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Abstract 

 

In addition to his work on physical optics, Thomas Young (1773-1829) made several 

contributions to geometrical optics, most of which received little recognition in his time or 

since. We describe and assess some of these contributions: Young’s construction (the basis 

for much of his geometric work), paraxial refraction equations, oblique astigmatism and field 

curvature, and gradient-index optics. 
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INTRODUCTION 

The English polymath Thomas Young (1773-1829) was a pioneer in many fields, including 

colour vision, hearing, mechanics, hydrodynamics, linguistics, construction, tides, actuarial 

science, and medical physiology. He also made several contributions to optics in the 

approximate period 1793-1807: this work can be divided into geometrical optics, physical 

optics, optical instrumentation and visual optics. Recently we presented a critique of his 

contributions to visual optics, nearly all of which can be found in his 1801 paper1 “On the 

mechanism of the eye”. In addition to his well-known investigations of ocular 

accommodation and astigmatism, in the critique2 we highlighted those less familiar parts of 

the paper dealing with topics such as peripheral imagery, depth-of-focus, chromatic 

aberration, and change in spherical aberration with accommodation. 

     The present paper is concerned with his contributions to geometrical optics as applied to 

the eye. The work is described in the 1801 paper on pages 27-331 and in “A course of lectures 

on natural Philosophy and the mechanical arts” which was published in 1807: Vol I,  pages 

408-4193 and Vol II,  pages 70-834. Note that Volume I was edited and republished in 1845 

and the page numbers were changed.5 The relatively brief optical material in the 1801 paper 

was included for use in Young’s later discussion of ocular biometry and accommodation, 

primarily being applied to computation of the oblique astigmatism of the eye and to an 

explanation of how the index gradient contributed additional optical power to the crystalline 

lens. The meat of Young’s geometrical optical contribution was in Volume II of The 

Lectures, which included definitions and theorems. Nearly all that was in the 1801 paper was 

superseded here, with Volume 1 containing general statements regarding optics without any 

proofs. This work is of great historical interest in relation to the design of spectacle lenses 

and the optics of the eye, and to our understanding of the role of index gradients, both within 

the crystalline lens and elsewhere. 
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     Young’s work on astigmatism and image curvature has been considered by Smith6 and 

King7: in this paper we have summarised this material and brought it up to date. Young used 

the same symbol to represent different things at various points in his papers and books. 

Moreover, symbols which have well-recognised meanings in the current formulation of many 

relationships in geometrical optics, such as r for radius of curvature, were often used to 

represent quite different parameters in Young’s work. To avoid confusion, we have tried to 

use symbols in a consistent way and to comply with modern notation on signs where 

appropriate. We use  rather than n to represent refractive index since, when applying Snell’s 

law, Young consistently used the ratio m: n to describe the ratio between the sine of the angle 

of incidence, i, and the sine of the angle of refraction, i′ (e.g. Proposition I, page 27 in the 

1801 paper), that is 

 sini/sini′ = m/n = ′/.         (1) 

 

YOUNG’S CONSTRUCTION 

Young is well known for his Theorem 425 that “affords an easy method of constructing 

problems relative to spherical refraction” at a surface. Young drew two circles concentric 

with the centre of curvature of the surface (Figure 1). In modern terminology, for a surface of 

radius of curvature r and the refractive indices of the incident and refracted media  and ′, 

respectively, a first circle associated with the incident ray had a radius of curvature r′/, and 

a second circle associated with the refracted ray had a radius of curvature of r/′ (see, for 

example7-9). An incident ray passing though A on the surface is extended to B on the other 

side of the first circle. When B is joined to the centre of curvature C, the intercept with the 

second circle at D indicates the path of the refracted ray AD. 
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     The proof that the construction works is through its support of Snell’s law. ABC is 

similar to DAC, as CA/CD = CB/CA = ′/. In triangle DAC, CAD is the angle of 

refraction i′ and ADC is the angle of incidence i (from its equivalence to CAB in the 

larger triangle). In ΔDAC the law of sines gives  

sini/AC = sini′/CD or sini/r = sini′/(r/′ 

which gives Snell’s law  

sini = ′sini′ 

 

Insert Figure 1 about here 

---------------------------------------------------------------------------------------------------------------- 

Commentary 

Young used this construction (or the results leading from its construction) to establish several 

other theorems. The construction can be extended to consider multiple lens systems including 

reflecting systems.  

     King7 pointed out that Young missed the opportunity of exploring the nature of aplanatic 

imagery (imagery free of spherical aberration and coma) with this construction, but Young 

was aware that the tangential aberration at a surface would disappear if the object was on the 

far side of the first circle with the image forming on the second circle (see end of Theorem 

434).  This particular pair of aplanatic points is widely used in the design of high-aperture, 

oil-immersion  microscope objectives, where the refractions through the first two components 

of the lens are usually arranged to be aplanatic10. Dowell11 and Smith12 gave a number of 

variants of Young’s graphical approach to finding refracted rays under different 

circumstances and graphical techniques remained in use by lens designers13 until the 

availability of computers and suitable ray-tracing programs made them largely obsolete. 
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PARAXIAL REFRACTION 

Young developed several theorems (413-424) to deal with “perpendicular” 

refraction/reflection at plane and spherical surfaces and for single lenses. In the latter case, 

lenses were treated as being of “evanescent” (negligible) thickness. The restriction of these 

theorems to the paraxial regime was emphasised by his careful note (Theorem 414) that his 

equations only apply “for rays falling on a spherical surface nearly in the direction of the 

axis”. 

     When discussing thin lenses he first derived the conjugate object/image relationship for a 

single surface (Theorem 414) and then applied it in succession to the two surfaces of a thin 

lens (Theorem 421). This gave him the familiar relationship between the object and image 

distances of a thin lens in air from which, by setting the object at infinity, he derived the 

power of the lens in a relationship which  is now often known as the Lensmaker’s equation. 

e.g.14. This describes the power F of a thin lens of radii of curvature r1 and r2 and of 

refractive index ′ immersed in a medium of refractive index . In modern terms it is  

F = (′ – )(1/r1 – 1/r2)         (2) 

For a lens in air, this equation becomes 

F = (′ – )/(1/r1 – 1/r2)                                    (3) 

Other theorems dealt with the principal foci of mirrors, combinations of thin lenses in contact 

and the optical centres of lens. 

  

Commentary 

Following earlier authors, Young used geometrical methods to establish most of his basic 

relationships. However, whereas previously others had been content to allow their readers to 

use graphical methods to explore imagery in different specific situations, Young was one of 

the first to formulate appropriate algebraic equations. As Smith6 remarked “However 
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informative graphical methods may be, they are inadequate when great accuracy is needed. 

The requirement of high accuracy is fully met by Young’s algebraic representation of the 

relations he established.” 

     Nevertheless, one difficulty of dealing with the theorems was his sign convention. Signs in 

equations might need to be changed depending upon whether a surface presented a concave 

or convex perspective to its respective object or image point. Nowadays, refraction equations 

are usually fixed, but with the sign of distances from the surfaces being altered as necessary. 

Two conventions are 1) that distances are positive if measured from a surface into the 

relevant medium, and 2) that distances are positive if measured from a surface in the direction 

of light travel. The latter is used commonly in ophthalmic optics.  

     It is interesting that Young effectively recognised all the cardinal points of a thin lens in 

air, since he defined both the focal points (e.g. Definition 416) and noted (Theorem 424) “All 

rays, which in their passage through the lens, tend to the centre, are transmitted in a 

direction parallel to their original direction.”, thus introducing the important concept of the 

optical centre of a lens (i.e. the coincident nodal points of a thin lens in air).  However, to find 

the position of the paraxial image of an off-axis object point, he suggested using a mixture of 

calculation and geometry. This involved first finding the image plane by substituting the 

longitudinal object distance in the lens-maker’s equation and then graphically locating the 

off-axis image by using the undeviated ray through the optical centre, rather than, for 

example, graphically determining the image point as the intersection point after refraction by 

the lens of two rays from the object point, one through the optical centre and one initially 

parallel to the axis which after refraction  passes through the second focal point. Perhaps 

surprisingly, he never discussed the question of transverse magnification explicitly nor 

developed appropriate equations for it. 
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ASTIGMATISM AND IMAGE CURVATURE 

Theorems and definitions 426-436 dealt with tangential and sagittal imagery at surfaces and 

lenses, that is, the focusing of narrow beams of light originating from an off-axis object. 

Tangential imagery refers to the section of the beam which is in the same plane as the chief 

(central) ray of the beam and the optical axis, with Young using the term “peripheric focus” 

to refer to the image and, in the 1801 paper (page 81), referring to the “nearer focus”. Sagittal 

imagery refers to the section of the beam perpendicular to the tangential section, with Young 

referring to “collateral” rays and the “radial” focus and, in the 1801 paper, to the ‘remoter” 

focus. Young referred to what we would call the least circle of confusion as being dioptrically 

half way between the sagittal and tangential foci. The term astigmatism had not as yet been 

coined. 

     Conversion of his terms and signs is needed to give the sagittal and tangential equations in 

their modern forms. For a surface of radius of curvature r we have 

′cos2i′/t′ -  cos2i/t = (′cosi′ – cosi)/r                                           (4) 

′/s′ - /s = (′cosi′ – cosi)/r                                                         (5) 

while for a thin lens of radii of curvature r1 and r2 we have  

′cos2i′/t′ - cos2i/t = (′cosi′ – cosi)(1/r1 – 1/r2)                              (6) 

′cosi′/s′ - cosi/s = (′cosi′ – cosi)(1/r1 – 1/r2)                            (7) 

Here t, s, t′ and s′ are tangential and sagittal object and image distances from a surface along 

the chief ray, i and i′ are angles of incidence and refraction, and  and ′ are again refractive 

indices. 
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     Young determined a useful position in relation to raytracing which he referred to as the 

relative centre (Figure 2). This is “the point of intersection of the right lines joining any two 

pairs of conjugate peripheral foci of pencils of oblique rays, falling on the same point of a 

curved surface in the same direction” (theorem 429 and Proposition IV of the 1801 paper). 

To obtain this point, perpendiculars are dropped from the centre of curvature to the incident 

ray (at L) and to the refracted ray (at L′). The line through L′L is extended, and the 

perpendicular dropped from the centre of curvature intersects the line at the relative centre K. 

Now lines drawn from object points A and B through K intercept the refracted ray at the 

respective image positions A′ and B′. Figure 2 shows the tangential image situation – for the 

sagittal situation the relative centre is the centre of curvature.  

     In theorem 436, Young found that the locus of tangential foci for a distant object for a thin 

equiconvex lens in air is a spherical surface of radius f′/(3 + 1), while the sagittal surface 

has a radius of curvature of f′/( + 1), and the mean radius of curvature of the image 

surfaces is f′/(2 + 1): f is the focal length.Young wrote “It has been usual to neglect the 

effect of the obliquity and to consider the effect the focal length as the radius of curvature of 

the image ; but it is obvious that this image is extremely erroneous.” When discussing the 

camera obscura, Young3 considered  having a curved image surface or having a correction to 

counteract this (page 425) (see Levene15 for further discussion). 

 

Insert Figure 2 about here 

---------------------------------------------------------------------------------------------------------------- 
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Commentary 

Young’s work followed that of other contributions to astigmatism of oblique incidence in the 

17th and 18th centuries, most notably by Isaac Barrow (1630-1677)16 and Isaac Newton (1643-

1727) (see reviews by Levene17  and Kingslake18). Barrow had determined the position of the 

tangential focus and Newton had added the sagittal focus7. The tangential and sagittal 

equations (4)-(7) above are generally attributed to Henry Coddington from “A treatise on the 

reflexion and refraction of light”19, but  Coddington acknowledged the prior work of Young 

and George Airy (pages i and  203). As well as the problematic sign convention issue 

mentioned above, Young’s developments of the equations are difficult to follow because of 

the archaic expression and sometimes inadequate explanation. Sometimes the radius of 

curvature of a surface was given a value of 1, which necessitated some confusing changes 

when distances were converted to true values and cosines and sines had to be manipulated.  

     The position of the stop of a optical system received little attention in Young’s work, but 

he was aware of its importance: in his raytracing through the eye he was careful to set it at the 

anterior lens vertex1. The equations for the tangential and sagittal image surfaces of a thin 

biconvex lens in Theorem 436 are correct in third-order approximations only if the stop of the 

system is at the lens. If the stop is at a different position, such as the centre of rotation of the 

eye, the radii of curvature of these surfaces are affected in a quadratic manner by the lens 

shape  (Figure 3). For most spectacle lens powers, there are two shapes for which there is no 

astigmatism and the tangential and sagittal surfaces coincide with the Petzval curvature 

surface. 

Insert Figure 3 about here 

---------------------------------------------------------------------------------------------------------------- 
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     Although Young had provided much of the necessary theory, it does not appear that  his 

equations had much direct influence on the later design of ophthalmic lenses7. Wollaston, 

who was a collaborator with Young in some of his work in visual optics1, ought to have been 

familiar with the latter’s work on oblique astigmatism and in particular his use of a tilted lens 

to correct his ocular astigmatism. It would therefore seem reasonable to suggest that this 

inspired Wollaston to avoid the problem of astigmatism in his largely empirical development 

of deeply-meniscus “periscopic” lenses.20,21 He stated21 “The object of my invention is to 

remedy the following defect which has been observed in spectacles hithertofore in use, 

namely, that no objects appear distinct through them, but such as are seen through the 

centres of the glasses or nearly so….the indistinctness is greater in proportion as the rays of 

light pass more obliquely through the glass; having observed that by making the substance of 

the glass curved in the manner of a hollow globe, each portion of it might be situated nearly 

at right angles to the direction of sight, and would thereby render lateral objects distinct 

without impairing the distinctness at the centres.” He went on to say that with his “globular” 

lens “a small oblique pencil of light makes equal angles with the two surfaces of a thin lens: 

the inclination of it to each is so small that its focal length will not sensibly differ from that of 

a central pencil”. 

     While this appears to support Wollaston’s use of Young’s ideas, a later paper on lens 

design for camera obscuras22 makes it clear that his concern about imagery with oblique 

pencils was motivated by worries about field curvature rather than oblique astigmatism. 

Justifying his use of deeply meniscus lenses he wrote, in regard to blur in off-axis images,  

“The causes of this indistinctness may be considered as twofold: for in the first part, all parts 

of the (image) plane, excepting the central point, are at a greater distance from the centre of 

the lens than its principal focus; and secondly, the point f, to which any pencil of parallel 

rays passing obliquely through the lens are made to converge, is less distant than the 
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principal focus”. There was no mention here of focal lines or circles of least confusion. Thus 

it would appear that, in spite of his close familiarity with Young and his work, Wollaston 

failed to realise the importance of astigmatism in relation to spectacle lens design7. 

     In fact we have found no evidence for any immediate, direct impact of Young’s work on 

other authors. Airy’s later study23 in which he gave a theoretical basis for Wollaston’s lenses, 

published in 1830 although it was known to Coddington in 1829, seems to have been 

undertaken independently. Developments in “best form” lenses had to await the work of 

Muller, Ostwald, Percival and Tscherning nearly 100 years later.17  Perhaps it was necessary 

that substantial progress should first be made in understanding and correcting ocular 

astigmatism (see, e.g. Levene’s section 4 for a review17 before the significance of oblique 

astigmatism and field curvature in spectacle design could be fully appreciated. 

 

GRADIENT INDEX 

Young was well aware of variations of refractive index in the atmosphere and in the ocular 

lens. He was interested in this in the context of his studies of the eye, not only in relation to 

the additional power conferred by the presence of a gradient of refractive index in the lens but 

also because Ramsden had suggested that the gradient, and in particular possible index-

matching at the surface of the crystalline lens, might help to reduce reflections and 

aberrations.24 He modelled gradient index in at least two forms, one of which appeared only 

in the paper1 and the other which appeared in both the paper and the second volume of the 

lectures.4 As we have recently discussed Young’s gradient index modelling in considerable 

detail25, a summary only of this is provided. 

     For the form appearing only in the paper (Proposition VI, page 32), Young presented an 

equation, without any explanation, for an axial gradient index on one side of a surface that 

would provide aberration-free imagery for an object at infinity. The equation is 
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m(v) = √(m0
2  2nv)           (8) 

where the refractive index immediately inside the surface along the axis has a relative value 

of m0/n to the surrounding medium, n remains the same, v is the versed sine, and m(v) is the 

value of m inside the surface corresponding to the versed sine. The versed sine is 1 minus the 

cosine of the angle between the optical axis and the normal to the surface point of interest, 

and is the same as the sagitta for a radius of curvature of 1. The equation applies also to an 

equiconvex lens for which the object and image are equidistant from the lens. We were 

unable to derive equation (8), obtaining instead the equation25 

m(v) = √[m0
2 - 2nv(m0 – n)]         (9) 

     Figure 4 (top) shows this situation for an object at infinity and a gradient index medium 

followed by a surface of radius of curvature 1 mm, and Figure 4 (bottom) shows the situation 

for the equivalent equiconvex lens with finite object and image conjugates. Within the 

gradient index lens the rays do not change direction as they travel along the direction of the 

axial index gradient: this would not be true for an off-axis object point or a different distance. 

 

Insert Figure 4 about here 

---------------------------------------------------------------------------------------------------------------- 

 

     Young also described a spherical gradient index in the paper (Proposition VII, corrections 

on pages 83-84) and in theorem 465 of the Lectures, in which a spherical nucleus of fixed 

refractive index was surrounded by an annular cortex in which the index gradually changed in 

a radial direction to finally match the medium on the other side of a spherical surface 

(theorem 465, pages 82-83). This followed work describing refraction in thin spherical shells, 

which he carried out to explain atmospheric refraction effects (theorem 461, pages 80-81). He 
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assumed that inside the nucleus the refractive index is μ′ and in the surrounding medium the 

refractive index is μ. In the cortex the refractive index is given by  

R = R/a)q                     (10) 

where R is the distance from the centre of the sphere in any direction and q is given by  

q = log(′/)/log(b/a)                                                                                            (11) 

where b is the semi-diameter of the nucleus and a is the semi-diameter of the sphere. The 

focal length relative to the lens centre is  

f = (q + 1)′/)ab/{2q[(′/)b – a]}                                                                     (12) 

We verified that this equation is correct25 and provided examples. 

     Figure 5 shows the refractive index distribution of Young′s model as a function of axial 

position in an ocular lens in which b is 0.9 mm, a is 1.8 mm,  is 1.37 and ′ is 1.41. For 

comparison we show a more physiological distribution in which the refractive index 

distribution changes parabolically from the centre of the lens, rather than showing abrupt 

discontinuities as assumed by Young. 

 

Insert Figure 5 about here 

---------------------------------------------------------------------------------------------------------------- 

 

Commentary 

Young was aware of the influence of gradient index distribution on lens power. He 

considered that the gradient index of the ocular lens could have an important part in 

peripheral imagery of the human eye, writing in the 1801 paper (page 47): “It would appear 

that nothing more is wanting for their perfect coincidence [that of the circle of least 

confusion and the retina], than a moderate diminution of density [i.e. refractive index] in the 
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lateral parts of the lens”. We have not pursued this possibility with his model because of its 

unphysiological nature (Figure 5). 

     Studies of atmospheric refraction date back two thousand years and the topic continues to 

be of interest e.g.26. Few seem to be aware of Young’s early struggles to understand the 

optics of index gradients. As far as we can establish, his work has received little or no 

acknowledgement from later authors: for example, his contributions are not mentioned in 

Marchand’s major textbook on gradient index optics.27 According to Marchand, the 

possibility of using inhomogeneous media in optical systems dates to Maxwell, who in 1854 

demonstrated that a medium with a suitable refractive distribution can have the properties of 

a lens28. This was the so-called Maxwell fish eye lens, with an index having spherical 

symmetry about a point. Young’s work predated Maxwell by over fifty years, and it is 

possible that Young was the first to deal mathematically with gradient index media. 

     Various proposals have been made since the time of Young to use index gradients in 

spectacle, contact, and intraocular lenses, as an alternative or supplement to changes in 

surface curvature as a way of changing the local optical path through a lens e.g.29-35. For 

example bifocal or varifocal lenses could be produced in this way36-39. Advances in free-form 

surfacing have reduced the need to consider the gradient-index alternative. 

 

DISCUSSION 

One problem for any reader of Young’s work is that his derivations were sometimes terse to 

the point of being incomprehensible. We have sometimes found it difficult to be sure that we 

have correctly interpreted his meaning.  This facet of his work was well recognised by his 

contemporaries. What is difficult to establish is the extent to which he made use of the work 

of earlier authors. In his first paper to include geometrical optics1, when discussing Snell’s 

law and transmission through a series of parallel plates he referred to the earlier work of 
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Barrow, Newton (both the Opticks and the Principia), Wood and Smith, as well as that of 

Huygens and Euler. However there were no further references, nor were there any in his later 

lectures3. It is, however, of interest that he followed Barrow, Huygens and Euler in 

challenging Newton’s opinion that the velocity of light is higher in media of high refractive 

index, correctly preferring the view that the velocity is lower in the denser medium.  

     It is tantalising that Young did not develop some of his ideas more fully: many of them 

made little impact on his contemporaries and it is only with hindsight that we can appreciate 

their significance. His work on the wave theory of light and accommodation is probably only 

well known because of the attention paid to it by Fresnel and Helmholtz. However as he 

himself remarked in his “Autobiographical Sketch”40 “His own idea was that the faculties are 

more exercised, and therefore probably more fortified, by going a little beyond the rudiments 

only, and overcoming the great elementary difficulties, of a variety of studies, than by 

spending the same number of hours in any one pursuit: and it was generally more his object 

to cultivate his own mind rather than to acquire knowledge for others in departments which 

were not his immediate concern…”  

     Young’s contributions to the theory of astigmatism and to physical optics have long been 

acknowledged. His work as a pioneer in the still undeveloped field of gradient-index optics 

deserves to be more widely recognised. We still do not fully understand the nature or role of 

index gradient in the crystalline lens and it may be that man-made index gradients will play 

an increasing role in the corrective lenses of the future.  Perhaps the last word on Young and 

his work should go to Helmholtz 41: “He was one of the most acute men who ever lived, but 

had the misfortune to be too far in advance of his contemporaries. They looked on him with 

astonishment, but could not follow his bold speculations, and thus a mass of his most 

important thoughts remained buried and forgotten….until a later generation by slow degrees 
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arrived at the rediscovery of his discoveries, and came to appreciate the force of his 

arguments and the accuracy of his conclusions.” 
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Figure Captions 

 

Figure 1. Young’s construction. See text for details. Here μ′ > μ. 

 

Figure 2. The relative centre for tangential imagery. Lines drawn from object points A and B 

through the relative centre K intercept the refracted ray at the respective image positions A′ 

and B′. 

 

Figure 3. Ratios of the radii of curvature of the astigmatic image surfaces to the focal length 

as a function of lens shape X for a thin +5 D lens in air. The object is at infinity and the lens 

has a refractive index of 1.5. The stop is either at the lens or 27 mm behind it, corresponding 

to the position of the centre of rotation of the eye. Lens shape X is defined in terms of the 

front and back surface powers F1 and F2 as (F1 – F2)/(F1 + F2). The Petzval curvature surface 

is unaffected by lens shape and stop position relative to the lens. The tangential and sagittal 

image surfaces rt  and rs are unaffected by lens shape if the stop is at the lens, with rt/ f′ = 

/(3 + 1) and rs/f′ = /( + 1) as given by Young in his Theorem 4364. However, when the 

stop is not at the lens, the tangential and sagittal image surfaces are influenced by lens shape. 

These plots were obtained from raytracing and the equations rp  = -H2/(S4), rt  = -H2/[(S3 + 

S4)] and rs  = -H2/[(S3 + S4)]
42, where H is the optical invariant, S3 is Seidel astigmatism and 

S4 is Seidel curvature. 
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Figure 4. (Top) Refraction at a surface for an infinite object conjugate. The refractive index 

medium has a thickness of 0.5 mm and an axial distribution described by 1.1339 + 0.4861z + 

0.3117z2 +0.2175z3 + 0.1737z4 + 0.1719z5 + 0.1040z6, where z is the axial distance from the 

front surface of the medium. The surface has a radius of curvature of 1 mm, the refractive 

index in image space is 1, and m0/n = 1.5. The distribution is determined from a polynomial 

fit to the results of equation (9).  

(Bottom) The related situation for an equi-convex lens of thickness 1.0 mm. Here the back 

half of the lens has the same refractive index as given above, but relative to the centre of the 

lens, and the front half has the refractive index 1.4999 – 1.1210z + 1.2108z2 – 1.2547z3 + 

0.9936z4 – 0.4840z5 + 0.1040z6 relative to the front vertex of the lens.  

 

Figure 5. Refractive index distribution along the axis of Young’s spherical gradient index 

lens model (b = 0.9 mm, a = 1.8 mm,  = 1.37 and ′ = 1.41). A more physiological 

refractive index distribution of the form R= ′ – 0.012346R2 is shown for comparison, where 

R is the radial distance from the lens centre. 
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