
Chapter 17
Computation of Some Hodge Numbers

The Hodge numbers of a smooth projective algebraic variety are very useful
invariants. By Hodge theory, these determine the Betti numbers. In this chapter, we
turn to the practical matter of actually computing these for a number of examples
such as projective spaces, hypersurfaces, and double covers. The GAGA theorem,
Theorem 16.4.1, allows us to do this by working in the algebraic setting, where we
may employ some of the tools developed in the earlier chapters.

17.1 Hodge Numbers of Pn

Let S = k[x0, . . . ,xn] and P = Pn
k for some field k. We first need to determine the

sheaf of differentials.

Proposition 17.1.1. There is an exact sequence

0 → Ω 1
P → OP(−1)n+1 → OP → 0.

Proof. Let ΩS =⊕Sdxi ∼= Sn+1 be the module of Kähler differentials of S. Construct
the graded S-module

M = Γ∗(Ω 1
P) = Γ (An+1 −{0},π∗Ω 1

P),

where π : An+1 −{0}→ P is the projection. This can be realized as the submodule
ΩS consisting of those forms that annhilate the tangent spaces of the fibers of π .
The tangent space of the fiber over [x0, . . . ,xn] is generated by the Euler vector field
∑xi

∂
∂xi

. Thus a 1-form ∑ fidxi lies in M if and only if ∑ fixi = 0.
Next, we have to check the gradings. ΩS has a grading such that the dxi lie in

degree 0. Under the natural grading of M = Γ∗(Ω 1
P), sections of Ω 1

P(Ui) that are
generated by

d
(

x j

xi

)
=

xidx j − x jdxi

x2
i
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should have degree 0. Thus the gradings on ΩS and M are off by a shift of
one.

To conclude, we have an exact sequence of graded modules

0 → M → ΩS(−1) → m → 0, (17.1.1)

where m =(x0, . . . ,xn) and the first map sends dxi to xi. Since m∼ S, (17.1.1) implies
the result. &'

Dualizing yields the sequence of Example 15.3.10.

Proposition 17.1.2. Suppose we are given an exact sequence of locally free sheaves

0 → A → B → C → 0.

If A has rank one, then

0 → A ⊗∧p−1C →∧pB →∧pC → 0

is exact for any p ≥ 1. If C has rank one, then

0 →∧pA →∧pB →∧p−1A ⊗C → 0

is exact for any p ≥ 1.

Proof. We prove the first statement, where rank(A ) = 1, by induction, leaving the
second as an exercise. When p = 1 we have the original sequence. In general, the
maps in the putative exact sequence need to be explained. The last map λ : ∧pB →
∧pC is the natural one. The multiplication B ⊗∧p−1B → ∧pB restricts to give
µ : A ⊗∧p−1B →∧pB. We claim that µ factors through a map α : A ⊗∧p−1C →
∧pB. For this we can, by induction, appeal to the exactness of

0 → A ⊗∧p−2C →∧p−1B →∧p−1C → 0.

Since A has rank one,
µ |A⊗(A⊗∧p−2C ) = 0,

so µ factors as claimed. Therefore all the maps in the sequence are defined.
Exactness can be checked on stalks. For this the sheaves can be replaced by free

modules. Let {b0,b1, . . .} be a basis for B with b0 spanning A . Then the images
b̄1, b̄2, . . . give a basis for C . Then the above maps are given by

α : b0 ⊗ b̄i1 ∧·· ·∧ b̄ip−1 +→ b0 ⊗bi1 ∧·· ·∧bip−1 ,

λ : bi1 ∧·· ·∧bip +→ b̄i1 ∧·· ·∧ b̄ip ,

where · · · > i2 > i1 > 0. The exactness is immediate. &'
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Corollary 17.1.3. There is an exact sequence

0 → Ω p
P → OP(−p)(

n+1
p ) → Ω p−1

P → 0

and in particular,
Ω n

P
∼= OP(−n−1).

Proof. This follows from the above proposition and Proposition 17.1.1, together
with the isomorphism

∧p[OP(−1)n+1] ∼= OP(−p)(
n+1

p ). &'

This corollary can be understood from another point of view. Using the notation
introduced in the proof of Proposition 17.1.1, we can extend the map ΩS(−1) → m
to an exact sequence

0 → [∧n+1ΩS](−n−1) δ→ ··· → [∧2ΩS](−2) δ→ ΩS(−1) δ→ m → 0, (17.1.2)

where
δ (dxi1 ∧·· ·∧dxip) = ∑(−1)pxi j dxi1 ∧·· ·∧ d̂xi j ∧·· ·∧dxip

is contraction with the Euler vector field. The sequence is called the Koszul complex,
and it is one of the basic workhorses of homological algebra [33, Chapter 17]. The
associated sequence of sheaves is

0 → [∧n+1On+1
P ](−n−1)→ ··· → [∧2On+1

P ](−2) → [On+1
P ](−1) → OP → 0.

If we break this up into short exact sequences, then we obtain exactly the sequences
in Corollary 17.1.3.

Proposition 17.1.4.

Hq(P,Ω p
P) =

{
k if p = q ≤ n,

0 otherwise.

Proof. When p = 0, this follows from Theorem 16.2.1. In general, the same theorem
together with Corollary 17.1.3 implies

Hq(Ω p
P) ∼= Hq−1(Ω p−1

P ).

Therefore, we get the result by induction. &'

When k = C, this gives a new proof of the formula for Betti numbers of Pn given
in Section 7.2. By a somewhat more involved induction we can obtain the following
theorem of Raoul Bott:



282 17 Computation of Some Hodge Numbers

Theorem 17.1.5 (Bott). Hq(Pn,Ω p
Pn(r)) = 0 unless

(a) p = q, r = 0,
(b) q = 0, r > p,
(c) or q = n, r < −n + p.

Proof. A complete proof will be left for the exercises. We give the proof for
p ≤ 1. For p = 0, this is a consequence of Theorem 16.2.1. We now turn to p = 1.
Corollary 17.1.3 implies that

Hq−1(O(r)) → Hq(Ω 1(r)) → Hq(O(r−1))e (17.1.3)

is exact. We use constants e,e′, . . . for exponents whose exact values are immate-
rial for the argument. The sequence (17.1.3), along with Theorem 16.2.1, forces
Hq(Ω 1(r)) = 0 in the following four cases: q = 0,r < 1; q = 1,r < 0; 1 < q < n;
q = n,r ≥ −n + 1. The remaining cases are q = 0,r = 1 and q = 1,r > 0. The trick
is to apply Corollary 17.1.3 with other values of p. This yields exact sequences

Hq(O(r−2))e → Hq(Ω 1(r)) → Hq+1(Ω 2(r)) → Hq+1(O(r−2))e,

Hq+1(O(r−3))e′ → Hq+1(Ω 2(r)) → Hq+2(Ω 3(r)) → Hq+2(O(r−3))e′ ,

. . .

leading to isomorphisms

H0(Ω 1(1)) ∼= H1(Ω 2(1)) ∼= · · · ∼= Hn−1(Ω n(1)) = Hn−1(O(−n)) = 0.

Likewise, for r > 0,

H1(Ω 1(r)) ∼= H2(Ω 2(r)) ∼= · · · ∼= Hn(Ω n(r)) = Hn(O(−n−1 + r)) = 0. &'

Exercises

17.1.6. Finish the proof of Proposition 17.1.2.

17.1.7. Given an exact sequence 0 → A → B → C → 0 of locally free sheaves,
prove that the top exterior power detB is isomorphic to (detA )⊗ (detC ). Use this
to rederive the formula for Ω n

Pn .

17.1.8. Finish the proof of Theorem 17.1.5.

17.2 Hodge Numbers of a Hypersurface

We now let X ⊂ P = Pn
k be a nonsingular hypersurface defined by a degree-d poly-

nomial.
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Proposition 17.2.1. The restriction map

Hq(Pn,Ω p
P) → Hq(X ,Ω p

X)

is an isomorphism when p + q < n−1.

We give two proofs, one now, over C, and another later for general k.

Proof. Let k = C. The weak Lefschetz theorem, Theorem 14.3.1, implies that the
restriction map Hi(Xan,C)→Hi(Yan,C) is an isomorphism for i < n−1. The propo-
sition is a consequence of this together with the the canonical Hodge decomposition
(Theorem 12.2.4) and GAGA (Theorem 16.4.1). &'

As a corollary, we can calculate many of the Hodge numbers of X .

Corollary 17.2.2. The Hodge numbers hpq(X) equal δpq, where δpq is the Kronecker
symbol, when n−1 /= p + q < 2n−2.

Proof. We give a proof when k = C. For p+q < n−1, this follows from the above
proposition and Proposition 17.1.4. For p+q > n−1, this follows from GAGA and
Corollary 10.2.3. &'

We prepare for the second proof by establishing a few key lemmas.

Lemma 17.2.3. There is an exact sequence

0 → Ω p
P(−d) → Ω p

P → Ω p
P |X → 0.

(Recall that Ω p
P |X is shorthand for i∗i∗Ω p

P , where i : X → P is the inclusion.)

Proof. Tensor
0 → OP(−d) → OP → OX → 0

with Ω p
P to get

0 !! Ω p
P ⊗OP(−d) !!

∼=
""

Ω p
P ⊗OP !!

∼=
""

Ω p
P ⊗OX !!

∼=
""

0

0 !! Ω p
P(−d) !! Ω p

P
!! Ω p

P |X !! 0

For the last isomorphism, it is simply a matter of expanding the notation. Observe
that if ι : X → P is the inclusion, then

Ω p
P |X = ι∗ι∗Ω p

P = ι∗(ι−1Ω p
P ⊗OX) ∼= Ω p

P ⊗OX . &'

Lemma 17.2.4. 0 → OX(−d) → Ω 1
P|X → Ω 1

X → 0 is exact.
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Proof. We have a natural epimorphism Ω 1
P|X → Ω 1

X corresponding to restriction of
1-forms. We just have to determine the kernel. Let f be a defining polynomial of
X , and let M = Γ∗(Ω 1

P) and M = Γ∗(Ω 1
X ). We embed M as a submodule of ΩS(−1)

as in the proof of Proposition 17.1.1. In particular, the symbols dxi have degree 1.
Then ker[M/ f M → M] is a free S/( f )-module generated by

d f = ∑
i

∂ f
∂xi

dxi.

Thus it is isomorphic to S/( f )(−d). &'

Corollary 17.2.5. 0 → Ω p−1
X (−d) → Ω p

P |X → Ω p
X → 0.

Proof. Apply Proposition 17.1.2 to the lemma. &'

For the second proof of Proposition 17.2.1, it is convenient to prove something
stronger.

Proposition 17.2.6. If p + q < n−1, then

Hq(X ,Ω p
X(−r)) =

{
Hq(Pn,Ω p

P) if r = 0,

0 if r > 0.

Proof. We prove this by induction on p. For p = 0, this follows from the long exact
sequences associated to

0 → OP(−d− r) → OP(−r) → OX(−r) → 0

and Theorem 16.2.1.
In general, by induction and Corollary 17.2.5 we deduce

Hq(X ,Ω p
X(−r)) = Hq(Ω p

P(−r)|X)

for r ≥ 0 and p + q < n−1. Lemma 17.2.3 and Theorem 17.1.5 give

Hq(Ω p
P(−r)|X ) =

{
Hq(Pn,Ω p

P) if r = 0,

0 if r > 0.
&'

Exercises

17.2.7. Using Exercise 17.1.7, deduce a version of the adjunction formula Ω n−1
X

∼=
OX (d−n−1) with X as above.

17.2.8. Compute Hq(X ,Ω n−1
X ) for all q.
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17.3 Hodge Numbers of a Hypersurface II

As in the previous section, X ⊂Pn is a nonsingular degree-d hypersurface. By Corol-
lary 17.2.2, the Hodge numbers hpq(X) equal δpq when n− 1 /= p + q < 2(n− 1).
So the only thing left to compute are the Hodge numbers in the middle. The formu-
las simplify a bit by setting hpq

0 (X) = hpq(X)− δpq. These can be expressed by the
Euler characteristics:

Lemma 17.3.1. hp,n−1−p
0 (X) = (−1)n−1−pχ(Ω p

X )+ (−1)n.

We can calculate these Hodge numbers by hand using the following recurrence
formulas.

Proposition 17.3.2.

(a)

χ(Ω p
P(i)) =

p

∑
j=0

(−1) j
(

n + 1
p− j

)(
i− p + j + n

n

)
.

(b)

χ(OX (i)) =
(

i+ n
n

)
−

(
i+ n−d

n

)
.

(c)
χ(Ω p

X(i)) = χ(Ω p
P(i))− χ(Ω p

P(i−d))− χ(Ω p−1
X (i−d)).

Proof. Corollary 17.1.3 yields the recurrence

χ(Ω p
P(i)) =

(
n + 1

p

)
χ(OP(i− p))− χ(Ω p−1

P (i)).

Therefore (a) follows by induction on p. The base case was obtained previously in
(16.2.4).

Lemma 17.2.3 and Corollary 17.2.5 imply

χ(Ω p
X(i)) = χ(Ω p

P(i)|X )− χ(Ω p−1
X (i−d))

= χ(Ω p
P(i))− χ(Ω p

P(i−d))− χ(Ω p−1
X (i−d)).

When p = 0, the right side can be evaluated explicitly to obtain (b). &'
Corollary 17.3.3. The Hodge numbers of X depend only on d and n, and are given
by polynomials in these variables.

In principle, formulas for all the Hodge numbers can be calculated using the
above recurrence formulas. For example,

h0,n−1(X) = (−1)n
(

n−d
n

)
=

(
d−1

n

)
, (17.3.1)

h1,n−2
0 (X) = (−1)n

[
(n + 1)

(
n−1

n

)
− (n + 1)

(
n−d−1

n

)
+

(
n−2d

n

)]
.
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But this gets quite messy as p increases. So, instead, we give a closed form for the
generating function below. Let hpq(d) denote the pqth Hodge number of a smooth
hypersurface of degree d in Pp+q+1. Define the formal power series

H(d) = ∑
pq

(hpq(d)− δpq)xpyq

in x and y.

Theorem 17.3.4 (Hirzebruch).

H(d) =
(1 + y)d−1 − (1 + x)d−1

(1 + x)dy− (1 + y)dx
.

Corollary 17.3.5. Hodge symmetry hpq = hqp holds for smooth hypersurfaces in
projective space over arbitrary fields.

Remark 17.3.6. Hodge symmetry can fail for arbitrary smooth projective varieties
in positive characteristic [90].

Corollary 17.3.7. If X ⊂ Pn+1
C has degree 2, then bn(X) = 0 if n is odd; otherwise,

bn(X) = hn/2,n/2(X) = 2.

Proof.

H(2) =
1

1− xy
. &'

By expanding the series H(3) for a few terms, we obtain the following corollary:

Corollary 17.3.8. If X ⊂ Pn+1 has degree 3, the middle hodge numbers are

1,1

0,7,0

0,5,5,0

0,1,21,1,0

0,0,21,21,0,0

for n ≤ 5.

Although this result can be deduced from the previous formulas in principle,
Hirzebruch [63, 22.1.1] obtained this from his general Riemann–Roch theorem.
His original formula gave a generating function for χ(Ω p

X); the above form can
be obtained by a change of variables, cf. [30, Example XI Corollary 2.4]. Similar
formulas are available for complete intersections. We will be content to work out the
case y = 0. On one side we have the generating function ∑hn0(d)xn. By (17.3.1),
this equals

∑
(

d −1
n + 1

)
xn =

(1 + x)d−1−1
x

,

which is what one gets by substituting y = 0 into Hirzebruch’s formula.
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Exercises

17.3.9. Prove Lemma 16.2.4.

17.3.10. Calculate the Hodge numbers of a degree-d surface in P3 (a) using the
recurrence formulas, (b) using the generating function. Compare the expressions.

17.3.11. Prove that for every fixed d and p, there exists q0 such hpq(d) = 0 for
q ≥ q0.

17.4 Double Covers

Our goal is to compute the Hodge numbers for another natural class of examples that
generalize hyperelliptic curves. Let f (x0, . . . ,xn) ∈ C[x0, . . . ,xn] be a homogeneous
polynomial of degree 2d such that the hypersurface D ⊂ Pn = P defined by f = 0
is nonsingular. Let π : X → P be the double cover branched along D (Example
3.4.9). By construction, this is gotten by gluing the affine varieties defined by y2

i =
f (x0, . . . ,1, . . . ,xn) over Ui. It follows that X is nonsingular. Using these coordinates,
it is also clear that the local coordinate ring OX (π−1Ui) is a free O(Ui)-module
generated by 1 and yi. Globally, we have

π∗OX ∼= OP ⊕L,

where L is the line bundle locally generated by yi. The ratios yi/y j give a cocycle
for L, from which it easily follows that L = O(±d). To get the correct sign, we need
to observe that L is a nontrivial ideal in π∗OX , so it has no nonzero global sections.
Therefore we obtain the following:

Lemma 17.4.1.
π∗OX ∼= OP ⊕OP(−d).

It is worth observing that the summands OP and OP(−d) are exactly the invariant
and anti-invariant parts under the action of the Galois group, which is generated by
the involution σ : yi +→ −yi. A more abstract, but less ad hoc, argument involves
observing that OP ⊕OP(−d) is a sheaf of algebras, and defining X as its relative
spectrum [35]. Then the lemma becomes a tautology. We need an extension of the
previous lemma to forms:

Lemma 17.4.2 (Esnault–Viehweg). There are isomorphisms

π∗Ω p
X
∼= Ω p

P ⊕ (Ω p
P(logD)⊗O(−d))

for every p.

Proof. We sketch the proof. See [35, pp. 6–7] for further details. The Galois group
acts on π∗Ω p

X . We check that the invariant and anti-invariant parts correspond to
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Ω p
P and Ω p

P(logD)⊗O(−d) respectively. It is enough to do this for the associated
analytic sheaves. By the implicit function theorem, we can choose new analytic local
coordinates such that X is given locally by y2 = x1. Then y,x2, . . . ,xn are coordinates
on X , so that their derivatives locally span Ω 1

X . It follows that a local basis for π∗Ω 1
X

is given by

ydy =
1
2

dx1,dx2, . . . ,dxn
︸ ︷︷ ︸

invariant

, dy = y
dx1

2x1
,ydx2, . . . ,ydxn

︸ ︷︷ ︸
anti-invariant

.

The forms in the first group are invariant and give a local basis for Ω 1
P. The

remainder are anti-invariant and form a local basis for Ω 1
P(logD) ⊗ O(−d).

By taking wedge products, we get a similar decomposition for p-forms. &'

Corollary 17.4.3.

Hq(X ,Ω p
X ) ∼= Hq(P,Ω p

P)⊕Hq(P,Ω p
P(logD)⊗O(−d)).

Proof. Let {Ui} be the standard affine cover of Pn. Then Ũi = π−1Ui gives an affine
cover of X . We can compute Hq(X ,Ω p

X ) using the Čech complex

Č({Ũi},Ω p
X) = Č({Ui},Ω p

P)⊕ Č({Ui},Ω p
P(logD)),

which decomposes into a sum. This decomposition passes to cohomology. &'

Corollary 17.4.4. We have

hpq(X) = δpq + dimcoker[Hq−1(Ω p−1
D (−d)) → Hq(Ω p

P(−d))]

+dimker[Hq(Ω p
D(−d)) → Hq+1(Ω p

P(−d))]

in general, and hpq(X) = δpq if p + q < n.

Proof. This follows from (12.6.4) from §12.6 together with Bott’s vanishing
theorem, Theorem 17.1.5. &'

We can obtain more explicit formulas by combining this with earlier results.

Exercises

17.4.5. When n = 2, check that h02(X) = (d−1)(d−2)
2 and h11(X) = 3d2 −3d + 2.

17.4.6. Verify that hpq(X) = δpq also holds when p + q > n.
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17.5 Griffiths Residues*

In this section, we describe an alternative method for computing the Hodge numbers
of a hypersurface due to Griffiths [48], although the point is really that the method
gives more, namely a method for computing the Hodge structure (or more precisely
the part one gets by ignoring the lattice). Further details and applications can be
found in books of Carlson, Peters, Müller-Stach [17, §3.2] and Voisin [116, Chapter
6] in addition to Griffiths’ paper. We work over C in this section.

Suppose that X ⊂ P = Pn+1 is a smooth hypersurface defined by a polynomial
f ∈ C[x0, . . .xn+1] of degree d. Let U = P−X . The exact sequence (12.6.5) yields

Hn−1(X) → Hn(P) → Hn+1(U) → Hn(X) → Hn+2(P).

The first map is an isomorphism by weak Lefschetz. Therefore Hn+1(U) maps iso-
morphically onto the primitive cohomology Pn(X) = ker[Hn(X) → Hn+2(P)]. This
is the same as Hn(X) if n is odd, and has dimension one less if n is even. The
Hodge filtration on F pHn+1(U) maps onto the Hodge filtration on X with a shift
F p−1Pn(X). We refer to Section 12.6 for the definition of this and of the pole filtra-
tion PolepHn+1(U). The key step is to compare these filtrations.

Theorem 17.5.1 (Griffiths). The Hodge filtration F pPn(X) coincides with the
shifted pole filtration Polep+1Hn+1(U). This can, in turn, be identified with the
quotient

H0(Ω n+1
P ((n− p + 1)X))

dH0(Ω n
P((n− p)X))

.

Proof. For p = n, this is immediate because

FnPn(X) = Fn+1Hn+1(U) = H0(Ω n+1
P (logX)) = H0(Ω n+1

P (X)).

For p = n−1, we use the exact sequence

0 → Ω n
P,cl(logX) → Ω n

P(X) d→ Ω n+1
P (2X) → 0,

where ΩP,cl(. . .) is the subsheaf of closed forms. Then

H0(Ω n
P(X)) d→ H0(Ω n+1

P (2X)) → H1(Ω n
P,cl(logX)) → H1(Ω n

P(X)).

On the right, the group H1(ΩP(X)) is equal to H1(Ω n
P(d)) = 0 by Bott’s

Theorem 17.1.5. Thus FnHn+1(U)= H1(Ω n
P,cl(logX)) is isomorphic to the cokernel

of the first map labeled by d. This proves the theorem for this case. The remaining
p’s can be handled by a similar argument, which is left for the exercises. &'
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This can be made explicit using the following lemma:

Lemma 17.5.2. Let

ω = ∑(−1)ixidx0 ∧·· ·∧ d̂xi ∧·· ·∧dxn+1.

Then

H0(Ω n+1
P (kX)) =

{
gω
f k | g homogeneous of deg = kd − (n + 2)

}
.

With these identifications, elements of Pn(X) can be represented by homo-
geneous rational differential forms gω/ f k modulo exact forms. Set

R =
C[x0, . . . ,xn+1]

(∂ f/∂x1, . . . ,∂ f/∂xn+1)
.

The ring inherits a grading R = ⊕Ri from the polynomial ring. We define a map
Pn(X) → R by sending the class of gω/ f k to the class of g.

Theorem 17.5.3 (Griffiths). Under this map, the intersection of Hn−p(X ,Ω p
X) with

Pn(X) maps isomorphically to Rτ(p), where τ(p) = (n− p + 1)d− (n + 2).

This leads to an alternative method for computing the Hodge numbers of a
degree-d hypersurface.

Corollary 17.5.4. hpq(d)− δpq is the coefficient of tτ(p) in (1 + t + · · ·+ td−2)n+2.

Proof. We can assume that f = xd
0 +xd

1 + · · ·+xd
n+1 is the Fermat equation. It suffices

to prove that the Poincaré series of R, which is the generating function p(t) =
∑dimRiti, is given by

p(t) = (1 + t + · · ·+ td−2)n+2.

Note that

R =
C[x0, . . . ,xn+1]
(xd−1

0 ,xd−1
1 , . . .)

∼=
C[x]

(xd−1)
⊗ C[x]

(xd−1)
⊗·· · (n + 2 times).

Since Poincaré series for graded rings are multiplicative for tensor products, p(t)
is the (n + 2) power of the Poincaré series of C[x]/(xd−1), and this is given by the
above formula. &'
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Exercises

17.5.5. Using exact sequences

0 → Ω n−i
P,cl(( j−1)X)→ Ω n−i

P (( j−1)X)→ Ω n−i+1
P ( jX) → 0

and identifications

F pHn+1(U) ∼= Hn+1−p(Ω p
P,cl(logX)) ∼= Hn+1−p(Ω p

P,cl(X)),

finish the proof of Theorem 17.5.1.


