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ABSTRACT. A LAGRANGianfor multiple, chaged, point-masseshatis invariantunder
LoRENTZ transformationss presented.It is distinguishedoy emplg/ing both retarded
andadwancedpotentialsso thatmotionis fully time symmetric. Also, the resultingform
of conseration principlesfor momentumand enegy are given and their consequences
discussed.

1. INTRODUCTION

Quantummechanicdor single particleswasformulated,by employing the correspon-
denceprinciple, suchthatits structureparallelsthe HAMILTONian formalismof classical
physics. With respectto multiple interactingparticles,however, no completequantized
formulation hasbeenfound that is invariantunder LORENTZ transformations.For this
task,in fact,evena classicafoundationis absent.

It would be, therefore,of useto introduceand develop a proposalfor a pre-quantum
dynamicsfor this purposé, that could sene asthe foundationfor a quantumextentionin
the form of a HAMILTONian variationalprinciple thattakesaccountof mutualinteraction
of multiple particleswithoutintroducingfields?

2. RELATIVISTIC POINT-PARTICLE MECHANICS

To relatvize the usualformulationof a variationalprinciple,namely:

6/(T—U)dt=0,

whereT is thekineticenegy andU the potentialeneny, asis well known, in steadof Tdt,
oneuses:

wheremis themassy thevelocity of the particle,andc the speedf light.

To corvert the expressionJdt to an invariant scalar one recognizeghat the poten-
tial enegy is just the time-componenbf a 4-vectorwhosespacialpartis the negative of
momentum—P, which, analogouslyto enegy componentspne candenoteas “potential
momentund. Thus,onemaywrite in placeof Udt:

—Udt +P-dx = Udt + P«dx+ P,dy + P.dz
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Whenconsideringhemotionof achage,thecovariantpotentialenegy-momentunvector
is given by the productof the chagewith the field potential,wherethe 3-vectorpotential
partis to bedividedby —c.

Let usconsidetthe potentialatthe point of interestX, with space-timeoordinates

0

X,x 23 et xyzetx,

asaffectedby achagee, with space-timeoordinatesv, i = 0,1, 2, 3 asfunctionsof apa-
rameteru. To find theform of the potential following LIENARD andWIECHERT, identify
thosesourceor “affective” space-timeointsor eventsfrom which signalstraveling at the
speedf light reachthe point of application.They satisfy:
A0 —wl) — (x—w)?=R2 =0,

or

X —wl = E, r=4/(x—w)2
If thevelocity of the sourcechaige on theline directedtowardsthe point of applicationis
vy, thenthepotentialsp anda for thatchagecanbewritten:

AL S N
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In orderto construcia covariantvectorfrom theseexpressionsye write:

o= e cZdw? _ e dw
—41e 2(X0 — wWO)dwl — (x —wl)dw? .- 41 (R-dw)’
andcorrespondingly

_a_ & —aw __& _dw
c 4 c2(0—wo) — (xX—wl)dwl---  4rme (R-dw)’

where,clearly, (R-dw) denoteghe 4-vectorscalarproductof the ‘interactionray’ R with
thedisplacemendifferentialdw.

The above expressionrepresents retarded potential,which is dueto the chagee lo-
catedat pointw asthis chagewould affect anotheldocatedat the point x.

Let us considernow the trajectoriesof chagese, es,... asgiven by their coordinate
functionsy'(u), 7 (v),..., asfunctionsof the parametersi, v, ... ., respectiely.

To determinethe solution, X, of the equationof motionfor chagee; asit is influenced
by the otherchages,thefollowing LAGRANGianis to beused:

O:ES[/—mleds—ele2 (dx-dy) _ €€ (dx-dz)_m]’

4mc /) (R-dy) 4mc/ (S-d2)

whereds = dx; andR,S,... arethe ‘interactionrays’ betweenthe location of dx; and
dy,dz ... of theinfluencingchagesat their locations,where,moreorer, the magnitudeor
modulusof theinteractionraysalwaysis to equalzero.SeeFigure: 2.1.

It is essentiato require thatthedifferentialdx; for the chagee; isto correspondo the
motionof the otherchaigesonly underthe condition:

R=0, £=0,...etc
As aconsequencef this stipulation,thefollowing alwayshold:
(R-dy) = (R-dx), (S-dz)=(S-dx),---etc,
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FIGURE 2.1

Werethe motionsof the chagese, es, ... givena priori, andwerethe taskto determine
the motion of chage e; with massmy, thenthe differentialdy, of this motion (with arc-
lengthdsy) would correspondiia interactionrays, R, T/, ... with differentialelementson
theothertrajectoriesdx,dZ, ... , sothatthe appropriate. AGRANGian would be:

e [(dy-dx) ees f(dy-dZ) _]

o=o| [ -mesn- G2 [0 - [ Trat)

Similar expression®btainfor theremainingchages.

3. A SYSTEM LAGRANGIAN

At this point, however, it seemsauspiciougo notethat, ratherthanhaving a variation
for eachparticle separatelyit would be desirableto have a single unified variation for
an ensembleas a system. The following fact, however, thwarts this desideratum.The
interactionterm:

_ e [ (dx-dy)
4mc J (R-dy)’
accountdor theretarded actionof e; oney, but doesnotcorrespondo reciprocalretarded
influenceof e; one,. Neverthelessbecaus€R- dy) = (R- dx), this sameinteractionterm
in theform

_e® [ (dy-dY
4mc J (R-dy)’
accountdor exactly the advanced interactionof e; one,.
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Onemay well assert—byno meansherefor thefirst time—thatthe habit of preferring
to work only with retarded potentialss simply anarbitraryprejudice.In view of theaim
to have afully reciprocalinteraction,t mightbetaken,thate, influencese; to onehalf via
retarded, andonehalf via advanced interaction. Suchwould have asa consequencehat
thetermin the LAGRANGian accountingfor the retarded actionof the secondchage on
thefirst, alsoaccountdor advanced actionof thefirst onthe second.Thisin turn, permits
usingasingle LAGRANGIan function to determindrajectoriedfor all particlesof asystem,

ie.
0=5 [z/—m cds -y % {/ (((2(.'3%) * % (3/.'33) H ’

wherethefirst sumis overall particlesin theensembleandthe seconds overtheparticle
pairsfor which mutualinteractionis to be takeninto account.

This LAGRANGIan s fully invariantunderL ORENTZ transformationslt makesno use
of the notion of ‘field’ whatsoger. The reciprocity and symmetryof the interactionis
complete.lt canbe said,thatit pertainsmoreto a systemof motions,thanto a systemof
particles.

The concepbf asystenof particleswould requirea certainorderingof thedifferentials
of motion. This orderingcanbe uniquelyspecified but thenit would not beinvariant;or,
it canbe madeinvariant,but thenit would not be unambiguousi.e., it is not possibleto
definea systemof particlesthatis simultaneoushpothinvariantandunambiguousThus,
unavoidably, onemustchoosea systemof motionsover a systenmof particles.

4. CONSRVATION PRINCIPLES AND CONCLUSIONS

Now we consideravariationof thetrajectoryof particlewith chagee; for whichateach
space-timgointx, aninfinitesimalvariationdx shallbeintroducednto theinteraction:

@& [ (dx-dy)
8rc (R-dy)’
soasto calculatethe effect of e, on e;. By this variation,the establishedorrespondence
betweenthe differentialsdx anddy areto beretained: The interactionray, R, is to bea
light signal(|R] = 0), andthevariationdx shouldimply intrinsically the variation:

dy
(R-dy)
of themotionof e;. Thismotionchangesiothing,its only effectis to securghecorrespon-
dencebetweerthevariationdifferentialsj.e.,to assureghat(R-dy) = (R-dx), andtherefore
alsodR? = 0. In addition,the correspondencef the quantities:(R- dy) = (R- dx) remains
intact, sothatfor thevariationof the denominatoonecantake the variationof R- dx).

Thus,we may now write:

6(dx-dy) _ (ddx-dy) + (dx-ddy)  (dx-dy)d(R-dx)
(R-dy) (R-dy) (R-dy)(R-dx) -

One canintegratethis expressionby partsand verify that variation at the limits of the
integral, vanishesThis leadsto anintegrand keepingthevalueof dy in view:

oy = (R-0X)

i dyi ~ (dy-dx)
> |~ { Rdy) (R-dx)(R-dy)}
o dy™ dXm ~ (dx-dy)  (dx-dy)?
RrRe'Ro YRaora TR (R-dx)(R-dy)Z]'
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Theexpressionn theparenthesigivesanincreaseén kineticenegy andsizeof themotions
(fori =0ori=1,23),in short,theforceexertedon thechagee;. Oneseeghat, except
from the dependencesn velocity that areusuallyignored,the force dependgartially on
acceleration®f the sourcechages,and partially on termsindependenbf accelerations.
The last term correspondgo electrostatidorcesand the so-calledradiationeffects (the
accurantindsubsequerterm).

In our formulationswe have alsoincludedthe advancednfluenceof e; in theintegral

e [(dx-dy)  ee r(dx-dy)
gc/ (R-dx)  8mc/ (R-dy)’

Executingthe variationin the sameway as above while taking accountof the fact that
OR' = 8y’ — dx, thenrequiresthe vanishingof theintegral:

B dx\ | ee dy,  (dy-dx)
0=d (mlcd_sl) +%[d{<R ) VR N(R- dy>}
(dx-dy)
+d{(R dy) -R (R-dx)(R - dy)}
_ dXm ~ (dx-dy)  (dx-dy)?
TRIR R TP RORAG VR R A2
dy™ dXm (dx-dy)

(dx-dy)? ]

TRR )R- dy)?

—dX|

RIR )R YRR -6

Within the large parenthesiswhich, broughtto the left side with minus signswould be
seenasa covariantvectorrepresentingransferof enegy and momentumfrom e, to e,
therearesometotal differentials.

On could interpretthemasenegy andmomentumof e; which is dueto the presence
andmotionof e.

For the effect of e; onthe secondparticle,thereis a similar equationalsocomprisedf
two componentslf we write this equationfor thedifferentialdy’, (SeeFigure: 4.1),which
via theinteractionray R = 0 is boundwith the previously consideredlifferentialdx and
with theinteractionray R’ = 0 is boundwith the differentialdx”, we get:

0=d (m C%) i o[- { (R’d-X(i:Ix) R® .(3>><;(‘Ig')(.)dy’) }
+o{ s~ o) |
+RY (R?)-(Zx)d(R(’jYQy MR ACT 3;/)(2( BACE 3; ?rg) )2
R2 (F;'b-(/g:(") d (R’(’j%/gy’) ~Mw -(35)‘((:;”-)&”) R -(3;//)'((::,-)(1%')2] :

It is importantto recognizehere,that the third row in this expressiontogetherwith the
lastrow of the previousexpressiongconstitutea total derivative. Both of themrelateto the
mutualinteractionray R betweenrdx anddy’. Togetherthey represent

(dx-dy)
Smd{Ri,(R’-dx)(R’-dy’}'
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FIGURE 4.1

This expression,in turn, leadsthe way to an understandingf how the principles of
consenrationof enegy andmomentunpertainin this formulation. To make thingssimple,
let usconsideronly two particles.

We mustconsidera sumof a progressie zig-zagchainof interactionrays(See:Fig. 2)
linking differentialsof motionandtheir equations.

In this sum, eachvertex of the zig-zagchain,dependingon whetherit pertainsto the
actionof e; oney, or visa-\ersacorrespondso a contritution to thekinetic enegy of one

or theotherparticle:
d mlc% , ord mzc% ,
ds; ds,

while for eachinteraction-rayR' betweerdx anddy’ therecorresponds contritutionto
the potentialenegy of:

elezd{ dx; dy; _R (dx-dy) }

s \(R-d T (R-dy) Y (R-d(R-dy)

If the motionis periodic,thenthe chainwill alsobe periodic,or very nearlyso, and
the sumthenwould extend only over a single period, asit closesbackon itself. In this
caseit constitutes total differential,sothatthereis a quantitythatremainsconstanalong
the chain. If onedividesthis constaniguantityby the numberof mutualinteractionsn a
period,onegetsthe enegy, or the momentum]of thesystem].

This corraboratetheremarkmadeabove,thatenegy andmomentuntannotbedefined
for a systemof particlesbut ratheronly for a systemof mutualmotions.
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Over andabove this fact, whenthe motionis not periodic,the sumdoesnot closeon
itself, andtherefore,doesnot yield a total differential. At the endsof the zig-zagchain
therewill alwaysremainexcludedcontributions. If they areignoredneverthelessandthe
sumis divided by the numberof interactionrays,anever moreexactdefinition of thetotal
enegy andmomentuncanbe givenasthe chainis takenlongerandlonger;but no matter
what,theenegy andmomentumat a particularmomentwill remainundefined.

This is the price for excludingfields from the LAGRANGIan; yet, this featuredoesnot
conflictwith quantummechanics.
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