

Volume 14, Number 5—May 2010 (Special Issue) J. Kelley, Migrating to Unicode, Part I

ISSN 1093-2097 12 C++Builder Developer’s Journal

ne of the biggest changes in C++Builder 2009

and 2010 is the addition of full Unicode sup-

port throughout the VCL and RTL. Unicode

support is a major step forward for the VCL and is

critical for internationalization, but its implementation

as an absolute requirement within the VCL can seem

like a major obstacle in upgrading to C++Builder 2009

or 2010.

 Fortunately, migrating to Unicode can be much

less daunting than it first appears. The first key reali-

zation in migrating to Unicode for C++Builder 2009 or

2010 is this: You do not have to migrate to Unicode to

use C++Builder 2009 or 2010. C++ is a diverse lan-

guage, permitting the use of many libraries and sev-

eral programming paradigms, and while your code

that uses the VCL needs to be Unicode-aware, your

code that uses the C runtime library, the STL, or the

Windows API (for example) can continue to use ANSI

and only convert to Unicode when passing data to or

from the VCL. A complete migration to Unicode is

obviously necessary to gain the full benefits of inter-

nationalization, but migrating only the VCL portion of

your code can drastically simplify the task of upgrad-

ing to C++Builder 2009 or 2010 while letting you gain

the other significant benefits that those versions offer

(such as Boost, C++0x support, gestures, and a Ribbon

control).

 Whether you choose to make your entire applica-

tion Unicode-aware or to upgrade only the portions

that interact with the VCL, there are several C and

C++ development techniques that can make the task

much easier. Part I of this article offers an introduction

to Unicode and discusses working with Unicode in C,

C++, and the VCL, while Part II examines some of

these Unicode migration techniques in more detail.

 Remember, though, that supporting Unicode is

only part of internationalizing an application. Full

internationalization also includes issues such as date

and time format, sorting orders, support for right-to-

left layout, culture-neutral icon design, and so on.

Such issues are beyond the scope of this article.

An introduction to Unicode
This is a brief introduction to Unicode. For a more

thorough background, see [1] or [2].
 Unicode is the international standard for

representing text from almost any language in a com-

puter. Unicode was designed to replace the older AN-

SI and ASCII standards and to address those stan-

dards‘ disadvantages in dealing with international

text.

 ASCII (such as was used on the original IBM PCs)

was designed for plain English text only. It

represented each character as a number between 32

and 127. Space was 32, ‗0‘ was 48, ‗A‘ was 65, and so

on. ASCII characters were stored one per byte, but

since ASCII only defined characters through 127, byte

values 128-255 were assigned a number of different

meanings depending on where they were used. (The

original IBM PC assigned various accented characters

and line drawing characters to the 128-255 range; lat-

er, various countries assigned letters from their own

languages‘ alphabets; and so on.)

 The ANSI standard kept characters 32-127 the

same as ASCII but standardized the use of the 128-255

range into a series of code pages. Each language or re-

gion could be assigned its own code page, and as long

as 8-bit textual data was associated with a code page,

it could faithfully represent non-plain-English text.

(―ANSI‖ is actually a bit of a misnomer; Windows‘

code pages were never standardized by ANSI.)

O

Migrating to
Unicode, Part I
By Josh Kelley

Versions: C++Builder 2010, 2009

J. Kelley, Migrating to Unicode, Part I Volume 14, Number 5—May 2010 (Special Issue)

C++Builder Developer’s Journal 13 www.bcbjournal.com

 The Unicode standard was introduced to cover

two major shortcomings with the ANSI standard.

First, the ANSI standard made no provision for multi-

lingual text that needed more than one code page.

Second, alphabets such as Chinese have thousands of

characters and so cannot fit in a single code page.

 Unicode provides a standard way of referring to

any of over 100,000 characters ([2]). Each of these

100,000 unique characters (called code points in Un-

icode terminology) is assigned a unique name and a

unique numeric identifier, which is written as ―U+‖

followed by a 4-digit hexadecimal value. For example,

the code point for the English capital A is named

―LATIN CAPITAL LETTER A‖ and is written

U+0041. It is important to note that Unicode charac-

ters are not guaranteed to be representable by a 16-bit val-

ue. The portion of Unicode characters that can be

represented in 16 bits is called the Basic Multilingual

Plane. Characters outside of the Basic Multilingual

Plane are primarily used for ancient scripts (such as

Egyptian hieroglyphics), musical notation, and rarely

used Han ideograms.

 Because code points are abstract entities, Unicode

provides several encodings to represent these abstract

code point values in a machine-readable form. An

encoding describes how to represent each code point as

one or more code units. (A code unit is simply ―the

minimal bit combination that can represent a unit of

encoded text‖ [3].) The most common encodings are

UTF-8, UTF-16, and UTF-32.

 UTF-32 uses 32-bit code units. UTF-32 has the ad-

vantage that each code point takes a consistent

amount of space, but it tends to be wasteful of

space (since English characters can otherwise be

represented in 8 bits, and most characters in use

can otherwise be represented in 16 bits). Because

of its high storage requirements, UTF-32 is rarely

used.

 UTF-16 uses 16-bit code units. UTF-16 can

represent most of the code points in use as a single

code unit. Code points above U+FFFF must be

represented using surrogate pairs, a pair of code

units that together represent a single code point.

UTF-16 has the advantage that most code points

can be represented as single code units and thus

take a consistent amount of space; however, the

storage requirements are higher than UTF-8, and

the possibility of surrogate pairs is easy to over-

look in development and testing. UTF-16 is the

preferred encoding for a number of platforms and

libraries (including Windows, OS X, Java, and

.NET).

 UTF-8 uses 8-bit code units. Byte values between

32 and 127 are identical to ASCII, and UTF-8

strings can use a terminating NULL character just

like standard C ASCII strings. Code points above

127 are represented by sequences of up to 4 bytes.

UTF-8 has the advantage of being backwards

compatible with ASCII; it has the disadvantage

that code units frequently take varying amounts

of space (and so operations like ―take the 100th

character from this string‖ can become much

harder). Because UTF-8 has lower space require-

ments, it is commonly used for web pages, email,

and similar stored or transmitted data. It is also

the preferred encoding for a few platforms and li-

braries (including the Linux kernel and the GTK

framework).

 An additional complication of Unicode is the exis-

tence of composite (or composable) characters. A let-

ter with accent marks or diacritical marks can be

represented in Unicode either as a unique, precom-

posed code point or as the code point for the plain

letter followed by the code point for its diacritical

mark (or possibly multiple code points for multiple

diacritical marks). For example, é can be represented

in Unicode either as U+00E9 (―Latin small letter e

with acute‖) or as U+0065 (―Latin small letter e‖) fol-

lowed by U+0301 (―combining acute‖).

 The existence of composable characters means

that a simple binary comparison is not sufficient for

checking two Unicode strings for equality. Because of

composable characters, UTF-16‘s surrogate pairs, and

UTF-8‘s variable length encodings, it is no longer va-

lid to assume that accessing arbitrary characters out of

a string or splitting string at arbitrary indexes will

work. Operating system APIs and third-party libraries

such as ICU [4] offer routines to help with these com-

plications. (Windows APIs in particular will be dis-

cussed below under ―Unicode in the Windows API.‖)

Working with Unicode
Unlike languages which offer a single built-in string

data type, C++Builder offers several choices: code can

use C-style characters and strings, or C++ string ob-

jects, or VCL String objects. Each of these has its own

Volume 14, Number 5—May 2010 (Special Issue) J. Kelley, Migrating to Unicode, Part I

ISSN 1093-2097 14 C++Builder Developer’s Journal

set of Unicode variations. Similarly, the Windows API

provides both ANSI and Unicode variants.

Unicode data in C

A C-style string is simply an array of char values,

terminated by a NULL byte (also written as „\0‟).

Each char takes one byte of storage. (This is guaran-

teed by the C and C++ standards; as a pedantic note,

however, one byte of storage is not guaranteed to be 8

bits, and some rare platforms use 16 bits or other siz-

es.) The encoding of a char string is not specified; it

could be straight ASCII, or any of the ANSI code pag-

es, or even UTF-8, although in Windows, it‘s generally

assumed to be in the system default ANSI code page.

Working with Unicode introduces several more C and

C++ data types for C-style strings:

 wchar_t: C and C++ apps have traditionally used

wchar_t as a replacement for char when working

with Unicode strings. wchar_t strings are written

as L"Hello, world! \u263A". The size of a

wchar_t is compiler-dependent: on Windows, it‘s 16

bits and assumed to contain UTF-16 data; but on

Linux, it‘s 32-bits; and other platforms may use

values as small as 8 bits. If you need truly cross-

platform Unicode-aware code, you may need to

avoid the built-in types altogether and instead use

a third-party library such as ICU [4].

 char16_t, char32_t: C++0x (the draft

of the new standard for the C++ lan-

guage) specifies these two new charac-

ter types for holding UTF-16 and UTF-

32 data, respectively. char16_t values

are written as u"Hello, world!

\u263A". char32_t values are written

as U"Hello, world! \u263A". (C++0x

also allows using u8"Hello, world!

\u263A" to represent UTF-8 data as a

char array, but C++Builder doesn‘t

support this.)

 Of course, having Unicode data types

does little good if you have no way to speci-

fy some of the more esoteric Unicode cha-

racters. Traditional C strings can represent

nonprintable characters using predefined

escape characters like \n (newline) as well

as arbitrary hexadecimal values like \x7f.

Similarly, Unicode characters can be written

as \u followed by their 4-digit hexadecimal value.

(For example, L"\u00E9" is a ―Latin small letter e

with acute,‖ and L"\u263A" is a smiley face.)

 Because the C++Builder IDE is fully Unicode-

aware, you can also directly enter Unicode characters

into your code, without resorting to escape characters.

There are a few ways to enter Unicode characters in

Windows: for example, you can use Windows‘ built-

in Character Map utility, or you can hold the Alt key

while typing ‗+‘ followed by the Unicode character‘s

4-digit hexadecimal value. The fileformat.info web site

has a complete list of input methods for Windows [5]

as well as a searchable database of Unicode characters

[6]. C++Builder automatically uses the UTF-8 encod-

ing for source files containing Unicode characters.

 Sprinkling Unicode escape characters throughout

your code hampers readability, and directly entering

Unicode characters can sometimes be difficult to work

with. An alternative is to use preprocessor #defines

to create macros for Unicode characters which your

application needs. Using preprocessor macros instead

of const values is often discouraged in modern C++

development, but using #defines for Unicode and

other string constants have the advantage that they

can be automatically concatenated, at compile time,

without having to clutter your code with concatena-

tion operators.

Listing 1: Unicode in C

// Various character and string types
wchar_t *wchar_msg =

 L"Platform-specific-sized text (UTF-16 on Windows)";
char16_t *utf16_msg =
 u"Cross-platform UTF-16 text, new with C++0x";

char32_t *utf32_msg =
 U"Cross-platform UTF-32 text, new with C++0x";

#if 0
char *utf8_msg =
 u8"UTF-8 text, unsupported by C++Builder";

#endif

// A smiley face as a Unicode escape code
wchar_t *msg1 = L"Hello, world! \u263A\n";

// A smiley face using a preprocessor macro and string
// concatenation.
#define SMILEY_FACE L"\u263A"

wchar_t *msg2 =
 L"Hello, world! " SMILEY_FACE "\n";
// In a real project, such #defines would probably go
// in their own project-wide header file.

J. Kelley, Migrating to Unicode, Part I Volume 14, Number 5—May 2010 (Special Issue)

C++Builder Developer’s Journal 15 www.bcbjournal.com

 Listing 1 shows examples of Unicode literals,

escape codes, and preprocessor macros.

Working with Unicode in C

C developers are used to using <string.h> functions

such as strlen(), strcpy(), and strcat() to ma-

nipulate C-style strings. There are corresponding

functions for manipulating C-style wchar_t strings;

most wchar_t functions are defined both in

<wchar.h> and in the ―traditional‖ header file

(<string.h> for plain string manipulation, <stdio.h>

for I/O, etc.).

 For wchar_t string manipulation, use wcslen(),

wcscpy(), wcscat(), and so on. (Replace ―str‖

with ―wcs.‖)

 For wchar_t file I/O, use functions like fgetws()

and fputwc() instead of fgets() and fputc().

(Insert ―w‖ before the data type.)

 printf(), sscanf(), and so on become

wprintf(), swscanf(), and so on. (Insert ―w‖ be-

fore ―printf‖ or ―scanf.‖) Take note to not confuse

swprintf() (wide character sprintf()) with

wsprintf() (the Windows implementation of

sprintf()).

 File and directory manipulation functions, such as

fopen(), opendir(), mkdir(), and _unlink(),

become _wfopen(), _wopendir(), _wmkdir(),

and _wunlink(). (Add ―_w‖ to the beginning.)

These let you manipulate files and directories

with Unicode characters in their names.

 The printf() and scanf() family deserve special

mention. wprintf() and wscanf() act like their nar-

row character counterparts in most respects, but the

format strings needed to specify char and char * ar-

guments changes for wide characters (and also differs

between compilers). For example, Visual C++ and

C++Builder‘s implementations of wprintf() and

wscanf() interpret "%s" as wchar_t, while GCC‘s

runtime library on Linux interprets "%s" as char (just

like printf() and sscanf()). (For vender references

and the C99 draft standard‘s take on this, see [7], [8],

and [9].)

 Table 1 summarizes how format specifiers are

interpreted for different platforms. The fact that

C++Builder‘s treatment of format specifiers depends

on the function being called, combined with this in-

consistency in how specifiers are handled between

compilers, can be a source of confusion, so be careful.

 These C string wchar_t functions are inconsistent-

ly documented; the wchar.h topic in the RAD Studio

2009 Documentation (which is more conveniently or-

ganized than RAD Studio 2010‘s documentation in

this case) has a semi-complete listing, or you can

browse the include files yourself.

Unicode in C++

String manipulation in C++ generally involves the use

of the std::string class, as well as the various <ios-

tream> classes for input, output, and string buffering.

Developers familiar with Boost may also uses classes

such as boost::regex or boost::format to help with

string manipulation.

 As it turns out, switching to the wchar_t version

of these classes is quite easy: just prefix a w to each

Listing 2: Unicode in C++

#include <tchar.h>

#include <string>
#include <iostream>
#include <sstream>

using namespace std;

int _tmain(int, _TCHAR*)
{

 int value;

 // ANSI (narrow character) code
 string s1 = "123";
 stringstream stream1(s1);
 stream1 >> value;

 cout << "The value is " << value << endl;

 // Wide character version. Easy!
 wstring s2 = L"124";
 wstringstream stream2(s2);

 stream2 >> value;
 wcout << L"The value is " << value << endl;

 return 0;
}

Platform "%c" or

"%s"

"%lc" or

"%ls"

"%hc" or

"%hs"

C99 char wchar_t undefined

Windows (VC++

and C++Builder)

wchar_t wchar_t char

Linux (GCC) char wchar_t char

Table 1: Format specifiers for wprintf and wscanf.

Volume 14, Number 5—May 2010 (Special Issue) J. Kelley, Migrating to Unicode, Part I

ISSN 1093-2097 16 C++Builder Developer’s Journal

class name. See Listing 2 for sample char string code

in C++ and its corresponding wchar_t code.

 Most text-related classes (including <iostream>)

in the C++ Standard Library and in Boost are actually

typedefs for template classes. For example,

std::string is actually a typedef for

std::basic_string<char>, and std::wstring is a

typedef for std::basic_string<wchar_t>. Because

std::basic_string is a template, it can be instan-

tiated on any char-like data type that you wish. This

means that, if you need to work with C++0x‘s

char16_t or char32_t data types, you can use

std::basic_string<char16_t> instead of std::

string, use std::basic_fstream<char32_t> instead

of std::fstream, and so on.

Unicode in the VCL

This is where things get interesting. Starting with

RAD Studio 2009, the VCL offers several string classes

which support ANSI, UTF-8, and UTF-16 encodings:

 AnsiString corresponds to the old String class. It

contains 8-bit (char) data in the system default

code page.

 UnicodeString is the new class, containing 16-bit

(wchar_t) data in the UTF-16 encoding.

 WideString still exists from previous versions of

RAD Studio. It corresponds to COM‘s BSTR data

type and contains 16-bit (wchar_t) data like Un-

icodeString. Because UnicodeString uses

C++Builder‘s own memory management and ref-

erence counting, it‘s often faster than WideString,

so unless you need easy interoperability with

COM, you should use the new UnicodeString

class.

 AnsiStringT is a class template that contains 8-bit

(char) data encoded in any code page; the code

page is given as the template parameter. (Ansi-

String is actually a typedef for Ansi-

StringT<0>.) The requirement that the code page

be given as a template parameter prevents you

from using AnsiStringT with arbitrary code pag-

es at runtime, so if you need that capability, you

may need to instead use RawByteString (below)

or use one of the C or C++ string manipulation

methods instead of using the VCL.

 UTF8String is an AnsiStringT instantiation us-

ing the UTF-8 encoding.

 RawByteString contains 8-bit (char) data in an

unspecified code page. The VCL will avoid apply-

ing any code page conversions to RawByte-

Strings; it becomes the calling code‘s responsibil-

ity to correctly handle code pages issues. Using

RawByteString can have several advantages:

since each code page is otherwise a separate com-

pile-time type, RawByteString lets you write a

single routine that can handle any code page; it

removes any VCL overhead of doing code page

conversions itself; and it prevents possible loss of

data from automatically converting text data into

encodings that can‘t represent some characters.

Most member functions of these new string classes

operate just the same as they did for the old pre-

C++Builder 2009 String class. The printf-type me-

thods (printf(), sprintf(), vprintf(),

cat_printf(), cat_sprintf(), and cat_sprintf())

deserve special mention. Like C‘s wprintf() and

wscanf() functions, their treatment of the “%s” and

“%c” format specifiers depends on whether they‘re

called on an AnsiString or UnicodeString instance.

Refer back to Table 1 for details.

Unicode in the Windows API

The Windows API includes both Unicode and ANSI

variants. For example, the MessageBox function is ac-

tually two different functions: MessageBoxA, which

takes ANSI strings, and MessageBoxW, which takes

wide (UTF-16) strings. MessageBox itself is a macro

that resolves to MessageBoxA or MessageBoxW de-

pending on your preprocessor macros and project op-

tions. You‘re also free to explicitly call one API variant

or the other, regardless of your project options, simply

by calling MessageBoxA or MessageBoxW directly.

Other Windows API functions dealing with text or

string data have similar variants.

 Which variant you get is determined by whether

or not the UNICODE preprocessor macro is defined. In

C++Builder, this macro is automatically defined de-

pending on your project‘s options. To change this op-

tion from the IDE, go under the Project menu, under

Options, under the top-level Directories and Condi-

tions category, and examine the ―_TCHAR maps to‖

option. If it‘s set to ―char,‖ then the UNICODE prepro-

cessor macro is left undefined and the ANSI variant of

the Windows API is used. If it‘s set to ―wchar_t,‖ then

the UNICODE macro is defined and the wide-string

J. Kelley, Migrating to Unicode, Part I Volume 14, Number 5—May 2010 (Special Issue)

C++Builder Developer’s Journal 17 www.bcbjournal.com

(UTF-16) variant of the Windows API is used.

 The UNICODE macro also affects the use of tchar.h

in writing code that can compile as ANSI or Unicode.

This will be discussed in Part II.

 The Windows API also includes functions such as

CharNext(), CharPrev(), and CompareString() that

are capable of dealing with complexities such as com-

posite characters and surrogate pairs. See MSDN [10]

for details.

Conclusion
In this article, I provided an introduction to Unicode

and I presented an overview of how to use Unicode in

C, C++, the VCL, and the Windows API. For a more

detailed introduction to Unicode, see [11].

 In Part II of this series, I‘ll show you how to mi-

grate your existing C++Builder applications to use

Unicode.

Contact Josh at joshkel@gmail.com.

References
1. Joel Spolsky, ―The Absolute Minimum Every Soft-

ware Developer Absolutely, Positively Must Know

About Unicode and Character Sets (No Excuses!).‖

http://www.joelonsoftware.com/articles/Unicod

e.html

2. Wikipedia, ―Unicode.‖

http://en.wikipedia.org/wiki/Unicode

3. The Unicode Consortium. ―Glossary.‖

http://unicode.org/glossary/

4. ―ICU – International Components for Unicode.‖

http://site.icu-project.org/

5. ―How to enter Unicode characters in Microsoft

Windows.‖

http://www.fileformat.info/tip/microsoft/enter_

unicode.htm

6. ―Unicode.‖

http://www.fileformat.info/info/unicode/index.

htm

7. ―MSDN: Size and Distance Specification.‖

http://msdn.microsoft.com/en-

us/library/tcxf1dw6%28v=VS.80%29.aspx.

8. ―Linux Programmer‘s Manual: printf(3).‖

http://www.kernel.org/doc/man-

pages/online/pages/man3/printf.3.html. Re-

trieved 4/12/2010.

9. ―WG14/N1124 Committee Draft.‖

http://www.open-

std.org/JTC1/SC22/wg14/www/docs/n1124.pdf.

Retrieved 4/12/2010.

10. ―MSDN: String Reference: Functions.‖

http://msdn.microsoft.com/en-

us/library/ff468910%28VS.85%29.aspx. Retrieved

4/14/2010.

11. ―Internationalization for Windows Applications

(Windows).‖ http://msdn.microsoft.com/en-

us/library/dd318661%28VS.85%29.aspx.

mailto:joshkel@gmail.com
http://www.joelonsoftware.com/articles/Unicode.html
http://www.joelonsoftware.com/articles/Unicode.html
http://en.wikipedia.org/wiki/Unicode
http://unicode.org/glossary/
http://site.icu-project.org/
http://www.fileformat.info/tip/microsoft/enter_unicode.htm
http://www.fileformat.info/tip/microsoft/enter_unicode.htm
http://www.fileformat.info/info/unicode/index.htm
http://www.fileformat.info/info/unicode/index.htm
http://msdn.microsoft.com/en-us/library/tcxf1dw6%28v=VS.80%29.aspx
http://msdn.microsoft.com/en-us/library/tcxf1dw6%28v=VS.80%29.aspx
http://www.kernel.org/doc/man-pages/online/pages/man3/printf.3.html.%20Retrieved%204/12/2010
http://www.kernel.org/doc/man-pages/online/pages/man3/printf.3.html.%20Retrieved%204/12/2010
http://www.kernel.org/doc/man-pages/online/pages/man3/printf.3.html.%20Retrieved%204/12/2010
http://www.open-std.org/JTC1/SC22/wg14/www/docs/n1124.pdf.%20Retrieved%204/12/2010
http://www.open-std.org/JTC1/SC22/wg14/www/docs/n1124.pdf.%20Retrieved%204/12/2010
http://www.open-std.org/JTC1/SC22/wg14/www/docs/n1124.pdf.%20Retrieved%204/12/2010
http://msdn.microsoft.com/en-us/library/ff468910%28VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/ff468910%28VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/dd318661%28VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/dd318661%28VS.85%29.aspx

Volume 14, Number 5—May 2010 (Special Issue) BCBJ Archive CD 4.0

ISSN 1093-2097 18 C++Builder Developer’s Journal

www.bcbjournal.com
ISSN 1093-2097

A Monthly Publication Offering Tips & Techniques
for C++Builder

Developer’s Journal

Archive CD
Version 4.0

Volumes 1-12
1997-2008

Get over 12 years of the Journal on CD!

Version 4.0 of our popular Archive
CD contains over 12 years of the
C++Builder Developer’s Journal
(from June 1997 through December
2008), all neatly presented through
an easy‐to‐use HTML user interface.

You can view the CD contents with
any browser and PDF reader.

Includes all article source code too!

With hundreds of articles, illustrations, and source code examples, this
is the most complete set of information about C++Builder that you can
find in one place!

Price: Each CD is
$39.00 plus shipping.

Package: For just
$79.00, get both a CD
and a one‐year
subscription.

Order: To order online, visit http://bcbjournal.org/archive_cd.htm

