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Prefaceto German translation

In thethreeyearsbetweerthe publicationof the original Frenchversion,[astrans-
latedto Englishbelaw,] anda Germartranslationin 1927, the developmentof Physics
progressederyrapidlyin theway | foresav, namely in termsof afusionof themethods
of Dynamicsandthetheoryof waves. M. EINSTEIN from the beginning hassupported
my thesis,but it wasM. E. SCHRODINGER who developedthe propagationequations
of anew theoryandwho in searchindor its solutionshasestablishedvhathasbecome
known as“Wave Mechanics. Independenof my work, M. W. HEISENBERG hasdevel-
opeda moreabstractheory “QuantumMechanics”,for which the basicprinciple was
foreseeractuallyin the atomictheoryandcorrespondencerinciple of M. BOHR . M.
SCHRODINGER hasshavn thateachversionis amathematicalranscriptionof the other
Thetwo methodsandtheir combinationhave enabledheoreticiango addresgproblems
heretoforaunsurmountablandhave reportednuchsuccess.

However, difficulties persist.In particular onehasnot beenableto achiese the ul-
timategoal, namelya undulatorytheory of matterwithin the frameawork of field theory
At the moment,onemustbe satisfiedwith a statisticalcorrespondencbetweenenegy
parcelsand amplitudewaves of the sortknown in classicaloptics. To this point, it is
interestingthat, the electricdensityin Maxwell-Lorentz equationgnay be only anen-
sembleaverage;makingtheseequationsionapplicableto singleisolatedparticles,asis
donein the theory of electrons. Moreover, they do not explain why electricity hasan
atomisedstructure.Thetentatve, evenif interestingjdeasof MIE arethuslydoomed.

Nonethelespneresultis incontestableNEWTON’s Dynamicsand FRESNEL's the-
ory of waveshave returnedo combineinto a grandsynthesif greatintellectualbeauty
enablingus to fathomdeeplythe natureof quantaand openPhysicsto immensenewn
horizons.

Paris,8 Septembel 927

1Untersuchungan zur QuantentheorieBECKER, W. (trans.)(Aka. Verlag.,Leipzig, 1927).

\






Intr oduction

History shavs thattherelong hasbeendisputeover two viewpointson the natureof
light: corpusculamndundulatory;perhapsiowever, thesetwo arelessat oddswith each
otherthanheretoforethought,which is a developmenthatquantumtheoryis beginning
to support.

Basedon an understandingf the relationshipbetweenfrequeny and enegy, we
proceedn thiswork from the assumptiorof existenceof a certainperiodicphenomenon
of ayetto be determineccharacterwhich is to be attributedto eachandevery isolated
enepgy parcel,and from the Planck-Einsteimotion of propermass,to a new theory
In addition, Relatvity Theory requiresthat uniform motion of a material particle be
associatedvith propagatiornof a certainwave for which the phasevelocity is greater
thanthatof light (CHAPTER 1).

For the purposeof generalisinghis resultto nonuniformmotion, we posita propor
tionality betweerthe momentunworld vectorof a particleanda propagatiorvectorof a
wave, for which thefourth components its frequeng. Applicationof Fermats Principle
for thiswave thenis identicalto theprincipleof leastactionappliedto amaterialparticle.
Raysof this wave areidenticalto trajectoriesof a particle(CHAPTER 2).

The applicationof theseideasto the periodicmotion of anelectronin a Bohr atom
leadsthen, to the stability conditionsof a Bohr orbit beingidenticalto the resonance
conditionof the associatedvave (CHAPTER 3). This canthenbe appliedto mutually
interactingelectronsandprotonsin hydrogeratoms(CHAPTER 4).

The furtherapplicationof thesegeneralideasto EINSTEIN’s notion of light quanta
leadsto several very interestingconclusions.In spite of remainingdifficulties, thereis
goodreasorto hopethatthis approacttanleadfurtherto aquantumandundulatorythe-
ory of Opticsthatcanbethebasisfor astatisticalunderstandingf arelationshipbetween
light-quantawavesandM AxwELL's formulationof Electrodynamic§CHAPTER5).

In particular the studyof scatteringpf X andy-raysby amorphousnaterialsyeveals
justhow advantageousucha reformulationof electrodynamicsvould be (CHAPTER 6).

Finally, we seehow introductionof phasewavesinto StatisticalMechanicgustifies
the conceptof existenceof light quantain thetheoryof gasesandestablisheggiventhe



2 INTRODUCTION

laws of black body radiation,how enegy parcellationbetweeratomsof a gasandlight
quantafollows.

Historical survey

From the 16th to the 20th centuries. The origins of modernsciencearefoundin
the end of the 16th century asa consequencef the RenaissanceWhile Astronomy
rapidly developednew andprecisemethodsanunderstandingf equilibriumandmotion
from the studyof dynamicsandstaticsimprovedonly slowly. As is well known, NEw-
TON wasfirst to unify Dynamicsto a comprehensie theorywhich he appliedto gravity
andtherebyopenedup othernew applications.In the 18th and 19th centuriesgenera-
tions of mathematiciansastronomersnd physicistsso refined NEwTON’s Mechanics
thatit nearlylostits characteasPhysics.Thiswholebeautifulstructurecanbeextracted
from asingleprinciple,thatof MAUPERTUIS, andlaterin anotheform asHAMILTON'S
Principleof leastaction,of which the mathematicakleganceis simply imposing.

Following successfuapplicationgn acousticshydrodynamicsppticsandcapillary
effects, it appearedhat Mechanicsreignedover all physicalphenomena With some-
whatmoredifficulty, in the 19thcenturythenew disciplineof Thermodynamicsvasalso
broughtwithin reachof Mechanics. Although one of the main fundamentaprinciples
of thermodynamicsnamelyconserationof enegy, caneasilybeinterpretedn termsof
mechanicstheother, thatentrogy eitherremainsconstanor increaseshasnomechanical
clarification. Thework of CLAUSIUS andBOLTZMANN, whichis currentlyquitetopical,
shaws that thereis an analogybetweencertainquantitiesrelevant to periodic motions
andthermodynamiqyuantities,but hasnot yet revealedfundamentakonnections.The
imposingtheoryof gaseddy MAXWELL andBOLTZMANN, aswell asthe generalsta-
tistical mechanicof GiBBS andBoLTzMANN, teachusthat, Dynamicscomplimented
with probabilisticnotionsyieldsa mechanicalinderstandingf thermodynamics.

Sincethe 17th century Optics,the scienceof light, hasinterestedesearchersThe
simplesteffects(linearpropagationreflection,refraction,etc.) thatarenowadayspart of
GeometricOptics,wereof coursefirst to be understood.Many researchergyrincipally
including DESCARTES andHuUY GENS, worked on developingfundamentalaws, which
then FERMAT also succeededn doing with the principle that carrieshis name,and
which nowadaysis usually calledthe principle of leastaction. Huy GENS propounded
an undulatorytheory of light, while NEwTON , calling on an analogywith the theory
of materialpointdynamicsthathe createddevelopeda corpusculatheory theso-called
“emissiontheory”, which enablechim evento explain, albeitwith contrivedhypothesis,
effectsnowadaysconsideredvave effects(e.g.,NEWTON’s rings).

The baginning of the 19th centurysaw a trendtowardsHUYGEN's theory Inter-
ferenceeffects,madeknown by Y OUNG's experimentswere difficult or impossibleto
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explainin termsof corpusclesThenFRESNEL developedhis beautifulelastictheoryof
light propagationandNEWTON’s ideaslost credibility irretrievably.

A greatsuccessesf FRESNEL'stheorywastheclarificationof thelinearpropagation
of light, which, alongwith the Emissiontheory was extraordinarily simpleto explain.
We note, however, that whentwo theories,seeminglyon entirely differentbasis,can
clarify with equalfacility an experimentalresult, then one shouldaskif a difference
is real or an artifact of accidentor prejudice. In FRESNEL's agesucha questionwas
unfashionabl@andsothe corpusculatheorywasridiculedasnaie andrejected.

In the 19th centurytherearosea new physicsdisciplineof enormoudechnicaland
theoreticalconsequencethe studyof electricity. We neednot remindoursehesof con-
tributionsby VOLTA, AMPERE, LAPLACE, FARADAY, etc. For our purposest is note-
worthy, thatMAXWELL mathematicallyunified resultsof his predecessorandshaved
thatall of opticscanberegardedasabranchof electrodynamicsHeERTz, andto aneven
greaterextentLORENTZ, extendedMAXWELL’stheory;LORENTZ introduceddiscon-
tinuouselectric chaiges,as was experimentallyalreadydemonstratedby J. J. THOM-
SON. In ary casethebasicparadigmof thateraretained=RESNEL’s elasticconceptions,
therebyholding opticsapartfrom mechanicsalthough,mary, even MAXWELL himself,
continuedto attemptto formulate mechanicaimodelsfor the aether with which they
hopedto explainall electromagnetieffects.

At the endof the centurymary expecteda quick and completefinal unificationof
all Physics.

The 20th century: Relativity and quantum theory. Neverthelessafew imperfec-
tionsremained.Lord KELVIN broughtattentionto two dark cloudson the horizon. One
resultedfrom the then unsohable problemsof interpretingMICHEL SON’s and M OR-
LEY's experiment. The other pertainedto methodsof statisticalmechanicsas applied
to black body radiation; which while giving an exact expressiorfor distribution of en-
ergy amongfrequenciesthe Rayleigh-Jeankaw, wasbothempirically contradictecand
conceptuallyunrealin thatit involvedinfinite total enegy.

In the beginning of the 20th century Lord KELVIN's cloudsyielded precipitation:
theoneledto Relatvity, theotherto QuantumMechanics Hereinwe givelittle attention
to aetherinterpretatiorproblemsasexposedoy MICHELSON andMORLEY andstudied
by LORENTZ and FITZGERALD, which were, with perhapsncomparabldnsight, re-
solved by EINSTEIN—a mattercoveredadequateliby mary authorsin recentyears.In
thiswork we shallsimply take theseresultsasgivenandknown andusethem,especially
from SpecialRelativity, asneeded.

The developmentof QuantumMechanicss, on the otherhand,of particularinter-
estto us. The basicnotionwasintroducedin 1900by MAX PLANCK. Researchinghe
theoreticahatureof blackbodyradiation,hefoundthatthermodynami@quilibriumde-
pendsnot on the natureof emittedparticles,ratheron quasielasticboundelectronsfor
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which frequeng is independenbf enepy, a so-calledPlanckresonatar Applying clas-
sicallaws for enegy balancebetweerradiationandsucharesonatoyieldsthe Rayleigh
Law, with its known defect. To avoid this problem,PLANCK positedan entirely nen

hypothesisnamely: Eneigy exchange betweerresonator(or othermaterial)andradia-

tion takesplaceonly in integer multiplesof hv, wheee h is a new fundamentatonstant.
Eachfrequeng or modecorrespondén this paradigmto a kind of atomof enegy. Em-

pirically it wasfound: h = 6.545x 1027 erg-sec. This is one of the mostimpressie
accomplishmentsf theoreticaPhysics.

Quantumnotionsquickly penetrate@ll areaf Physics Evenwhile deficienciese-
gardingthe specificheatof gasesarose QuantumheoryhelpedEINSTEIN, thenNERST
andLINDEMANN, andthenin amorecompleteform, DEBYE, BORN andK ARMANN to
developa comprehensie theoryof the specificheatof solids,aswell asanexplanation
of why classicaktatisticsj.e., the Dulong-PetitLaw, is subjectto certainexceptionsand
finally why the RayleighLaw is restrictedto a specificrange.

Quantaalso penetratedareaswherethey were unexpected: gastheory BoLTz-
MANN’s methodsprovided no meansto evaluatecertainadditve constantsn the ex-
pressiorfor entrogy. In orderto enableNERST's methodgo give numericalresultsand
determingheseadditive constantsPLANCK, in aratherparadoxicamanneypostulated
thatthe phasespacevolumeof eachgasmoleculehasthevalueh?®.

The photoelectriceffect provided new puzzles. This effect pertainsto stimulated
ejectionby radiationof electrongrom solids. Astoundingly experimentshaws thatthe
enegy of ejectecklectronss proportionakto thefrequeng of theincomingradiation,and
not,asexpectedtotheenegy. EINSTEIN explainedthisremarkableesultby considering
thatradiationis comprisedof parcelseachcontainingenegy equalto hv, thatis, when
an electronadsorbsenegy equalto hv, and the ejectionitself requiresenegy equal
to w, thenthe electionhasan amountof enegy equaltohv —w. This law turnedout
to be correct. Somehav EINSTEIN instinctively understoodhat one mustconsiderthe
corpusculanatureof light andsuggestedhe hypothesighatradiationis parcelledinto
unitsof hv. As this notion conflictswith wave conceptsat first mostphysicistsrejected
it. Seriousobjectionsfrom, amongothers,LORENTz andJEANS, EINSTEIN rekutted
by pointing to the fact that this samehypothesis,.e., discontinuoudight, yields the
correctblackbodylaw. TheinternationalSolvay conferencén 1911wasdevotedtotally
to quantumproblemsand resultedin a seriesof publicationssupportingEINSTEIN by
PoINCARE, which hefinishedshortly beforehis death.

In 1913BoHR’stheoryof atomstructureappearedHe tookiit, alongwith RUTHER-
FORD andVAN DER BROEK, thatatomsconsistof positively chagednucleisurrounded
by anelectroncloud,andthatanucleushasN positive chages,eachof 4.77 x 10~ %esu.
andthat its numberof accompaying electronsis alsoN, sothatatomsare neutral. N
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is the atomic numberthat also appearsn MENDELEJEFF's chart. To calculateoptical
frequenciedor the simplestatom,hydrogenBoHR madetow postulates:

1.) Amongall concevableelectronorbits,only a smallnumberarestableandsome-
how determinedy the constant. In CHAPTER 3, we shallexplicatethis point.

2.) Whenanelectronchange$rom oneto anotherstableorbit, radiationof frequeng
v is absorbedr emitted. This frequeng is relatedto a changein the atom's enegy by
|6g| = hv.

The greatsucces®f BOHR's theoryin the last 10 yearsis well known. This the-
ory enabledcalculationof the spectrumfor hydrogenandionisedhelium, the study of
X-raysandM OSELEY’s Law, which relatesatomicnumberwith X-ray data. SOMMER-
FELD, EPSTEIN, SCHWARTZSCHILD, BOHR andothershave extendedandgeneralised
the theoryto explain the Stark Effect, the ZeemanrEffect, otherspectrumdetails, etc.
Neverthelessthefundamentameaningof quantaremainedunknownn. Studyof the pho-
toelectriceffect for X-rays by MAURICE DE BROGLIE, y-raysby RUTHERFORD and
ELL1s have furthersubstantiatethe corpusculanatureof radiation;the quantumof en-
engy, hv, now appearsnorethaneverto representeallight. Still, astheearlierobjections
to thisideahave shavn, the wave picturecanalsopointto successegspeciallywith re-
spectto X-rays,thepredictionof vON L AUE’s interferenceandscattering See:DEBYE,
W. L. BRAGG, etc.). Onthesideof quanta,H. A. COMPTON hasanalysedscattering
correctly as was verified by experimentson electronswhich revealeda wealening of
scatteredadiationasevidencedby areductionof frequeng.

In short,the time appeargo have arrived, to attemptto unify the corpuscularand
undulatoryapproache# an attemptto reveal the fundamentahatureof the quantum.
Thisattemptl undertooksometime agoandthepurposeo thiswork is to presenamore
completedescriptionof the successfutesultsaswell asknown deficiencies.






CHAPTER 1

The PhaseWave

1.1. The relation betweenquantum and relativity theories

One of the mostimportantnew conceptsntroducedby Relatvity is the inertia of
enepgy. Following EINSTEIN, enegy may be consideredas being equivalentto mass,
andall massrepresentgnegy. Massandenegy may alwaysbe relatedoneto another

by
(1.1.1) enegy = massx c?,

wherec is a constantknown asthe “speedof light”, but which, for reasonglelineated
belov, we preferto denotethe “limit speedof enegy.” In so far asthereis alwaysa
fixed proportionalitybetweenmassand enegy, we may regard materialand enegy as
two termsfor the samephysicalreality.

Beginningfrom atomictheory electronictheoryleadsusto considematterasbeing
essentiallydiscontinuousandthis in turn, contraryto traditionalideasregardinglight,
leadsus to consideradmitting that enegy is entirely concentratedn small regions of
spacejf notevencondenseat singularities.

The principle of inertia of enegy attributesto every body a propermass(thatis a
massasmeasuredby anobsener at restwith respecto it) of myp anda properenegy of
moc?. If this bodyis in uniform motionwith velocity v = Bc with respecto a particular
obsener, thenfor this obsener, asis well known from relativistic dynamics,a body’s
masstakeson thevaluemy/+/1 — B2 andthereforeenegy moc?/+/1 — B2. Sincekinetic
enegy may be definedasthe increasein enegy experiencedby a body whenbrought
from restto velocity v = B¢, onefindsthefollowing expression:

moc?

1
1.1.2 Exin. = —— —moc® =mpc? | — —1
(112 i =g JiF
whichfor smallvaluesof 3 reducego the classicaform:
1
(1.1.3) En. = 5mov’.

7
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Having recalledthe above, we now seekto find a way to introducequantainto rel-
ativistic dynamics. It seemgo usthatthe fundamentaldeapertainingto quantais the
impossibility to consideranisolatedquantity of enegy without associating particular
frequeng to it. This associatiorns expressedy whatl call the ‘quantumrelationship’,
namely:

(1.1.4) enegy = h x frequengy

whereh is PLANCK’S constant.

Thefurtherdevelopmentof thetheoryof quantaoftenoccurredby referencdo me-
chanicaftaction’, thatis, therelationship®f aquantunfind expressiorin termsof action
insteadof enegy. To begin, PLANCK’s constanth , hasthe units of action, ML2T~1,
andthis canbe no accidentsincerelativity theoryreveals‘action’ to be amongthe “in-
variants”in physicstheories. Neverthelessactionis a very abstractnotion, andasa
consequencef muchreflectionon light quantaandthe photoelectriceffect, we have re-
turnedto statement®n enegy asfundamentalandceasedo questionwhy actionplays
alargerolein somary issues.

The notionof a ‘quantum’makeslittle senseseeminglyif enegy is to be continu-
ously distributedthroughspace;but, we shall seethatthis is not so. Onemay imagine
that, by causeof a metalaw of Nature,to eachportionof enegy with a propermassmy,
onemayassociat@ periodicphenomenomwf frequeng vo, suchthatonefinds:

(1.1.5) hvp = mpc2.

Thefrequeng vg is to bemeasuredyf coursejn therestframeof theenegy paclet.
This hypothesiss thebasisof ourtheory:it is worthasmuch,like all hypothesesascan
bededucedrom its consequences.

Must we supposethat this periodic phenomenoroccursin the interior of enegy
paclets? This is not at all necessarythe resultsof §1.3will shav thatit is spreadout
over anextendedspace.Moreover, what mustwe understandy theinterior of a parcel
of enegy? An electronis for us the archetypeof isolatedparcelof enegy, which we
believe, perhapsncorrectly to know well; but, by receved wisdom, the enegy of an
electronis spreadover all spacewith a strongconcentratiorin a very smallregion, but
otherwisewhosepropertiesare very poorly known. Thatwhich makesan electronan
atomof enegy is notits smallvolumethatit occupiesn space] repeat:it occupiesall
spaceput thefactthatit is indivisible, thatit constitutesa unit.

Having supposeaxistenceof afrequeng for a parcelof enegy, let usseeknow to
find how this frequenceas manifestedor anobsererwho hasposedheabove question.
By causeof the Lorentz transformationof time, a periodic phenomenonn a moving
objectappearso a fixed obsererto be slowed down by afactorof /1 — 2; thisis the

lRegardingdifficuItiesthatarisewhensa/eral electriccentrednteract,seeCHAPTER 4 below.
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famousclock retardation.Thus,sucha frequeny asmeasuredby afixedobsenerwould
be:

2
(1.1.6) vlzvm/l—szz%,/l—sz

On the otherhand,sincethe enegy of a moving objectequalsmyc?/+/1 — B2, this fre-
gueng accordingto thequantunrelation,Eq. (1.1.4),is givenby:

bt Mmoc?

V="

Thesetwo frequenciesy; andv, arefundamentallydifferent,in thatthefactor/1 — 2
entersinto them differently. This is a difficulty that hasintrigued me for a long time.
It hasbroughtme to the following conceptionwhich | denote‘the theoremof phase
harmory:’

“A periodic phenomenolis seenby a stationaryobserverto exhibit the frequency
v1 = h~tmgc?y/1 — B2 that appeas constantlyin phasewith a wavehaving frequency
v = h~tmyc?//1 — B2 propagatingin the samedirectionwith velocityV = ¢/

The proof is simple. Supposehatatt = 0 the phenomenorand wave have phase
harmory. At timet then,the moving objecthascovereda distanceequalto x = ct for
which the phaseequalsvit = h=tmyc?y/1— B%(x/Bc). Likewise,the phaseof the wave
traversingthe samedistances

Bx\ myc? 1 X Bx\ myc? X
1.1.8 Vit—— | =—— — ) = ——/1-B%=—.
( ) ( c h J1-p2\Bc ¢ h B Bc
As stated we seeherethatphasenarmoly persists.
Additionally this theoremcanbe proved, essentiallyin the sameway, but perhaps
with greaterimpact, asfollows. If tg is time for an obsener at restwith respectto a
moving body; i.e., his propertime, thenthe Lorentztransformatiorgives:

(1.1.9) to= ; ('[ - 9(> .

The periodicphenomenonve imagineis for this obsener a sinusoidalfunction of
Voto. For anobserer at rest, this is the samesinusoidof vo (t — Bx/c) /4/1 — B2 which
representawave of frequeng vo/+/1 — B2 propagatingvith velocity c/B in the direc-
tion of motion.

Herewe mustfocuson the natureof the wave we imagineto exist. Thefactthatits
velocityV = ¢/ is necessarilygreaterthanthe velocity of light c, (B is alwayslessthat
1, exceptwhenmassds infinite or imaginary),shovsthatit cannotrepresentransporof

(1.1.7)
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enegy. Ourtheorenteachesis,moreover, thatthiswave representaspacialdistribution
of phasethatis to say it is a“phasewave’

To make the last point more precise considera mechanicatomparisonperhaps
bit crude,but thatspeakgo one’simagination.Consideralarge,horizontalcirculardisk,
from which identicalweightsaresuspendedn springs.Let the numberof suchsystems
perunit area,.e., their density diminishrapidly asonemovesout from the centreof the
disk, sothatthereis a high concentratiorat the centre.All the weightson springshave
the sameperiod; let us setthemin motion with identicalamplitudesand phases.The
surfacepassinghroughthe centreof gravity of theweightswould be a planeoscillating
up anddown. This ensemblef systemds a crudeanalogueo a parcelof enegy aswe
imagineit to be.

The descriptiorwe have givenconformsto thatof anobsener at restwith thedisk.
Were anotherobsener moving uniformly with velocity v = 3¢ with respectto the disk
to obsereit, eachweightfor him appeardo be a clock exhibiting Einsteinretardation;
further, the disk with its distribution of weightson springs,no longeris isotropicabout
the centreby causeof Lorentz contraction.But the centralpointhere(in 81.3it will be
mademorecomprehensible)s thatthereis a dephasingf the motionof theweights.f,
atagivenmomentin time afixedobsener considerghegeometridocationof thecentre
of massof the variousweights, he getsa cylindrical surfacein a horizontaldirection
for which vertical slicesparallelto the motion of the disk are sinusoids. This surface
correspondsin the casewe ervision, to our phasewave, for which, in accordwith our
generaltheorem,thereis a surfacemoving with velocity c/[3 parallelto the disk and
having afrequeng of vibrationon thefixedabscissaqualto thatof a properoscillation
of a springmultiplied by 1/4/1— B2. Oneseedfinally with this example(which is our
reasoro pursueit) why a phasewvave transportsphase’,but notenenpy.

The preceedingresultsseemto us to be very important, becausewith aid of the
quantumhypothesidtself, they establisha link betweenmotion of a materialbody and
propagatiorof a wave, andtherebypermit ervisioning the possibility of a synthesisof
theseantagonisti¢heorieson the natureof radiation.So,we notethatarectilinearphase
wave is congruentwith rectilinearmotion of thebody; and,FERMAT’s principle applied
tothewave specifieaaray, whereasM AUPERTUIS' principleappliedto thematerialbody
specifiesarectilineartrajectory which is in factaray for thewave. In CHAPTER 2, we
shallgeneralisehis coincidence.

1.2. Phaseand Group Velocities

We mustnow explicateanimportantrelationshipexisting betweerthe velocity of a
bodyin motionanda phasewave. If wavesof nearbyfrequenciepropagaten thesame
direction Ox with velocity V, which we call a phasevelocity, thesewaves exhibit, by
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causeof superpositiona beatif the velocity V varieswith the frequeng v. This phe-
nomenorwasstudiedby Lord RAY LEIGH specificallyfor the caseof dispersve media.

Imaginetwo wavesof nearbyfrequenciesy andv’ = v + dv, andvelocitiesV and
V' =V + (dV/dv)dv; their superpositioneadsanalytically while neglectingtermssec-
ondorderin &v with respecto v, to thefollowing equation:

VX

sin(2m(vt — VVX +¢)) +sin(2m(v’t — v +9¢") =
(1.2.1) 2sin(2m(vt — VVX +y)) coe(2n(%vt — xdé\‘%) %V + ).

Thuswe geta sinusoidfor which the amplitudeis modulatedat frequeng dv, be-
causehessign of the cosinehaslittle effect. Thisis awell known result. If onedenotes
with U thevelocity of propagatiorof the beat,or groupvelocity, onefinds:

U dv °

We returnto phasewaves. If oneattributesa velocity v = 3¢ to the body, this doesnot
fully determinghevalueof B, it only restrictsthevelocityto beingbetweefd andf + of3;
correspondindrequencieshenspantheinterval (v,v + dv).

We shallnow prove atheoremthatwill beultimatelyveryuseful: Thegroupvelocity
of phasewavesequalsthevelocityof its associatedody In effectthis groupvelocityis
determinedby the above formulain whichV andv canbe consideredasfunctionsof 3
because:

(1.2.2) 1_d(y)

c 1 C
(1.2.3) V=g v=§ ?—BZ'
Onemaywrite:
g_\é
(1.2.4) U= TOR
dp
where

dv  moc? B

B h (1-p)¥

(v) _ moc® d (\/1—B—T> Cmc? 1

(1.25) TR B h (1-p)
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sothat:
(1.2.6) U=pfc=w

The phasewave groupvelocity is thenactually equalto the body’s velocity. This
leadsusto remark:in thewave theoryof dispersiongxceptfor absorptiorzonesyelocity
of enegy transporequalsgroupvelocity?. Here,despitea differentpointof view, we get
ananalogousesult,in sofar asthe velocity of a bodyis actuallythe velocity of enegy
displacement.

1.3. Phasewavesin space-time

MINKOWSKI appeargo have beenfirst to obtaina simplegeometricrepresentation
of the relationshipsintroducedby EINSTEIN betweenspaceand time consistingof a
Euclidian4-dimensionakpace-timeTo do sohetook a Euclidean3-spaceandaddeda
fourth orthogonatimensionnamelytime multiplied by ¢cy/— 1. Nowadaysoneconsiders
thefourth axisto bearealquantityct, of apseudduclideanhyperbolicspaceor which
thethefundamentainvariantis c2dt? — dx? — dy? — dZ%.

ct ot
D
L X
A Qo a4 «
01 Olo / « !
a 0 a
tan (oq)=6""
tan ()=8

FIGURE 1.3.1. A Minkowski diagramshaving worldlinesfor a body mov-
ing with velocity v = 3¢, (primedaxis). OD is thelight cone.Linesparallelto
ox’ are“lines of equalphasé.

Let usconsidemow space-timdor a stationaryobsenrerreferredto four rectangular
axes. Let x be in the direction of motion of a body on a charttogetherwith the time
axisandthe above mentionedrajectory (SeeFig.: 1.3.1)Giventheseassumptionsthe
trajectoryof the bodywill be aline inclined at ananglelessthan45° to the time axis;

2See,for example:LEON BRILLOUIN, La Theorie desquantaet'atom de Bohr, CHAPTER 1.
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thisline is alsothetime axisfor anobseneratrestwith respecto thebody. Withoutloss
of generality let thesetwo time axespasshroughthe origin.

If thevelocity for a stationaryobsenrerof themoving bodyis Bc, theslopeof ot’ has
thevaluel/(. Theline oX, i.e.,thespacialaxisof aframeatrestwith respecto thebody
andpassinghroughthe origin, lies asthe symmetricalreflectionacrossthe bisectorof
xat; thisis easilyshovn analyticallyusingLorentztransformationsand shows directly
thatthelimiting velocity of enepy, ¢, is thesamefor all framesof referenceTheslopeof
ox’ is, thereforef3. If thecomoving spaceof amoving bodyis the sceneof anoscillating
phenomenonthenthe stateof a comoving obsener returnsto the sameplacewhenever
time satisfies:0A/c = AB/c, which equalsthe propertime period, To = 1/vo = h/moc?,
of the periodicphenomenon.

Linesparallelto oX are thereforelines
of equal‘phase’for the obsenrer at rest ct’
with thebody. Thepoints...a, o, a... rep- ot 2
resenprojectionontothespacenf anob-
seneratrestwith respecto thestationary
frame at the instantO; thesetwo dimen- C
sionalspacesn threedimensionalspace 0 B
are planartwo dimensionalsurfacesbe-
causeall spacesinderconsideratiorhere
areEuclidean.Whentime progressefor X
astationaryobsenrer, thatsectionof space- —
time which for him is space represented tan CAB = ¢
by a line parallelto ox, is displacedvia tan CDB = g
uniform movementtowardsincreasingt.
Oneeasilyseeghatplanesf equalphase
...a,0,a... aredisplacedin the spaceof
astationaryobsener with avelocity c/(.
In effect, if the line ox; in Figure 1 rep- FIGURE 1.3.2. A
resentghe spaceof the obserer fixed at Minkowski diagram:

t = 1, for him @@ = c. The phasethat details,shaving thetrigono-
for t = 0 onefindsata, is now found at metricrelationshipyielding
ay; for the stationaryobserer, it is there- thefrequeng.
foredisplacedn hisspacédy thedistance
apa; in thedirectionox by a unit of time. Onemay saythereforethatits velocity is:
_c
ik
Theensemblef equalphaseplanesconstitutesvhatwe have denoteda ‘phasewave!
To determingthefrequeng, referto Fig. 1.3.2.

(1.3.1) V = apa; = aaygcoth(£x0x)
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__ Lines1 and2 representwo successfe equalphaseplanesof a stationaryobserer.
ABis, aswe said,equalto ¢ timesthe properperiodTo = h/myc?.
AC, the projectionof AB ontheaxisOt, is equalto:

1
V1-p2
Thisresultis a simpleapplicationof trigonometry,whenerer, we emphasiserigonome-

try is usedonthe planexat, it is vitally necessaryo keepin mind thatthereis a peculiar
anisotropisnof this plane.Thetriangle ABC yields:

(AB)2 = (AC)2—(CB)2 = (AC)?(1—tarf(ZCAB)),

(1.3.2) ch=cT

= AR~
(1.3.3) A = \/%, ged.

The frequeny 1/Tiis that which the periodic phenomenorappeargo have for a
stationaryobsenrer usinghis eyesfrom his position. Thatis:

2
(1.3.4) Vi=Vo 1—322%,/1—52.

_The periodof thesewavesat a pointin spacefor a stationaryobserer is givennot
by AC/c, but by AD/c. Let uscalculateit.
For thesmalltriangle BCD, onefindsthat:

cB_1
DC B’
But, in sofarasAD = AC — DC = AC(1— B?), thenew periodequals:

1
(1.3.6) T=_AC(1-Pp) =Toy/1-P2,

andthefrequeng v of thiswave is givenby:
1 v mc?
T Vi-B h/1-p

Thuswe obtainagainall the resultsobtainedanalyticallyin 81.1, but now we see
betterhow it relatesto generalconceptsof space-timeandwhy dephasingf periodic
movementgakesplacedifferentlydependingon the definition of simultaneityin relativ-
ity.

(1.3.5) or DC = BCB = B?AC.

(1.3.7) v=




CHAPTER 2

The principles of M AUPERTUIS and FERMAT

2.1. Motivation

We wishto extendtheresultsof CHAPTER 1 to thecasan which motionis nolonger
rectilinearanduniform. Variablemotion presupposea forcefield actingon abody. As
faraswe know thereareonly two typesof fields: electromagnetiandgravitational. The
GeneralTheoryof Relatvity attributesgravitationalforce to curved space-timeln this
work we shallleave all consideration®n gravity aside,andreturnto themelsavhere.
Thus, for presentpurposesa field is an electromagnetidield and our studyis on its
affectsonthe motion of a chagedparticle.

We mustexpectto encountesignificantdifficultiesin this chapteiin sofar asRela-
tivity, a sureguidefor uniform motion, is just asunsurefor nonuniformmotion. During
arecentvisit of M. EINSTEIN to Paris, M. PAINLEVE raisedseveral interestingobjec-
tionsto Relatvity; M. LANGEVIN wasableto deflectthemeasilybecauseachinvolved
accelerationfor which Lorentz-Einsteirtransformationglon't pertain,evennot to uni-
form motion. Suchargumentsby illustrious mathematiciansave therebyshovn again
thatapplicationof EINSTEIN'sideasis very problematicalvheneverthereis acceleration
involved;andin this sensereveryinstructive. Themethodsusedin CHAPTER 1 cannot
helpushere.

Thephasewave thataccompaniea body; if it is alwaysto complywith our notions,
haspropertieghatdependon the natureof the body; sinceits frequeng, for example,is
determinedy its total enegy. It seemsatural thereforeto supposehat,if aforcefield
affects particle motion, it also musthave someaffect on propagationof phasewaves.
Guidedby theideaof afundamentaldentity of the principle of leastactionandFermats
principle,| have conductedny researcheBom the startby supposinghatgiventhetotal
enegy of a body, andthereforethe frequeng of its phasewave, trajectoriesof oneare
raysof theother This hasleadmeto avery satisfyingresultwhich shallbedelineatedn
CHAPTER 3in light of BOHR’s interatomicstability conditions.Unfortunately it needs
hypotheticalinputs on the value of the propagatiornvelocity, V , of the phasewave at
eachpoint of the field that areratherarbitrary We shall therforemake useof another
methodthat seemgo us moregeneralandsatisfictory We shall studyon the onehand

15
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therelativistic versionof the mechanicaprinciple of leastactionin its Hamiltonianand
Maupertuisiarform, andon the otherhandfrom avery generabpoint of view, thepropa-
gationof wavesaccordingto FERMAT. We shallthenproposea synthesisf thesetwo,
which, perhapscanbe disputed,but which hasincontestableelegance. Moreover, we
shallfind a solutionto the problemwe have posed.

2.2. Two principles of leastactionin classicaldynamics

In classicadynamicsthe principle of leastactionis introducedasfollows:

The equationsof dynamicscan be deducedrom the fact that the integral fttf Ldt,
betweerfixedtime limits, t; andty, andspecifiedoy parameters; which give the stateof
the systemhasa stationaryvalue By definition, £, known asL AGRANGE's function,
or Lagrangiandepend®n ¢; andg; = dg;/dt.

Thus,onehas:

t2
(2.2.1) o[ Ldt=0.
t1

Fromthis onededuceshe equation®f motionusingthe calculusof variationsgiven
by LAGRANGE:

d /oL oL
2.2.2 — (=) ==,
( ) dt <aqi) 0q;
wherethereareasmary equationsasthereareq;.
It remainsnow only to define£. Classicaldynamicscallsfor:
(2-2-3) L = Exin. — Epot,

i.e., the differencein kinetic and potentialenegy. We shall seebelow that relativistic
dynamicsusesadifferentform for L.

Let usnow proceedo the principle of leastactionof MAUPERTUIS. To begin, we
notethat L AGRANGE's equationsn the generalform givenabove, admita first integral
calledthe“systemenegy” which equals:

oL .
™ 00

underthe conditionthat the function £ doesnot dependexplicitely on time, which we
shalltake to bethe casebelow.
Qi)

oW _ (0L, oL, dr. d (o
@ = 2\ a9 5% g " a5

(2.2.5) = >G [% (g—é) - g—ﬂ )
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which accordingo LAGRANGE, is null. Therefore:
(2.2.6) W = const

We now apply HAMILTON’s principle to all “variable” trajectoriesconstrainedo
initial positiona andfinal positionb for which enegy is a constant.Onemay write, as
W , t; andt, areall constant:

1. t:
2.2.7) 5[ cdt=5[ (L+W)dt=0,
ty ty
orelse:
t2 0L B_ oL
228 5/ —.'-dt:6/ oL dg =0,
( ) 3 Z qiq. A Zaqi ]

thelastintegral is intendedfor evaluationover all valuesof qg; definitely containedbe-
tweenstatesA and B of the sort for which time doesnot enter;thereis, therefore,no
further placeherein this new form to imposeary time constraints.On the contrary all
variedtrajectoriexorrespondo the samevalueof enegy, W.*

In thefollowing we useclassicalcanonicalequations:p; = 0L/0¢;.. MAUPERTUIS'
principlemaybenow bewritten:

B
(2.2.9) 5/A S pidg =0,

in classicadynamicswhere L = Eyin, — Epot is independentf ¢ andEyin. is ahomoge-
neousguadratidunction. By virtue of EULER’s Theoremthefollowing holds:

(2.2.10) > pidgi = pigidt = 2Exinq.
| |

For amaterialpoint body; Exin. = m\?/2 andthe principle of leastactiontakesits oldest
known form:

B
2.2.11) 5/ mvd = 0.
A

wheredl, is adifferentialelementof atrajectory

Irootnoteaddedto the Germartranslation To makethis proofrigorous,it is necessarasis well known,
to alsovaryt; andty; but, becaus®f thetime independencef theresult,our agumentis notfalse.
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2.3. The two principles of leastaction for electron dynamics

We turn now to thematterof relatiistic dynamicdor anelectron.Hereby ‘electron’
we meansimply a massve particlewith chaige. We take it thatan electronoutsideary
field posses propermassmg; andcarrieschagee.

We now returnto space-timewherespacecoordinatesirelabelledx!, x2 andx?, the
coordinatect is denoteddy x*. Theinvariantfundamentadifferentialof lengthis defined
by:

2.3.1) ds=\/(dx)2 - (dxd)2 — ()2 — (ch)2.

In this sectionandbelowr we shallemploy certaintensorexpressions.

A world line hasat eachpointatangentefinedby avector, “w orld-velocity” of unit
lengthwhosecontravariantcomponentsregivenby:
_dx
~ds’
Oneseesmmediatelythatu'u; = 1.

Let amoving body prescribeaworld line; whenit passes particularpoint, it hasa
velocity v = B¢ with componentsy, v, v,. Thecomponentsf its world-velocity are:

(2.3.2) u (i=1,23,4).

Ul:—ulz—L uZ:_UZZ_L
c/1-p? cy/1-2
V. 1
(2.3.3) =-u= = 4

_c\/l—BT M=l cy/1-p2

To defineanelectromagnetifield, we introduceanothemorld-vectorwhosecomponents
expresshevectorpotentiald andscalampotential by therelations:

1= _q)l =—ay; ¢2= _¢2 = —ay,

(2:3.4) b3= 0= —as da=¢*= W

We considernow two points P and Q in space-timecorrespondingo two given
valuesof the coordinate®f space-timeWe imagineanintegral takenalonga curvilinear
world line from P to Q; naturallythefunctionto beintegratedmustbeinvariant.

Let:

(2.3.5) /P Q(—WbC—eq)iUi)dSZ /P Q(—WbCUi —edi)u'ds,

be this integral. HAMILTON’s Principleaffirms thatif a world-line goesfrom P to Q, it
hasaform which give this integral a stationaryvalue.
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Let usdefineathird world-vectorby therelations:
(2.3.6) J=mocu +edi, (i=1,2,34),
the statemenbf leastactionthengives:

Qo
(2.3.7) 5/ Jidx = 0.
P

Below we shallgive a physicalinterpretatiorto theworld vectorJ.
Now let usreturnto the usualform of dynamicsequationsn thatwe replacein the
first equatiorfor theaction,ds by cdt+/1 — B2. Thus,we obtain:

(2.3.8) 6[2[—moc2\/1—Bz—em_e@m]dt:o,

wheret; andt; correspondo pointsP andQ in space-time.
If thereis a purely electrostatidield, thend is zeroandthe Lagrangiantakesthe
simpleform:

(2.3.9) L=—myc?/1—p2—eW.

In ary case,HAMILTON's Principle always hasthe form éftthdt =0, it always
leadsto LAGRANGE'S equations:

d /oL oL .
(2.3.10) P (6_q.> = 3’ (i=1,273).
In eachcasefor which potentialsdo not dependon time, conseration of enegy
obtains:
(2.3.11) W =—L+% pidg =const, pi= a—L (i=1,2,3).
| oG
Following exactly the sameargumentasabore, onealsocanobtain M AUPERTUIS'
Principle:

B
(2.3.12) 6/A > pidgi =0,

whereA andB arethetwo pointsin spacecorrespondingo saidpointsP andQ in space-
time.

Thequantitiesp;, equalto partialderivativesof £ with respecto velocitiesg;, define
the“momentum”vector: p. If thereis nomagnetidield (irrespectve of whetherthereis
anelectricfield) , p equals:

moV

(2.3.13) p= T
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It is thereforeidenticalto momentumandM AUPERTUIS' integral of actiontakesjustthe
simpleform proposedoy MAUPERTUIS himself, with the differencethat massis now
variableaccordingto Lorentztransformations.

If thereis alsoa magneticfield, onefinds thatthe component®f momentumtake
theform:

(2.3.14) p=—T e

1-B2
In this casetherenolongeris anidentity betweend andmomentumthereforeanexpres-
sionof theintegral of motionis morecomplicated.

Considera moving body in a field for which total enegy is given; at every point
of the givenfield which a body cansample,its velocity is specifiedby conseration of
enegy, whilst a priori its direction may vary. The form of the expressionof p in an
electrostatidield revealsthatvectormomenturmrhasthe samemagnituderegardlesf its
direction. This is not the caseif thereis a magneticfield; the magnitudeof p depends
on the anglebetweerthe chosendirectionandthe vectorpotentialascanbe seenin its
effecton p- p. We shallmake useof this factbelow.

Finally, let usreturnto the issueof the physicalinterpretationof a world-vectord
from which a HamiltoniandependsWe have definedit as

(2.3.15) J = mocl + €§.

Expandingd and® , onefinds:
o W

(2.3.16) J=—p, = e

Thus,we have constructedhe renovned“world momentumwhich unifiesenegy
andmomentum.

From:

Q. _
(2.3.17) 5/ X =0, (i=1,23, 4),
P

onecansimplify, if J4 is constantto:

B .
(2.3.18) 6/ JdX =0, (i=1,23).
A

Thisis themostdirectmannerto go from oneversionof leastactionto the other
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2.4. Wave propagation; FERMAT’s Principle

We shall study now phasewave propagatiorusinga methodparallelto that of the
lasttwo sections.To do so,we take a very generalndbroadviewpoint on space-time.

Considerthe functionsing in which a differentialof ¢ is takento depencbn space-
time coordinates. Thereareaninfinity of linesin space-timelongwhich a function
of ¢ is constant.

Thetheoryof undulationsgspeciallyas promulgatedoy HuY GENS and FRESNEL,
leadsus to distinguishamongtheselines certainof themthat are projectionsonto the
spaceof anobsener, which arethere“rays” in the opticalsense.

Let two pointssuchasthoseabove, P andQ, betwo pointsin space-timelf aworld
ray passeshroughthesetwo points,whatlaw determinests form?

Considettheline integral fF? d¢, letussupposehatalaw equivalentto HAMILTON's
but now for world raystakestheform:

(2.4.1) 6/de¢ —0.

Thisintegral shouldbe, in fact, stationary;otherwise perturbationdreakingphasecon-
cordanceaftera given crossingpoint, would propagatdorward to make the phasethen
bediscordantata seconccrossing.

Thephaseb is aninvariant,sowe may posit:

(2.4.2) do =2ny o,

whereOQ; , usuallyfunctionsof X, constitutea world vector, the world wave. If | is the
directionof aray in theusualsenseit is thecustomto ervision for d¢ theform:

(2.4.3) dé = 2m(vdt — \Xlon),

wherev is thefrequeng andV is thevelocity of propagationThus,onemaywrite:
v v

(2.4.4) O = ~v coqx,t), Os= v

Theworld wave vectorcanbedecomposedhereforejnto acomponenproportional
to frequeny andaspacevectorfi aimedin thedirectionof propagatiorandhaving amag-
nitudev/V. We shallcall this vectora“wave number”,asit is proportionalto theinverse
of wave length.If thefrequeng v is constantwe arethenleadto the Hamiltonian:

o
(2.4.5) 5 / OidX =0,
P
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in the Maupertuisiarform:

B .
2.4.6 5/ Oidx =0,
(2.4.6) A Z i

whereA andB arepointsin spacecorrespondingo P andQ .
By substitutingfor O its valuesonegets:

Bvdl
(2.4.7) 5/A =0

This statemenbf MAUPERTUIS' Principleconstituted=ERMAT’s Principlealso. Justas
in 82.3,in orderto find the trajectoryof a moving body of giventotal enengy, it suffices
to know the distribution of the vectorfield g , the sameis true to find the ray passing
throughtwo points, it sufficesto know the wave vectorfield which determinesat each
pointandfor eachdirection,thevelocity of propagation.

2.5. Extending the quantum relation

Thus,we have reachedhefinal stageof this chapter At the startwe posedheques-
tion: whenabody movesin a force field, how doesits phasewave propagatednstead
of searchingby trial anderror, as| did in the beginning, to determinethe velocity of
propagatiorat eachpoint for eachdirection, | shall extendthe quantumrelation, a bit
hypotheticallyperhapsbutin full accordwith the spirit of Relatvity.

We areconstantlydrawn to writing hv = w, wherew is the total enegy of the body
andv is thefrequeng of its phasewave. On the otherhand,in the preceedingsections
we definedtwo world vectorsJ andO which play symmetricrolesin the studyof motion
of bodiesandwaves.

In light of thesevectors therelationhv = w canbewritten:

1
(2.5.1) Os = -3

However, the factthattwo vectorshave one equalcomponentdoesnot prove that
theothercomponentsreequal.Neverthelessby virtue of anobviousgeneralisationywe
posethat:

1
(2.5.2) O =13, (1234)

The variationd¢ relative to aninfinitesimally small portion of the phasewave has
thevalue:

(2.5.3) do = 2nOidx = %T[Jidxi.



2.6.EXAMPLES AND DISCUSSION 23

FERMAT 's Principlebecomeghen:

B 3 ) B 3 )
25.4 6/ J-d':6/ dx = 0.
254 75 a0 =35 po

Thus,we getthefollowing statement:

Fermat's Principle appliedto a phasewaveis equivalentto Maupertuis’Principle
appliedto a particle in motion; the possibletrajectoriesof the particle are identicalto
theraysof thephasewave

We believe thattheideaof anequivalencebetweerthe two greatprinciplesof Geo-
metricOpticsandDynamicsmightbeapreciseguidefor effectingthesynthesiof waves
andquanta.

The hypotheticalproportionalityof J and O is a sort of extention of the quantum
relation,which in its original form is manifestlyinsufficient becauset involvesenegy
but notits inseparablg@artner:momentum.This new statements muchmoresatisfying
sinceit is expressedsthe equalityof two world vectors.

2.6. Examplesand discussion

The generalnotionsin the lastsectionneedto be appliedto particularcasedor the
purposeof explicatingtheir exactmeaning.

a) Let usconsideffirst linearmotionof afreeparticle. The hypothesefrom CHAP-
TER 1 with the help of SpecialRelatvity allow usto handlethis case. We wishto check
if the predictedpropagatiorvelocity for phasewaves:

c
(2.6.1) V=_

B
comesbackout of theformalism.

Herewe musttake:
W mpc2
2.6.2 Ve — = —
(2:6.2) h =
1 mpp2c? 1 moBc , vdl

(2.6.3) thl q._h\/_th h\/1__[32dl_v,

from whichwe get:V = ¢/B. Moreover, we have givenit aninterpretatiorfrom a space-
time perspectre.

b) Consideranelectronin anelectricfield (Bohr atom). The frequeng of the phase
wave canbetakento beenegy divided by h, whereenegy is givenby:

moc?

Vi

(2.6.4) W =

+ep=hv.
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Whenthereis no magnetidield, onehassimply:
MoVx

(265) px = 7’1_—827 etC.,
13 1

(2.6.6) DLLE HLl_L;zdl = Va,
from which we get:

02

vV = \/?_32+ew _c 1 eP/1— B2
= T T + Toc2 ,
ViR
w

This resultrequiressomecomment.Froma physicalpoint of view, this shawvs that,
a phasewave with frequeny v = W/h propagatest eachpoint with a differentveloc-
ity dependingon potentialenegy. The velocity V dependn i directly as given by
e/ (W — ey) (aquantitygenerallysmallwith respecto 1) andindirectly on 3, which at
eachpointis to be calculatedrom W and .

Further it is to be noticedthatV is afunctionof themassandchage of the moving
particle. This may seemstrangehowever, it is lessunrealthatit appears.Consideran
electronwhosecentremaoveswith velocity v; which, accordingto classicalnotions,is
locatedat point P, expressedn a coordinatesystemfixed to the particle,andto which
thereis associate@lectromagnetienegy. We assumehataftertraversingtheregion R
in Fig. (2.6.1),with its moreor lesscomplicatedelectromagnetidield, the particlehas
thesamespeedbut new direction.

Thepoint P is thentransferedo point

R P’, and one can say that the startingen-

‘BV 77777777 RS | ergy at P wastransportedo pointP’. The
o _omEEEEe E\ transferof this enegy through region R,
‘Vg\vA even knowing the fields thereinin detalil,

only canbe specifiedin termsof a chaige

and mass. This may seembizarrein that

FIGURE 2.6.1. Electron we areaccustomedo thinking thatchage
enepgy-transportthrougha and mass(as well as momentumand en-
region with fields. ergy) arepropertiesvestedn the centreof

an electron. In connectionwith a phase
wave, which in our conceptionss a substantiapartof the electron,its propagatioralso
mustbegivenin termsof massandchaige.
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Let usreturnnow to theresultsfrom CHAPTER 1 for the caseof uniform motion.
We have beendrawn into consideringa phasewave asbeingdueto the intersectionof
the spaceof the fixed obsener with the past,presentand future spacef a comoving
obsener. We might be temptedhereagainto recover the value of V given above, by
consideringsuccessie “phases’of the particlein motionandto determinedisplacement
relativeto astationaryobsenerby meanf sectionof hisspaceasstateof equalphase.
Unfortunatelyoneencounterserethreelargedifficulties. ContemporarRelatvity does
notinstructushow anonuniformly moving obsenreris ateachmomento isolatehis pure
spacerom space-timetheredoesnot appeato be goodreasorto assumehatthis sep-
arationis just the sameasfor uniform motion. But evenwerethis difficulty overcome,
therearestill obstaclesA uniformly moving particlewould be describedy acomoving
obsener alwaysin the sameway; a conclusionthat follows for uniform motion from
equivalenceof Galileansystems.Thus,if a uniformly moving particle with comoving
obseneris associatedvith a periodicphenomenomiwayshaving the samephasethen
the samevelocity will alwayspertainandthereforethe methodsn CHAPTER 1 areap-
plicable.If motionis notuniform, however, adescriptionby acomaoving obsenercanno
longerbethe same andwe justdon’t know how associategeriodicphenomenomvould
be describedr whetherto eachpointin spacetherecorrespondshe samephase.

Maybe, one might reversethis problem,andacceptresultsobtainedin this chapter
by differentmethodsin an attemptto find how to formulaterelatvistically the issueof
variablemotion, in orderto achieve the sameconclusions. We cannot dealwith this

difficult problem.
c.) Considetthegenerakaseof achagein anelectromagnetifield, where:
moc?
2.6.8 hv=W=——+el.
(256.8) b

As we have shavn above, in this case:

_ MoW
(2.6.9) Px = 7\/1——32

whereay, ay, a; arecomponentsf thevectorpotential.
Thus,

+ea, etc,

13 1 moBc L8 vdl

Sothatonefinds:
+
(2.6.11) V= V”’Z W oew 1

-
"ff;z+ea TBW-eplted
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whereG is themomentumanda, is the projectionof the vectorpotentialontothe direc-
tionl.

Theenvironmentat eachpointis nolongerisotropic. ThevelocityV varieswith the
direction,andthe particle’s velocity V no longerhasthe samedirectionasthe normalto
the phasewave definedby p = hii. Thatthe ray doesnt coincidewith the wave normal
is virtually the classicaldefinition of anisotropiomedia.

One canquestionherethe theoremon the equality of a particle’s velocity v = 3¢
with the groupvelocity of its phasewave.

At the start,we notethatthe velocity of a phasewave is definedby:

13 13 dg v
2.6.12 - vdg = = ——dl = —dI
(2.6.12) thldql thldld Vd’

wherev/V doesnotequalp/h becauseall andp don't have the samedirection.

We may, withoutlossof generalitytake it thatthe x axisis parallelto the motionat
thepointwherepy is the projectionof p ontothis direction.Onethenhasthe definition:
Vo P

2.6.1 —=—.
(2.6.13) Vo h
Thefirst canonicalkequationthenprovidestherelation:
dax oW a(hv)
— =V=pC= — = = s
dt b= am = 3 )
whereU is thegroupvelocity following theray.
Theresultfrom 81.2is thereforefully generalandthe first groupof HAMILTON’S
equationdollows directly.

(2.6.14)



CHAPTER 3

Quantum stability conditionsfor trajectories

3.1. Bohr-Sommerfeldstability conditions

In atomictheory M. BOHR wasfirst to enunciatethe ideathat amongthe closed
trajectorieghatanelectronmayassumebouta positive chaigecentre only certainones
arestable,the remainingare by naturetransitoryand may be ignored. If we focuson
circularmotion,thenthereis only onedegreeof freedom,andBoOHR’s Principleis given
asfollows: Only thosecircular orbits are stablefor which the action is a multiple of
h/2m, where h is PLANCK’s constant Thatis:

(3.1.1) MowR? = n%{ (nintegen),

or, alternately:

21
(3.1.2) / ped = nh,
0

wheref is aLagrangiarcoordinatg(i.e., q) and pg its canonicaimomentum.

MM. SoMMERFELD andWILSON, to extendthis principle to the caseof morede-
greesof freedom,have shown thatit is generallypossibleto chosecoordinatesg;, for
which the quantisatiorconditionis:

(3.1.3) }{pidqi =nih, (nj integer),

whereintegrationis over thewhole domainof the coordinate.
In 1917,M. EINSTEIN gave this conditionfor quantisatioran invariantform with
respecto changesn coordinate$ For thecaseof closedorbits, it is asfollows:

3
(3.1.4) ]{Z pidgi = nh, (nintegen),

whereit is to be valid alongthetotal orbit. Oneheravith recognisesM AUPERTUIS' in-
tegral of actionto be importantalsofor quantumtheory This integral doesnot depend

1ginsTEIN , A., Zum quantensatron SOMMERFELD und EPSTEIN, Ber. der deutsben Phys. Ges.
(21917)p. 82.
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atall onachoiceof spacecoordinatesccordingto a propertythatexpresseshe covari-
ant charactef the vectorcomponentg; of momentum.lt is definedby the classical
techniqueof JacoBI asatotalintegral of the particulardifferentialequation:

0s :
(3.1.5) H (a_q’q') =W; i=12..f,

wherethetotal integral containsf arbitraryconstantof integrationof which oneis en-
ergy, W. If thereis only onedegreeof freedom,EINSTEIN’ s relationfixesthe value of
enegy, W; if therearemorethanone(in the mostimportantcase that of motion of an
electronin aninteratomicfield, therearea priori three),oneimposesa conditionamong
W andthe n— 1 others;which would be the casefor Keplerianellipseswereit not for
relativistic variationof masswith velocity. However, if motionis quasi-periodicwhich,
morecver, alwaysis the casefor the above variation, it is possibleto find coordinates
thatoscillatebetweerits limit values(i.e., librations),andthereis aninfinity of pseudo-
periodsapproximatelyequalto whole multiplesof libration periods. At the endof each
pseudo-periodthe particlereturnsto a statevery nearits initial state.EINSTEIN’s equa-
tion appliedto eachof thesepseudo-periodkeadsto aninfinity of conditionswhich are
compatibleonly if the mary conditionsof SOMMERFELD are met; in which caseall
constantaredeterminedthereis nolongerindeterminism.

JacoBl’s equation,angularvariablesandthe residuetheoremsene well to deter
mine SOMMERFELD’s integrals. This matterhasbeenthe subjectof numerougooksin
recentyearsandis summarisedn SOMMERFELD'’s beautifulbook: Atombauund Spec-
trallinien (édition francaise,traductionBELLENOT, BLANCHARD éditeur 1923). We
shallnot pursuethathere,but limit ourselhesto remarkingthatthe quantisatiorproblem
residesentirelyon EINSTEIN’ sconditionfor closedorbits. If onesucceeds interpreting
this condition,thenwith the samestroke oneclarifiesthe questionof stabletrajectories.

3.2. The interpretation of EINSTEIN’S condition

The phasewave conceptpermitsexplanationof EINSTEIN’s condition. Oneresult
from CHAPTER 2 is thatatrajectoryof a moving particleis identicalto aray of aphase
wave, alongwhich frequeng is constan{becauseotal enegy is constantandwith vari-
ablevelocity, whosevaluewe shall not attemptto calculate. Propagationis, therefore,
analogueo aliquid wave in achannelclosedon itself but of variabledepth.lIt is phys-
ically obvious, thatto have a stableregime, the lengthof the channelmustbe resonant
with the wave; in otherwords, the points of a wave locatedat whole multiples of the
wave lengthl, mustbein phase Theresonanceonditionis | = nA if thewave lengthis
constantand¢(v/V)dl = n (integer) in thegenerakase.
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Theintegral involved hereis thatfrom FERMAT’s Principle; or, aswe have shavn,
MAUPERTUIS' integral of actiondivided by h. Thus, the resonanceondition canbe
identifiedwith the stability conditionfrom quantuntheory

This beautiful result, for which the demonstratioris immediateif one admitsthe
notionsfrom the previous chapter constituteghe bestjustificationthat we cangive for
our attackon the problemof interpretingquanta.

In the particularcaseof closedcircularBohr orbitsin anatom,onegets:mg ¢ vdl =
2rmRmyv = nhwherev = Rw whenw is angularvelocity,

h
3.2.1 WR% =n_—.
(3.2.1) Mo o
Thisis exactly BoHR’s fundamentaformula.
Fromthis we seewhy certainorbits are stable;but, we have ignoredpassagérom
oneto anotherstableorbit. A theoryfor sucha transitioncan't be studiedwithout a
modifiedversionof electrodynamicsyhich sofarwe do nothave.

3.3. SOMMERFELD’s conditions on quasiperiodic motion

| aimto shaw thatif thestability conditionfor aclosedorbitis ¢ 53 pidg; = nh, then
the stability conditionfor quasi-periodignotionis necessarily$ pidgi = nih (n; integer
i =1,2,3). SOMMERFELD's multiple conditionsbring us back againto phasewave
resonance.

At thestartwe shouldnotethatanelectronhasfinite dimensionsthen,if, aswe sav
above, stability conditionsdependon the interactionwith its properphasewave, there
mustbecoherencevith phasevavespassingy atsmalldistancessayontheorderof its
radius(10~%cm.). If we don’t admitthis, thenwe mustconsiderthe electronasa pure
point particlewith aradiusof zero,andthis is not physicallyplausible.

Let usrecallnow a propertyof quasi-periodidrajectories.If M is the centreof a
moving bodyat aninstantalongits trajectory andif oneconsidersa sphereof smallbut
finite arbitraryradiusR centredon M, it is possibleto find aninfinity of time intervals
suchthat at the end of each,the body hasreturnedto a point in a sphereof radiusR.
Moreover, eachof thesetime intervalsor “nearperiods”t mustsatisfy:

(3.3.1) T=mT1+& =nTa+& =n3T3+¢;3,

whereT,; arethevariableperiods(librations)of the coordinatesy;. The quantitiess; can
always be renderedgsmallerthana fixed, small but finite interval: n. The shortern is
choserto be,thelongertheshortesof thet will be.

Supposéhatthe radiusR is choserto be equalthe maximumdistanceof actionof
theelectrons phasewave, a distancedefinedabove. Now, onemayapplyto eachperiod
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approaching, theconcordanceonditionfor phasewvavesin theform:

T3
332 / dgi = nh,
( ) 0 Zpl ]
wherewe may alsowrite:
Ti
(3.3.3) Z(ni/O PiGidt + & (pii)x) = nh.
I

But aresonanceonditionis neverrigorouslysatisfied.If a mathematiciamemands
that for a resonancehe differencebe exactly n x 211, a physicistacceptsn x 2+ a,
wherea is lessthana small but finite quantitye which may be consideredhe smallest
physicallysensiblepossibility.

Thequantitiesp; andg; remainfinite in the courseof their evolution sothatonemay
find six otherquantities P andQ;, for whichit is alway true that:

(3.3.4) pi<P; 4<Q, (i=1223).

Choosingnow thelimit n suchthatn T3P Q; < eh/21t we seethat,it doesnot matter
whatthe quasiperiodis, which permitsneglectingthetermse; to write:

(3.3.5) ini /OTi PG = nh

On the left side, n; areknown whole numberswhile on the right n is an arbitrary
whole number We have thusaninfinity of similar equationswith differentvaluesof n;.
To satisfythemit is necessarpandsuficient thateachof theintegrals:

Ti
(3.3.6) /O pigidt =j{piin;

equalsanintegernumbertimesh.

Theseareactually SOMMERFELD’s conditions.

Thepreceedinglemonstratiomppearso berigorous.However, thereis anobjection
thatshouldberebutted. Stability conditionsdon't play a role for timesshorterthant; if
waiting timesof millions of yearsareinvolved,onecouldsaythey neverplayarole. This
objectionis notwell founded however, becausehe periodst arevery largewith respect
tothelibrationsT;, but maybeverysmallwith respecto our scaleof time measurements;
in anatom,theperiodsT; arein effect, ontheorderof 1071° to 102 seconds.

Onecanestimatehelimit of theperiodsin thecaseof theL, trajectoryfor hydrogen
from SOMMERFELD. Rotationof the perihelionduring onelibration periodof aradius
vectoris on the orderof 2rtx 1072, The shortestperiodsthenare about10® timesthe
period of the radial vector (10~1° seconds)or about10~1° seconds. Thus, it seems
that stability conditionscomeinto play in time intervalsinaccessibléo our experience
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of time, and,therefore thattrajectories'without resonancestaneasilybetakennotto
exist ona practicalscale.

The principlesdelineatedabose wereborrovedfrom M. BRILLOUIN whowrotein
his thesis(p. 351): “The reasorthat M AUPERTUIS' integral equalsanintegertime h, is
thateachintegralis relative to eachvariableand,over a period,takesa whole numberof
guanta;Thisis thereasonSOMMERFELD positedhis quantumconditions.






CHAPTER 4

Motion quantisation for two charges

4.1. Particular difficulties

In the preceedinghaptersve repeatedlyervisionedan “isolatedparcel” of enegy.
This notionis clearwhenit pertainsto a chagedparticle (protonor electron,say)well
removedfrom otherchaigedbodies.But if the chaige centresnteract,this notionis no
longersoclear Thereis herea difficulty thatis not really a part of the subjectof this
work andis not elucidatedy currentrelativistic dynamics.

To betterunderstandhis difficulty, considera proton(hydrogenion) of propermass
Mg andan electronof propermassmy. If thesetwo arefar removed onefrom anothey
thentheir interactionis negligible, and one canapply easily the principle of inertia of
enegy: a protonhasinternalenegy Moc?, whilst an electronhasmoc?. Total internal
enegy is therefore: (Mg + mo)cz. But if the two arecloseto eachother with mutual
potentialenegy —P(< 0), how mustit be takeninto account?Evidently it would be:
(Mo +mp)c? — P, soshouldwe considethata protonalwayshasmassMp andanelectron
mp? Shouldnot potentialenegy be parcelledbetweenthesetwo componentof this
systemby attributing to an electrona propermassmg — aP/c?, andto a proton: Mg —
(1- a)P/cZ? In which casewhatis the valueof a anddoesit dependon Mg or my?

In BOHR'sandSOMMERFEL D’'s atomictheoriespnetakesit thatanelectronalways
haspropermasam atits positionin theelectrostatidield of a proton. Potentialenegy is
alwaysmuchlessthaninternalenegy moc?, a hypothesighatis notinexact, but nothing
saysthatit is fully rigorous.Onecaneasilycalculateheorderof magnitudeof thelargest
correction(correspondingo a = 1) , thatshouldbe apportionedo the Rydbeg constant
in the Balmerseriesif the oppositehypothesiss taken. Onefinds: 8R/R= 10~°. This
correctionwould besmallerthanthedifferencebetweerRydbeg constantfor hydrogen
andhelium(1/2000),a differencewhich M. BoHR remarkablymanagedo estimateon
thebasisof nuclearcapture Neverthelessgiventhe extremeprecisionof spectrographic
measurement&nemight expectthat a perturbationof electronmassdueto alterations
in potentialenegy areobsenable,if they exist.
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4.2. Nuclear motion in atomic hydrogen

A questionremovedfrom the preceedingonsiderationds thatconcerninghe me-
thodof applicationof the quantumconditionsto a systemof chaigedparticlesin relative
motion. The simplestcaseis that of an electronin atomic hydrogenwhen one takes
into accountsimultaneouslisplacemenof the nucleus.M. BOHR managedo treatthis
problemwith supportof the following theoremfrom rationalmechanicsif onerelates
electronrmovemento axesfixedin directionatthecentreof thenucleusjts motionis the
sameasfor Galileanaxisandasif the electrons massequalled:pp = mpMo/(mo + Mo).

p—— In a systemof axisfixedin a nucleus,
y?z X E(mo ) . .
the electrostatidield actingon anelectron
A %: % = M%Irm" canbe consideredasconstantat all points
x'  of spaceandreducedo the problemwith-
C out motion of the nucleusby virtue of the
R substitutionof the fictive massyyg for the
NTM) y'  real massmg. In CHAPTER 2 we estab-
lished a generalparallelismbetweenfun-
FIGURE  4.2.1. Axis damentahuantitiesof dynamicsandwave
optics;thetheoremmentionedcaboredeter
mines,therefore thosevaluesto be attrib-
utedto the frequeng and velocity of the
electronicphasewave in a systemfixedto
the nucleuswhichis not Galilean. Thanks
to this artifice, quantisatiorconditionsof stability canbe consideredalsoin this caseas
phasewave resonanceonditions.We shallnow focuson the casein which anelectron
and nucleusexecutecircular motion abouttheir centreof gravity. The planeof these
orbitsshallbe takenasthe planeof the sametwo coordinatesn bothsystemsLet space
coordinate$n a Galileansystemattachedo the centreof gravity bex andthoseattached
to thenucleusbey;; sothatx* = y* = ct.

Let wbetheangularfrequeng of theline of separatiomf nucleusandelectronabout
thecentreof gravity G .

Further let:

system for hydrogen; y
-systemfixed to nucleus;
x-systemfixed to centreof
gravity.

- Mo+mp’
Thetransformatiorformulasbetweerthesetwo systemsarethen:

y' =xt 4+ Reogut), y>=x3,

(4.2.1) n

(4.2.2) y> =x%+Rsin(at), y*=x".
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Fromtheseequationnededuces:

(d9? = (dx)?— (dx")?~ (dx)?~ (dx’)?

W’R2
= (1-55) @ - (e - e - @0
(4.2.3) —Z%Qsin(wt)dyldy“+Z%Qcos(mt)dyzdy“.
Componentsf aworld momentunvectoraredefinedby:
gy .
(4.2.) i= Y b= mocu + ey = mocg;u + ey
Oneeasilyfinds:
o™ [
p1 = i [ p +szm(wt)],
o™ [d
b = 1_rFBZ[dt choiuxﬂ,
(4.2.5) ps3 = O

Resonancef a phasewave, following ideasfrom CHAPTER 2, is enforcedby the
condition:

(4.2.6) | § £ (padyt + pady)) = (nintegen,

wherethis integral is to be evaluatedover the circulartrajectoryof the vectorseparation
R+ r of theelectronfrom thenucleus.
Sinceonehas:

1
(:jlt = —w(R+r)sin(wt),
dy?
4.2.7) e +w(R+r)coqwt),
if follows:
1 1 _ly M am
(4.2.8) - f(pldy +Pody?) = f \/m(vdl wRvd),

wherev is the velocity of the electronwith respecto they axesanddl is the tangential
infinitesimalelementalongthetrajectorygivenby:

(4.2.9) v=w(R+r)= %
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Finally, theresonanceonditiongives:

(4.2.10) ™ R+ (1— “’TR> -2n(R+T) = nh,

V-

where whenp? deviatesbut little from 1, onegets:

Mo
4.2.11 2mmy———
( ) mo+ Mo

Thisis exactly BoHR’s formulathathe deducedrom thetheoremmentionedabore
andwhich againcanberegardedasa phasewave resonanceonditionfor anelectronin
orbit abouta proton.

w(R+r)%=nh.

4.3. The two phasewavesof electron and nucleus

In the preceedingintroductionof axesfixed on a nucleuspermittedelimination of
its motion, reducingthe problemto anelectronin anelectrostatidield, therebybringing
usto the problemastreatedn CHAPTER 2.

But, if we consideraxesfixedwith respecto thecentreof gravity, boththe electron
and nucleusare seento executecircular trajectories,and thereforewe must consider
two phasewaves, one for each,andwe mustexaminethe consisteng of the resulting
resonanceonditions.

To start, considerthe phasewave of an atomicelectron. In a systemfixed on the
nucleustheresonanceonditionis:

1 moMo 2

(4.3.1) fpldy + pady? = 2T[mo+ Mow(R+ r)? =nh,
wheretheintegral is to be evaluatedat a constantime alongthecircle centredat N with
radiusR+r, which is thetrajectoryof therelative motionandtheray of its phasewvave.
If now we considertheaxisfixedto the centreof gravity G, therelative trajectorymakes
acircle centredon G of radiusr; theray of the phasewvave passinghroughE is ateat
instanta circle centredat N and of lengthR+r, but this circle is moving becausats
centreis rotating aboutthe centreof the coordinates. The resonanceondition of the
electrons phasewvave atary giveninstantis not modified;it is always:

mpMo
Mo + Mo
Considemow a phasewave of the nucleus.In all the preceedingnucleusandelectron
play a symmetricrole sothatonecanobtainthe resonanceonditionby exchangingMg
for mp, andR for r; to obtainthe sameformulas.

In sumone seesthat BOHR’s conditionsmay be interpretedas resonancexpres-

sionsfor therelevantphasewaves. Stability conditionsfor nuclearandelectronmotion
consideredeparatelyarecompatiblebecausehey areidentical.

(4.3.2) 2mn W(R+r1)2=nh
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It is instructive to trace both the instantaneougositionsof the two phasewaves
(planefeatures)andthe trajectoriesasdevelopedin the courseof time (point like fea-
tures)in anaxes-systenfixedto the centreof gravity. In sucha systemit appearsn fact
asif eachmoving objectdescribests trajectorywith a velocity which at eachinstantis
tangento theray of its phasewvave.

FIGURE 4.3.1. Phasaays,nucleusandelectronorbitsof hydrogen.

To emphasis®nelast point: the raysof the wave at theinstantt arethe ervelopes
of the velocity of propagationjput theseraysare not the trajectoriesof enegy, rather
they aretheir tangentsat eachpoint. This fact remindsus of certainconclusiongrom
hydrodynamicsvhereflow lines, envelopsof velocity, arenot particletrajectoriesvhen
theirformis invariant,in otherwords,if movementis constant.






CHAPTER 5
Light quanta

5.1. The atom of light*

As we saw in the introduction,the theoryof radiationin recenttimeshasreturned
to thenotionof ‘light particles. A hypotheticainput enablingusto developatheoryof
black body radiation(aspublishedin: “QuantaandBlack Body radiation”, Journal de
PhysigueNov. 1922— theprincipleresultsof whichwill becoveredin CHAPTER 7) has
beenconfirmedby theideaof realexistenceof “atomsof light”. Theconceptslelineated
in CHAPTER 1, andthereforethedeductionsnadein CHAPTER 3 regardingthe stability
of a Bohr atomappearto be interestingconfirmationof thosefactsleadingusto form a
synthesiof NEWTON’sandFRESNEL’S conceptions.

Without obscuringthe above mentioneddifficulties, we shall try to specify more
exactly just how oneis to imaginean“atom of light”. We conceve of it in thefollowing
manner:for anobsenrerwho s fixed, it appearssalittle region of spacewithin which
enegy is highly concentratedndformsanindivisibleunit. Thisagglomeratiorof enegy
hasatotalvaluegy (measuredby afixedobsener),from which, by theprincipleof inertia
of enegy, we mayattributeto it a propermass:

€
(5.1.1) mo = C—g

This definition is entirely analogougo that usedfor electrons. Thereis, however,
anessentiatifferencebetweerit andanelectron.While anelectronmustbe considered
asa fully sphericallysymmetricobject, an atom of light possesadditionalsymmetry
correspondindo its polarisation. We shall, therefore representain atom, or quantum,
of light ashaving the samesymmetryasan electrodynamialoublet. This paradigmis
provisional;if acceptedstill the constitutionof the unit of light might be madeprecise
only afterseriousmodificationgo electrodynamicsa taskwe shallnot attempthere.

1see:EINSTEIN A., Ann.d. Phys.,17, 132(1906);Phys.Zeitsd. 10, 185(1909).
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In accordwith our generalnotions,we supposéhatthereexistsin the constitution
of alight quantuma periodicphenomenoffior whichvg is givenby:

(5.1.2) Vo= %mocz.

Thephasewvave corresponds$o the motionof this quantumwith thevelocity B¢ andwith
frequeng:

moc?

V1-p?

andit is appropriateto supposehatthis wave is identicalto that wave of the theory of
undulationor, moreexactly put, thatthe classicalwave is a sort of a time averageof a
realdistribution of phasenvavesaccompagwing thelight atom.

It is anexperimentalfactthatlight enegy moveswith a velocity indistinguishable
from thatof thelimit c. Thevelocity c represents velocity thatenegy never obtainsby
reasorof variationof masswith velocity, sowe may assumehatlight atomsalsomove
with avelocity very closeto but still slightly lessthanc.

If a particlewith an extraordinarily small propermassis to transporta significant
amountof enegy, it musthave a velocity very closeto c¢; which resultsin thefollowing
expressiorfor kinetic enegy:

(5.1.4) E = myc? ( 1 1) .

(5.1.3) V=

Sl

Vi-P
Moreover, in a very small velocity intenval (c — €, ¢), there correspond€negies
having values(0,+~). We supposethat even with extremely small mp (this shall be
elaboratedelow) light atomsstill have appreciableenegy andvelocity very closeto c;
and,in spiteof thevirtual identity of velocities,have greatvariability of enegy.
Sincewe aretrying to establisha correspondencbetweenphasewavesand light
waves,thefrequeng v of radiationis definedby:

vl MoC?
hy/1-p2
We note,thatwe mustremindoursehesthatatomsof light areunderconsiderationthe

extreme smallnessof myc? becomesmyc?/4/1— B2 kinetic enegy can be expressed
simply as:

(5.1.5)

_moc?

(5.1.6)
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A light wave of frequeng v correspondstherefore to motion of anatomof light with
velocity: v= Bcrelatedto v by:

(5.1.7) V:Bc:cwl—%.

Exceptfor extremelyslow oscillations,myc?/hv , anda fortiori its squarearevery small
andonemay pose:

(5.1.8) v:c(l ”%C4>.

2h2y2
Let ustry to determinethe upperlimit of mg for light. Effectively, the experimentsof T.
S. F.2 have shavn that even light waveswith wave length of several kilometreshave a
velocity essentiallyequalto c. Let ustake it thatwavesfor which 1/v = 10~! seconds
have a velocity differing from ¢ by lessthan1%. Thisimpliesthatthe upperlimit of mg

IS:
V2 hv
(5.1.9) (Mo)max = 0@

which is approximatelyl0~2* grammes.It is possiblethatmy is still smaller;yet one
might hopethat someday experimentson very long wave lengthlight will reveal evi-
denceof avelocity discerniblybelow c .

Oneshouldnot overlookthatit is nota questiorregardingvelocity of aphasewave,
whichis alwaysabovec , but of enepy transporidetectablexperimentally®

5.2. The motion of an atom of light

Atomsof light for which = 1 areaccompanietby phasevavesfor whichc/p = c;
thatis, we think, this coincidenceébetweerlight wave andphasewave is whatevokesthe
doubleaspectof particleandwave. Associationof FERMAT’s Principle togetherwith
mechanicatleastaction” explainshow the propagatiorof light is compatiblewith these
two pointsof view.

Light atomtrajectoriesarerays of their phasewave. Therearereasondo believe,
whichwe shallseebelow, thatmary light corpusclesanhave the samephasewave; so
thattheir trajectorieswould be variousraysof the samephasewave. Thus,the old idea
thatarayis thetrajectoryof enegy is confirmed.

Neverthelesstectilinearpropagatioris not a universalfact; a wave passinganedge
of ascreenwill diffractandpenetrateéheshadav region;raysthatpassanedgeclosewith
respecto thewave lengthdeviate soasnotto satisfyFERMAT’s Principle. Fromawave

2Changedo: ‘experimenton Hertzianwaves'...,in the Germaredition. -A.F.K.
3Regardingobjectionsto thesenotions,seetheappendixo CHAPTER 5, page69.
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pointof view, thisdeviationresultsfrom disequilibriumintroducedby ascreeronvarious
nearzonef awave. In contrastNEWTON consideredhatascreeritself exercisedorce
onlight corpuscleslt seemghatwe have arrivedat a synthesisediewpoint: wave rays
curve asforseenby wave theory but aslight atomsmove asif the principle of inertia of
light is nolongervalid, i.e.,they aresubjecto the samemotionasthephaseay to which
they areunified, maybewe cansaythatscreengxerciseforceonthemto the extentthat
acurwveis evidenceof existenceof suchaforce.

In the preceedingve wereguidedby the idea,thata corpuscleandits phasewave
arenot separatehysicalrealities. Upon reflection,this seemgo leadto the following
conclusion: Our dynamics(in EINSTEIN’s format) is basedon Optics; it is a form of
GeometricOptics. If it seemgo us nowadaysprobable thatall wavestransmitenegy,
soon the otherhand,dynamicsof point materielparticlesdoubtlesslyhide wave propa-
gationin the real sensethatthe principle of leastactionis expressiblen termsof phase
coherence.

It would be very interestingto studythe interpretationof diffractionin space-time,
but herewe would encountethe problemsbroughtupin CHAPTER 2 regardingvariable
motionandwe do notyet have a satishctoryresolution.

5.3. Someconcordancesetweenadversetheoriesof radiation

Herewe wish to shov with someexampleshow the corpusculatheoryof light can
bereconciledwith certainwave phenomena.

a.) DopperEffect dueto moving source:

Considerasourceof light moving with velocityv = cin thedirectionof anobsenrer
consideredo be atrest. This sourceemitsatomsof light with frequeng v andvelocity
c(1—€), wheree = mgc*/(2h?v?). For afixedobsener, thesequantitieshave magnitudes
v andc(1—¢'). Thetheoremof additionof velocitiesgives:

(53.1) o(1—¢) = LLZEEY
14
or
1-e+PB
5.3.2 1-g/= PP
( ) 1+(1-¢)p’

where,neglectingee’:

=

+

>

- ?

e V2 14 V
1-B v

=
™
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if B is small,onegetsthe usualopticsformulas:

v T v
(53.4) S=14B, T =1-B=1-.

It is just as easyto get the relationshipbetweenintensitiesmeasuredy two ob-
seners.During aunit of time, amoving obserer seeshatthe sourceemittedn photon$
perunit of surface.Theenepgy densityof abundleevaluatedy this obsereris, therfore,
nhv andtheintensityis | = nhv. For afixedobsenrer, n photonsareemittedin aatime

1/4/1— B2 andfill avolumec(1—B)//1-B2=rc\/(1-B)/(1+PB). Thus,theenegy

densityof a bundleappeargo be:

nhv [1+(3
5.35 —\—F
andtheintensity:
! _ ! 1+ B _ /V_l
(5.3.6) I"=nhv 18 5 nhv y

Fromwhich we get:

a7 ro(2).

All theseformulasfrom awave point of view canbe foundin®.

b.) Reflectionfrom a moving mirror.

Considerreflectionof a photonimpinging perpendicularlyon a mirror moving with
velocity Bc in adirectionperpendiculato its surface.

For anobserer atrest,V' is the frequeny of phasewavesaccompaying photons
with velocity ¢(1 - €]). For astationaryobsener, this frequeng andvelocity are:v; and
C(l — 81).

If we now considereflectedphotons their correspondingaluesare: vz, ¢(1 — €2),
v, andc(1l—g)).

Theadditionlaw for velocitiesgives:

_c(1-¢7)+Bc
c(l—sl)_m,

4Note that DE BROGLIE'S term was“light atom” or “quantum”, not “photon”, a term coinedby G. N.
LEewisfirstayearlaterin 1926.For the sale of contemporaryeadability however, hereaftein thistranslation
thelattertermis used.-A.F.K.

Svon LAUE, M., Die Relativifitstheorie Vol. |, 3 ed.p. 119.
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c(l-¢,) —Bc
5.3.8 l-g)=—->~——.
( ) C( 82) 1_8(1_8/2)
For a stationaryobsener, reflectionoccurswithout changeof frequeny becausef
consenrationof enegy. Thatis:
1-¢/+PB 1-¢,—-p

5.3.9 Vi=Vy, € =¢ = .
(6:39) Ve B TR0 T 1-pi-5)

Neglectingg} &), gives:

€ v, \ 2 1+ B2
5.3.10 d=(2) =) .
6310 4= () -(5)
If B is small,onerecoversthe classicaformula:
T \'
5.3.11 —==1-2-.
( ) T C

Obliquereflectionis easilyincluded.

Let n bethe numberof photonsreflectedduringa giventime interval. Total enegy
of thesen photonsafter reflection,E,, is in proportionto their enegy beforereflexion,
E1., givenby:
nhv, V)

P\
nhvi v

(5.3.12)

Although Electrodynamicslsoyieldsthis relation, hereits derivationis absolutely
transparent.

If n photonsoccupy a volumeV; beforereflexion, the volume after equals: Vo =
Vi(1-B)/(1+ B), which elementarygeometricreasoningshaws easily The ratio of
intensitiesbeforeandafterreflexion is givenby:

15 nhvh (14B) (V52

All theseresultsarealsogivenin®.

c.) Black body radiation pressue:

Considera cavity filled with black body radiationat temperaturel . Whatis the
pressureon the cavity walls? In our view, blackbody radiationis a photongaswith, we
presumeanisotropicdistribution of velocities.Let u bethetotal enegy (or, whatis here
thesametotal kinetic enegy) of thephotonsn aunit volume. Let dsbeaninfinitesimal
wall elementdv, avolumeelementy its distancefrom the coordinateorigin, and® the

6von LAUE, M. Electodynamikp.124.
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angleto thenormalof thewall. Thesolid angleunderwhichtheelementdsis seenfrom
thecentreO of dvis:

(5.3.14) do = dsf‘jse.

Considemow only thosephotonsin a volumedv whoseenegy is betweenw and
w+ dw, in quantity: nydwdyv; the numberamongthemwhich aredirectedtowardds is,
by virtue of isotropy, equalto:

dscosb

dQ
(5.3.15) n x nydwdv = anWT

p— dv.

Changingto polarcoordinatesvith the normalto ds aspolaraxis,onefinds:
(5.3.16) dv = r?sin6 deduydr.

Moreover, kinetic enegy of a photonwould be myc?/+/1 — B2 andits momentum
G = mpv/+/1— B2, sothatwhenv — c onegets:

3.17 —=G.
(5.3.17) - =G

Thus,by reflectionat angle® of a photonof enegy w, animpulse2G = 2W cosb/c
isimpartedto ds; i.e., photonsin dvimpartanimpulseto ds throughreflectionof :

dscosf

42
Integratingnow first with respecto w from 0 to « andnoting that [y’ wn,dw = u,
thenwith respecto Y and6 from 0 to 2mandO to 11/2 respectiely, andfinally r from O

to ¢, we obtainthe total momentumdepositedn onesecondon ds and, by dividing by
ds, we obtainanexpressiorfor radiationpressure:

(5.3.18) 2\%/ cosB ny,dwr? sin@ dydr

/2 u
(5.3.19) D= u/ co$ 0 sin6d6 = .
0

Radiationpressureye find, equalsonethird of the enegy containedn a unit vol-
ume,aresultwhichis the sameasthatobtainedfrom classicatheory

The easewith which we recoveredcertainresultsknown from wave theoryreveals
the existencebetweentwo apparentlyoppositepoints of view of a concealecharmory
thatnaturepresentvia phasewvaves.
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5.4. Photonsand wave optics’

The keystoneof the theoryof photonsis its explanationof wave optics. The essen-
tial pointis thatthis explanationnecessitatesmtroductionof a phasewave for periodic
phenomenaif seemsve have managedo establisha closeassociatiorbetweerthe mo-
tion of photonsandwave propagatiorof a particularmode. It is very likely, in effect,
thatif thetheoryof photonsshallexplain opticalwave phenomenanostlikely it will be
donewith notionsof this type. Unfortunately it is still not possibleto claim satishictory
resultsfor this task;the mostwe cansayis that EINSTEIN’s audaciougliscretephoton
conceptionwasjudiciouslyappliedsoasto encompasanumberof phenomenavhichin
the XIX centurywere consideredo so corvincingly have verifiedthe continuouswave
theory

Let us turn now to attackingthis difficult problemon the flanks. To proceedat
this task, it is necessaryaswe said, to establisha certainnaturalliason, no doubt of
a statisticalcharacter betweenclassicalwaves and the superpositiorof phasewaves;
which shouldleadinexorablyto attributeanelectromagneticharacteto phasevavesso
asto accounffor periodicphenomenagsdelineatedn CHAPTER 1.

On canconsideiit provenwith nearcertitude thatemissionandadsorbtiorof radi-
ationoccursin a discontinuougashion.Electromagnetisngr morepreciselythetheory
of electronsgivesa ratherinexact explication of theseprocessesHowever, M. BOHR,
with his correspondencprinciple, hasshovn usthatif oneattributesthe assumptions
of this theoryto an ensembleof electronsthenit hasa certainglobal exactitude. Per
hapsall of electrodynamicfiasonly a statisticalvalidity; MAXWELL's equationghen
area continuousapproximatiorof discreteprocessegust asthelaws of hydrodynamics
area continuousapproximatiorto the complex detailedmotion of moleculesof a fluid.
This correspondenckeingsufficiently impreciseandelastic,cansene asguidancefor
intrepidresearcherasho wishto find atheoryof electromagnetisrm betteraccordwith
theconcepof photons.

In the next sectionwe shalldevelopour ideason interferencejn all candouy how-
ever, they shouldbetakenasspeculationsnorethanexplanations.

5.5. Interfer enceand coherencé

Let us considerhow to establishthe presencef light at a pointin space.To start,
oneplacesa materialobjectwith which light reactseitherchemically thermally etc.,at

"See: BATEMAN, H., “On thetheoryof light Quantd, Phil. Mag., 46 (1923),977 for historicalback-
groundandbibliography

8Footnotein the Germantranslation: In more recentwork, the authorproposeda differenttheory of
interference(See:ComptesRendus183 447(1926).)
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this point; it is possiblethatin the lastanalysisall of theseeffectsarejust the photoelec-
tric effect. Onecanalsoconsiderthe diffusionof wavesatthis pointin space.Thus,one
cansaythatwherethereis no suchreactionwith material,light would be undetectable
experimentally Electromagnetitheoryholdsthat photographieffects(e.g., WIENER'S
experiments) anddiffusion, occurin proportionto the electricfield intensity; whereser
theelectricfield intensityis null, evenif thereis magneticeneny, theseeffectsareindis-
cernible.

The ideasdevelopedhereinleadto associatingohasewaveswith electromagnetic
waves;atleastregardingphasewave distributionin spacehowever, questiongegarding
intensitiesmustbe setaside.This notiontogethemith that of the correspondenckeads
usto considerthatthe probability of aninteractionbetweemrmaterialparticlesandpho-
tonsat eachpoint in spacedependn the intensity (moreaccuratelyon its average)of
avectorcharacteristiof the phasewvave, andwherethis is null, thereis no detection—
thereis negative interference.Oneimagines therefore that wherephotonstraversean
interferenceregion, they canbe absorbedn someplacesbut notin others. Thisis in
principle a very qualitative explanationof interferencewhile taking the discontinuous
featureof light enegy into account. M. NORMAN CAMPBELL in his book “Modern
ElectricalTheory” (1913)appeardo have ervisioneda solutionof the sameilk whenhe
wrote: “Only the corpusculatheory of light canexplain how enegy is transferedat a
spot,while only thewave theorycanexplain why thetransferalongatrajectorydepends
onlocation. It seemghatenegy itself is transportedy particleswhile its absorptioris
determinedby specialwaves”.

Sothatinterferencecan produceextendedspacialpatternsjt seemaecessaryhat
variousatomswithin a sourcebe coordinated.We proposeto expressthis coordination
by meansof the following principle: A phasewave passingthrough material bodies
inducesthemto emit additional photonswhosephasewaveis identical to that of the
stimulus. A wave, therefore,can consistof mary photonsthat retainthe samephase.
Whenthenumberof photonss verylarge,thiswave very closelyresemblesheclassical
conceptiorof awave.

5.6. BOHR’sfrequencylaw and Conclusions

Whatever point of view oneadaptsdetailsof theinternaltransformationgshata ma-
terial atomundegoesby emissionandabsorbtiongannot beimaginedatall. Although
we steadéstly retainthe granularhypothesiswe do not know in the leastif a photon
adsorbedby anatomis storedwithin it, or if thetwo meldinto aunifiedentity. Lik ewise,
we do not know if emissionis ejectionof a preeisting photonor the creationof a new
onefrom internalenegy. Whatever the case,it is certainthatemissionnever resultsin
lessthana singlequantumfor which thetotal enegy equalsh timesthefrequeng of the
photons accompaygiing phasewave; to salagethe conseration of enegy principle, it
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mustbetakenthatemissiorresultsin thediminutionof thesourceatomsinternalenegy
in accordwith BoHR’s Law of frequencies

(5.6.1) hv =W, —W.

Oneseeghatour conceptionsafter having leadsusto a simpleexplanationof sta-
bility conditions,leadsalsoto the Law of Frequenciesif weimposethe conditionthat
an emissioralwayscomprisegust onephoton.

We notethattheimageof emissionfrom the quantuntheoryseemso be confirmed
by the conclusionsof MM. EINSTEIN and LEON BRILLOUIN,® which shaved the ne-
cessityto introduceinto the analysisof theinteractionof blackbodyradiationanda free
bodytheideathatemissioris preciselydirected.

How might we concludethis chapter? Surely althoughthosephenomenauchas
dispersionappearincompatiblewith the notion of photons,at leastin its simple form,
it appearghat now they arelessinexplicable given ideasregardingphasewaves. The
recenttheoryof X andy-ray diffusionby M. A.-H. CoMPTON, whichwe shallconsider
below, supportgheexistenceof photonswith substantiaempiricalevidencein adomain
in which formerly thewave notionreignedsupremelt is, nonethelessncontestablé¢hat
conceptof parcelledight enegy do not provide arny resolutionin the context of wave
optics,andthat seriousdifficulties remain;it is, it seemdo us, therefore prematureto
judgeits final fate.

918, 121(1917);BRILLOIN, L., Journ. d. Phys.serie VI, 2,142(1921).



CHAPTER 6
X and y-ray diffusion

6.1. M. J. J. THOMSON’stheory
1

In this chaptemwe shallstudyX- andy-ray diffusionandshow by suggestie exam-
plestherespectie views supportedy electromagnetiandphotontheory

Let usbggin by definingthe phenomenorf diffusion,accordingto which oneen-
visionsa bundleof rays,someof which arescatteredn variousdirections.On saysthat
thereis diffusionif the bundleis wealenedby redirectingsomerayswhile traversing
material.

Electron theory explains this quite simply. It supposeqin direct oppositionto
BOHR’s atomic model) that electronsin atomsare subjectto quasi-elastidorcesand
have determinedrequenciessothatpassagef anelectromagnetigvave affectstheam-
plitude of the oscillationof the electrondependingn the frequencieof bothelectrons
andwave. In conformity with the theoryof wave generationglectronmotionis cease-
lesslydiminishedby emissionof a cylindrical waves. This eventuallyestablishegqui-
librium betweerthe incidentandredirectedradiation. Thefinal resultis thatthereis a
scatteringof afractionof theincidentwavesinto all directionsin space.

In orderto calculatethe extentof diffusion,the motionof suchoscillatingelectrons
mustbedeterminedTo do soonemayexpresequilibriumbetweertheresultinginertial
forceandthequasi-elastiéorceontheonehandandtheelectricforcefrom theimpinging
radiationon the other In thevisible range,numericalresultsshowv thattheinertial term
canbe neglectedin comparisorto the quasi-elastiderm, so an amplitudeproportional
to that of the stimuluswave, but independentf its frequeng, canbe attributedto the
electronicoscillation. Thetheoryof dipoleradiationshovsthattheintensityof secondary
radiationfalls off asthe fourth power of wave length, so that waves are diffusedmore
strongly astheir frequeng increases.This is the theorywith which Lord RAYLEIGH
explainedthe blue colourof the sky.?

1THOM SON, J. J., Passae del’ électricié a travers lesgaz,(GauthietVillars, Paris,1912)p. 321.

2thebasisof theelastictheoryof light, but this explanationaccordsvell with electromagnetitheoryalso.

49
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In the high frequeng X andy-ray region, it is, contrariwise the quasi-elasticerm,
in comparisorto theinertial term, thatis negligible. All transpiresasif electronswere
free andvibrationalmotion simply proportionalnot only to the incidentamplitude,but
alsonow to wave lengthsquared.This wasthe empiricalbasethatled J. J. THOMSON
to formulatethe original theoryof X-ray diffusion. Thesetwo principlescanbe statedas
follows:

1° If onedesignatedy 6 the diffusion anglerelative to the incidencedirection,
enegy asafunctionof 8 is giventhenby (1+ cos8)/2.

2° Theratio of diffusedto incidentenegy perseconds givenby:

g 8m €
(6.1.1) I~ 3 me
wheree andmy pertainto theelectronandc is the speedf light.

An atomcertainly containsmorethat one electron;novadaysthereis goodreason
to supposethat the numberof electronsin an elementequalsits atomic number M.
THOMSON assumedhcoheentemissiorfrom the p electronsn anatom;and,therefore,
consideredhatthediffusedenegy shouldbe p timesthatof asingleelectron.According
to empiricalevidence diffusionsuffersagraduadiminutiongivenby anexponentialaw:

(6.1.2) = log™

wheres is the decayor ‘dif fusion’ constant.This constantnormalisedoy materialden-
sity, s/p, is the bulk diffusionconstant.If onedenoteghe ‘atomic’ diffusionconstano
asthatrelative to a singleatom,thenin termsof bulk diffusionconstanit would be:

(6.1.3) o= gArm,

whereA is theatomicnumberof thescatterandmy is themassof hydrogen.Substituting
thenumericalfactorfrom Eg. (6.1.1),0negets:

(6.1.4) 0 =0.54x 10"%p.

But, experienceshavsthats/p is very nearly0.2, sothatonehas:

A 054x10%* 054
p 02x146x10-%*  0.29

(6.1.5)

This quantity is nearly 2, which accordswell with our notion of the ratio of the
numberof electrongo atomicweight. Thus,M. THOMSON’s theoryleadsto interesting
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coincidencesvith variousexperimentsnotablyM. BARKLA's,which, largely, have been
verifiedalreadylong agc®

6.2. DEBYE'stheory*

Thereremaingdifficulties;in particular M. W. H. BRAGG hasfounda strongerdif-
fusionthancalculatedabove for which he concludeghatthedisperse&neny is propor
tional not to the numberof scatteringcentresput to its square M. DEBYE hasproposed
atheorycompletelycompatiblewith bothMM. BRAGG andBARKLA.

M. DeBYE considerdhatthe atomicelectronsaredistributedregularly in avolume
with dimensionsof the orderof 10-8 cm.; for the sale of calculationshe supposeshey
aredistributedonacircle. If thewave lengthis long with respecto theaveragedistance
betweenrelectronsthe motion of the electronswill be essentiallyin phaseand, for the
wholewave the amplitudesof eachray add. The diffusedenegy thenis proportionalto
p?, andnot p , sothato becomes:

_8m e
T3 maEr

So,with respecto spacialdistribution, it is identicalto M. THOMSON’s result.

For waveswith progressiely shorterwave lengths the spacialdistribution is asym-
metric,enegy in thedirectionfrom which it cameis lessthanin the oppositedirection.
Thereasorfor thisis: onemayno longerregardthevibrationsof thevariouselectronsas
beingin phasewhenthewave lengthis comparabléo interatomicdistancesThe ampli-
tudesof raysin variousdirectionsdo notaddbecaus¢hey areout of phaseandtherefore
diffusedenegy is reduced. However, in a sharpconein the direction of propagation,
they arein phasesothatamplitudesaddanddiffusionwithin the coneis muchstronger
thanelsevhere. M. DEBYE wasfirst to obsene a curiousphenomenonwhendiffused
enegy is chartedalongthe axis of the conedefinedabove, intensityis not regular but,
shaws certainperiodicalvariations;on a screerplacedperpendiculato the propagation
directiononeseesconcentrichright rings canteredbn the axis. EventhoughM. DEBYE
believeshe hasseenthis phenomenotin certainexperimentsgdoneby M. FRIEDRICH, it
seemshatsofarthereis no realconfirmation.

For shortwave lengths,this phenomenorcan be simplified. The strongdiffusion
conerecedesrogressrely, the distribution revertsto being symmetricand begins to
satisfyTHOM SON’s formulasbecausehe wavesfrom variouselectronsareno longerin
phasesoit becomegnepgiesthatadd,notamplitudes.

(6.2.1)

3by MM. R. LEDOUX-LEBARD andA. DAUVILLIER, La physiquedesrayonsX (GauthietVillars, Paris,
1921)p. 137.
‘DEBYE, P.,, Ann.d. Phys. 46, 809(1915).
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The greatadvantageof M. DEBYE’s theoryis thatit explainedthe strongdiffusion
of soft X-rays and shaved how it happenghat when frequeng increaseghe theory
goesoverto THOMSON's. But it is essentiato notethatfollowing DEBYE's ideas,the
higherthe frequeng, the moresymmetricdiffusedradiation,sothatthe value0.2 of the
coeficients/p canbeobtained However, we shallseein thefollowing section thatthis
is notatall thecase.

6.3. The recenttheory of MM. DEBYE and COMPTON

Experimentatiorwith X andy-raysrevealsfactsquite distinctfrom thosepredicted
by the above theory To begin, the higherthe frequeng, the more pronouncedhe dis-
symmetryof diffusedradiation;on the otherhand,the lessthetotal diffusedeneny, the
morethe value of the coeficient s/p decreasesapidly until the wave lengthgoesun-
der0.3 or 0.2A and becomewery weakfor y-rays. So, therewhereTHOMSON’s theory
shouldapplybetter in factit appliesless.

Two additionallight phenomenéave beendiscover recentlyby clever experimen-
tation, including thatby M. A. H. CoMPTON. Oneis thatit appearghat diffusionin
the directionof the stimulus-radiatioris accompaniedby a reductionof frequeng; and,
the otheris ejectionof the scatteringelectron. Practicallysimultaneoushboth MM. P.
DeBYE andA. H. COMPTON, eachin his own way, have found anexplanationfor these
phenomen®asedn classicabhysicsprinciplesandthe existenceof photons.
Theirideais: if aphotonpasseslose
e enoughto anelectron,jt canbetakenthat

X ;0% A |
W\ they interact. Before completionof an
. L o' . . R
-Ingoming rodiation_____ =40 — interactionan electronabsorbsa certain
%ojj% T amountof enegy from a photonso that
%0 -

after interactionthe frequeng of a pho-

ton is reducedsuchthat the outcomeis

governedby conseration of momentum.
Supposethat a scatteredohoton goesin

a directionat angle® to incomingradia-
tion. Frequenciebeforeandafterinter-

actionarevg andvg andpropermassof anelectronis my, sothatonehas:

FIGURE 6.3.1. Compton
scattering

1
=)
2
mof3c _ hvg 2 hvg 2 hvo hvg
(6.3.2) (ﬁ) = (T) +(T> —ZTTCOSG.

Eq. (6.3.2)wasderivedwith aid of Fig. (6.3.1).

(6.3.1) hvg = hvo—mocz<
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Thevelocity v = 3cis thevelocity anelectronacquiresduringtheinteraction.
Let a betheratio hvo/moc?, which is equalto the quotientof vy andan electrons
properfrequeng, sothatit follows:

(6:3.3) Y 1 2asi(8/2)
or
(6.3.4) Ao = Ao (1+2assir?(6/2)).

With aid of theseformulasone canstudy speedanddirectionof photonscatteras
well aselectron‘kick back’ or recoil. Onefindsthat photonscatteringdirectionvaries
from O to andthat electronrecoil from 11/2 to 0, while its velocity will be betweer0
anda certainmaximum.

M. CoMPTON, appealingo anhypothesisnspiredby the correspondencgrinciple,
seemgo have calculatedscatteredenegy andtherebyexplainedthe rapid diminution of
the coeficients/p. M. DeBYE appliedthe correspondencprinciple someavhat differ-
ently but obtainedanequialentinterpretatiorof the samephenomenon.

In anarticlein ThePhysicalReview (May, 1923)andin anothemmorerecentarticle
in the PhilosophicalMagazine(Nov. 1923), M. A. H. CoMmPTON showns how these
ideasenablecomputatiorof mary experimentaffacts,in particularfor hardraysin soft
materialsthevariationof wave lengthhasbeenquantitatvely verified. For solid bodies
andsoftradiation,it seemghattherecoexistsadiffusedliine with no changeof frequeng
andanotherdiffusedline which follows the Compton-Debydaw. For low frequencies
thefirst appearso predominatedo the extentthat, thatis all thereis. Experimentsdy M.
Ross on scatteringof MoKy andgreenlight in parafin confirmsthis point of view. Kq
linesexhibit a strongline of scatteredadiationfollowing COMPTON’s Law anda weak
line of unalteredrequeng, which appearso betrueonly for greenlight.

The existenceof a nondisplacedine appeardo explain why scatteringn a crystal
(von Laueeffect)is notaccompaniedby a variationof wave length. MM. JAUNCEY and
WoLFERS have shovn recentlythat, in effect, the lines of scatteredadiationfrom the
crystalsusuallyusedasreflectors would exhibit to anappreciablextentthe Compton-
Debyeeffect; in fact, measurementsf the wave length of Rontgenwaveshave shavn
thiseffect. It mustbetakenthatin this casescatteringpccurswithout photondegradation.

To begin, let ustry to explainthesetwo typesof scatteringn thefollowing manner:
theComptonreffectoccurswhenaeranelectronis relatively weaklyboundin ascattering
material, the other case,on the other hand, occurswhenincident photonssufer little
changein wave length becausehe scatteringcentrecan not respondand compensate
by virtue of its high inertia. M. ComPTON had difficulties acceptingthis explanation,
preferringto considerthat multiple scatteringsf the outgoingphotonwere involved,
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therebymakingevidentthe sumof masse®f all scatteringcentres Whicheverwayi it is,
onemustadmitthathardphotonsandheary scatterdehae differentlythatsoft photons
andlight scatters.

As ameando renderthe conceptiorof scatteringasbeingthe deviation of photons
compatiblewith conserationof phase—a$ound necessaryo explain VON LAUE’'S in-
terferencepatternsthis explanationis subjectto the difficulties consideredabove, and
not at all further clarified from the point of view of wave opticsthatwasconsideredn
thepreceedingection.

Up to the matterof hard X-rays andlight materials,asthey arein practicefor ra-
diotherayy, thesephenomenanustbe completelymodifiedby ComPTON’s effect, andit
appearghat, thatis indeedwhat happens.We shall now give an example. Oneknows
thatthereis a greaterdiminution by scatteringsufferedby a sheafof X-raystraversing
materialthan by absorption,a phenomenorhat is accompaniedy emissionof pho-
toelectrons.An empiricallaw by MM. BRAGG and PIERCE shaws that this absorption
variesasthe cubeof thewave lengthandundegoedistinctdiscontinuitiedor eachchar
acteristicfrequeng of the interatomiclevels of the consideredsubstancemoreover, for
thesamewave lengthanddiverseelementsthe coeficient of atomicabsorptiorvariesas
thefourth power of theatomicnumber

This law is well verified in the middle rangeof Rontgenfrequenciesandit seems
highly probablethatit will applyaswell to hardX-rays. In sofar as,following the con-
ceptiondrom the Compton-Debyéheory scatterings exclusively wave scatteringpnly
theabsorbednengy following the BraggLaw canproduceionisationof the gasby high
velocity photoelectronshockingatoms.The Bragg-Piercd.aw thenpermitscalculating
theionisationproducedby the samehardradiationin two separatempoulespnewith
aheavy gas,for exampleCH?3I, andthe otherwith a light gassuchasair. Evenif vari-
ousancillary correctionsaretakeninto accountthis resultis seenexperimentallyto be
muchsmallerthancalculationgredict. M. DAUVILLIER hasobsenedthis phenomenon
in X-raysfor whichanexplanationis for meanold intriguing question.

The new scatteringheoryappeardo be ableto explain theseanomaliegjuite well.
Wheniin effect, atleastin the caseof hardradiation,a portionof theenengy is transfered
to scatterecelectronsthereis not only scatteringof radiationbut also “absorptionby
scattering”. lonisationin the gasis dueto both electronsbeingstrippedfrom atomsas
well asby recoil of electronsin aheary gas(CH®I), Braggabsorptiorin comparisorto
Comptonabsorptionis strong. For alight gas(air), it is not the same;the first causeof
this dueto variationby N* is very weakandthe seconddependanon N shouldbe the
moreimportantone. Total adsorbtionandthereforeionisationin the two gasesshould
thereforebe much smallerthananticipated.It is possiblein this way evento compute
theionisation. Oneseeswith this examplethe large practicalconsequencef theideas
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of MM. CoMPTON AND DEBYE. Recoilof thescattereatlectronsalsoprovidesthe key
ideato understandingnary otherphenomena.

6.4. Scatteringvia moving electrons

Onecangeneralisehe Compton-Debyeheoryby consideringscatteringof photons
off moving electrons. Let us take the x axis to be the direction of incoming photons
whosefrequeng is v1, they andz axesmaybearbitrarily choserto beorthogonabndin
aplanecontainingthe scatteringcentre. The directionof the velocity, Bc, of theelectron
beforeimpactof the photonis definedby thedirectioncosinesas, b1, ¢1, andwelet 8; be
theanglewith thex axis,i.e.,a; = cos0;; aftertheimpact,a scattereghhotonpropagates
with frequeny v, andwith directioncosinesp, g, r makingan angle¢ with theinitial
electronvelocity (cosp = a3 p + b1q+ cir) andthe angle® with the x axis (p = cosd).
Let theelectrons have final velocity 32c whosedirectioncosinesareay, by, c;.

Conserationof enegy andmomenturrduringtheimpactimply:

2 2

6.4.1) v+ —C = hypt
1-pf 1-03
hv c hv c

(6.4.2) Tl+ Tobs A = sz+ Tob2 ~ag,
1-B1 1-B5
c hv c

(6.4.3) MoPs by = Tzq+ Mofz by,
1- 1 1- 2

(6.4.4) MoPaC o _ hlczr+ MoPeC .
1-pf 1-03

Eliminateay, by, c2 using a% + b% + c% = 1; then,from the resultingequationsand
thoseexpressinghe conserationof enegy, eliminatef3;. Now, with CoMPTON’s rela-
tionship:a = hv1/moc?, it follows that:

1- Blcosel
1—Brcosh + 204 /1— BZsir?(8/2)

Whentheinitial velocity is null or negligible, we getComPTON’s formula:
VS —
1+ 2asirf(6/2)
In thegeneratasetheComptoreffect, representetly thetermwith a, is presenbut
diminished;moreover, theDopplerEffectalsoarises.If the ComptonEffectis negligible,

(6.4.5) Vo =V;

(6.4.6) v =
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onefinds:
1—B1cosh;

6.4.7 Vo=Vi——.
(6.4.7) 2=Vi1-g oo

As, in this case photonscatteringloesnotdisturbelectronrmotion,onemightexpect
to getaresultidenticalto thatfrom electrodynamicsThis is effectively what happens.
Let us calculatenow the frequeng of the scatteredadiation (including relativistic ef-
fects). Theimpingingradiationwith respecto the electronhasthefrequeng:

1— )
v, Bico 1

' V1-B2

If the electronmaintainsits translationvelocity B1c, it will startto vibrate at fre-
qgueng V', anobsenerwho receivesradiationscatteredn thedirectionmakinganangle
¢ with respecto ;¢ of the source attributesthe frequeng:

/1_ 2
(6.4.8) vo=V i

1—Bicosd’
from which oneeasilygets:

1- Blcosel
6.4.9 —y, el
(6.4.9) Y2 =T Brcosh

The ComptonEffect remainsin generalquite weak,while the DopplerEffect atten-
dantto afall of severalhundredkilovolts canreachhighvalues(anincreaseof athird for
200kilovolts).

Herewe haveto dowith astrengtheningf thephotonbecaus¢hescatteringlectron
is itself moving with high velocity and gives someof its enegy to the radiation. The
conditionsfor STOKE's Law are not met. It is not impossiblethat someof the above
conclusiongouldbeverifiedexperimentally at leastthoseconcerningX-rays.



CHAPTER 7

Quantum Statistical Mechanics

7.1. Review of statistical thermodynamics

The interpretatiorof the laws of thermodynamicsisingstatisticalconsiderationss
oneof themostbeautifulachiezementsof scientificthought,but it is not without its dif-
ficultiesandobjections.In is notintendedn the context of thiswork to analysecritically
thesemethodswe intendherefirst to recall certainfundamentalsn their currentlycom-
mon form, andthenexamenhow they affect our new ideasfor the theory of gasesand
blackbodyradiation.

BoLTzMANN hasshawvn, to begin, thatthe entropy of a gasin a particularstateis,
up to an arbitrary additive constantthe productof the logarithm of the probability of
the statetimes“BoLTzZMANN’s constant’k, which depend®n thetemperaturecale;he
arrivedat this notion for the first time from analysisof the randomcollisionsof the gas
molecules.Nowadays from theworks of MM. PLANCK andEINSTEIN oneprefersthe
relationshipS= klogP asthedefinitionof the system§ entrogy S. In this definition,P is
notthe mathematicaprobability equalto the numberof micro-configurationgiving the
samemacroscopiconfigurationover the total numberof possibleconfigurationsrather
the“thermodynamigrobability” equalsimply to the numeratowof this ratio. This choice
of definitionfor P allows for the determinatior(albeitsomevhatarbitrarily) of the con-
stantof entropy. Thesepostulatesecallawell known demonstratiomf a certainanalytic
derivationof thermodynamigjuantitateshathastheadvantageof beingapplicableto the
caseof continuouslyvariablestatesaswell asdiscontinuouslyariableones.

Considerd objectswhich may distributedamongm “states”or “cells” considered
a priori to be equally probable. A certainconfigurationis realizedwhenthereare ny
objectsin cell 1, nz in cell 2, etc. Thethermodynamigrobabilitythenwould be:

g!

7.1.1 =
( ) P n'not...ng!
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WhenO andall then; arelargenumbersywe mayuseSTIRLING's formulato obtain
the systementroyy:

m
(7.1.2) S=klogP =k logO —ani logn;.

Supposehatfor eachcell therecorresponda valueof afunctionwhich we shallcall the
“enemy of anobjectin thatcell”. Now we considerthe resortingof objectsamongcells
suchthatthetotal enegy is left unaltered Entropy will thenvary as:

m m m
(7.1.3) 3S= —kd [Z n; Iogni] = —kZéni — kZ lognion;,

with the conditions: $7'dn; = 0 and 3 1';dn; = 0. Maximum entroyy is determinecby
the condition: 8S = 0. The methodof indeterminatecoeficientsrequiresthat, to satisfy
theminimum condition,the following equatiormustbe satisfied:

m

(7.1.4) Z[Iogni +n+Bigi]dn; = 0,

wheren andf3, aswell asthe &n;, areconstantsGiventhe above,oneconcludeghatthe
mostprobabledistribution, the only onerealizedfor all practicalpurposesis:

(7.1.5) n=oae P (a=e"M).

Thisis theso-called‘canonical”distribution. Thethermodynami@ntrogy of the system
correspondingo this mostprobabledistribution, is givenby:

m
(7.1.6) S=kOlogO — Z [kore“3si (loga — Bsi)] ;
however, while T1'ni = O andy{'ein; = E (totaleneny), Eq. (7.1.6)is alternately:
0 dl ,
(7.1.7) S=kilog - +kBE = kalogZe‘Bg' + kpBE.
To determinef we usethethermodynamicelations:
1 ds 0S op  0S
Me. A—BE
(7.1.9) P LR (IR Y
maps OE dE
et
andbecause
M. ~—BE
(7.1.10) 218 g,

ZT e PBej
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it follows that
1 1
(7.1.11) ?_kB, B_ﬁ'

Thefreeenepgy canbecalculatedrom:

m

F=E-Ts = E—kOTlog [Ze—ﬁsi] —BKTE

m
kOT log lz e‘Bsi] .

Themeanvalueof the free enegy for oneof the objectsis therefore:

(7.1.12)

(7.1.13) F = —KTlog [i e—ﬂ .

Let usapplytheseconsiderationso a gascomprisedof identicalmoleculesof massm.
From LiouviLLE's Theorem(equally valid in relativistic dynamics)we learnthat the
infinitesimal elementof phasespacefor a molecule,dxdydzdpdqdr (wherex,y, z are
coordinate®f positionandp, g, r arethe component®f momentum)js aninvariantof
the equationsof motion andthereforeits valueis independenbf the choiceof coordi-
nates.Fromthis oneis led to theideathatthe numberof equally probablestatess also
proportionalto this quantity In turn, oneis thenledto MAXWELL’ s EqualPartition Law
giving the numberof atomsfalling in the elementdxdydzdpdqdr:

(7.1.14) dn = Ce™ ¥ dxdydzdpdqdr,

where w is thekineticenegy of theatoms.
Supposehatthe velocitiesare sufficiently weakto justify usingnonrelatvistic dy-
namics thenwe have:

1
(7.1.15) W= émovz, dpdgdr = 4nG%dG,

whereG = mpv = v/2mpw is the momentum Finally, the numberof atomscontainedn
this volume element,whoseenenpy is betweernw andw+ dw is given by the classical
formula:

(7.1.16) dn = Ce™ ¥ 4rmy/ v/ 2wdwdxdydz.

It remainsnow only to calculatethe free enegy andentropy. To do so we take asthe
objectof thegeneratheory notanisolatedmolecule but agascomprisedf N identical
moleculesof masamg suchthatthestateis definedby 6N parametersi-reeenegy of this
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gasin thethermodynamicasensas definedfollowing GiBBS, asthe averagevolumeof
theN — atomgas,it would be:

m

(7.1.17) F = —KT log [Ze—ssi]7 B= %

M. PLANCK hasshavn how this sumis to be evaluated:it is to be expressedisan
integral overthethe phasespaceof 6N dimensionswhichis equivalentto the productof
N integralsover the phasespaceof a singlemolecule,but dividedby N! to take account
of indistinguishabilityof molecules.Freeenegy canbe calculatedn a similar fashion;
from this onegetsthe entroy andenepgy from theusualthermodynamicelationships:

oF
ot

In orderto do thesecalculations,it is necessaryo determinethe constantC in
Eq. (7.1.16). This factorhasdimensionsof inversecubeof action. M. PLANCK has
determinedt with the following disconcertinghypothesis:! Phasespacefor a molecule
is dividedinto cells of volumeh®”. Onecansay therefore thatin eachcell thereis a
single point whoseprobability is not null, or thatall pointsof the samecell correspond
to statesmpossibleto distinguishphysicallyfrom eachothet

PLANCK’s hypothesideadsto writing freeenegy as:

el (/] i)’
(7.1.19) —NKT log [ﬁ <//////—:mh_136_%w>]-

Uponevaluatingtheintegral onefinds:

(7.1.18) S= E=F+TS

F

(7.1.20) F = Nmoc? — kNT log [%(ZWKT)S/Z] ,
whereV is thetotal volumeof thegas,sothatit follows that:
(7.1.21) S=kNlog le;/g (2rm)kT)3/2] ;

and

(7.1.22) E = Nmoc?® + gkNT.

At theendof hisbook“Warmestrahlung”PLANCK shovedhow onecandeducehe
“chemicalconstant’involvedin equilibrium of a gaswith its condensedliquid) phase.
Measurementbave verified PLANCK’s method.
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Sofarwe have madeuseof neitherRelatvity nor ourideasrelatingdynamicswith
waves.We shallnow examinehow thesetwo aspectareto beintroducednto theabove
formulas.

7.2. The new conceptionof gasequilibrium

If moving atomsof agasareaccompaniethy waves,thecontainemustthencontain
a patternof standingwaves. We arenaturallydrawn to consideow within the notions
of black body radiationdevelopedby M. JEANS, thesephasewavesforming a standing
pattern(thatis, with respectto a container)asthe only stablesituation,can be incor-
poratedinto the study of thermodynamiequilibrium. This is somehav ananalogueto
a Bohr atom, for which stabletrajectoriesare definedby stability conditionssuchthat
unstablevaveswould beregardedasunphysical.

Onecanquestionhow therecanexist a stablewave formationin view of the fact
thatatomsof a gasarein chaoticmotion dueto constantollisionswith eachother To
begin, onecanrespondhatthanksto the uncoordinatee¢haractef atomicmotion, the
numberof atomsdeflectedrom theirinitial motionduringatime interval dt by causeof
collisionsis exactly compensatetly thenumberredirectednto this very samedirection;
all transpiresasif the original atomstraverseda containerwithout ary deflectionsat
all. Moreover, during free travel, a phasewave cantravel mary timesthe lengthof a
containey even of large dimensions;if, for example,the meanvelocity of an atomis
10° cm./sec. andthe meanfree travel 10~° cm., the meanvelocity of the phasewave
wouldbec? /v = 9 x 10'® cm./sec.andduringthetime interval 10~ sec.necessarpn
averagéor collisionfreetravel, thisatomtraverse® x 10° cm.,or 9 kilometres.It seems
quite possible therefore to imaginestationaryphasewvavesin a gasof massve atomsat
equilibrium.

To betterunderstandhe natureof the modificationswe shalltry to imposeon sta-
tistical mechanicsjet us considerat the startthe simple caseof moleculesthat move
alongthe line AB of lengthl, that arereflectedat A andB. The initial distribution of
velocitiesis to be random.The probability thata moleculeis foundin anelementdx of
ABis thereforedx/I. Accordingto classicahotions,onecantake the probabilitythatthe
velocity is betweenv andv + dv asbeingproportionalto dv; therefore,if oneconsiders
phasespacespannedy x andv, all elementdxdv are equallyprobable. The situation
is very different, however, whenthe stability conditionsdiscussedbove aretaken into
considerationIf the velocitiesarelow enoughto justify ignoring relatiistic terms,the
wave lengthof a wave moving with anatomwhosevelocityis v, would be:

_¢/B _h
(7.2.1) A= moTZ/h = v’
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andtheresonanceonditionis:
h .
(7.2.2) l=nA= nm, (ninteger).

Let h/myl = vp; then:
(7.2.3) V= nvp.

Thevelocity therforeis restrictedto multiplesof vp.

Thevariationdn of thewholenumbem correspondindo a variationdv of theveloc-
ity givesthenumberof statescompatiblewith existenceof stationaryphasevaves.From
thisonesees:

mol

(7.2.4) on =~ -bv.

All transpiressif, in eachelemenbf phasespacedxdv, therecorrespondapdxdv/h
possiblestates,which is the classicalexpressiondivided by h. Numerical evaluation
shavs thatevenfor extremelysmallvaluesof dv on the scaleof experimentstherecor-
respondsa large interval dn; thus every small rectanglein phasespacerepresentsan
enormousnumberof possiblevaluesof v. On cantake it thatin generalthe quantity
medxdv/h canbe handledasaninfinitesimal. But, in principle, the distribution of rep-
resentatie pointsis the sameasthatimaginedin statisticalmechanicsit is takento be
discontinuousandby a mechanisnmwhich is yet to be fully determinedthe motion of
atomsfor which thereis no stablewave configurationareautomaticallyexcluded.

Let usnow considera gasin threedimensions.The distribution of phasewavesin
acontaineris fully analogougo thatusedin the usualanalysisof black body radiation.
Onemay, justasM. JEANS did in this case,calculatethe numberof stationarywaves
for which the frequeng is betweerv andv + &v. Onefindsin this case distinguishing
betweergroupvelocity U andphasevelocityv thefollowing expression:

_ V2
(7.2.5) nyov = yUV2 ov,

wherey equalsl for longitudinalwavesand 2 for transersewaves. Eq. (7.2.5)must
not be misinterpretednot all valuesof v arepresenin every situation,neverthelesst is
possiblefor the purpose®f calculationto regardit asa differential,asin generain every
smallinterval thereis anenormousiumberof admissiblevaluesof v.

Herethe occasiorhasarrivedto usethe theoremdemonstrateéth §1.2. An atomof
velocity v = B¢, correspondso a wave having phasevelocity V = ¢/, with the group
velocity U = Bc andfrequeng v = (1/h)(moc?/+/1—B2). If w designateshe kinetic
enegy, onefindsaccordingto therelativistic formulas:

moc?

Vi-p moc? +w=moc?(1+0), (a=w/moc?).

(7.2.6) hv =
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Fromwhichit follows:
an , mn
(7.2.7) Nedw = Yovz¥ dv = 3 moC (1+a)y/a(a+2)dw.
Calling onthecanonicadistribution mentionedabore, givesthenumberof atomsin
thevolumeelementdxdydz with kinetic enegy betweenw andw+ dw:

4 ®
(7.2.8) Cyh—gtnbcz(lJr a)/a(a + 2)e  daxdxdydz.

For atoms phasewavesby reasorof symmetryareanalogouso longitudinalwaves,
sowe take y = 1. Moreover, for theseatoms(exceptfor a negligible small numberat
normaltemperatures}heir properor restenegy moc? is substantiallygreaterthantheir
kineticenegy. Thus,we maytake 1+ a to bevery closeto 1 andtherefore:

4 3 w w [wtdw
(7.2.9) Ch—;[mgx/Zwe‘dedxdydz:Ce‘W / w.
w
Obviously, this methodshaws thatthe numberof possiblemolecularstatesn phase
spaces not the infinitesimalelementitself but this elementdivided by h®. This verifies
PLANCK’s hypothesisindtherebyaresultobtainedabove. We notethatthe valuesof the
velocitiesthatleadto this resultarethosefrom JEAN’s formula®

7.3. The photon gas

If light is regardedascomprisingphotons black body radiationcanbe considered
asagasin equilibriumwith mattersimilar to a saturatedzapourin equilibriumwith its
condenseghhase We have alreadyshovn in CHAPTER 3 thatthis idealeadsto anexact
expressiorfor radiationpressure.

Let usapply Eq. (7.2.8)to this gas. Herey = 2 by reasonof symmetryof unitsas
emphasiseth CHAPTER 4. In sofarasa is largewith respecto 1, (exceptfor anumber
of atomsnegligible at usualtemperatures)botha + 1 anda + 2 may be replacedwith
a. Thus,onegetsfor the numberof photonsper unit volumewith enegy betweenhv
andh(v + dv):

(7.3.1) c%"vze—% dvdxdydz,
for enegy densitycorrespondingo thesefrequencies:

(7.3.2) uydv = C%mv?’e_%dv.

lonthis mattersee:SACKUR, O. Ann.d. Phys. 36, 958(1911),and40, 67 (1913); TETRODE, H., Phys.
Zeitstir,, 14, 212(1913); Ann. d. Phys, 38, 434 (1912); KEesom, W. H., Phys. Zeitsdr., 15, 695 (1914);
STERN, O., Phys.Zeitsdr., 14, 629(1913);BrRoDY, E., Zeitsdir. f. Phys. 16, 79(1921).
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The constanttanbe seento have the value 1 by agumentspresentedn my article
entitled“Quantade lumiéreetrayonnementoir” in Journal de Physique1922.

Unfortunatelythe law obtainedin this way is WIEN's Law, i.e., only thefirst term
in a seriesof the exactlaw found by M. PLANCK. This shouldnot surpriseus, for by
supposinghatmoving photonsarecompletelyindependentf eachother, we necessarily
cometo aresultfor which the exponentis thatfoundin MAXWELL’s distribution.

We know, incidentally thata continuoudistribution of radiantenegy in spacdeads
to RAYLEIGH’s Law asJEANS hasshowvn. But, PLANCK'S Law goesto the expressions
proposedy MM. WIEN andRAY LEIGH aslimits wheneverhv/KT is verylargeor small
respectiely. To get PLANCK's Law a new hypothesids neededwhich, without aban-
doningthenotionof the existenceof photonswill permitusto explainwhy theclassical
formulasarevalid in certaindomains.This hypothesisanformulatedthusly:

If two or mote photonshavephasewavesthat exactly coincide thensincethey are
carried by thesamewavetheir motioncannotbeconsideedindependenandthesepho-
tonsmustbetreatedasidenticalwhencalculatingprobabilities. Motion of thesephotons
“asawave” exhibitsasortof coherencef inexplicableorigin, butwhich probablyis such
thatout-of-phasenotionis renderediunstable.

This coherencéhypothesisallows to reproducein its entirety a demonstratiorof
MAXWELL’s Law. In sofar aswe canno longertake eachphotonasanindependent
“object” of the theory it is the elementarystationaryphasewavesthat play this role.
What shall we call suchan elementarystationarywave? A stationarywave may be
regardedasa superpositiorof two wavesof theform:

(7.3.3) j;PnQn¢;+¢@L

where¢g cantake on ary valuerbetweern0 and1. By specifyinga valuefor v anddo,
a particularelementarystandingwave is defined. Considernow for a particularvalue
ofdo all the permissablevaluesof v in a smallinterval dv. Eachelementarywave can
transpor, 1, 2... photonsand,becausehe canonicaldistribution law maybeappliedto
thesewaves,onegetsfor the numberof correspondingphotons:

o pll
(7.3.4) Nydv = n, 21 P€ T
sge P

If ¢o takeson othervaluesonegetsotherstablestatesand,by superposingeveral
of thesestablestatesthatcorrespondo oneandthe sameelementarywave, onegetsyet
afurtherstablestate. Therefromwe seethatthe numberof photonsfor whichthe enegy
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is betweerv andv +dv is:

(7.3.5) N\,dv=Ayf1—1;rrbcz(l+a)\/a(a+2)dwz -

perunit volume.A canbeafunctionof temperature.

For a gas,in the usualsenseof the word, my is so large that one may neglect all
termsbut thefirstin the series.For this case onerecoversgqg. (7.2.8).

For a photongas,however, onefinds:

(7.3.6) Ny dv :A%TVZZe_p%dv,
and,therefromtheenegy density:

[

(7.3.7) uydv :ABL?V3Ze_p%dv.
c

This is actually PLANCK’s formula. But, it mustbe notedthatin this caseA = 1.
First of all, it is certainlytrue herethatA is not a function of temperatureln fact, total
radiationenegy perunit volumeis:

(7.3.8) u=/0+°°uvdv= ( ) ii“

andtotal entropy is givenby:

:%[d(uV)-i—Pd\/] = vd“+( P)dT
V du 4 dv
(7.3.9) = SoodT+ZuT

whereV is total volume;and,becausel = f(T) andP = (u— dS)/3, this expressions
anexactdifferentialwheretheintegrability conditioncanbe written:
ldu 41du 4u u

du 4
7.3.1 = —— 4— = — u=aT%
(7.3.10) TDT 3TdT 372 or T dT’ u=a

This is the classicalform of STEFAN’s Law, which leadsto settingA = C. The
reasoningisedabore givesusthevaluesof theentroyy:
641

® 1
2
(7.3.11) S= A3—hSk"’T VZF’
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andfreeenepy:

5 _ _ 1611k4 N w
(7.3.12) F_U—Ts_—AW TVZF.

It remainsonly to determinethevalueof A. If it turnsout thatit canbe shown to be
equalto 1, we shallgetPLANCK’s formulas.

As remarledabore, if onenegglectstermswherep > 1, the matteris suchthat, the
distribution of photonsobeysthe simplecanonicalaw:

8mn h

(7.3.13) Agvze—%dv,
andone cancalculatethe free enegy using PLANCK’s methodfor an ordinarygas,so
thatidentifying the resultwith expressiorabove, oneseeghat: A= 1.

In the generalcase,one mustusea lessdirect method. Considerthe p-th termin
PLANCK's series:

8 v
(7.3.14) Nypdv = A£hv3e_p% dv.
Onemaythis as:
81t _nhv
(7.3.15) ACTpvze PRTdv - p- hv,

which admitsthe claim:

Black bodyradiationcanbeconsideedto bea mixture of infinitely manygasesad
characterisedby onewhole numberp and possessinghe propertythat, the numberof
statesof a gaseousotality locatedin thevolumedxdydz andhavingenegy betweerphv
and ph(v 4 dv) equals(8m/c3p)v2dvdxdydz. Fromthis, onecancalculatefree enegy
usingthemethodin §7.1.Onegets:

o0 00 v Np
F= ZFD —kTZIog [i (V/ ?vze_p% dv) ] :

> e © 8T hv
7.3.16 = —kTSlog|—V —vze_kadv],
( : Z g[np o c3p
where:
©® 8M , o 16mk3TS 1
(7.3.17) np:v/0 Asgvie PRy = AT v,
So,finally:

161

(7.3.18) F = A5k Tlog (2) Zév,
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and,by identificationwith the expressiorabove, it follows:
e
(7.3.19) km(x):L A=1,

whichis whatwe wantto show.

The coherencénypothesisadoptedabove hasleadusto goodresultsand,moreover,
we avoidedfounderingon either of the laws of RAYLEIGH or WIEN. The studyof its
fluctuationshasprovidedusa new proof of theimportanceof blackbody radiation.

7.4. Energy fluctuations in black body radiation?

If enegy parcelsof valueq aredistributedin very large quantitatesn a givenspace
andif their positionsvary ceaselesslgndrandomly a volumeelementnormallycontain-
ing n parcels,hasenegy E = ng. But, the actualvalue of n variesconsiderablyfrom
n, which, from a certaintheoremof probability theorysatisfiesn — n)2 = n, sothatthe
meansquarefluctuationof enegy would be:

(7.4.1) €2 = (n—n)20? = ng® = Eq.

On the otherhand,oneknows that enepy fluctuationsof black body radiationin a
volumeV aregivenby alaw of statisticalthermodynamicspamely:
— d(uydv)
7.4.2 €2 =kT?V ———
( ) dT )
for theinterval v tov + dv. Now, usingRAYLEIGH’S Law, onegets:
8K , — c  (Vudv)?
7.4. = V7T, = :
(7.4.3) W=V T gna v o
andthis result,asmight be expected correspondso that obtainedconsideringnterfer
encein electrodynamics.
If, onthe otherhand,onetakesWIEN’s Law, which correspondso the hypothesis
thatradiationis comprisedf independenphotonspnegets:

(7.4.4) 2oty (8L[hv3e_%dv> = (wVdv)hv,

dT \ c8

which againleadsdirectly to €2 = Ehv.
Finally, for thetruly realisticcasej.e., usingPLANCK’s Law, onefinds:
¢ (Vudv)?

2 — .
(7.4.5) €2 = (wVdv)hv + —r v

2E|NSTEINA. , Die Theorieder SchwartzenStrahlungunddie QuantenProceedingSolvayConfeence
p,419;LORENTZ, H.-A., LesThéoriesstatistiquegntheromdynamiqueReunionConerencesde M. H.-A.
LoRENTZ au College deFrance (Teuney Leipzig, 1916)pp. 70and114.
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€2 thereforeappeargo be the sumof a termfor which radiationswould beindependent
parcelshv, andatermfor whichit shouldbe purelyundulatory

Ontheotherhand,the notionthatcollectionsof photonscomprise‘w aves” leadsus
to write PLANCK’s Law:

[

(7.4.6) uydv = Z SCL?V%_F’% dv = an,vphvdv,

and,by applyingtheformulag2 = nc? to eachtype of grouping,onegets:
(7.4.7) €2 = an,vdv(phv)z.

Naturally, this expressionis at root identicalto EINSTEIN's, only its written form
is different. But, it is interestingin thatit bringsusto say: One can correctly account
for fluctuationsin bladk bodyradiationwithoutrefeienceto interferencephenomendy
takingit thatthis radiation,asa collectionof photonshasa coheentphasewave

It thusappearirtually certainthatevery effort to reconcilediscontinuityof radiant
enegy andinterferencewill involve the hypothesiof coherencenentionedabore.



Appendixto CHAPTER 5: Light quanta

We proposedconsideringophotonsof frequeng v assmallparcelsof enegy charac-
terisedby a very small propermassmy andalwaysin motion at a velocity very nearly
identicalto the speedof light ¢, in sucha way that thereis amongthesevariablesthe
relationship:

2
(7.4.8) hv = &,
1-B2
from which onededuces:
2
_ moc?
(7.4.9) B=4/1 ( . ) .

This point of view led usto remarkablecompatibilitiesbetweerthe DopplerEffect
andradiationpressure.

Unfortunately it is alsosubjectto a perpleing difficulty: for decreasindrequen-
ciesv, the velocity Bc of enegy transportalsogetslower, suchthatwhenhv = mgc? it
vanisheor becomesmaginary(?). This is moredifficult to acceptthan,thatin the low
frequeny domainoneshould,in accordwith the old theories alsoassignthe velocity ¢
to radiantenegy.

This objectionis very interestingbecausét bringsattentionto theissueof passage
from the purely high frequeng corpuscularegime to the purely low frequeng undu-
latory regime. We have showvn in CHAPTER 7 thatcorpusculanotionsleadto WIEN's
Law, asis well known, while undulatoryideasleadto RAYLEIGH’s Law. The passage
from oneto the otherof theselaws, it seemdo me, mustbe closelyrelatedto theabove
objection?

I shall, by meansof an examplewith the hope of providing a resolutionof this
difficulty, developa notionsuggestedtby the above considerations.

4 may be of historicalinterestthatthe remainingmaterialin this appendixwasomittedin the German
translation-A.F.K.
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In CHAPTER 7 | have shavn how passagérom WIEN'Sto RAYLEIGH'S Law is ex-
plicablein termsof acoherenphasevave for anensembl®f photons. haveemphasised
the similarity betweersucha Phasavave with alargenumberof photonsanda classical
wave. However, this similarity is sullied by the factthat eachphotonrepresents finite
massmy althoughthe classicaltheory of electromagnetismattributesno massat all to
light. Thefrequeng of a phasewvave containingmultiple photonsis givenby:

Hoc®
(7.4.10) hv \/1——57"
wherey is the propermassof eachphoton,which seemaecessargo asto be ableto
computeabsorptiorandemissiorof finite quantitiesof enegy, hv. But we may, perhaps,
supposdhatthe massof photonsallied with the samephasewave differsfrom themass
of anisolatedphoton.Onemighttake it thatphotonmassis a function of the numberof
photons p, allied with a phasewave:

(7.4.11) Mo = f(p), with f(1)=m

Thenecessityto returnto classicaformulasfor low frequencieseadsusto suppose
that f (p) tendsto 0 asp — «. Thus,the ensemblevelocity would begivenby:

(7.4.12) Be=cy/1- (f(p)°2>2.

hv

For very high frequencies,p would always equal 1 giving for isolated photons
WIEN’s Law for black body radiationandthe formula: § = /1 — (mgc?/hv)?2 for the
enegy transportvelocity. For low frequenciesp is alwaysvery large,photonsarefound
alwaysin numerousensemblesillied with the samephasewave; black body radiation
follows RAYLEIGH’s Law, andthetransportvelocity goesto c asv — O.

This hypothesisindermineghe simplicity of the conceptof “photon”, but this sim-
ply cannot be maintainedandstill reconcileelectrodynamicsvith discontinuougpho-
toelectricphenomenalntroducing f (p), it seemgo me, reconcilesphotonpopulation
idiosyncrasiesvith classicaWwave notions.

In ary casethetruestructureof radiantenegy remainsvery mysterious.



Summary and conclusions

Therapiddevelopmenbf Physicssincethe XVII th centuryin particlarthedevelop-
mentof DynamicsandOptics,aswe have shavn, anticipategheproblemof understand-
ing quantaasa sortof parallelmanifestatiorof corpusclesandwaves;then,we recalled
how thenotionof the existenceof quantansessentlgngagesheattentionof researchers
in the XXth century

In CHAPTER 1, weintroducedasafundamentapostulateheexistenceof aperiodic
phenomenallied with eachparcelof enegy with a propermassgiven by the Planck-
Einsteinrelationship. Relatvity theoryrevealedthe needto associateiniform motion
with propagatiorof a certain“phasewave” which we placedin a MINKOWSKI space
setting.

Returning,in CHAPTER 2, to this samequestionin the generalcaseof a chaged
particlein variablemotion underthe influenceof an electromagnetidield, we shaved
that, following our ideas,MAUPERTUIS’ principle of leastaction andthe principle of
concordancef phasedueto FERMAT canbetwo aspect®of the samelaw; whichled us
to proposethat an extentionof the quantumrelationto the velocity of a phasewave in
anelectromagnetifield. Indeed the ideathatmotion of a materialpoint alwayscloaks
propagatiorof a wave, needgo be studiedandextended but if it shouldbe formulated
satishctorily, it representsaitruly beautifulandrationalsynthesis.

Themostimportantconsequencemrepresented CHAPTER 3. Having recalledthe
laws governingstability of trajectoriesasquantifiedby numerougecentworks,we have
shavn how they maybeinterpretedasexpression®f phasevave resonancalongclosed
or semi-closedrajectories.We believe thatthis is the first physicalexplanationof the
Bohr-Sommerfeldrbital stability conditions.

Difficultiesarisingfrom simultaneousnotionof interactingchaigeswerestudiedin
CHAPTER 4, in particlarfor the caseof circularorbital motion of anelectronandproton
in anhydrogenatom.

In CHAPTER 5, guidedby preceedingesults,we examinedthe possibility of repre-
sentinga concentratiorof enegy aboutcertainsingularitiesandwe shaved what pro-
found harmory appearsto exist betweenthe opposingviewpoints of NEwToN and
FRESNEL which arerevealedby the identity of variousforecasts.Electrodynamicgan
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not be maintainedn its presenform, but reformulationwill be a very difficult taskfor
which we suggestead qualitative theoryof interferences.

In CHAPTER 6 we reviewedvarioustheorieof scatteringpf X andy-raysby aamor
phousmaterialswith emphasi®n thetheoryof MM. P. DEBYE andA.-H. COMPTON,
whichrenderit seemsexistenceof photonsasatangiblefact.

Finally, in CHAPTER 7 we introducedphasewavesinto StatisticalMechanicsandin
sodoingrecoveredboththesizeof theelementakxtentionof phasespaceasdetermined
by PLANCK, aswell asthe black body law, MAXWELL’s Law for a photongas,given
a certaincoherencenf their motion, a coherencealso of utility in the study of enegy
fluctuations.

Briefly, | have developednew ideasable perhapgo hastenthe synthesisnecessary
to unify, from the start, the two opposing,physicaldomainsof radiation,basedon two
opposingconceptions:corpusclesandwaves. | have forecastthatthe principlesof the
dynamicsof materialpoints, whenonerecogniseghe correctanalysis,are doubtlessly
expressibleasphaseconcordancandl did my bestto find resolutionof severalmysteries
in the theory of the quanta. In the courseof this work | cameuponseveral interesting
conclusiongyiving hopethat theseideasmight in further developmentgive conclusve
results. First, however, a reformulationof electrodynamicswhich is in accordwith
relativity of course,andwhich accommodatediscontinuougadiantenegy and phase
wavesleaving the Maxwell-Lorentzformulationasa statisticalapproximationvell able
to accountaccuratelyfor alarge numberof phenomenanustbe found.

| haveleft thedefinitionsof phasevavesandthe periodicphenomenéor whichsuch
wavesarearealization aswell asthenotionof a photon,deliberatelywague.Thepresent
theoryis, therefore,to be consideredathertentatve as Physicsandnot an established
doctrine.
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