexaminationshowsthatEq. (8) remainsvalidupto quadratic
termsin H in sofar astheLARMOR theoremholdsstill for this approximationfor thero-
tatedcoordinateorigin bothmechanicallyandquantumtheoreticallyjust asit doesfor the
motionlesscaseA. If wenow examinewhetherwholeintegerspertainto thesecondperiod
ϑ, we canignoretheV term, asit givesa whole numbercontribution (namely, asmany
times— nh, asthe simpleLarmor cycle rotates).Now, the secondquantumconditionis
known, thatis, from thesurfacemomentaboutthefield axis

(10) 2m
f
τ
� n� h

2π
�

2Prof. WEYL haswritten methat this propositionwasknown to Prof. FOKKER, alreadytwo yearsago,and
thatit leadhim to imaginaryvaluesof ϕ. Seebelow.

3Herewe arefollowing BOHR’s formulation,in particularhis theoryof perturbedperiodicsystems,asthey
weretreatedin partII of thestill uncompletedProceedingsof theCopenhagenAkdemy, Naturw. u. Mathem.Art.
8 SeriesIV, 1, 2 (1918).Citedbelow as“BOHR l.c.”
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where f is theprojectionof theelliptical surfaceon theplaneof theequator. FromEq. (9)
and(10)onegets

(11) H f � ϑ
τ
� e
c
� n� h �

H f is thework (Kraftflus) throughtheellipse,sothat

(12) H f � ��� ∇ � �A � nd f � �
τ

�
A � dx �

gives,with Eq. (11), for thewholeLARMOR cycle

(13)
e
c

�
�
ϑ �
�
A � ��dx � n� h;

that is, theadditionalquantumconditionsupportstheexact “whole numbercharacter”of
theextramagnetictermsin thedisplacementexponent,extendedovertheLARMOR period.

C. Starkeffect.4 Mechanicallyin this casethereappearsa secularvariation in both the
positionandform of the KEPLER orbit; still the secularvariation(in the approximation
in which the experimentis analyzed)is periodic, that is, when the KEPLER ellipse has
completeda secularcycle andretaken the sameform, it finds itself at the sameposition.
The cycle pathcanbe bestdescribedas follows. If onespecifiesthe center-of-massof
theusualKEPLER orbit takinginto considerationthedwell time of theelectronat various
positionsalongthe orbit (i.e., the “electrical center-of-mass”),thenonefinds the middle
point of the line betweenthecharges.The ‘electricalcenterof mass’executesharmonic,
in generalelliptical, motionin aplaneperpendicularto thefield direction.Then,according
to theabove, theform of theKEPLER mustchange,not in its size(i.e., neithertheenergy
nor cycle time), ratheronly its eccentricity, which is determinedby the electrical‘center
of gravity.’ Thethenpositionof theorbital planeis determinedin so far as,althoughthe
totalangularmomentumandeccentricityvary, thecomponentsin thefield directionremain
constant.

The supplementaryquantumconditionconsists,then, in, that the distanceof the nu-
cleusfrom the above mentionedplaneperpendicularto the field direction, in which the
electrical‘centerof mass’executesits secularharmonicmotion,cantake on only certain
discretevalues.A moreconvenientformulationof this quantumconditioncanbe gotten
from BOOR’ S theoryof periodicsystems.Theadditionalenergy, which simply equalsthe
potentialenergy of theelectronin anexternalfield for a KEPLER period(theaverageis a
secularconstant)— theadditionalenergy, in my view, is relatedto thesecularperiodϑ in
exactly thesamerationasthetotalenergy to theperiodof anharmonicoscillator, thatis

(14) � E � n� h1
ϑ
�

where � E is theadditionalenergy, andn� is a wholenumber. Now whenV � , thepotential
of the exterior field, underthe conditionsmentionabove is so normedthat it vanishesin
thenucleus,thenoneseeseasilythat

(15) � E ��� e� V̄ � ��� e
τ

� t � τ

t
V � dt �

FromEqs.(14)and(15) it follows that

(16)
eϑ
τ

� t � τ

t
V � dt � e

� t � τ

t
V � dt ��� n� h �

4BOHR, l.c. ¶4,p. 69.
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A glanceat Eq. (5) revealsthatwith the“whole number”characterof theelectronicterm
in thedisplacementexponentis demonstratedfor thesecularSTARK period— in complete
analogyto theresultfor theLARMOR periodin theZEEMAN effect.

With the ZEEMAN effect we were able, by virtue of the especiallysimple character
of the secularperturbationfrom the whole numbercharacterof the additional term, to
infer thewholenumbercharacterof thedisplacementexponent.Herethatinferencewould
be too hasty, as the averageof the nuclearpotential,V, over a KEPLER ellipse suffers
perturbationsof the first order, which during a secularperiod,ϑ, could accumulateto a
finite contribution.5 To becompletelycertain,let usreturnto theexplicit form of thecentral
quantumconditionof theperturbedcase.Let q betheelectron’sorthogonalcoordinates,p
themomentum,sothat

(17)
� t � ϑ

t

�
p � q � dt � nh�

whereϑ now — moreprecisely— is theanexactquasiperiodof thesystemafterwhich to
high precisionthecoordinatesandmomentarepeat.As a consequenceit mustbethecase
that

� t � τ

t

d
dt

�
p � q � dt � 0 �

Thus,in steadof Eq. (17),onecanalsowrite:

(18)
� t � τ

t

�
q � ṗ � dt ��� nh;

or, if

U ��� e
�
V
�

V � ���
thepotentialenergy is, asfollowsbecauseof theequationof motionfrom Eq. (18)

(19)
� t � τ

t

�
q � ∇U � dt � nh�

The two termsof U are homogeneousfunctionsof q, in fact V is homogeneousof
degree � 1 andV of degree

�
1. Thereforeit follows from Eq. (19) that

(20)
� t � τ

t
e
�
V � V � � dt � nh�

ConsideringEq. (16), it follows

(21)
� t � τ

t
e
�
V
�

V � � dt � � n � 2n� � h �
which completestheproof. — Regardingthe STARK effect, we emphasizeagainthene-
cessityof normalizationof thepotentialwith which it vanishesin thenucleus.

5NotethatBOHR hasshown — asfollows directly from theconstancy of V̄ � —, thattheaverageof thetotal
energy function of the unperturbedKEPLER orbit suffers only secondorderperturbations.Here,however, the
issueconcernsonly potentialenergy, andtheperturbingfield destroys thesimplerelation,Eq. (7) betweenthe
two energy contributions.
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D. CombinedSTARK and ZEEMAN effectwith parallel axes6. Accordingto BOHR’s the-
ory of perturbedperiodicsystems,onegetsfor superimposedhomogeneouselectricand
homogenousmagneticfields,whentheperturbationfrom bothfieldsis of roughlythesame
magnitude,well defineddiscretequantizedorbitsonly whenthefield axesareparallel.7 We
restrictourselves,therefore,to this case.In mechanicaltermswe haveheresimply oneof
the above consideredrotationsof the STARK effect cycle with respectto a LARMOR ro-
tation, Eq. (9), of the axis crossing,whereit is to be kept in mind that the LARMOR

frequency dependsonly from the electronconstantsandmagneticfield strengthandnot
from form or orientationof theorbit sothatLARMOR rotationis uniform. In additionthe
quantumconditionsaresuperposed,so to speak.The largehalf axesof the KEPLER EL-
LIPSES areallowed to have the samevalue,asunperturbedatoms,for the distancefrom
thenucleusat which theelectricalcenter-of-massoscillates,i.e., thesamevalueasin the
pureSTARK effect; themagneticfield constrainsthecomponentsof angularmomentumin
thefield direction(which in thepureSTARK effect wereconstantbut not quantized)now
to be whole numbermultiplesof � as in the ZEEMAN effect. The total perturbationis,
naturally,nolongerpurelyperiodic,rathertherearisestwo, in generalunreconcilable,sec-
ular periodsof nearlythesamemagnitude:in oneLARMOR precessionof the comoving
coordinatesreproducetheform andorientationof KEPLER ellipseswith periodϑs of the
STARK effect, while the ellipsesharmonicallypassthroughthe electricalcenter-of-mass
with LARMOR periodϑl aboutthe field direction. In that with relationsto the rotating
systemandquantummechanicallyexactly the samerelationshipsprevail as for the pure
STARK effectwith respectto a stationarysystem,andinsofarastheelectricfield by cause
of LARMOR rotationis transformedinto itself, oneeasilyseesthat thefirst two quantum
conditionsleadto

(22)
� t � ϑs

t
e
�
V
�

V � � dt � nh�
With regard to magneticquantization,recall that both KEPLER periodsand the angular
momentum[Flaächenmoment]in thefielddirection,andthereforealsotheprojectionof the
KEPLER ellipseon theequatorialplaneor themagneticwork aroundthe KEPLER ellipse
aresecularconstants.Fromthis is follows from themagneticquantizationconditionjust
asin §B, that

(23)
e
c

�
�
ϑl �
�
A � ��dx � n� h �

whenintegratedover a LARMOR cycle. That the KEPLER ellipsedoesnot return to its
original form andorientation,doesnotaffectmatters.

Eqs. (22) and(23) eachrepresentonly a part of the “displacementfactor,” (22) is he
electriccontributionand(23) themagneticpart.Moreoverthey pertainto entirelydifferent
timeintervals,ϑs andϑl for whichneitherconstitutesaquantumperiod.Thelattercanand
doesin generalcompriseto a certainapproximationmultiplesof theseperiodswhenever
thefollowing nearlyholds:

nsϑs � nl ϑl � ϑ �
If herewe chosens asa whole number, andthennl so that this relationshipis satisfied
exactly, multiply Eq. (22)by n and(23)by nl andsubtractthem,we get

(24) e
�
�
ϑ �
�
V
�

V � � dt � 1
c

�
A � ��dx � � nsn � nln� � h �

6BOHR, N., l.c.,p. 91.
7BOHR, N., l.c., p. 93.



6 ERWIN RUDOLF JOSEFALEXANDER SCHRÖDINGER(1887-1961)

Herewe find on theleft (up to thefactor-γ 	 1) thewholedisplacementfactorfor thequasi
periodϑ; on the right thereis a wholemultiple of h, that is a wholenumberto the same
approximationasallowedby thesameapproximationof ϑ. While n� is theusualmagnetic
quantumnumber, thus,at leastfor low lying orbits,is a smallwholenumber;smalldevia-
tionsof nl away from beingawholenumberwill beby multiplicationby n� insignificantly
enlarged. (This is not so for n, which is a very large numberof the orderof the number
of KEPLER rotationsduringa STARK period;thisdoesno damageasns is exactlyawhole
numberandmustbesochosenthatthephasethatwithin a KEPLER orbit reproducethem-
selves.) It seemssomewhatunsatisfyingthat thederivationof Eq. (24) requiresa certain
linearcombinationof both the“true” (i.e., necessaryto determinetheenergy) conditions
Eqs. (22) and(23). Thus, it seemsto me that Eqs. (22) and(23) aresingularlyneces-
saryto determineEq. (24) for eachquasi-period.For exampleif ns � 7 � nl � 12 gives
a quasi-period,then in generalnot ns � 70� nl � 120, rathermaybens � 69� nl � 118
another, aboutten timeslarger. However, onemaynot take high multiplesof thesecular
periodfor suchconsiderations,asquadraticmembersof fieldsdo not enter, wherelessthe
approximationscomesinto questionthanthephysicalcoherenceof a quantumorbit.

E. Relativisticmassalteration. Iin sections§B, C, D we have neglectedto considerwhat
happensin thesecases,to exposethe electronto the perturbationfrom the externalfield
taken aslarge in comparisonto the relativistic massperturbationcausedby the purepe-
riodic KEPLER orbit. Taking it into the calculation,the force free atomalreadyhastwo
periods,the short,KEPLER oneτ, andthe periodϑ of the perihelionrotation. For τ the
“whole numbercharacterof thedisplacementfactor” is satisfiedby thesamequantumcon-
ditionsasin thenonrelativistic case.Thequestionarises,whetherit pertainsto ϑ. If one
fixesϑ moresharply, asaquasi-period,thatis, sothatthecoordinatesandmomentanearly
reproducethemselves,thenthefollowing, expressedin polarcoordinates,holds:

(25)
� t � ϑ

t

�
pr ṙ

�
pϕϕ̇ � dt � n� h �

[r � ϕ arepolarcoordinates,pr � pϕ thecorrespondingmomenta;Eq. (25) is awholenumber
linear combinationof the usual“radial” and“azimuthal” quantumconditions,andis the
numberof the ϕ-rotationsexactly one larger than the r-oscillations]. The integrandis
invariantunderpoint transformations,thustheEuclideanvariantis

(26)
� t � ϑ

t

�
pxẋ

�
pyẏ� dt � n� h �

For this onecan,giventhat
�
xpx

�
ypy � returnsto its initial value,write:

(27)
� t � ϑ

t

�
xṗx

�
yṗy � dt ��� n� h �

ṗx � ṗy arein relativistic mechanicsthenegative partialderivativesof thepotentialenergy,
namely � eV andarehomogeneousin x � y of thefirst degree.Thereforeit followsfrom Eq.
(27)

(28)
� t � ϑ

t
eVdt � n� h �

Thisdemonstratestherectitudeof our propositionfor unperturbedrelativistic orbits.
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The ZEEMAN effect with Relativity taken into account8 is rathersimple, it bringsup
simply the relativistic rosettein the LARMOR rotation. Thereare two secularperiods,
asin §D with two parallelfields.Thetreatmentthereis fully analogue,that it repeats—it
canbe understoodwithout calculationand leadsnaturallyagainto a verificationof our
propagation.

The STARK effect with relativity, which KRAMERS9 treatedrecentlyin a beautifulpa-
per, I havenetyetanalyzedfrom thisviewpoint;nevertheless,therecanbelittle doubtthat
thesituationis verysimilar to thatfor theZEEMAN effect,andin §D.

Thecaseconsideredin §D with Relativity, to my knowledge,hasnotbeeninvestigated,
however (becauseof rotationalsymmetry)mustleadto well definedquantumorbits. It is
still of little interest.

Discussionand conclusions. In summary, we have consideredthefollowing. If anelec-
tron on its way along an orbit were to take an “interval” along with it, which with the
motiondid notchange,thenfor theinterval, consideredfrom anarbitrarystartingpoint, its
measurewouldappearto bemultipliedby wholemultipleof thefactor

(29) e
h
γ �

oncefor eachpassageof thestartingpoint.
It is difficult to imagine,that this resultis only anaccidentalconsequenceof thequan-

tum conditionsandwithout deeperphysicalsignificance.The somewhat impreciseform
of theapproximation,whichhasemerged,changesnothing;wedoknow, thatthequantum
orbits arephysicallydefinedlacking completeprecision10 for two reasons:first because
of radiationreaction,whichsurelydoesnot exist in theclassicalelectrodynamicform, but
which is surelyof the sameorderquantummechanicallyalso,otherwisethe decaytime
couldnot becalculatecorrectly11. [For example,in the ZEEMAN effect thefield strength
quadratictermscanbeignoredin principle; andin theSTARK effect belongs,if relativity
is takeninto account,no longerto theseparableproblems12.]

Thatanelectronreally carriesan“interval” along,is morethanquestionable.It is well
possible,thatit is “frozen” in its progressionin thesenseusedby WEYL13. It canbe,that
theconditionof our propositionis to befound,in thefactthatfor electronsnot all tempos
areequallypossible,but dependsomehow on thequasi-periodof theorbit.

One feels temptedto guesswhich value the universalconstantγ might have. There
aretwo well known constantswith theunitsof action,namelyh ande2 � c (for my part, I
amconvincedthat they aremutually independent).Wereγ � e2 � c, theuniversalfact (29)
wouldbea very largenumber14 on theorderof e1000. theotherpossibility, γ  h, suggests
theimaginaryvalue

γ � h

2π ! � 1
�

8A. SOMMERFELD, Phys.Z.17, 491 (1916),wasfirst to treatthis problem,seealso: P. DEBYE, evendap.
507.

9H. KRAMERS, Z. f. Phys.3, 199(1920).
10N. BOHR, l.c. pp. 50,61,66,97.
11A. SOMMERFELD andW. HEISENBERG, ZS.f. Phys.10, 393(1922).
12H. A. KRAMERS, ZS.f. Phys.3, 201(1920).
13WEYL , , RZM, p. 280.
142πe2 "$# hc% is theso-calledfinestructureconstantequaling7 & 29 ' 10( 3.
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wherethentheuniversalfactor(29) would benearlyunity andthemeasureof an interval
carriedalongwould repeatitself eachquai-period.I do not presumeto decideif this sort
of thing is meaningfulin theWEYL world geometry.

Moreover, it is naturalto considerthate� h � c arenot the only universalconstants.If
oneaddsto this list thegravitationalconstantk anda universalmass,thatof theelectron,
me, say, then15

e2

km2
e
 10� 40 �

Thiswould render
he2

km2
e

a “universalquantumof action” of theorderof 1013 erg./sec.— We wish alsorecall that
outof just dimensionalconsiderationsalone,little canbedetermined.

Translatedby A. F. KRACKLAUER c
)

2006

ZURICH

15See:WEYL , RZM p. 238.


