Lecture 2

Introduction to Data Flow Analysis

- I. Introduction
- II. Example: Reaching definition analysis
- III. Example: Liveness analysis
- IV. A General Framework (Theory in next lecture)

Reading: Chapter 9.2

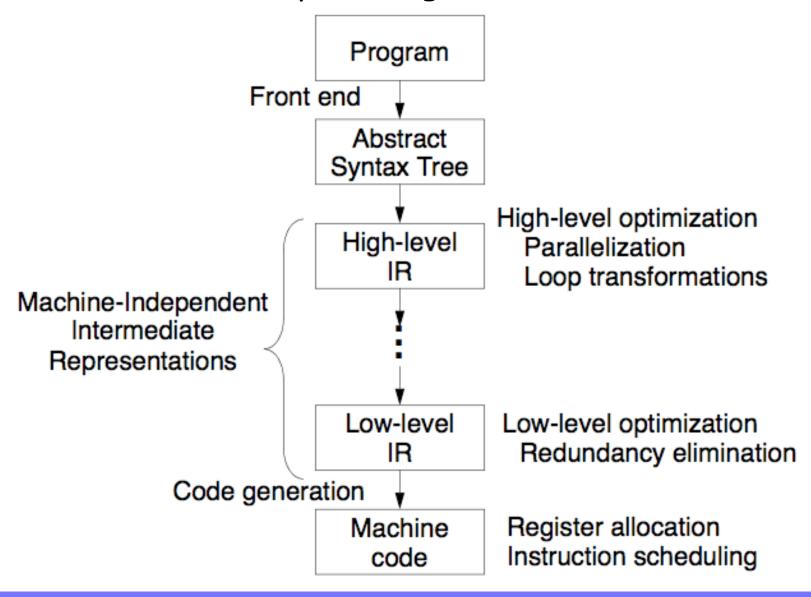
Overview of Data Flow Lectures 2-5

- High-level programming languages generate a lot of redundancy
- Many useful optimizations independently developed originally
 - Constant propagation
 - Common subexpressions
 - Loop invariant code motion
 - Dead code elimination
- A common framework: Dataflow (recurrent equations, fixed-points)
 - Theory: prove properties on the framework
 - Software engineering:
 implement / debug / optimize framework once
- Plan:
 - L2: Basic examples to build intuition about dataflow
 - L3: Theory
 - L4: Optimization examples
 - L5: Partial redundancy elimination (PRE)
 Subsumes multiple optimizations by setting up 4 DataFlow problems

Practice Today

- Many compilers use SSA (static single assignment) an abstraction on top of dataflow
- Idea to be covered by the homework
- Useful for many optimizations, but cannot naturally support PRE

I. Compiler Organization



Flow Graph

- Basic block = a maximal sequence of consecutive instructions s.t.
 - flow of control only enters at the beginning
 - flow of control can only leave at the end
 (no halting or branching except perhaps at end of block)
- Flow Graphs
 - Nodes: basic blocks
 - Edges
 - $B_i \longrightarrow B_j$, iff B_j can follow B_i immediately in execution

M. Lam

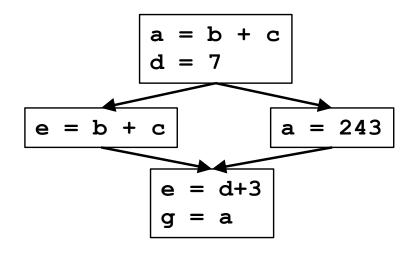
What is Data Flow Analysis?

Data flow analysis:

- Flow-sensitive: sensitive to the control flow in a function
- intraprocedural analysis

Examples of optimizations:

- Constant propagation
- Common subexpression elimination
- Dead code elimination

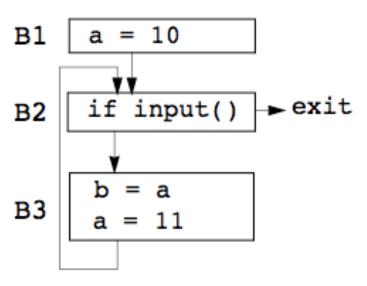


Value of x?

Which "definition" defines x?

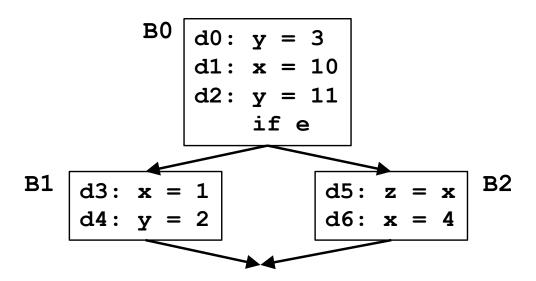
Is the definition still meaningful (live)?

Static Program vs. Dynamic Execution



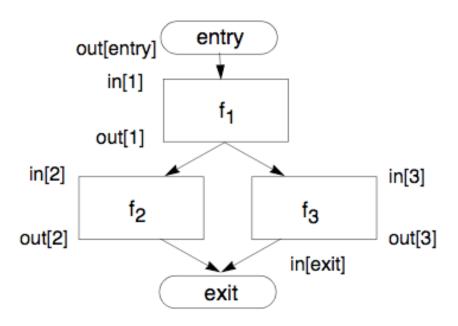
- Statically: Finite program
- Dynamically: Can have infinitely many possible execution paths
- Data flow analysis abstraction:
 - For each point in the program:
 combines information of all the instances of the same program point.
- Example of a data flow question:
 - Which definition defines the value used in statement "b = a"?

Reaching Definitions



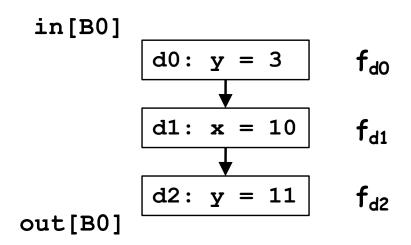
- Every assignment is a definition
- A definition dreaches a point p
 if there exists path from the point immediately following d to p
 such that d is not killed (overwritten) along that path.
- Problem statement
 - For each point in the program, determine
 if each definition in the program reaches the point
 - A bit vector per program point, vector-length = #defs

Data Flow Analysis Schema



- Build a flow graph (nodes = basic blocks, edges = control flow)
- Set up a set of equations between in[b] and out[b] for all basic blocks b
 - Effect of code in basic block:
 - Transfer function f_b relates in[b] and out[b], for same b
 - Effect of flow of control:
 - relates out[b₁], in[b₂] if b₁ and b₂ are adjacent
- Find a solution to the equations

Effects of a Statement



- f_s : A transfer function of a statement
 - abstracts the execution with respect to the problem of interest
- For a statement s (d: x = y + z) out[s] = $f_s(in[s]) = Gen[s] \cup (in[s]-Kill[s])$
 - Gen[s]: definitions generated: Gen[s] = {d}
 - Propagated definitions: in[s] Kill[s],
 where Kill[s]=set of all other defs to x in the rest of program

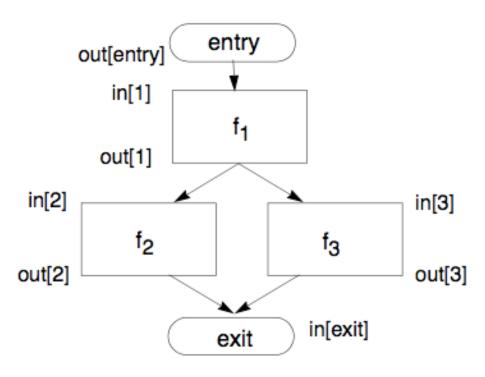
Effects of a Basic Block

- Transfer function of a statement s:
 - out[s] = $f_s(in[s])$ = Gen[s] U (in[s]-Kill[s])
- Transfer function of a basic block B:
 - Composition of transfer functions of statements in B
- out[B] = f_B(in[B])
 - = $f_{d1}f_{d0}(in[B])$
 - = $Gen[d_1] U (Gen[d_0] U (in[B]-Kill[d_0]))-Kill[d_1])$
 - = $(Gen[d_1] \cup (Gen[d_0] Kill[d_1])) \cup in[B] (Kill[d_0] \cup Kill[d_1])$
 - = Gen[B] U (in[B] Kill[B])

Gen[B]: locally exposed definitions (available at end of bb)

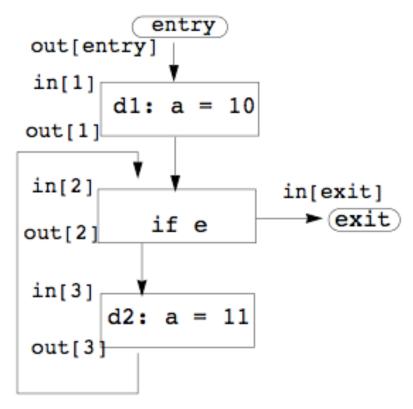
Kill[B]: set of definitions killed by B

Effects of the Edges (acyclic)



- Join node: a node with multiple predecessors
- meet operator (<): U
 in[b] = out[p₁] U out[p₂] U ... U out[p_n], where
 p₁, ..., p_n are all predecessors of b

Cyclic Graphs



- Equations still hold
 - out[b] = $f_b(in[b])$
 - $in[b] = out[p_1] \cup out[p_2] \cup ... \cup out[p_n], p_1, ..., p_n pred.$
- Find: fixed point solution

Reaching Definitions: Iterative Algorithm

```
input: control flow graph CFG = (N, E, Entry, Exit)
// Boundary condition
   out[Entry] = \emptyset
// Initialization for iterative algorithm
   For each basic block B other than Entry
      out[B] = \emptyset
// iterate
   While (Changes to any out[] occur) {
      For each basic block B other than Entry {
         in[B] = \cup (out[p]), for all predecessors p of B
         out[B] = f_B(in[B]) // out[B] = gen[B] \cup (in[B] - kill[B])
```

Summary of Reaching Definitions

	Reaching Definitions
Domain	Sets of definitions
Transfer function $f_b(x)$	forward: out[b] = $f_b(in[b])$ $f_b(x) = Gen_b \cup (x - Kill_b)$ Gen_b : definitions in b $Kill_b$: killed defs
Meet Operation	$in[b] = \cup out[predecessors]$
Boundary Condition	$out[entry] = \emptyset$
Initial interior points	out[b] = Ø

III. Live Variable Analysis

Definition

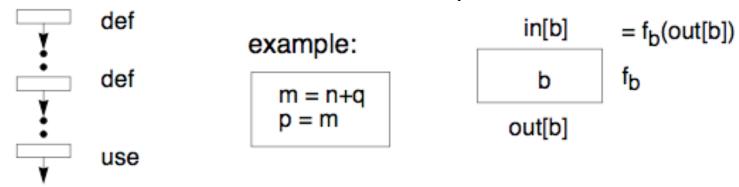
- A variable \mathbf{v} is live at point p if
 - the value of \mathbf{v} is used along some path in the flow graph starting at p.
- Otherwise, the variable is dead.

Problem statement

- For each basic block
 - determine if each variable is live in each basic block
- Size of bit vector: one bit for each variable

Effects of a Basic Block (Transfer Function)

Observation: Trace uses back to the definitions

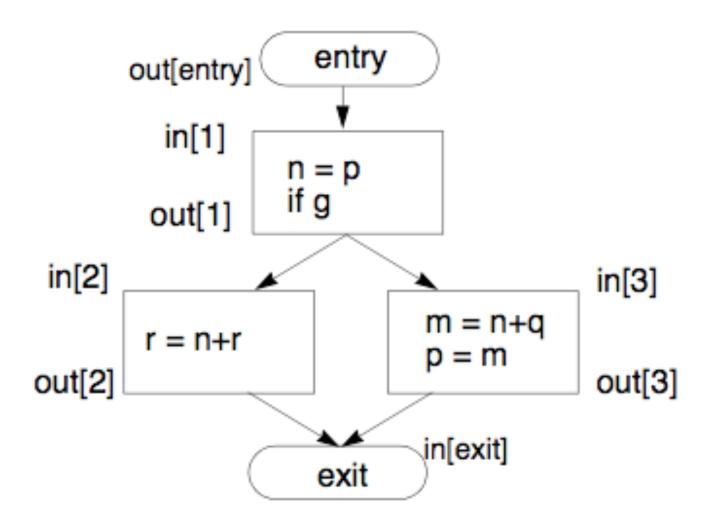


- Direction: backward: in[b] = f_b(out[b])
- Transfer function for statement s: x = y + z
 - generate live variables: Use[s] = {y, z}
 - propagate live variables: out[s] Def[s], Def[s] = x
 - in[s] = Use[s] ∪ (out(s)-Def[s])
- Transfer function for basic block b:
 - in[b] = Use[b] ∪ (out(b)-Def[b])
 - Use[b], set of locally exposed uses in b, uses not covered by definitions in b
 - Def[b]= set of variables defined in b.

Across Basic Blocks

- Meet operator (^):
 - out[b] = $in[s_1] \cup in[s_2] \cup ... \cup in[s_n]$, $s_1, ..., s_n$ are successors of b
- Boundary condition:

Example



Liveness: Iterative Algorithm

```
input: control flow graph CFG = (N, E, Entry, Exit)
// Boundary condition
   in[Exit] = \emptyset
// Initialization for iterative algorithm
   For each basic block B other than Exit
      in[B] = \emptyset
// iterate
   While (Changes to any in[] occur) {
      For each basic block B other than Exit {
         out[B] = \cup (in[s]), for all successors s of B
         in[B] = f_B(out[B]) // in[B]=Use[B] \cup (out[B]-Def[B])
```

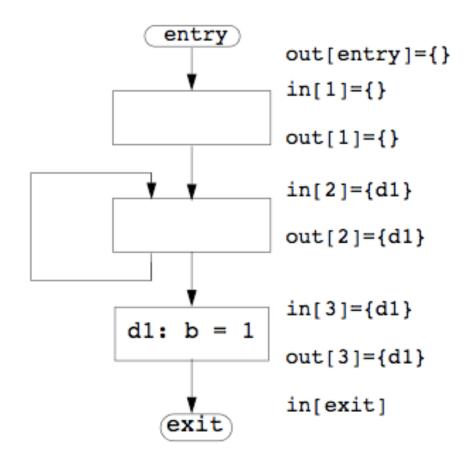
IV. Framework

	Reaching Definitions	Live Variables
Domain	Sets of definitions	Sets of variables
Direction	forward: out[b] = f _b (in[b]) in[b] = \(\text{out[pred(b)]}	backward: in[b] = f _b (out[b]) out[b] = \land in[succ(b)]
Transfer function	$f_b(x) = Gen_b \cup (x - Kill_b)$	$f_b(x) = Use_b \cup (x - Def_b)$
Meet Operation (∧)	U	U
Boundary Condition	out[entry] = \emptyset	$in[exit] = \emptyset$
Initial interior points	out[b] = Ø	in[b] = ∅

Thought Problem 1. "Must-Reach" Definitions

- A definition D (a = b+c) <u>must</u> reach point P iff
 - D appears at least once along on all paths leading to P
 - a is not redefined along any path after last appearance of D and before P
- How do we formulate the data flow algorithm for this problem?

Problem 2: A legal solution to (May) Reaching Def?



Will the worklist algorithm generate this answer?

Problem 3. What are the algorithm properties?

24

Correctness

Precision: how good is the answer?

Convergence: will the analysis terminate?

Speed: how long does it take?