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F I S H E R  I N F O R M A T I O N  M A T R I X  F O R  MODELS OF S Y S T E M S  

B A S E D  ON F A C E - S P L I T T I N G  M A T R I X  P R O D U C T S  

V. I. Slyusar UDC 621.391 

Expressions for blocks of the information Fisher matrix are presented based on factorization of the 
Neudecker derivative of a transposed face-splitting matrix product. 
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As is generally known, the measurement accuracy of the parameters of signals can be analyzed using different 
approaches [1]. Among a variety of factors used in this case, the low Cramer-Rao bound of the variance of an unbiased 
estimate is most popular. Calculation of this bound involves inversion of the Fisher information matrix; therefore, the 
formation of this matrix can be considered as the key problem in the entire process of determination of the low bound. The 
inversion of an information matrix is a trivial operation and can be automatically executed even by the spreadsheet processor 
MS Excel, let alone specialized software packages such as Mathcad 6.0 (7.0). 

This paper presents a detailed review of the technique of Fisher-matrix formation for analytical models of 
radar-tracking systems (RTS). These models have been formalized on the basis of transposed face-splitting matrix product 
[2]. Recall that the transposed face-splitting product (TFP) of a g x p matrix A =[aij ] and an s x p matrix B, represented in the 
form of a block-matrix of columns [Bj](B=[Bj], j = l  ..... p), is a gsxp  matrix AaB defined by the equality 

AaB =[aijB j] (1) 

(i is the symbol of face-splitting product [2].) 

F~ example' tbr A = [ al 1 al 2 al 3 ] a 2 1  a2 2 a2 3 andB=rbllb12b13]|,.b21 b22 b23.~| w e  have 

A a B =  

As was mentioned in [3], the Fisher information matrix can be obtained based on the the Neudecker matrix derivative 
[4]. The general form of the Fisher matrix according [2, 3] is 
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OP 
Here, is the Neudecker derivative of the matrix P with respect to the vector Y, which is composed of unknown 

OY 
parameters of the signals of M sources, 1R8 is a unit (RxR)-matrix, and | is the symbol of Kronecker product. The 

Fisher matrix in general form can be used to form the Cramer-Rao low bound, achievable by a multicoordinate single- 

or multiposition radar-tracking system in a multsignal situation. As was mentioned in [2], it is sufficient to use in 

expression (2) instead of the matrix P its value represented by a face-splitting matrix product, and to appropriately 

adjust the dimension of the matrix 1RR. 
A further simplification of the procedure of the Fisher matrix formation in the class of problems being considerect 

relates to the property of factorization of the Neudecker derivative of TFP. To write it in the general form, we first turn to the 

Neudecker differentiation of a matrix product 

P = S u F ,  (3) 

where S is a T x M  matrix, and F is an R xM matrix. 

By analogy with [3], the matrix S can be treated as a T x M  matrix of responses T of synthesized frequency filters on 

the frequencies of 3,/signals, and F as an R x M matrix of  the directional characteristics R of the reception channels of a 

digital antenna array (DAA) in the directions of M sources. In this case, if noise is absent, the set of response voltages of the 

DAA reception channels can be writen as U = PA, where A =[a 1 ,ti 2 "--aM ]T is the vector of the complex amplitudes of the 

signals. 

When two signal sources are acting, we can write 
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Let us consider Y = [v I x2 601 dO 2 ]T as a vector of unknowns. Then the Neudecker derivative of P will take the form 
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Analyzing expression (5) one can easily arrive at the idea of  factorization of 0 P. Indeed, on closer look, it turns out 
OY 

that (5) can be obtained by transposing the block face-splitting product (BFP) [2] of the following two matrices: 
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where  
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accord ing  to the defini t ion of t r ansposed  BFP [2], we  obtain  
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It is no tewor thy  that not on ly  the result of  N e u d e c k e r  different iat ion can be subject  to factorization but a lso the 

(__~OP)l T Ooy P" Thus,  for re la t ion  (5) it is easy  to obtain product  

~  
- ~ -  - ~ -  =[Pl  I P2 ], (9) 

639 



where 

p ~  
1 

2 

, (  2} 

os%)l ,, %%) 
~: s,(o~ ,o .j Z ;<-.> . 
t--I r - - I  1 

a4(<,., t { .  ,~(;) ~: s:<,,) 0<,,, j Z':x,~ ~,, 
t--I r , - I  1 

,-,t o<,,, j ,., 

{ 2} 

/ m l  r m l  2 - 

~s,(%) 0~,2-2r(,)a, 2 
t - I  r--I  

It is easy to note the obvious identity 

in which 

OP ! TOP 
-~ oY 

=ZoV, (10) 

Z _~, 

V ~  

T 

~:~(<,,,> 
t - I  

T aS ((ol) 

t - I  1 

,.,(-~-,j 

R 

~. ~(~,)------- 
r . . l  

a~(x,) 
ax 

I 

T 

t , - I  

r aS (~2) 

t - I  2 

2 t 05 ) r " l  

op(%) 
~] F(%) ax 

r-I 2 

r as r(~,) 

t - I  1 

, (,s,~o,~12 

~t,,,, j 

R 

~. ~.(,,) - - - -  
r " l  

a~ (x,) 
Ox 

1 

R 

r,,l 

T aS(~ 2) 

t"l 2 

,.z, t-oo,_ j 

# ' - I  2 

R 

r - - |  

640 



and in terms of notation (7) we have 

Z .=osTv OS v , V -.OF,, T, OF v . (11) 

Thus, the followino= property is characteristic of the Neudecker derivative: 

[OS~ T, OOF~ r. ][OS v @OF v ]=[OS TOSvlo[OFv r OF v ]. 
(12) 

This property can be expressed for block matrices of matched dimensions A, B, K, and M, whose structures are similar 

to those of O S v and OF~,, in the form 

( A O B ) ( K @ M )  =(A K ) o ( B  M).  
(13) 

Here O is the symbol of BFP [2]. 
Result (13) is rather significant, despite its validity only for a narrow class of block matrices, since it allows us to 

simplify significantly the analysis of the accuracy of radar-tracking systems, whose models are formed based on TFP. Since 

transposed BFP naturally follows from the operation of differentiation of TFP, the property of factorization of derivative (8) 

can be also generalized to the case of TFP of greater dimension. Applying calculations similar to those presented above, but 

more cumbersome, it is possible, tbr example, to generalize relation (8) to the case of M signals and five-component matrix 
product P. 

Assume that P = Q-  F �9 S �9  �9 i.e., the angular coordinates, velocities, distances, and, in particular, accelerations of 
M sources are to be measured. Then 
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Expression (14) clearly demonstrates the following features of the factorization of the derivative 

taken into account in the automatic formation of this derivative: 

OP 
~ . ,  which can be 
OY 
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The index of a block in all of the block matrices corresponds to the number of a nonzero column of the block's 

elements (all the rest of the elements are zero) and to the number of the source whose coordinate is used as the argument of 

the corresponding characteristic; in particular, for S 4 in the matrix aS v we have 

IZ00 SI  4' i1 
$ 4 -  �9 . . ; 

0 0 ST(0.)4) 

The block-column of derivatives for the inverse order of tbrmation of the vector of unknowns Y used here moves 

from the fight to the left in the block matrices (in the case being considered, Y =[q ...ZMId I ...d M Iw 1 ...w M Ix 1 ...XMI 
ql "'qM ]T ). 

The number of block-rows in the block matrices is determined by the number of sources (if there are M sources, 

then we have M block-rows), and the number of block-columns is equal to the number of matrices participating in the 
tbrmation of TFP; 

All of the block-columns, excluding the block-column of derivatives, are identical within one block matrix. 

Such a detailed consideration of the properties of the factorization of  the Neudecker derivative of TFP plays an 

important role in subsequent derivation of the final expressions for the blocks of the Fisher matrix, which include the 
OP 

derivative ~ .  In particular, for a two-coordinate DAA model with the matrix P in the form (3), (4), the blocks of the Fisher 
OY 

matrix that are not located in the principal diagonal can be expressed as 

OP )T T OOFf  ][A | (SmF)] (A| 

OP * T T (A*| |  mF )]0Sy ~OFy]. 
(16) 

Investigations prove that relations (15), (16) can be reduced to Hadamard products (all intermediate calculations for 

the relations presented below are omitted due to their extreme awkwardness) 

0 P )T T (A | S)]o[0 F T 1 M | F)] (A| 
(17) 

�9 OP * T (a |  | )OSy]o[(l M | ]. (18) 

Here, 1M is the vector or matrix of unit amplitudes whose dimension coincides with that of the vector (matrix) of 

amplitudes A. In this case, for M signals we have an M-vector of units 1M =[1...1] v. 

Reduction of dimension of block expressions by reducing them to Hadamard products allows us to considerably 

simplify both the readability of the resultant writing of the blocks of the Fisher matrix and the derivation of final relations 

suitable for the use in numerical computations. The efficiency of such an approach manifests itself especially in problems of 

analysis of the accuracy of multicoordinate RTSs. 

For the right lower block of the Fisher matrix, there exists an identity that employs the factorability of the derivative 
OP 

-. It should be noted that the derivation of the final expression tbr this block was difficult first of all due to the 
OY 
awkwardness of the necessary analytical calculations. Now this procedure will be simpler when it is considered that 

lOP l T OP �9 - ~  (AA* | OOFf][AA | @OF v 1, (19) 
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whence the desired identity, corresponding to (3), has the torm 

(AA | (AA | | ]. (20) 

here 1M is a matrix of units. 

In the case of large dimension of the matrix P (for example, when the number of coordinates measured by a RTS 
exceeds four), we should use the property (which is valid for the type of matrices being considered) of "absorption" of 
Kronecker products by face-splitting ones 

[G Y ON r ODT O L r  ...][AA * | |  |  | 

=[GT(AA * | r (1M GIN)N] 

o[D T (1 M | T (1 M | (2~) 

Finally, it remains only to write the left upper block of the Fisher matrix, which is the simplest one. Applying the 
well-known identity (AI::IB)(CID)=(AC)o(BD) [5], it is easy to obtain 

pT p=(STnFT)(SmF)=(sT S)o(F r F). (22) 

The results presented here can be treated as an original basis for a subsequent simplification of the analysis of Fisher 
information matrices corresponding to models of systems based on BFP, in particular, multiposition RTSs based on 
conformal (multisectional) DAAs. Since their review deserves an individual publication, it is necessary to note that the 
Neudecker derivative of the transposed BFP is also factorable. This allows us to also simplify the notation of the 
corresponding Fisher matrices, in sizes similar to those considered above, for multiposition RTSs with DAAs. 
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