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Integration of handheld NIR and machine learning to“Measure & Monitor” chicken
meat authenticity.

Abstract

By combining portable, handheld near-infrared (N$Rgctroscopy with state-of-the-
art classification algorithms, we developed a pdweanethod to test chicken meat
authenticity. The research presented shows tieabith possible to discriminate fresh from
thawed meat, based on NIR spectra, as well asrteatly classify chicken fillets according to
the growth conditions of the chickens with gooduaiacy. In all cases, the random subspace
discriminant ensemble (RSDE) method significantlyperformed other common
classification methods such as partial least sgudiscriminant analysis (PLS-DA), artificial
neural network (ANN) and support vector machine N§With classification accuracy of
>95%. This study shows that handheld NIR couplegtt wmiachine learning algorithms is a
useful, fast, non-destructive tool to identify ighenticity of chicken meat. By comparing
and combining different protocols to measure thR Bipectra (i.e., through packaging and
directly on meat), we show the possibilities fotthoonsumers and food inspection
authorities to check the authenticity and origipatkaged chicken fillet.

Keywords:Handheld NIR, Chemometrics, Ensemble learning, Meat authenticity
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1. Introduction

The supply of sufficient healthy, safe, and auticeiood to a growing world
population is one of the most important challerfigeshe present and the future
(Pischetsrieder, 2018). Detection of food adulterasuch as unlabelled replacement of food
components may be hindered because of the tarfyetesl of analytical techniques (Reid,
O'Donnell, & Downey, 2006; Sentandreu & Sentandg®14). From an analytical
standpoint, successful detection of food adulterataces two major challenges(Reid et al.,
2006). The first challenge comprises untargetedrdehation of undeclared ingredients or
unknown (hazardous) naturally present substaneean@ly, and more analytically
challenging, are claims like animal welfare, faarde, or eco-friendly production. While these
“soft claims” are generally beyond the scope ofiical chemistry, the effects on the
chemical composition of the product may still barfd and quantified.

Meat authenticity (and traceability) are of partar importance in modern society
(Sentandreu & Sentandreu, 2014; Vlachos, Arvanitoi® & Tserkezou, 2016). Recent
events of meat adulteration with non-declared gsesuch as horse meat illustrate the global
need for clear and reliable checks for consumedymts, but even intact fresh meat is often
indistinguishable between brands or price-rangavadtays price and lifestyle, together with
religion and health concerns, determine an indiaidwchoice for particular food products
(Reid et al., 2006; Sentandreu & Sentandreu, 2014).

Detection technologies applied for food authetytiare mainly based on
spectroscopic and chromatographic techniques (@alferranti, 2016). Spectroscopic
techniques have great potential for discriminabbfood materials. One promising and
widely used technique in this context is near irfda(NIR) spectroscopy, a rapid and non-
destructive technique. NIR enables preliminary rtavmg of different types of food and as
an analytical technique is able to give qualitaivel quantitative information about complex
samples (Abasi, Minaei, Jamshidi, & Fathi, 2018hilumi, Lee, Lee, & Cho, 2015; Prieto,
Roehe, Lavin, Batten, & Andrés, 2009).

Developments in instrumentation technology hadetdethe availability of portable
spectroscopic devices. Modern handheld NIR instnisnthat have been developed for food
and drug quality control are fast, lightweight aethtively inexpensive. The trade-off for
using these devices is that the spectral regioreswlution are limited compared to benchtop
technologies(Modroiio, Soldado, Martinez-Fernan8lede la Roza-Delgado, 2017; Pasquini,
2018; Zamora-Rojas, Pérez-Marin, De Pedro-Sanzir&woeGinel, & Garrido-Varo, 2012).
Additionally, scattering effects and instrumentadl@mbient noise make robust chemometric
and machine learning methods crucial to extractéha/ant information from the spectra
(Arvanitoyannis & Van Houwelingen-KoukaliaroglouQ@3; Curran et al., 2018).

Previously, different chemometric and machineriesy approaches such as principal
component analysis (PCA), partial least squareSjPartificial neural network (ANN),
linear discriminant analysis (LDA) and support w#ahachine (SVM) have been used for the
analysis of handheld NIR spectra in relation todfoesearch (Acquarelli et al., 2017;
Arvanitoyannis & Van Houwelingen-Koukaliaroglou,@) Ballabio, Consonni, &
Todeschini, 2009; Brereton & Lloyd, 2010; Efenber§emechtyk, Nowak, & Kregiel, 2018;
Risoluti, Gregori, Schiavone, & Materazzi, 2018n#uv, Balyklova, Titova, Rodionova, &
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Pomerantsev, 2016). However, these methods pegoonrly for exploration and
classification of complex analytical problems lfkeshness and growth system of food
samples. Additionally, these methods often need pisdprocessing and selection of the best
preprocessing strategy is challenging on its owinr{&, 2014; Rinnan, Berg, & Engelsen,
2009).

In the present contribution, a powerful machireméng algorithm is used based on
ensemble learning (Merkwirth et al., 2004; Rok&1,0). This method splits the data into
multiple parts and combines the best models fodifierent parts (of the NIR spectra) to
come to a majority vote classification. Random galos discriminant ensemble (RSDE) (Ho,
1998) is proposed here as a fast and reliable rdéthose handheld NIR devices for food
authenticity. The simplicity of the different compnts of our methodology will allow for
“Measure & Monitor” technology to evaluate food laerticity. The goals of the presented
research were (1) discrimination of fregtn)(and ThawedTh) samples and (2)
discrimination of growth systems based on handhéRispectra from three recording modes
of on meat ©OM), through the top of the packageéPj and through the package held bottom
up (TB), such that the meat touched the covering foil.

2. Materials and methods.
2.1. Sampling and data collection

Fresh chicken breast fillet samples were kindbypmted Albert Heijn B.V. (The
Netherlands) and Musgraves Group Ltd. (Irelandheir standard supermarket packages in
June 2015. The animal welfare classification sysiéfars between the countries of origin.

Albert Heijn B.V. has provided a set of 70 freslic&bn fillet samples from different
production systems and batches, divided over aspae of 3 weeks. Animal welfare was
expressed on the packaging by “no star” represgiii@ lowest level of welfare and three
stars representing the highest level of welfare.

Conventional chicken (CONV) (18 samples)
Free-range (1 star, 1*) (17 samples)
Specialty (2 stars, 2*) (17 samples)

Organic (ORG) (3 stars, 3*) (18 samples)

In the same period, Musgraves Group has providet af 83 fresh chicken fillet samples
from different production systems and batches déidiover a time span of 2 weeks:

Standard chicken (STD) (18 samples)
Free range (FR) (15 samples)

Corn fed chicken (CF) (15 samples)
Marinated chicken (MAR) (35 samples)

Samples (153 total) were shipped in ‘fresh paajsgranteeing a temperature between 4 and
7°C for 96h. Samples arrived within that time-spamridated chicken fillets acted as
controls, since these were expected to be higlelytifiable.

4
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Thawed samples (133 in total) were obtained bgzireg at — 18 °C for 48 h
and thawing for 24 h at + 4 °C. Twenty fresh samplere used fds-hydroxyacyl-CoA-
dehydrogenase (HADH) reference measurements (13#edbtal sample set) to assess their
storage history, i.e. whether the samples had bledled or frozen (Boerrigter-Eenling,
Alewijn, Weesepoel, & van Ruth, 2017). For the Duset, three samples of each class were
used for HADH, whilst for the Irish set two samplesre subjected to HADH per category.
No deviations were found in the freshness of tmeptas. Samples which were subjected to
HADH measurements were not subjected to NIR measamts for the thawed category. No
reference methods were available for confirmatibtne growing system of the chicken fillet
samples. Providers have confirmed that the indicgtewing system is correct. Note that
growth conditions may be similar across countreeg.( CONV and STD), but that different
labels have been attached in order to classify d&&tvwcountry variation.

NIR data was acquired using a MicroNIR RIR (Viavi Solutions, Milpitas, CA,
USA), powered by the MicroNIR Pro software (versthA, Viavi Solutions) in diffuse
reflectance mode in wavelength range of approxilm&@38-1676 nm with an evenly
distributed spectral resolution, resulting in 12Biables/measurement. A 99% white diffuse
reflectance standard was used for calibration ¥l by a dark measurement. This
calibration was repeated in 10 minute cycles. T3 dhicken fillet samples were subjected to
non-destructive NIR measurements by applying tHe With standard collar in three different
ways: on meat@M), through packagel'P) and through packaging bottom ufBj. First, TP
measurements were acquired by placing the packagdlat surface and applying the NIR
on the transparent top foil without pressure alibefillet sample. In most cases an air
pocket was between the foil and the sample. Segptidi TB measurements were performed
by flipping the package bottom up, letting thecfilsample lean on the top transparent foil,
followed by NIR measurements through this transmaiel. Finally, the transparent top foil
was removed and NIR measurements were taken gi@ctihe fillet sample without
applying considerable pressure. Prior to freeZing fillet package was covered with a new
layer of identical transparent top foil. Five lieptes were taken p&@M/TP/TB, with a total
of 4590 raw NIR measurements. Scheme Al of therappdlustrates how the samples were
collected.

2.2. Data handling and preprocessing

Spectral data was labelled to ensure replicate uneaents and measurements from
different modes of the same fillet could be coneédclraining and test sets were created
using the Duplex method (Daszykowski, Walczak, &strt, 2002; Puzyn, Mostrag-
Szlichtyng, Gajewicz, Skrzgki, & Worth, 2011; Snee, 1977) on the entire datan order
to ensure a representative test set including eynchses (Reitermanova, 2010; Westad &
Marini, 2015). All classes were represented intédst set. Importantly, all measurements (i.e.,
spectra) of a sample were assigned to either nigset (70%) or test set (30%) in order to
ensure that the test set did not include data trersame sample that the model was trained
on.

When looking for the optimum pre-processing strateglesign of experiments was
used (Gerretzen et al., 2015). The predictive iflaason model was built (PLS-DA, CP-
ANN, SVM and RSDE) and validated using cross vdiaa(CV). In every CV, spectra
belonging to the same chicken sample were remawad the train set (leave-chicken-out).
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After training, tuning and evaluation of the modék test set was used for final performance
estimation. The data analysis pipeline of the presbwork is shown in Scheme 1.

Scheme 1. Data analysis pipeline for each presented study.
[Scheme 1 about here]

2.3. Random subspace discriminant ensemble.

Classification of the NIR spectra was done usingd®an Subspace Discriminant
Ensemble. This method divides the spectra intonab@u of random subspaces (30 random
subspaces as standard in this case), selectedHespectral domain (e.g., a random subset
of 60 wavelengths is the default in Matlab). Disanant analysis (DA) was used to classify
the spectra in each subspace (Ho, 1998; Tan, Qjr& 2008). Each subspace may result in
different classification probabilities. These prbllities are combined by taking their average
across all subspaces to come to a single clagsicanodel of the full spectra. Figure 1
shows the general architecture of RSDE algorithne potential of RSDE in high
dimensional data comes from the fact that each tredaires only a limited number of
variables.

Figure 1. Principle of the RSDE framework (sequential subspaces used for illustrative purposes).
[Insert Figure 1 about here]
2.4. Software

Chemometric data analysis was performed in MATLABionment R2016a, with
the exception of the leave-class-out validatiorc({i®a 3.5), which was done in R2019B
(Mathworks, MA, USA). The PLS-Toolbox v7.8 (Eigerter, WA, USA) was used for PLS-
DA modelling, the pre-processing toolbox (Gerreteeal., 2015) was used to choose the best
preprocessing strategy (based on an experimergmrgethe CP-ANN toolbox (Milano
Chemometrics and QSAR Research Group) was usegbfionization of the Kohonen
network and supervised classification and the @leason Learner toolbox of MATLAB
was used for SVM and RSDE modelling

3. Classification of NIR spectra
3.1. Fresh vs. Thawed

The RSDE algorithm was first used to discriminateandTh samples for each of the
three different spectral recording modes. For tlepmcessing of the data, an experimental
design was used to find the best strategy withmmhiclassification error (Gerretzen et al.,
2015). Classification performance was evaluatedguaccuracyAcc), precision Pre),
sensitivity Sen), specificity §oe) and error rateER) (Ballabio & Consonni, 2013).

Figure 2 shows the NIR spectrafefandTh samples in three different spectral
recording modes of OM/TP/TB. Coloring the spectyadrording mode shows that there are
clear differences in absorbance related to hovspleetra were obtained. The differences are
similar forFr andTh samples. Because andTh samples have similar spectra, the first
challenge in this study was to discrimin&reandTh samples based on NIR spectra.

6
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Figure 2. NIR spectra from different modes of fresh (left) and thawed (right)
chickenfillets

[Insert Figure 2 about here]

The RSDE performed well in discriminating individsaectra ofFr andTh samplesAcc

values were 90.2% for training set, 87.6% for cradglation (CV) and 85.2% for test set of
OM samples. FofP samples, the values were 96.4%, 95.4% and 92.0%eaia, CV and test
sets, respectively. Thicc values forTB samples were respectively 95.4%, 93.3% and 91.0%
for train, CV and test sets. Details on the classiion power can be found in Table Al in the
appendix.

3.2 Classification in growth conditions

The ability of the RSDE method to classify indivadINIR spectra was promising.
The next objective was to evaluate whether the R8Ehod could also be used to
discriminate between the growth systems of thekems. The RSDE algorithm was used for
classification of seven growth conditions of 1*@RG/CONV/STD/FR/CF as well as MAR
samples in Fr and Th conditions@M, TP andTB modes (details in section 2.1). As an
example, Figure 3 depicts the discrimination penfance of RSDE for classification of
chickens in different growth conditions in termsAgt in OM, TP andTB modes. As can be
seen, the values déicc for training, validation and test sets are betw@@i®0 % forOM
(Figure 3a),TP (Figure 3b) andB (Figure 3c). The values @icc are low because of the
complexity of the samples and similarity in the NdBectra of samples in different conditions.

To compare the results of RSDE model with commasgfication methods in
chemometrics, NIR data of chickens in differentvgifoconditions were classified by partial
least squares-discriminant analysis (PLS-DA) (Batla&& Consonni, 2013; Gromski et al.,
2015), counter propagation-artificial neural netiv@€P-ANN) (Ballabio et al., 2009;

Ballabio & Vasighi, 2012) and support vector maehmith quadratic kernel function (Q-
SVM) (Brereton & Lloyd, 2010). Model performancetbe RSDE was better than that of the
other methods. In Figure 3, the classification itsdor PLS-DA, CP-ANN and Q-SVM for
training, validation and test sets in terms of Ace shown in comparison with RSDE. Due to
the type of subspace selection, the RSDE is oigityy affected by noise and is less prone to
overfitting (shown by similaAcc values for train, validation and test sets).

Figure 3. Classification Accin OM (a), TP (b) and TB (c) modes.
[Insert Figure 3 about here]

For PLS-DA, the best preprocessing strategy wasearhaccording to experimental
design approach (lowest classification error) (&&en et al., 2015). In this regard, mean-
centering and pareto scaling were the best preepsing strategies. Other attempts such as
outlier detection using Q-residuals/Hotelling’s (Ballabio & Consonni, 2013) and variable
selection using variable importance in projectigiP) with “greater than one” rule
(Andersen & Bro, 2010) were performed to improvesHRA classification. These methods
slightly improved the models but not to acceptdélels (see Table A2 for more details).

For CP-ANN, firstly, the genetic algorithm (GA) (Babio, Vasighi, Consonni, &
Kompany-Zareh, 2011) was used to optimize the nétwapology including neurons and

7
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number of epochs, resulting in 40 neurons and pd@les. As shown in Figure 3, the
performance of CP-ANN is not good in the CV and sess.

In SVM, the quadratic kernel gave the best accufansyong linear, quadratic, cubic
and radial basis function) (Brereton & Lloyd, 2010)he performance of Q-SVM was better
than PLS-DA and CP-ANN in terms Btc (see Table A3 for more details of Q-SVM
performance), but were still far from ideal (acay&alues were below 77.7%). In summary,
going from linear PLS-DA to non-linear CP-ANN andSY¥M improved classification
performance, but results were deemed insufficient.

The RSDE outperformed other classification mettHodsliscrimination of growth
conditions. To obtain a more detailed view of thassification power of this method, the
classification performance of RSDE in termsAo€, Sen, Prec for Fr samples irOM mode is
presented herécc value for eight classes was 79.4 %, $8e values ranged from 55.8-95.4
% andPrec values ranged from 63.6-90.5% for the test set gp@ctra). Though th&cc
value of RSDE (79.4%) was significantly higher thiat of the closegicc of Q-SVM
(79.4% vs. 71.1%, z = 2.9389, p = .00164) the diaation performance strongly showed
room for improvement. Table A3 shows more detdilthe classification performance of
RSDE in terms ofcc, Sen, Prec for Fr samples irOM mode.

One of the surprising aspects of RSDE algorithitsigisensitivity to preprocessing.
In other words, conventional chemometric spectreppcessing does not affect the
performance of this algorithm and therefore, ratadan be used as input for this algorithm
(Figure Al and Table A4) (Ho, 1998; Tan et al., 20@heng, Hu, Tong, & Du, 2014).
Additionally, the detector of the MicroNIR is esaly sensitive in the region of
approximately 1425 — 1575 nm. In the raw spectfaigure 2 it could be observed that
absorbance units of 3-3.5 were recorded. The deteperated at its limits in this region and
noise is visible with some large spikes. Still,reherere no issues in classifying the samples,
including in the external model validation, indicgtthe power of RSDE in NIR
spectroscopy.

3.3 Combining modes

In the previous analyses, we classified single MiEasurements. Of course, it is also
possible to take multiple NIR scans of a sampleugh multiple sample handling protocols
(i.e.,OM, TP andTB) and to combine the spectra (Borras et al., 2004} is cost-insensitive
as multiple measurements are easy to obtain witdield technologies. By simply
concatenating the measurement©bf, TP andTB NIR spectra, we can boost the
performance of RSDE. In this manner, the spectraédsion is increased and the RSDE has
more flexibility to select random subspaces and essult classification may be improved.

Two different options for data combination wereees (i) different measurement
modes (i.e.JTP/TB for consumers an@M/TP/TB for food administration) and (ii) multiple
spectra from same mode (i.©M/OM/OM, TP/TP/TP andTB/TB/TB). To combine different
measurement modes, we randomly selected one adatptpectra from each mode and
TB (andOM) of a sample to simulate ‘uncontrolled consumeasneements’. Table 1 gives
detailed classificatioAcc values of the RSDE when classifying the individolatombined
NIR spectra. The results in Table 1 confirmed thatdata combination resulted in
improvement of the classification over individuabdes.
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For the second combination method (multiple measargs of the same mode) there
was no significant improvement of the classificatperformance compared to the individual
measurements. Single measurements closer to thdeaddo better performance of the
RSDE, as can be seen from the increasing valueg @m column 3 to column 5.
Apparently, a single measurement is already highyesentative of the sample, and
combining data will improve the classification perhance only if new aspects of the sample
are added to the data (e.g., measuremer@4inTP andTB).
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Table 1. Accuracy of RSDE (in %) for individual and combined spectra.
[Insert Table 1 about here]

For a fair comparison with other classification huets, theTP/TB andOM/TP/TB
combined data sets were also analysed with Q-SMRAGIN and PLS-DA. In summary, the
RSDE again strongly outperformed the other methdls.classification accuracy of 99.4%
for the OM/TP/TB test set was significantly higher than the 82%hefQ-SVM (z = 5.3586, p
<.00001), the 65.4% of the CP-ANN and the 63.5%efPLS-DA. Also the classification
accuracy of 96.9% for thEP/TB test set was significantly higher than the 81.3%e Q-
SVM (z = 4.4773, p <.00001), the 63.6% of the ARNAand the 62.4% of the PLS-DA.
More details on the differences between modelghferclassificatiorof TP/TB and
OM/TP/TB test set (160 spectra) are provided in Table A5.

Efforts to validate the developed RSDE models weaele by using two shuffling
methods (y-randomization and the permutation (gdigker, Ricker, & Meringer, 2007).
After permutation, classification accuracy of th®E deteriorated. As an example, in the
classification of growth conditions & samples irOM mode, CV classification accuracy
was reduced from 99.0% (non-shuffled) to an avecdde.4% for permutated data. For the
combined data, it is noteworthy that the RSDE ip@eerful that it can get >80% accuracy in
a training set. However, cross validation and sestreveal that no structure was present in the
data, as the accuracies drop to values which abetter than random assignment (See Table
A6 for more details).

3.4. Leave-class-out analysis

In the previous analyses, the RSDE model was waomedata from all growth
conditions. But what if spectra from a not befoeers growth condition were classified by the
RSDE? To evaluate this, a final study was donedase leave-class-out (LCO)
methodology. Several RSDE models were trained ¢apsk-validated) using 8 -1=7
classes, while the left out class was completetylss a test set. This method was used 8
times, such that every class was left out, andsifiad, once.

It is important to note that RSDE classifications done according to the highest
classification probability, regardless of the abselalue of that probability. Because there is
no ‘correct classification’ in the LCO situationyteoffs were imposed on the classification
probability, before a classification would be adeep This can protect a researcher from
classifying highly deviating spectra. The resuftthe LCO analysis, with varying cut-offs are
shown in Table A6. The classification accuracyadte7-class models was over >98.5 % (see
column 2). One of the a priori expectation wasnd that CONV and STD (having similar
growth conditions) would be classified as the othenost situations. By increasing the
minimum classification probability, we expecteds&e this pattern more clearly.

Even when no cut-off was used for the classificapoobability, the results defied
expectations. The CONV spectra were classifiedthsrel* (63.3%) or ORG (36.7%), while
the majority (54.4%) of STD spectra were classiisd-R. Furthermore, the majority (66.7%)
of the 1* and the majority (83.3%) of ORG spectexevclassified as CONV. Somewhat in
line with expectations was that CF spectra weranipaiassified as FR (74.7%) and FR
spectra as CF (62.7%).
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309 Though the total number of spectra that could hesified decreased when we

310 increased the minimum classification probabilitg tesults became more distinct (See sub-
311 tables of Table A7). For example, with a cut-off @, an unexpected pattern became

312 apparent. Namely, the classifications reveal thatbfillets (1*, 2*, ORG and CONV) are
313  always classified as other Dutch fillets, and IiER, STD, CF and MAR) fillets are always
314 classified as other Irish fillets. We expect thas pattern is related to the difference in

315 lifetime of the chickens (Irish chickens on averéige longer than Dutch chickens).

316 Interestingly, the control fillets of the MAR comidin work well in the sense that they are
317  mostly classified as STD, and much less as the pr@mium fillets FR and CF.

318 4. Conclusion

319 A RSDE was used as a fast and reliable machineitepalgorithm for authentication
320 of the growth condition of chicken fillets and th&eshness within a thoroughly validated
321 chemometric workflow with several specific practicaplementations. The RSDE

322  considerably outperformed other common classifocathodels such as PLS-DA, CP-ANN
323 and SVM. Also, combining spectra improved the dfacsgion performance of this method
324 even further. We demonstrated that the use ofaéively inexpensive portable device was
325 able to provide very fast (~3 s per measuremest)ltein the application of NIR

326  spectroscopy in food authenticity. Consideringrtieasurement time of approximately 8s,
327 ~3.0s per NIR measurement and a few seconds tthéipackage, a complete analysis

328 (measure and monitor) would require approximatély idcluding data analysis. The

329 combination of handheld NIR with RSDE algorithm nadier a very interesting and reliable
330 tool for monitoring meat authenticity (and qualitiijectly in the field.

331 The RSDE algorithm was so powerful that it could ovly clearly discriminate

332 between NIR spectra based on the growth conditbtise chickens, the Leave-Class-Out
333  validation provided the authors with new insighteat the differences between country of
334 origin and the differences in meat. Our analysemdate that some adjustments to the

335  existing implementation are needed before the naetlogy can be applied in a real-world
336  setting. Imposing minimal classification probalpgig can protect from classifying meat of
337  known origin (i.e., chicken) into just any clas®wever, it is not advised to use this method
338 for classification of meats from unknown origire(i.other animals). Therefore, future work
339  could implement a pre-screening based on, for el@rtipe Mahalanobis distance of a new
340 spectrum to the spectra of the known classes. gitesge adaptation, the combined approach
341 presented in this work is very fast and if appli@sughout the supply chain, it could improve
342  the quality of meat that reaches consumers’ tahleseryday life.
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APPENDIX

Scheme Al. Details of the data collection

[Insert Scheme 1A here]

16



Table Al. Classification results (in %) for freshnes classification of chicken fillets based ofr
and Th. Sensitivity (Sen) and precision Pre) are reported. Precision Pre) indicates how
confident one can be about the given classification

[Insert Table Al here]
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Table A2. PLS-DA classification results (in %) afte outlier detection and variable selection.
Sensitivity (Sen) and specificity Spe) are reported.

[Insert Table A2 here]
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Table A3. Classification performance (in %) of RSDEand Q-SVM models for classification of
eight growth conditions. Precision gre) indicates how confident one can be about the gine
classification. The test set contained 467 spectra.

[Insert Table A3 here]
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Table A4. RSDE classification performance (in %) foraw and preprocessed Fr data in OM
mode for classification of growth conditions

[Insert Table A4 here]
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Table A5. Comparing classification performances fothe 160 combined-r test set data into
growth conditions.

[Insert Table A5 here]
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Table A6. Permutation test (y-randomization) for ewaluation of RSDE performance on
combined data

[Insert Table A6 here]
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Table A7. RSDE Classification performance folFr combined data OM/TP/TB) in leave-class-
out validation. Acc values (column 2) are based on 10 Fold Cross valtitan of the remaining 7-
class data. Percentages sum to 100 (to 1 decimadq®) over rows.

[Insert Table A7 here]
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Figure Al. Effect of preprocessing on data scattang in PCA space. Raw data (upper left),
preprocessed data by mean centering (MC) and standanormal variate (SNV) (upper right),
original data without outliers (bottom left) and preprocessed data after outlier removal using
MC and SNV (bottom right). Red circles show extreme&alues which were removed in bottom
figures according to Q-residuals and Hotelling’s T tests.

[Insert Figure Al here]
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Data TP TB OM TP/TB OM/TP/TB

Fresh Tran 944 954 96.2 100.0 100.0
Cv 862 887 920 953 984
Test 851 86.7 914 969 994

Thawed Train 90.3 915 945 100.0 100.0
Cv 826 822 842 944 958
Test 809 811 830 917 947




OM TP B
Tran CV Test Tran CV Test Tran cv Test
Acc 90.2 87.6 85.2 96.4 95.4 92.0 95.4 93.3 91.0
Fr Sen 90.1 89.1 88.4 97.0 95.1 94.3 97.2 94.3 91.1
Pre 90.3 89.4 87.1 98.3 96.3 94.0 96.3 93.1 90.0
Th Sen 89.4 86.3 84.0 98.1 96.0 93.2 95.1 92.0 92.2
Pre 90.0 87.2 85.2 96.2 94.2 95.1 96.0 93.2 91.3




oM TP TB

Traa cv Tran CV  Tran CV
Explained Variance 971 971 1000 1000 99.8 99.8

Optimal number of LVs 6 6 5 5 6 6
Preprocessing used? yes yes no no yes yes
1* Sen 844 841 49.4 49.1 82.4 82.3
Spe 642 64.0 90.2 90.0 82.0 81.3
2" Sen 818 816 525 51.0 80.9 80.2
Spe 61.6 615 89.0 88.8 81.1 80.5
FR Sen 889 881 92.0 91.0 82.9 81.7
Spe 69.3 67.9 75.6 75.7 815 80.3
CONV Sen 782 75.6 92.5 91.2 86.3 83.1
Spe 571 594 313 311 52.6 53.1
STD Sen 785 78.0 88.7 88.1 82.1 80.3
Se 64.6 65.0 56.7 55.9 50.6 52.1
ORG Sen 815 83.0 94.4 93.0 84.3 80.6
Spe 674 67.1 735 73.2 83.2 83.2
CF Sen 832 781 89.8 89.2 79.2 77.7
Spe 60.5 60.1 51.3 50.1 57.2 57.3
MAR Sen 86.1 86.0 711 71.0 83.2 81.0
Spe 922 922 88.3 88.2 93.3 93.2




OM samples RSDE Q-SVM
Train cv Test Train cv Test
Acc 85.1 78.5 79.4 o 68.7 711
1* Prec 83.0 76.0 74.8 73.0 66.0 62.2
Sen 85.0 80.0 79.5 90.0 84.0 80.3
2* Prec 85.0 78.0 80.0 720 61.0 68.8
Sen 84.0 77.0 76.2 69.0 55.0 62.9
FR Prec 83.1 76.8 73.2 80.7 72.0 66.4
Sen 79.2 76.0 69.1 73.8 64.0 63.2
CONV Prec 80.0 70.0 82.8 88.0 68.0 42.9
Sen 70.0 59.0 55.8 30.0 14.0 14.0
STD Prec 90.2 89.0 88.5 89.0 84.2 85.2
Sen 93.2 90.1 93.0 91.2 90.2 91.0
ORG Prec 81.0 72.0 63.6 82.0 66.0 65.5
Sen 77.0 66.0 67.7 72.0 59.0 58.1
CF Prec 824 78.0 80.3 88.2 71.2 53.3
Sen 771 62.2 59.8 35.1 24.3 225
MAR Prec 93.0 90.0 90.5 88.0 82.0 88.4
Sen 97.0 93.0 95.4 91.0 89.0 93.8

The Q-SVM had the closest overall test set Acc to RSDE. Still the RSDE significantly outperformed
Q-SVM (z=2.9389, p =.00164).



Data

Acc

Raw data
Preprocessed data*

Preprocessed data
without outliers**

Train CV Test

90.4 824 819

91.4 81.2 811

91.7 80.8  80.9

Preprocessed data after 90.6 82.7 819

outlier removal***

*Mean centering and standard normal variate (p&B/preprocessing

**Q-residsand Hotelling’s Twere used for outlier detection

***Mean-ceming and SNV on the data without outliers



Data Method Acc

Tran cv Test

OM/TP/TB RSDE 1000 984 994
SVM 92.7 815 820
CP-ANN 90.2 68.3 654
PLS-DA 78.8 66.5 635
TPTB RSDE 1000 953 96.9
SVM 88.8 822 813
CP-ANN 87.2 66.2 63.6
PLS-DA 76.3 643 624

Accuracy of RSDE for the test set was significantly higher than the accuracies of
other methods, with all p-values < .00001 based on one-sided z-tests.




RSDE model Training 5-fold CV Holdout CV(25%)

Acc %
Data 100.0 99.0 100.0
Shuffled y-1 82.0 14.9 15.0
Shuffled y-2 81.0 19.8 19.0
Shuffled y-3 82.2 15.1 6.8
Shuffled y-4 80.7 195 17.0

Shuffled y-5 83.1 17.6 13.6




Assignment of spectra, no cut-off

Leftout Acc #Spectra 1* 2* FR ORG STD CONV CF MAR
1* 99.3 30 100 6.7 66.7 100 6.7
2* 99.6 85 388 --- 35 31.8 24.7 12
FR 99.8 75 37.3 62.7
ORG 98.8 30 16.7 83.3
STD 99.2 90 11 544 289 15.6
CONV 993 30 63.3 36.7
CF 99.4 75 74.7 16.0 -- 93
MAR 99.0 175 34 23 269 41.7 257 ---
Assignment of spectra (cut-off p > .50)
Leftout Acc #Spectra 1* 2* FR ORG STD CONV CF MAR
1* 99.3 19 53 789 53 105
2* 99.6 73 452 --- 34.2 19.2 14
FR 99.8 75 37.3 62.7
ORG 98.8 30 16.7 83.3
STD 99.2 77 13 571 286 13.0
CONV 993 26 65.4 34.6
CF 99.4 63 79.4 14.3 -- 63
MAR 99.0 138 14 26.1 46.4 261 ---
Assignment of spectra, (cut-off p > .75)
#Spectra  1* 2* FR ORG STD CONV CF MAR
1* 99.3 9 100.0
2* 99.6 33 758 --- 21.2 3.0
FR 99.8 47 19.1 80.9
ORG 98.8 19 5.3 94.7
STD 99.2 35 74.3 114 143
CONV 993 19 73.7 26.3
CF 99.4 33 90.9 6.1 -- 30
MAR 99.0 71 19.7 59.2 211 ---
Assignment of spectra, (cut-off p > .90)
#Spectra  1* 2* FR ORG STD CONV CF MAR
1* 99.3 3 100.0
2* 99.6 24 91.7 --- 8.3
FR 99.8 26 154 84.6
ORG 98.8 8 125 87.5
STD 99.2 8 62.5 125 25.0
CONV 993 14 714 28.6
CF 99.4 17 100.0
MAR 99.0 31 16.1 67.7 16.1 ---




Integration of handheld NIR and machine learning fo the development of
a “Measure & Monitor” technology for food authenticity

Highlights

- Handheld spectroscopy becomes even more powerful through Ensemble Learning.
- Authenticity of packaged chicken fillet could be monitored non-invasively.

- Single scans can provide more than 95% classification accuracy

- Thiswork can be used towards consumer empowerment and forensic research.
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