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Integration of handheld NIR and machine learning to “Measure & Monitor” chicken 
meat authenticity. 

Abstract 1 

By combining portable, handheld near-infrared (NIR) spectroscopy with state-of-the-2 

art classification algorithms, we developed a powerful method to test chicken meat 3 

authenticity. The research presented shows that it is both possible to discriminate fresh from 4 

thawed meat, based on NIR spectra, as well as to correctly classify chicken fillets according to 5 

the growth conditions of the chickens with good accuracy. In all cases, the random subspace 6 

discriminant ensemble (RSDE) method significantly outperformed other common 7 

classification methods such as partial least squares-discriminant analysis (PLS-DA), artificial 8 

neural network (ANN) and support vector machine (SVM) with classification accuracy of 9 

>95%. This study shows that handheld NIR coupled with machine learning algorithms is a 10 

useful, fast, non-destructive tool to identify the authenticity of chicken meat. By comparing 11 

and combining different protocols to measure the NIR spectra (i.e., through packaging and 12 

directly on meat), we show the possibilities for both consumers and food inspection 13 

authorities to check the authenticity and origin of packaged chicken fillet. 14 

 Keywords: Handheld NIR, Chemometrics, Ensemble learning, Meat authenticity 15 
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1. Introduction 16 

 The supply of sufficient healthy, safe, and authentic food to a growing world 17 

population is one of the most important challenges for the present and the future 18 

(Pischetsrieder, 2018). Detection of food adulteration such as unlabelled replacement of food 19 

components may be hindered because of the targeted focus of analytical techniques (Reid, 20 

O'Donnell, & Downey, 2006; Sentandreu & Sentandreu, 2014). From an analytical 21 

standpoint, successful detection of food adulteration faces two major challenges(Reid et al., 22 

2006). The first challenge comprises untargeted determination of undeclared ingredients or 23 

unknown (hazardous) naturally present substances. Secondly, and more analytically 24 

challenging, are claims like animal welfare, fair trade, or eco-friendly production. While these 25 

“soft claims” are generally beyond the scope of analytical chemistry, the effects on the 26 

chemical composition of the product may still be found and quantified.  27 

 Meat authenticity (and traceability) are of particular importance in modern society 28 

(Sentandreu & Sentandreu, 2014; Vlachos, Arvanitoyannis, & Tserkezou, 2016). Recent 29 

events of meat adulteration with non-declared species such as horse meat illustrate the global 30 

need for clear and reliable checks for consumer products, but even intact fresh meat is often 31 

indistinguishable between brands or price-range. Nowadays price and lifestyle, together with 32 

religion and health concerns, determine an individual's choice for particular food products 33 

(Reid et al., 2006; Sentandreu & Sentandreu, 2014). 34 

 Detection technologies applied for food authenticity are mainly based on 35 

spectroscopic and chromatographic techniques (Gallo & Ferranti, 2016). Spectroscopic 36 

techniques have great potential for discrimination of food materials. One promising and 37 

widely used technique in this context is near infrared (NIR) spectroscopy, a rapid and non-38 

destructive technique. NIR enables preliminary monitoring of different types of food and as 39 

an analytical technique is able to give qualitative and quantitative information about complex 40 

samples (Abasi, Minaei, Jamshidi, & Fathi, 2018; Lohumi, Lee, Lee, & Cho, 2015; Prieto, 41 

Roehe, Lavín, Batten, & Andrés, 2009). 42 

 Developments in instrumentation technology have led to the availability of portable 43 

spectroscopic devices. Modern handheld NIR instruments that have been developed for food 44 

and drug quality control are fast, lightweight and relatively inexpensive. The trade-off for 45 

using these devices is that the spectral region and resolution are limited compared to benchtop 46 

technologies(Modroño, Soldado, Martínez-Fernández, & de la Roza-Delgado, 2017; Pasquini, 47 

2018; Zamora-Rojas, Pérez-Marín, De Pedro-Sanz, Guerrero-Ginel, & Garrido-Varo, 2012). 48 

Additionally, scattering effects and instrumental and ambient noise make robust chemometric 49 

and machine learning methods crucial to extract the relevant information from the spectra 50 

(Arvanitoyannis & Van Houwelingen-Koukaliaroglou, 2003; Curran et al., 2018). 51 

 Previously, different chemometric and machine learning approaches such as principal 52 

component analysis (PCA), partial least squares (PLS), artificial neural network (ANN), 53 

linear discriminant analysis (LDA) and support vector machine (SVM) have been used for the 54 

analysis of handheld NIR spectra in relation to food research (Acquarelli et al., 2017; 55 

Arvanitoyannis & Van Houwelingen-Koukaliaroglou, 2003; Ballabio, Consonni, & 56 

Todeschini, 2009; Brereton & Lloyd, 2010; Efenberger-Szmechtyk, Nowak, & Kregiel, 2018; 57 

Risoluti, Gregori, Schiavone, & Materazzi, 2018; Zontov, Balyklova, Titova, Rodionova, & 58 
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Pomerantsev, 2016). However, these methods perform poorly for exploration and 59 

classification of complex analytical problems like freshness and growth system of food 60 

samples. Additionally, these methods often need data preprocessing and selection of the best 61 

preprocessing strategy is challenging on its own (Rinnan, 2014; Rinnan, Berg, & Engelsen, 62 

2009). 63 

 In the present contribution, a powerful machine learning algorithm is used based on 64 

ensemble learning (Merkwirth et al., 2004; Rokach, 2010). This method splits the data into 65 

multiple parts and combines the best models for the different parts (of the NIR spectra) to 66 

come to a majority vote classification. Random subspace discriminant ensemble (RSDE) (Ho, 67 

1998) is proposed here as a fast and reliable method to use handheld NIR devices for food 68 

authenticity. The simplicity of the different components of our methodology will allow for 69 

“Measure & Monitor” technology to evaluate food authenticity.  The goals of the presented 70 

research were (1) discrimination of fresh (Fr) and Thawed (Th) samples and (2) 71 

discrimination of growth systems based on handheld NIR spectra from three recording modes 72 

of on meat (OM), through the top of the package (TP) and through the package held bottom 73 

up (TB), such that the meat touched the covering foil. 74 

2. Materials and methods. 75 

2.1. Sampling and data collection 76 

 Fresh chicken breast fillet samples were kindly provided Albert Heijn B.V. (The 77 

Netherlands) and Musgraves Group Ltd. (Ireland) in their standard supermarket packages in 78 

June 2015. The animal welfare classification system differs between the countries of origin.  79 

Albert Heijn B.V. has provided a set of 70 fresh chicken fillet samples from different 80 

production systems and batches, divided over a time span of 3 weeks. Animal welfare was 81 

expressed on the packaging by “no star” representing the lowest level of welfare and three 82 

stars representing the highest level of welfare.  83 

 Conventional chicken (CONV) (18 samples) 84 

 Free-range (1 star, 1*) (17 samples) 85 

 Specialty (2 stars, 2*) (17 samples) 86 

 Organic (ORG) (3 stars, 3*) (18 samples) 87 

In the same period, Musgraves Group has provided a set of 83 fresh chicken fillet samples 88 

from different production systems and batches, divided over a time span of 2 weeks: 89 

 Standard chicken (STD) (18 samples) 90 

 Free range (FR) (15 samples) 91 

 Corn fed chicken (CF) (15 samples) 92 

 Marinated chicken (MAR) (35 samples) 93 

Samples (153 total) were shipped in ‘fresh packs’, guaranteeing a temperature between 4 and 94 

7oC for 96h. Samples arrived within that time-span. Marinated chicken fillets acted as 95 

controls, since these were expected to be highly identifiable. 96 
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 Thawed samples (133 in total) were obtained by freezing at − 18 °C for 48 h 97 

and thawing for 24 h at + 4 °C. Twenty fresh samples were used for β-hydroxyacyl-CoA-98 

dehydrogenase (HADH) reference measurements (13% of the total sample set) to assess their 99 

storage history, i.e. whether the samples had been chilled or frozen (Boerrigter-Eenling, 100 

Alewijn, Weesepoel, & van Ruth, 2017). For the Dutch set, three samples of each class were 101 

used for HADH, whilst for the Irish set two samples were subjected to HADH per category. 102 

No deviations were found in the freshness of the samples. Samples which were subjected to 103 

HADH measurements were not subjected to NIR measurements for the thawed category. No 104 

reference methods were available for confirmation of the growing system of the chicken fillet 105 

samples. Providers have confirmed that the indicated growing system is correct. Note that 106 

growth conditions may be similar across countries (e.g., CONV and STD), but that different 107 

labels have been attached in order to classify between-country variation.  108 

        NIR data was acquired using a MicroNIR Pro NIR (Viavi Solutions, Milpitas, CA, 109 

USA), powered by the MicroNIR Pro software (version 2.2, Viavi Solutions) in diffuse 110 

reflectance mode in wavelength range of approximately 908-1676 nm with an evenly 111 

distributed spectral resolution, resulting in 125 variables/measurement. A 99% white diffuse 112 

reflectance standard was used for calibration followed by a dark measurement. This 113 

calibration was repeated in 10 minute cycles. The 153 chicken fillet samples were subjected to 114 

non-destructive NIR measurements by applying the NIR with standard collar in three different 115 

ways: on meat (OM), through package (TP) and through packaging bottom up (TB). First, TP 116 

measurements were acquired by placing the package on a flat surface and applying the NIR 117 

on the transparent top foil without pressure above the fillet sample. In most cases an air 118 

pocket was between the foil and the sample. Secondly, the TB measurements were performed 119 

by flipping the package bottom up, letting the fillet sample lean on the top transparent foil, 120 

followed by NIR measurements through this transparent foil. Finally, the transparent top foil 121 

was removed and NIR measurements were taken directly on the fillet sample without 122 

applying considerable pressure. Prior to freezing, the fillet package was covered with a new 123 

layer of identical transparent top foil.  Five replicates were taken per OM/TP/TB, with a total 124 

of 4590 raw NIR measurements. Scheme A1 of the appendix illustrates how the samples were 125 

collected.  126 

2.2. Data handling and preprocessing  127 

Spectral data was labelled to ensure replicate measurements and measurements from 128 

different modes of the same fillet could be connected. Training and test sets were created 129 

using the Duplex method (Daszykowski, Walczak, & Massart, 2002; Puzyn, Mostrag-130 

Szlichtyng, Gajewicz, Skrzyński, & Worth, 2011; Snee, 1977) on the entire data set in order 131 

to ensure a representative test set including boundary cases (Reitermanova, 2010; Westad & 132 

Marini, 2015). All classes were represented in the test set. Importantly, all measurements (i.e., 133 

spectra) of a sample were assigned to either training set (70%) or test set (30%) in order to 134 

ensure that the test set did not include data from the same sample that the model was trained 135 

on. 136 

When looking for the optimum pre-processing strategy a design of experiments was 137 

used (Gerretzen et al., 2015). The predictive classification model was built (PLS-DA, CP-138 

ANN, SVM and RSDE) and validated using cross validation (CV). In every CV, spectra 139 

belonging to the same chicken sample were removed from the train set (leave-chicken-out). 140 
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After training, tuning and evaluation of the model, the test set was used for final performance 141 

estimation. The data analysis pipeline of the presented work is shown in Scheme 1.   142 

[Scheme 1 about here] 143 

 144 

2.3. Random subspace discriminant ensemble. 145 

Classification of the NIR spectra was done using Random Subspace Discriminant 146 

Ensemble. This method divides the spectra into a number of random subspaces (30 random 147 

subspaces as standard in this case), selected from the spectral domain (e.g., a random subset 148 

of 60 wavelengths is the default in Matlab). Discriminant analysis (DA) was used to classify 149 

the spectra in each subspace (Ho, 1998; Tan, Li, & Qin, 2008). Each subspace may result in 150 

different classification probabilities. These probabilities are combined by taking their average 151 

across all subspaces to come to a single classification model of the full spectra. Figure 1 152 

shows the general architecture of RSDE algorithm. The potential of RSDE in high 153 

dimensional data comes from the fact that each model requires only a limited number of 154 

variables.  155 

Figure 1. Principle of the RSDE framework (sequential subspaces used for illustrative purposes). 156 

[Insert Figure 1 about here] 157 

2.4. Software 158 

Chemometric data analysis was performed in MATLAB environment R2016a, with 159 

the exception of the leave-class-out validation (Section 3.5), which was done in R2019B 160 

(Mathworks, MA, USA). The PLS-Toolbox v7.8 (Eigenvector, WA, USA) was used for PLS-161 

DA modelling, the pre-processing toolbox (Gerretzen et al., 2015) was used to choose the best 162 

preprocessing strategy (based on an experimental design), the CP-ANN toolbox (Milano 163 

Chemometrics and QSAR Research Group) was used for optimization of the Kohonen 164 

network and supervised classification and the Classification Learner toolbox of MATLAB 165 

was used for SVM and RSDE modelling 166 

3. Classification of NIR spectra 167 

3.1. Fresh vs. Thawed 168 

The RSDE algorithm was first used to discriminate Fr and Th samples for each of the 169 

three different spectral recording modes. For the preprocessing of the data, an experimental 170 

design was used to find the best strategy with minimal classification error (Gerretzen et al., 171 

2015). Classification performance was evaluated using accuracy (Acc), precision (Pre), 172 

sensitivity (Sen), specificity (Spe) and error rate (ER) (Ballabio & Consonni, 2013).  173 

Figure 2 shows the NIR spectra of Fr and Th samples in three different spectral 174 

recording modes of OM/TP/TB. Coloring the spectra by recording mode shows that there are 175 

clear differences in absorbance related to how the spectra were obtained. The differences are 176 

similar for Fr and Th samples. Because Fr and Th samples have similar spectra, the first 177 

challenge in this study was to discriminate Fr and Th samples based on NIR spectra.   178 

Scheme 1. Data analysis pipeline for each presented study. 
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[Insert Figure 2 about here] 179 

The RSDE performed well in discriminating individual spectra of Fr and Th samples; Acc 180 

values were 90.2% for training set, 87.6% for cross validation (CV) and 85.2% for test set of 181 

OM samples. For TP samples, the values were 96.4%, 95.4% and 92.0% for train, CV and test 182 

sets, respectively. The Acc values for TB samples were respectively 95.4%, 93.3% and 91.0% 183 

for train, CV and test sets. Details on the classification power can be found in Table A1 in the 184 

appendix.  185 

3.2 Classification in growth conditions 186 

The ability of the RSDE method to classify individual NIR spectra was promising. 187 

The next objective was to evaluate whether the RSDE method could also be used to 188 

discriminate between the growth systems of the chickens. The RSDE algorithm was used for 189 

classification of seven growth conditions of 1*/2*/ORG/CONV/STD/FR/CF as well as MAR 190 

samples in Fr and Th conditions in OM, TP and TB modes (details in section 2.1). As an 191 

example, Figure 3 depicts the discrimination performance of RSDE for classification of 192 

chickens in different growth conditions in terms of Acc in OM, TP and TB modes. As can be 193 

seen, the values of Acc for training, validation and test sets are between 80-90 % for OM 194 

(Figure 3a), TP (Figure 3b) and TB (Figure 3c). The values of Acc are low because of the 195 

complexity of the samples and similarity in the NIR spectra of samples in different conditions.  196 

To compare the results of RSDE model with common classification methods in 197 

chemometrics, NIR data of chickens in different growth conditions were classified by partial 198 

least squares-discriminant analysis (PLS-DA) (Ballabio & Consonni, 2013; Gromski et al., 199 

2015), counter propagation-artificial neural network (CP-ANN) (Ballabio et al., 2009; 200 

Ballabio & Vasighi, 2012) and support vector machine with quadratic kernel function (Q-201 

SVM) (Brereton & Lloyd, 2010). Model performance of the RSDE was better than that of the 202 

other methods. In Figure 3, the classification results for PLS-DA, CP-ANN and Q-SVM for 203 

training, validation and test sets in terms of Acc are shown in comparison with RSDE. Due to 204 

the type of subspace selection, the RSDE is only slightly affected by noise and is less prone to 205 

overfitting (shown by similar Acc values for train, validation and test sets). 206 

[Insert Figure 3 about here] 207 

For PLS-DA, the best preprocessing strategy was chosen according to experimental 208 

design approach (lowest classification error) (Gerretzen et al., 2015). In this regard, mean-209 

centering and pareto scaling were the best pre-processing strategies. Other attempts such as 210 

outlier detection using Q-residuals/Hotelling’s T2 (Ballabio & Consonni, 2013) and variable 211 

selection using variable importance in projection (VIP) with “greater than one” rule 212 

(Andersen & Bro, 2010) were performed to improve PLS-DA classification. These methods 213 

slightly improved the models but not to acceptable levels (see Table A2 for more details).  214 

For CP-ANN, firstly, the genetic algorithm (GA) (Ballabio, Vasighi, Consonni, & 215 

Kompany-Zareh, 2011) was used to optimize the network topology including neurons and 216 

Figure 3. Classification Acc in OM (a), TP (b) and TB (c) modes. 

Figure 2. NIR spectra from different modes of fresh (left) and thawed (right) 
chicken fillets 
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number of epochs, resulting in 40 neurons and 150 epochs. As shown in Figure 3, the 217 

performance of CP-ANN is not good in the CV and test sets.   218 

In SVM, the quadratic kernel gave the best accuracy (among linear, quadratic, cubic 219 

and radial basis function) (Brereton & Lloyd, 2010).  The performance of Q-SVM was better 220 

than PLS-DA and CP-ANN in terms of Acc (see Table A3 for more details of Q-SVM 221 

performance), but were still far from ideal (accuracy values were below 77.7%). In summary, 222 

going from linear PLS-DA to non-linear CP-ANN and Q-SVM improved classification 223 

performance, but results were deemed insufficient.  224 

The RSDE outperformed other classification methods for discrimination of growth 225 

conditions. To obtain a more detailed view of the classification power of this method, the 226 

classification performance of RSDE in terms of Acc, Sen, Prec for Fr samples in OM mode is 227 

presented here; Acc value for eight classes was 79.4 %, the Sen values ranged from 55.8-95.4 228 

% and Prec values ranged from 63.6-90.5% for the test set (467 spectra). Though the Acc 229 

value of RSDE (79.4%) was significantly higher than that of the closest Acc of Q-SVM 230 

(79.4% vs. 71.1%, z = 2.9389, p = .00164) the classification performance strongly showed 231 

room for improvement. Table A3 shows more details of the classification performance of 232 

RSDE in terms of Acc, Sen, Prec for Fr samples in OM mode. 233 

One of the surprising aspects of RSDE algorithm is its insensitivity to preprocessing. 234 

In other words, conventional chemometric spectral preprocessing does not affect the 235 

performance of this algorithm and therefore, raw data can be used as input for this algorithm 236 

(Figure A1 and Table A4) (Ho, 1998; Tan et al., 2008; Zheng, Hu, Tong, & Du, 2014). 237 

Additionally, the detector of the MicroNIR is especially sensitive in the region of 238 

approximately 1425 – 1575 nm. In the raw spectra in Figure 2 it could be observed that 239 

absorbance units of 3-3.5 were recorded. The detector operated at its limits in this region and 240 

noise is visible with some large spikes. Still, there were no issues in classifying the samples, 241 

including in the external model validation, indicating the power of RSDE in NIR 242 

spectroscopy. 243 

3.3 Combining modes 244 

In the previous analyses, we classified single NIR measurements. Of course, it is also 245 

possible to take multiple NIR scans of a sample through multiple sample handling protocols 246 

(i.e., OM, TP and TB) and to combine the spectra (Borràs et al., 2015). This is cost-insensitive 247 

as multiple measurements are easy to obtain with handheld technologies. By simply 248 

concatenating the measurements of OM, TP and TB NIR spectra, we can boost the 249 

performance of RSDE. In this manner, the spectral dimension is increased and the RSDE has 250 

more flexibility to select random subspaces and as a result classification may be improved.  251 

Two different options for data combination were tested; (i) different measurement 252 

modes (i.e., TP/TB for consumers and OM/TP/TB for food administration) and (ii) multiple 253 

spectra from same mode (i.e., OM/OM/OM, TP/TP/TP and TB/TB/TB). To combine different 254 

measurement modes, we randomly selected one of replicate spectra from each mode TP and 255 

TB (and OM) of a sample to simulate ‘uncontrolled consumer measurements’. Table 1 gives 256 

detailed classification Acc values of the RSDE when classifying the individual or combined 257 

NIR spectra. The results in Table 1 confirmed that the data combination resulted in 258 

improvement of the classification over individual modes.  259 
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For the second combination method (multiple measurements of the same mode) there 260 

was no significant improvement of the classification performance compared to the individual 261 

measurements. Single measurements closer to the meat lead to better performance of the 262 

RSDE, as can be seen from the increasing values going from column 3 to column 5. 263 

Apparently, a single measurement is already highly representative of the sample, and 264 

combining data will improve the classification performance only if new aspects of the sample 265 

are added to the data (e.g., measurements in OM, TP and TB).   266 
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Table 1. Accuracy of RSDE (in %) for individual and combined spectra. 267 

[Insert Table 1 about here] 268 

For a fair comparison with other classification methods, the TP/TB and OM/TP/TB 269 

combined data sets were also analysed with Q-SVM, CP-ANN and PLS-DA. In summary, the 270 

RSDE again strongly outperformed the other methods. The classification accuracy of 99.4% 271 

for the OM/TP/TB test set was significantly higher than the 82% of the Q-SVM (z = 5.3586, p 272 

< .00001), the 65.4% of the CP-ANN and the 63.5% of the PLS-DA. Also the classification 273 

accuracy of 96.9% for the TP/TB test set was significantly higher than the 81.3% of the Q-274 

SVM (z = 4.4773, p < .00001), the 63.6% of the CP-ANN and the 62.4% of the PLS-DA. 275 

More details on the differences between models for the classification of TP/TB and 276 

OM/TP/TB test set (160 spectra) are provided in Table A5. 277 

Efforts to validate the developed RSDE models were made by using two shuffling 278 

methods (y-randomization and the permutation test) (Rücker, Rücker, & Meringer, 2007). 279 

After permutation, classification accuracy of the RSDE deteriorated. As an example, in the 280 

classification of growth conditions of Fr samples in OM mode, CV classification accuracy 281 

was reduced from 99.0% (non-shuffled) to an average of 17.4% for permutated data. For the 282 

combined data, it is noteworthy that the RSDE is so powerful that it can get >80% accuracy in 283 

a training set. However, cross validation and test set reveal that no structure was present in the 284 

data, as the accuracies drop to values which are no better than random assignment (See Table 285 

A6 for more details).  286 

3.4. Leave-class-out analysis 287 

In the previous analyses, the RSDE model was trained on data from all growth 288 

conditions. But what if spectra from a not before seen growth condition were classified by the 289 

RSDE? To evaluate this, a final study was done based on a leave-class-out (LCO) 290 

methodology. Several RSDE models were trained (and cross-validated) using 8 - 1 = 7 291 

classes, while the left out class was completely used as a test set. This method was used 8 292 

times, such that every class was left out, and classified, once.  293 

It is important to note that RSDE classifications are done according to the highest 294 

classification probability, regardless of the absolute value of that probability. Because there is 295 

no ‘correct classification’ in the LCO situation, cut-offs were imposed on the classification 296 

probability, before a classification would be accepted. This can protect a researcher from 297 

classifying highly deviating spectra. The results of the LCO analysis, with varying cut-offs are 298 

shown in Table A6. The classification accuracy of each 7-class models was over >98.5 % (see 299 

column 2). One of the a priori expectation was to find that CONV and STD (having similar 300 

growth conditions) would be classified as the other in most situations. By increasing the 301 

minimum classification probability, we expected to see this pattern more clearly.  302 

Even when no cut-off was used for the classification probability, the results defied 303 

expectations. The CONV spectra were classified as either 1* (63.3%) or ORG (36.7%), while 304 

the majority (54.4%) of STD spectra were classified as FR. Furthermore, the majority (66.7%) 305 

of the 1* and the majority (83.3%) of ORG spectra were classified as CONV. Somewhat in 306 

line with expectations was that CF spectra were mainly classified as FR (74.7%) and FR 307 

spectra as CF (62.7%).  308 
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Though the total number of spectra that could be classified decreased when we 309 

increased the minimum classification probability the results became more distinct (See sub-310 

tables of Table A7). For example, with a cut-off of .90, an unexpected pattern became 311 

apparent. Namely, the classifications reveal that Dutch fillets (1*, 2*, ORG and CONV) are 312 

always classified as other Dutch fillets, and Irish (FR, STD, CF and MAR) fillets are always 313 

classified as other Irish fillets. We expect that this pattern is related to the difference in 314 

lifetime of the chickens (Irish chickens on average live longer than Dutch chickens). 315 

Interestingly, the control fillets of the MAR condition work well in the sense that they are 316 

mostly classified as STD, and much less as the more premium fillets FR and CF. 317 

4. Conclusion  318 

A RSDE was used as a fast and reliable machine learning algorithm for authentication 319 

of the growth condition of chicken fillets and their freshness within a thoroughly validated 320 

chemometric workflow with several specific practical implementations. The RSDE 321 

considerably outperformed other common classification models such as PLS-DA, CP-ANN 322 

and SVM. Also, combining spectra improved the classification performance of this method 323 

even further. We demonstrated that the use of a relatively inexpensive portable device was 324 

able to provide very fast (~3 s per measurement) results in the application of NIR 325 

spectroscopy in food authenticity. Considering the measurement time of approximately 8s, 326 

~3.0s per NIR measurement and a few seconds to flip the package, a complete analysis 327 

(measure and monitor) would require approximately 20s including data analysis.  The 328 

combination of handheld NIR with RSDE algorithm may offer a very interesting and reliable 329 

tool for monitoring meat authenticity (and quality) directly in the field. 330 

The RSDE algorithm was so powerful that it could not only clearly discriminate 331 

between NIR spectra based on the growth conditions of the chickens, the Leave-Class-Out 332 

validation provided the authors with new insights about the differences between country of 333 

origin and the differences in meat. Our analyses do indicate that some adjustments to the 334 

existing implementation are needed before the methodology can be applied in a real-world 335 

setting. Imposing minimal classification probabilities can protect from classifying meat of 336 

known origin (i.e., chicken) into just any class. However, it is not advised to use this method 337 

for classification of meats from unknown origin (i.e., other animals). Therefore, future work 338 

could implement a pre-screening based on, for example, the Mahalanobis distance of a new 339 

spectrum to the spectra of the known classes. After these adaptation, the combined approach 340 

presented in this work is very fast and if applied throughout the supply chain, it could improve 341 

the quality of meat that reaches consumers’ tables in everyday life.   342 
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APPENDIX 
 

Scheme A1. Details of the data collection  

[Insert Scheme 1A here] 
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Table A1. Classification results (in %) for freshness classification of chicken fillets based on Fr 
and Th. Sensitivity (Sen) and precision (Pre) are reported. Precision (Pre) indicates how 
confident one can be about the given classification 

[Insert Table A1 here] 
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Table A2. PLS-DA classification results (in %) after outlier detection and variable selection. 
Sensitivity (Sen) and specificity (Spe) are reported.  

[Insert Table A2 here] 
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Table A3. Classification performance (in %) of RSDE and Q-SVM models for classification of 
eight growth conditions. Precision (pre) indicates how confident one can be about the given 
classification. The test set contained 467 spectra.  

[Insert Table A3 here] 
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Table A4. RSDE classification performance (in %) for raw and preprocessed Fr data in OM 
mode for classification of growth conditions. 

[Insert Table A4 here] 
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Table A5. Comparing classification performances for the 160 combined Fr test set data into 
growth conditions.  

[Insert Table A5 here] 
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Table A6. Permutation test (y-randomization) for evaluation of RSDE performance on 
combined data 

[Insert Table A6 here] 
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Table A7. RSDE Classification performance for Fr combined data (OM/TP/TB) in leave-class-
out validation. Acc values (column 2) are based on 10 Fold Cross validation of the remaining 7-
class data. Percentages sum to 100 (to 1 decimal place) over rows. 

[Insert Table A7 here] 
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Figure A1. Effect of preprocessing on data scattering in PCA space. Raw data (upper left), 
preprocessed data by mean centering (MC) and standard normal variate (SNV) (upper right), 
original data without outliers (bottom left) and preprocessed data after outlier removal using 
MC and SNV (bottom right). Red circles show extreme values which were removed in bottom 
figures according to Q-residuals and Hotelling’s T2 tests.  

[Insert Figure A1 here] 

 

 

 

 

 

 

 

 

 

 















 Data TP TB  OM TP/TB OM/TP/TB 

Fresh Train 94.4 95.4 96.2 100.0 100.0 

 CV 86.2 88.7 92.0 95.3 98.4 

 Test 85.1 86.7 91.4 96.9 99.4 

Thawed Train 90.3 91.5 94.5 100.0 100.0 

 CV 82.6 82.2 84.2 94.4 95.8 

 Test 80.9 81.1 83.0 91.7 94.7 

 



  OM TP TB 
  Train CV Test Train CV Test Train CV Test 
 Acc 90.2 87.6 85.2 96.4 95.4 92.0 95.4 93.3 91.0 
Fr Sen 90.1 89.1 88.4 97.0 95.1 94.3 97.2 94.3 91.1 

Pre 90.3 89.4 87.1 98.3 96.3 94.0 96.3 93.1 90.0 
Th Sen 89.4 86.3 84.0 98.1 96.0 93.2 95.1 92.0 92.2 

Pre 90.0 87.2 85.2 96.2 94.2 95.1 96.0 93.2 91.3 
 



 
 OM TP TB 

 
 

Trai
n 

CV Train CV Train CV 

 Explained Variance 97.1 97.1 100.0 100.0 99.8 99.8 

 Optimal number of LVs 6 6 5 5 6 6 

 Preprocessing used? yes yes no no yes yes 

1* Sen 84.4 84.1 49.4 49.1 82.4 82.3 

 Spe 64.2 64.0 90.2 90.0 82.0 81.3 

2* Sen 81.8 81.6 52.5 51.0 80.9 80.2 

 Spe 61.6 61.5 89.0 88.8 81.1 80.5 

FR Sen 88.9 88.1 92.0 91.0 82.9 81.7 

 Spe 69.3 67.9 75.6 75.7 81.5 80.3 

CONV Sen 78.2 75.6 92.5 91.2 86.3 83.1 

 Spe 57.1 59.4 31.3 31.1 52.6 53.1 

STD Sen 78.5 78.0 88.7 88.1 82.1 80.3 

 Spe 64.6 65.0 56.7 55.9 50.6 52.1 

ORG Sen 81.5 83.0 94.4 93.0 84.3 80.6 

 Spe 67.4 67.1 73.5 73.2 83.2 83.2 

CF Sen 83.2 78.1 89.8 89.2 79.2 77.7 

 Spe 60.5 60.1 51.3 50.1 57.2 57.3 

MAR Sen 86.1 86.0 71.1 71.0 83.2 81.0 

 Spe 92.2 92.2 88.3 88.2 93.3 93.2 

 



OM samples  RSDE Q-SVM 

  Train CV Test Train CV Test 

 Acc 85.1 78.5 79.4 77.7 68.7 71.1 

1* Prec 83.0 76.0 74.8 73.0 66.0 62.2 

Sen 85.0 80.0 79.5 90.0 84.0 80.3 

2* Prec 85.0 78.0 80.0 72.0 61.0 68.8 

Sen 84.0 77.0 76.2 69.0 55.0 62.9 

FR Prec 83.1 76.8 73.2 80.7 72.0 66.4 

Sen 79.2 76.0 69.1 73.8 64.0 63.2 

CONV Prec 80.0 70.0 82.8 88.0 68.0 42.9 

Sen 70.0 59.0 55.8 30.0 14.0 14.0 

STD Prec 90.2 89.0 88.5 89.0 84.2 85.2 

Sen 93.2 90.1 93.0 91.2 90.2 91.0 

ORG Prec 81.0 72.0 63.6 82.0 66.0 65.5 

Sen 77.0 66.0 67.7 72.0 59.0 58.1 

CF Prec 82.4 78.0 80.3 88.2 71.2 53.3 

Sen 77.1 62.2 59.8 35.1 24.3 22.5 

MAR Prec 93.0 90.0 90.5 88.0 82.0 88.4 

Sen 97.0 93.0 95.4 91.0 89.0 93.8 

The Q-SVM had the closest overall test set Acc to RSDE. Still the RSDE significantly outperformed 
Q-SVM (z = 2.9389, p = .00164). 

 



Data Acc  

 Train CV Test 

Raw data 90.4 82.4 81.9 

Preprocessed data* 91.4 81.2 81.1 

Preprocessed data 
without outliers** 

91.7 80.8 80.9 

Preprocessed data after 
outlier removal*** 

90.6 82.7 81.9 

   *Mean centering and standard normal variate (SNV) as preprocessing 

                                       **Q-residuals and Hotelling’s T2 were used for outlier detection 

                                        ***Mean-centering and SNV on the data without outliers 

 



Data Method Acc  

  Train CV Test 

OM/TP/TB RSDE 100.0 98.4 99.4 

 SVM 92.7 81.5 82.0 

 CP-ANN 90.2 68.3 65.4 

 PLS-DA 78.8 66.5 63.5 

TP/TB RSDE 100.0 95.3 96.9 

 SVM 88.8 82.2 81.3 

 CP-ANN 87.2 66.2 63.6 

 PLS-DA 76.3 64.3 62.4 

Accuracy of RSDE for the test set was significantly higher than the accuracies of 
other methods, with all p-values < .00001 based on one-sided z-tests.  

 



RSDE model Training 5-fold CV Holdout CV(25%) 

 Acc % 

Data 100.0 99.0 100.0 

Shuffled y-1 82.0 14.9 15.0 

Shuffled y-2 81.0 19.8 19.0 

Shuffled y-3 82.2 15.1 6.8 

Shuffled y-4 80.7 19.5 17.0 

Shuffled y-5 83.1 17.6 13.6 

 



      Assignment of spectra, no cut-off 
Left out Acc #Spectra 1* 2* FR ORG STD CONV CF MAR 
1* 99.3 30 --- 10.0 6.7 66.7 10.0 6.7 
2* 99.6 85 38.8 --- 3.5 31.8 24.7 1.2 
FR 99.8 75 --- 37.3 62.7 
ORG 98.8 30 16.7 --- 83.3 
STD 99.2 90 1.1 54.4 --- 28.9 15.6 
CONV 99.3 30 63.3 36.7 --- 
CF 99.4 75 74.7 16.0 --- 9.3 
MAR 99.0 175 3.4 2.3 26.9 41.7 25.7 --- 

Assignment of spectra (cut-off p > .50) 
Left out Acc #Spectra 1* 2* FR ORG STD CONV CF MAR 
1* 99.3 19 --- 5.3 78.9 5.3 10.5 
2* 99.6 73 45.2 --- 34.2 19.2 1.4 
FR 99.8 75 --- 37.3 62.7 
ORG 98.8 30 16.7 --- 83.3 
STD 99.2 77 1.3 57.1 --- 28.6 13.0 
CONV 99.3 26 65.4 34.6 --- 
CF 99.4 63 79.4 14.3 --- 6.3 
MAR 99.0 138 1.4 26.1 46.4 26.1 --- 

Assignment of spectra, (cut-off p > .75) 
#Spectra 1* 2* FR ORG STD CONV CF MAR 

1* 99.3 9 --- 100.0 
2* 99.6 33 75.8 --- 21.2 3.0 
FR 99.8 47 --- 19.1 80.9 
ORG 98.8 19 5.3 --- 94.7 
STD 99.2 35 74.3 --- 11.4 14.3 
CONV 99.3 19 73.7 26.3 --- 
CF 99.4 33 90.9 6.1 --- 3.0 
MAR 99.0 71 19.7 59.2 21.1 --- 

Assignment of spectra, (cut-off p > .90) 
#Spectra 1* 2* FR ORG STD CONV CF MAR 

1* 99.3 3 --- 100.0 
2* 99.6 24 91.7 --- 8.3 
FR 99.8 26 --- 15.4 84.6 
ORG 98.8 8 12.5 --- 87.5 
STD 99.2 8 62.5 --- 12.5 25.0 
CONV 99.3 14 71.4 28.6 --- 
CF 99.4 17 100.0 --- 
MAR 99.0 31 16.1 67.7 16.1 --- 

 



Integration of handheld NIR and machine learning for the development of 
a “Measure & Monitor” technology for food authenticity 

Highlights 

 

- Handheld spectroscopy becomes even more powerful through Ensemble Learning. 
- Authenticity of packaged chicken fillet could be monitored non-invasively. 
- Single scans can provide more than 95% classification accuracy  
- This work can be used towards consumer empowerment and forensic research. 
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