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ABSTRACT To detect large-variance code clones (i.e. clones with many modifications) in large-scale code
repositories is difficult because most current tools can only detect almost identical or very similar clones.
It has an important impact on downstream software applications such as bug detection, code completion,
software analysis, etc. Recently, CCAligner made an attempt to detect the code clones with insertions or
deletions in one place, which were called large-gap clones. Our contribution is to develop a novel and
effective detection approach of large-variance clones to more general cases for not only the concentrated
code modifications but also the scattered code modifications. A detector named LVMapper is proposed,
borrowing and changing the approach of sequencing alignment in bioinformatics which can find two similar
sequences with more differences. The ability of LVMapper was tested on 8 open source projects datasets,
and the results show that LVMapper detected more than 5 times of large-variance clones compared with
other state-of-the-art tools including CCAligner. Furthermore, our new tool also presents comparable recall
for general Type-1, Type-2 and Type-3 clones with precision of 88.5% on the widely used benchmarking
dataset BigCloneBench.

INDEX TERMS clone detection, large-variance clone, dynamic threshold, sequencing alignment

I. INTRODUCTION

CLONE code is generated by copying, pasting and mod-
ifying code fragments for reuse, which are common

in software development [1], [2]. In the past, code clones
with many modifications (called large-variance code clones)
were difficult to be found by existing tools [3] because
most of them were suitable for finding the identical or
very similar clones. In our experimental observation, large-
variance code cloning is ubiquitous. These large-variance
clones can be applied to many software applications such
as software maintenance, understanding code quality, pla-
giarism detection, copyright infringement investigation, soft-
ware evolution analysis, virus detection or detecting bugs.
And these tasks do require the extraction of syntactically
similar code fragments [4]–[6] which essentially implies
that large-variance clones should be detected firstly. For

example, programmers write some key statements of code
and search for extensions of the partial code in the existing
code corpus. The partial code and the extensions are actually
large-variance clones. The recent work CCAligner [3] detects
large-gap code clones with insertions or deletions in one
place which they called gap, and the gap in clones often result
in large difference in code size. Our study focuses on a more
general case that is to detect large-variance code clones that
include not only the clones with such concentrated code mod-
ifications but also those with scattered code modifications.

It is common that programmers copy code fragments and
paste them with many scattered modifications. For example,
in software source code evolution, code fragments are mod-
ified usually in multiple places rather than only one place
where the clones with scattered modifications are generated.
Similar to large gap in clones which causes large difference
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in code size, the scattered modifications can also lead to large
difference in size. Fig. 1 shows an example of clones between
two different versions of project Ant 1.6.5 and 1.10.5. In
code B, the code segments of lines 1–2, 6, 8–10, 18–20, 27–
28 are the same as those of the lines 1–2, 7, 9–11, 13–15,
18–19 in code A, respectively. Lines 4–5, 7, 14 and 21 in
code B are modified from lines 3–5, 8, 12 and 16 in code
A. Other lines in code B are new extension part of code A.
These modifications in clone codes are scattered and lead to
a certain portion of difference in code size.

Existing tools have made attempts but still have more
or less limitations in finding Type-3 (syntactic similarity),
especially large-variance code clones. For one of the best
tools with good performance on Type-3 clone, SourcererCC
[7] has to decrease the threshold of similarity to find large-
variance clones at the cost of accuracy loss [3]. Another
popular detector CCFinderX is good at identifying Type-
1 (textual similarity) clones and Type-2 (lexical similarity)
clones, but cannot directly support Type-3 clone detection
[8]. iClones identifies the Type-3 clones by merging the
nearby small Type1-2 clone fragments, but the recall of Type-
3 is low [3] due to the simple strategy. ConQat [9] searches
approximate substrings on a suffix tree but the Type-1 recall
measured by BigCloneBench was low [10]. NiCad uses a
Longest Common Sub-sequence (LCS) algorithm and can
tolerate discontinuous subsequences. However, it does not
scale and its precision suffers with decreasing thresholds [3].
CCAligner is a good recent attempt in detecting clones with
relatively concentrated modifications. It can detect large-
gap but misses scenarios where modifications are scattered.
Besides, some semantic methods have certain ability to de-
tect variance clones because there is an overlap between
semantic clones and syntactical clones. Deckard [11] builds
the characteristic vectors from abstract syntax tree (AST)
to detect clones, but suffers from low precision and recall
rate [7]. Deep learning methods such as Oreo [12] encode
software metrics into vectors and achieve good results, but
these methods are dependent on the initial training data.

For these considerations, we present a tool aimed at de-
tecting large-variance code clones called LVMapper. Our
proposed code clone detector that can find clones with more
general variance is based on locate-filter-verify method. Its
key idea mainly comes from third-generation sequencing
alignment method [13]–[15]. In bioinformatics, the third-
generation sequencing alignment based on seed-and-extend
strategy performs well with sequence difference up to 30%.
LVMapper uses small windows of continuous lines (called
seeds) with lower costs to locate and filter the candidate pairs
of clone codes. In order to verify whether these candidate
pairs of codes are cloned, another feature that code clones
always have certain proportion of order-preserving code lines
is considered. Based on this property, a heuristic algorithm
which is more efficient than the Longest Common Subse-
quence (LCS) algorithm is proposed. Besides, a dynamic
threshold that changed with the code size is used for the
verification of code clones. It makes LVMapper identify

clones with more modifications while guaranteeing certain
precision.

To evaluate the large-variance clone detection performance
of LVMapper, we compared our tool’s performance with
NiCad, SourcererCC, CCAligner and Oreo on 4 Java and 4 C
projects, respectively. We also used the BigCloneBench [10],
[16] to compare and measure the different type clones recall
of LVMapper with CCFinderX [8], iClones [17], Deckard
[11], NiCad [18], SourcererCC [7], CCAligner [3] and Oreo
[12]. Besides, we carried out scalability experiments on
datasets ranging from 1M LOC to 250M LOC. The exper-
iments show that LVMapper performed the best in detecting
large-variance clones and had comparable recall and preci-
sion for general Type-1 to Type-3 clones. It was the fastest
for the 1M LOC to 30M LOC datasets and was also scalable
to 250M LOC dataset.

The main contributions of our work are as follows:
(1) Goal contribution: CCAligner has advantages in detect-

ing large-gap clones while our work extends the detection
approach of large-variance clones to more general cases.
It identifies not only the clones with concentrated code
modifications but also the clones with the scattered code
modifications. We also give a concrete definition of the large-
variance clones.

(2) Method contribution: Inspired by the idea of the seed-
and-extend method in bioinformatics, we develop a novel
tool with locate-filter-verify procedure and it is suited to
detect clone with large variance. We propose a heuristic
algorithm to rapidly verify the code pairs and use a dynamic
threshold to promote the accuracy and recall.

(3) Result contribution: We compared LVMapper with
other state-of-the-art detectors on real cases of software
projects and the state-of-the-art benchmarks. The results
show that LVMapper had the capability of detecting more
than 5 times of large-variance clones compared with other
state-of-the-art tools with average precision of 88% on 8
open source projects dataset. In addition, our new tool has
comparable recall and precision for general Type-1, Type-2
and Type-3 clones.

The rest sections of the paper are organized as follows.
Some terminologies and definitions of code clone are intro-
duced in Section II. Section III provides the details of our
detection tool. Section IV presents the results of the experi-
ments to evaluate the detection ability of our approach. The
threats to validity is described in Section V, and the related
work of clone detection is discussed in Section VI. Finally,
Section VII concludes the paper and briefly introduces the
future work.

II. TERMINOLOGIES & DEFINITIONS
Code block is a statement sequence within braces and usually
represents a single function. Clone pair is a pair of similar
code portions. The minimum clone size is the minimum
number of lines or tokens that each code of a clone pair
should have. The standard minimum clone size is 6 lines or
50 tokens which we also follow in this paper. Four primary
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 1   protected String getPrompt(InputRequest request) {

 2       String prompt = request.getPrompt();

 3       if (request instanceof MultipleChoiceInputRequest) {

 4           StringBuffer sb = new StringBuffer(prompt);

 5           sb.append("(");

 6           Enumeration e = ((MultipleChoiceInputRequest)request)

                 .getChoices().elements();

 7           boolean first = true;

 8           while (e.hasMoreElements()) {

 9               if (!first) {

10                   sb.append(",");

11               }

12               sb.append(e.nextElement());

13               first = false;

14           }

15           sb.append(")");

16           prompt = sb.toString();

17       }

18       return prompt;

19   }

 1    protected String getPrompt(InputRequest request) {

 2        String prompt = request.getPrompt();

 3        String def = request.getDefaultValue();

 4        if (request instanceof MultipleChoiceInputRequest) {

 5            StringBuilder sb = new StringBuilder(prompt).append(" (");

 6            boolean first = true;

 7            for (String next : ((MultipleChoiceInputRequest) request).getChoices()) {

 8               if (!first) {

 9                    sb.append(", ");

10                }

11                if (next.equals(def)) {

12                    sb.append('[');

13                }

14                sb.append(next);

15                if (next.equals(def)) {

16                    sb.append(']');

17                }

18                first = false;

19            }

20            sb.append(")");

21            return sb.toString();

22        } 

23        else if (def != null) {

24            return prompt + " [" + def + "]";

25        } 

26        else {

27            return prompt;

28        }

29    }

A B

FIGURE 1. Example of a large-variance clone.

clone types are agreed by researchers and the former work
[1], [19]:

Type-1 (textual similarity) and Type-2 (lexical similarity)
clones are syntactically identical code fragments except for
variances in white space, layout, comments and variances
in identifier names, literal values, white space, layout and
comments, respectively. Type-3 (syntactic similarity) clones
are code fragments which are similar but have statements
added, modified and/or removed with respect to each other.
Type-4 (semantic similarity) clones are code fragments that
implement the same functionality but are different in syntax.

Type-3 and Type-4 clones are difficult to partition be-
cause there is no clear boundary between syntactically sim-
ilar Type-3 clone and dissimilar Type-4 clone. Hence, Big-
CloneBench [16] further divided Type-3 and Type-4 into
four types according to the syntactical similarity range: Very
Strong Type-3 similarity in range [0.9, 1.0), Strongly Type-3,
[0.7, 0.9), Moderately Type-3, [0.5, 0.7), and Weakly Type-
3&4, [0.0, 0.5).

Like the the large-gap clones described in [3], for the
clones with scattered modifications which lead to large dif-
ference in size, we give the definition of large-variance clones
quantitatively as follows:

Given two code blocks A and B consisting of l(A) and
l(B) pretty-printed lines, respectively. Assuming that l(A) ≤
l(B), let λ = l(A)/l(B). If code blocks A and B are clone
and λ ≤ 0.7, then A and B are called large-variance clone
(abbreviated as LV clones).

The threshold of λ for large-variance clones is set as 0.7. In
intuition, given code A with m lines, if code B is copied from

A with m/2 inserted lines (which are half of the original size),
λ = l(A)/l(B) = 2/3 ≈ 0.7. It’s difficult for most code
clone detection tools or methods to find such clones, even the
better tools that are able to detect Type-3 clones cannot find
them well.

III. METHOD
Inspired by the seed-and-extend approach which is typically
used in sequencing alignment from bioinformatics [13], [14],
[20], we proposed a locate-filter-verify procedure for clone
detection. In bioinformatics, the seeding step uses the sub-
sequences of the query to quickly locate exact match in
reference and the extending step extends and refines the can-
didate positions by a dynamic programming alignment. Our
method includes three phases: locate-filter-verify. The first
two phases are designed to seek out the candidate clone pairs
with low cost and high recall. In the last phase we design a
heuristic algorithm to further eliminate the false clone pairs
and improve the accuracy. The uses of dynamic threshold,
seeds index and avoiding time-consuming dynamic program-
ming are the keys and innovations of our method. Fig. 2
shows the general procedure. The rest of this section will
provide detail descriptions of each phase.

A. LEXICAL ANALYSIS
Lexical analysis for code includes extracting code blocks
from source code and tokenizing the code. TXL [21], which
is commonly used in previous tools [3], [7], is adapted to
extract code blocks from source code files. After obtaining
the code blocks, the tokenizing step that mostly based on
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Tokenize & Pretty-print

Candidate ListCandidate ListVerify

Hash IndexHash Index

FIGURE 2. General procedure of LVMapper.

Flex [22] begins. Identifiers including variables and function
names are replaced by the same token ‘id’ to tolerate Type-2
changes. The extracted code blocks are pretty-printed. The
tokens of each line are concatenated into a single token
sequence except the white spaces.

B. SEEDS INDEXING
It is necessary to establish a seed index to speed up the
computation for the locating and filtering phases, where
the seeds are all of the k-line sliding windows (i.e., code
fragments of continuous k lines) for a code block. The seeds
are basic units for matching instead of tokens. For example,
given a code block with 10 lines and sliding windows size
k = 3, the number of all seeds is obviously 8. In LVMapper,
these seeds are converted to hash value and the seed is also
regarded as the hash value.

Here are the detailed steps of indexing. LVMapper scans
all code blocks, collects all seeds and indexes them in a hash
table. The key of the element in hash table is seed’s hash and
the value is a set of corresponding block ids. Like CCAligner,
we use MurmurHash hash function [23] in order to guarantee
the efficiency with the low collision rate.

C. LOCATING VIA THE SHARED SEED
The locating phase is a preliminary selection for possible
code clone pairs. In this phase, the goal is to collect as
many candidates as possible without losing real clone pairs.
Because the standard minimum clone size is 6 lines [16],
[19], CCAligner chooses 6-line or longer windows to match
the possible clone pairs. The experiments in CCAligner [3]
shows that 6 lines with 1 mismatch windows balanced recall
with precision. However, the cost of this approach is still
considerably high. We use a lower cost and more efficient
way to achieve this. Here, the 3-line sliding windows are
chosen as seeds to collect the possible clone pairs that share
seed(s).

For any code segments of 6-line with 1 mismatch that
can be found by CCAligner, in LVMapper, they can also

be identified by two non-overlapping 3-line exact windows.
The reason is that the 6 lines window in CCAligner can be
covered by two non-overlapping 3-line windows. According
to pigeonhole principle, one line modification affects at most
one 3-line window and the other one remains unchanged. As
a result, the identification ability of our method is better than
that of CCAligner.

Algorithm 1 lists the steps of clone detection process, in
which lines 5–13 belong to the locating phase. To retrieve
these seeds, we create a hash table for efficiency. Once the
index has been built, the candidates of each code clock can
be obtained by utilizing this index. Let the current inquiring
code block be A. Every sliding overlapping 3-line window in
A is the seed, whose hash value is used to find blocks in hash
table with the same key (line 9). If the block id (denoted as
B) is greater than A, B will be added to CollisionList (A) —
the block list with same hashing seeds of block A (line 11).
This practice eliminates the duplication of detecting clone
for the same two blocks with reverse order. When B is the
current inquiring block, block A is not considered anymore
because the pair of A and B has been considered before. After
the last seed of current block is queried, the positions in the
CollisionList (A) are sorted according to block id (line 12).
Every block B that has the collided seed with A will be further
filtered and verified (line 13).

D. FILTERING VIA THE COMMON SEEDS NUMBER

Through the locating phase, two code blocks that share com-
mon seed(s) may be clone pair. Then we take into account the
possibility of these Collision code blocks being clone. This
phase is called the filtering phase and it picks out candidate
clone pairs. It brings two benefits. First, the number of
candidate code pairs can be reduced significantly. Therefore
the processing time and the false positive rate can also be
reduced. Besides, the probability of the candidate pairs being
the true clone increase significantly. Our idea of the filtering
phase is mainly based on considering the number of shared
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Algorithm 1: Clone Detection
Input:A is a list of tokenized code blocks {a1, a2,...an}, Hash TableH of

A, window size k, threshold θ for filtering phase, threshold δ for
verifying phase

Output: All clone pairs CP
1 H ← ∅;
2 CP ← ∅;
3 len = number of lines in ai;
4 for each ai inA do

/* Locating phase */
5 for j = 1; j ≤ len− k + 1; j + + do
6 lj = ai.linej;
7 winj = CONCAT(lj , lj+1, ...lj+k−1);
8 key = HASH(wini);
9 B = FIND(H, key);

10 ifB > ai then
11 CollisionListi = CollisionListi ∪ B;

12 SORT(CollisionListi);
13 for eachB in CollisionListi do

/* Filtering phase */
14 s = number ofB in CollisionListi;
15 L = number of lines inB;
16 SR = s/(L− k + 1);
17 if SR ≥ θ then

/* Verifying phase */
18 block1 =block with smaller size between ai andB;
19 block2 =block with larger size between ai andB;
20 line1 = 1;
21 comm_lines = 0;
22 lastline = 0;
23 while line1 6= block1.end do
24 k1 = HASH(block1.line1);

/* FIND_IN_BLOCK find the first line
after lastline in block2 and has the
same hash value of k1 */

25 line2 = FIND_IN_BLOCK(k1, block2, lastline);
26 if line2 6= NULL then
27 seglen = 1;
28 while block1.line1 + seglen =

block2.line2 + seglen do
29 seglen+ +;

30 if seglen ≥ 2 then
31 comm_lines+ = seglen;
32 lastline = line2 + seglen− 1;

33 line1 + +;

34 min_lines = minimum lines of ai andB;
35 OS = comm_lines/min_lines;
36 ifOS ≥ δ then
37 CP = CP ∪ (a1, B);

38 return CP ;

seeds for two code blocks to measure the possibility of being
clone.

The selection of candidate clone pairs depends on the
similarity between the two code blocks, and the similarty is
calculated by the number of seeds they share. In our method,
the similarity of code pair A and B is defined as:

SR(B|A) = s

t
=

s

L− k + 1
(1)

where s is the number of shared seeds, t is total seeds number
of B and L is the length in line of B. For any pair of the
collision code blocks, the higher the SR(B|A) value is, the
more likely they are to be a clone pair.

Lines 14–17 in Algorithm 1 belongs to filtering phase. In
practice, once we get the candidate blocks list CollisionList
(A) of current inquiring block A, for every candidate block B

in the list, LVMapper counts the number of B in CollisionList
(A) (line 14). As mentioned above, we treat each overlapping
k-line windows as seed to vote for potential clone blocks,
then every position added in the collision list is the block that
have the same seed with A. In this case, the number of B in
CollisionList (A) is the number of votes that B gets from A.
If B gets more votes, then it is more likely to be clone code
of A. The idea is similar to the idea of seed-and-extend in the
sequencing alignment [14]. The threshold for SR(B|A) is θ
(line 17).

E. VERIFYING VIA THE ORDERED COMMON LINES
Unlike the first two phases, the last phase (called the ver-
ifying phase) further measures the clone possibility of the
candidate clone pairs output by the filtering phase from
another perspective: if two blocks are large-variance clone,
an important feature of them is that the common lines of code
in them have order preserving property. Actually, previous
tool NiCad [18] used similar idea. It is based on a Longest
Common Sub-sequence (LCS) algorithm. Not as complex as
NiCad, we design a heuristic simple algorithm for this order
preserving property. The idea of the heuristic algorithm is to
count the order preserving number of two adjacent code lines
in one code block.

Similarly, the similarity of the candidate pair is measured
by another characteristic quantity: the rate of ordered com-
mon lines. This characteristic quantity OS (A, B) is defined
as:

OS(A,B) =
comm_lines

min_lines(A,B)
(2)

where common_lines is the ordered common lines of A and
B, and min_lines(A, B) is the minimum size in line of A and
B.

The method of threshold setting for verifying candidate
clone pairs is the key point of our method, and it is also signif-
icantly different from other methods. In order to enhance the
ability of detecting large variance code clones, here we use a
dynamic threshold to verify the code pairs. The function of
the threshold is designed as a piecewise function, correspond-
ing to the length of code blocks A and B. As the length of
code blocks A and B increases, this threshold can be reduced.
Actually, the reason can be explained by an understandable
analogy. For example, given real-life conversations, how to
judge whether two different conversations belong to the same
topic? We have such a consensus that long conversations
with lower rate of common sentences could discuss the same
subject while short conversations should have higher rate to
judge as discussing the same subject. Note that SourcererCC
uses the fixed ratio of shared tokens to verify clone pairs and
it sets the ratio threshold as 0.7 to guarantee the precision.
The detailed setting of filtering and verifying phases will be
discussed in Section IV.

We implement the heuristic algorithm as follows and lines
18–38 in Algorithm 1 show the steps. For every candidate
pair of block A and B survived from the locating and filtering
phase, assume block A is smaller than B. The variable lastline
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records the last line id in B that matches the line in A during
scanning and it is initialized as 0 (line 22). LVMapper scans
from the line 1 in A to find the first line which also appears
in B and the matching line’s id in B is greater than lastline
(lines 23–25). And then it continues to scan and calculates
the length of the contiguous matching lines (lines 26–29).
LVMapper keeps a variable comm_lines to record the sum of
matching lines. If there are at least 2 contiguous shared lines,
then the length is added to comm_lines (lines 30–31). The
lastline is also updated according to the length of matching
lines (line 32). The contiguous lines of A and B are in order
and the segments of the contiguous lines are also in order.
After scanning, OS (A, B) is calculated (line 35) and the
threshold δ of OS (A, B) to verify candidate pairs (line 36)
is set according to the minimum size of A and B.

IV. EVALUATION
A. STUDY DESIGN
In the following subsections, we first introduce the parameter
setting of seed length and dynamic threshold of LVMapper.
We considered and balanced the precision, recall, execution
time and memory use of different seed lengths to find a
proper setting in LVMapper.

Then the performance of LVMapper for detecting large-
variance clones was evaluated on 8 open source projects
dataset. As large-variance clone belongs to Type-3 clone,
we chose 4 methods which performed good in Type-3 clone
detection for evaluation. We extracted large-variance clones
from the reported clones according to the definition and
compared the reported large-variance clones’ number and
precision.

Besides, we also evaluated the performance of LVMap-
per for general Type-1, Type-2, Type-3 clones detection in
the state-of-the-art benchmark dataset BigCloneBench [10],
[16]. BigCloneBench is a benchmark which contains dif-
ferent types of manually validated clones in the repository
IJaDataset-2.0 [24] and it defines clone types by syntactic
similarity as described in Section II. The framework Big-
CloneEval [25] summarizes recall performance for different
clone types of clone detectors automatically and it is widely
used in previous work [7], [12].

At last we tested the scalability of LVMapper for large-
scale clone detection. We constracted different sizes of
dataset ranging from 1M LOC to 250M LOC based on
the inter-project Java repository IJaDataset [26]. We were
interested in the execution time of LVMapper on different
sizes dataset, and whether LVMapper was scalable to the
250M LOC large-scale dataset.

B. PARAMETER SETTING
1) Choice of Seed Length
As the seeds play a major role in locating and filtering
phases, the choice of seeds length is important and has an
impact on the performance of LVMapper. If the seeds are too
long, the recall of our method will be affected. In contrast,
if the seeds are too short, the effectiveness of the locating

and filtering will be eroded. In Section III we analyzed the
choice of seed length theoretically. Here we also used exper-
iments to evaluate the performance of detection for different
seed lengths k quantitatively. We used the BigCloneBench
[10], [16] to evaluate the detection ability of LVMapper for
different seed lengths, because it is not only a benchmark
for general clones but also contains large-variance clones.
Besides, we considered the memory use and execution time
of different seed lengths for Linux kernel dataset.

For evaluation of recall and precision, we configured the
BigCloneEval with minimum clone size 6 lines and 50 tokens
which are consistent with the standard minimum clone size.
The seed length of LVMapper was set as 2-line, 3-line and
4-line, with other parameters fixed. The recall was reported
by BigCloneEval. And for each parameter, we measured the
precision by randomly validating 400 reported clone pairs.

Table 1 shows the detailed results. Because the recall rate
of Weakly Type-3&4 is under 1%, we also provided the
number of detected clones in the parentheses. As seen from
Table 1, the recall of Type-1, Type-2 and Very Strongly
Type-3 were nearly 100% for all seed length. When the
seed length became longer, the recall of type-3 with lower
similarity decreased. For seed length of 4-line, the recall
of Strongly Type-3 and Moderately Type-3 was 77% and
16%, respectively. And the number of Weakly Type-3&4 fell
to 16701. However, while the recall for seed length of 2-
line was the highest, especially in Weakly Type-3&4, the
precision declined. The recall and precision for seed length
3-line strike a balance. The number of Weakly Type-3&4 was
over 20000 and the precision was kept at 88.5%.

TABLE 1. Recall per Clone Type and Precision Measured for BigCloneBench
with Different Seed Lengths

k 2 3 4

Type-1 100 100 100

Type-2 99 99 99

Very Strongly Type-3 98 98 98

Strongly Type-3 82 82 77

Moderately Type-3 20 19 16

Weakly Type-3&4 (Num) 0.3 (27043) 0.3 (23923) 0.2 (16701)

Precision 86.5 88.5 93

Besides, we took into consideration the memory use and
execution time of different seed lengths. The Linux kernel
4.18 was used as the target source code and it has 25782
files with 12964738 lines of code (LOC) measured by cloc
[27]. As shown in Table 2, the execution time of 2-line
method was as much as 8.4 times compared to the execution
time of 3-line method and the memory use increased about
548MB. The configuration of seed length 3-line had the least
memory use and medium execution time. The execution time
of 4-line method was the shortest, but it had more memory
requirement. Note that the configuration of seed length 3-
line has the least memory use. The reason is that for the
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method using 4-line, larger window space allows greater
variation of seed, resulting in greater hash index space. For
the method using 2-line, more position values (i.e., the block
id and line id corresponding to the seeds) occupy the storage
space. Taken together, the seed length of 3-line balanced not
only the recall and precision, but also the space and time.
Therefore, we selected 3-line as our default configuration.

TABLE 2. Execution Time and Memory Space with Different
Parameterizations for Linux 4.18

k 2 3 4

Time 52m 14s 6m 12s 3m 53s
Memory 1394 MB 846 MB 851 MB

2) Threshold for Filtering and Verifying Phase
In the filtering phase, the threshold of SR(B|A), i.e. θ, is set
to 0.1 empirically.

In the verifying phase, we use dynamic threshold for
judgment of results. The threshold is defined according to
the block size in order to be better adapted to code clone
judgment.

For the ratio of ordered common sequences in the verifying
phase, assume the smaller block of the candidate pair is block
A. We adapt a more-refined piecewise function to define the
threshold δ, which is used in the verifying phase, according
to A.size l:

δ =


0.7 if 6 < l ≤ 10,

g(l) if 10 < l ≤ 20,

0.4 if l > 20.

(3)

In Equation (3), g(l) = -α·l+β relies on size of A. In our
implementation, we set α = 0.03, β = 1 empirically. For the
smaller blocks whose length is smaller than 10 lines, the ratio
of minimum matching continuous lines is 0.7, because in
our observation the precision will be slashed when δ < 0.7.
For medium size blocks with length from 10 to 30 lines, the
ratio of ordered common sequences linearly decreases with
the smaller blocks length. As big blocks are more likely to
be modified in code clone, the lower limit of δ is 0.4 which
allows large-variance for big code blocks and ensures certain
accuracy. When the code size is small, there are plenty of
statements that have similar forms. So LVMapper filters the
smaller candidate block with stricter standards. The use of the
dynamic threshold utilizes the characteristic of source code.

C. LARGE-VARIANCE CLONE DETECTION
To test the large-variance clone detection ability, we first
compared LVMapper with others in eight open source
projects dataset.

Here we evaluated the large-variance clone detection abil-
ity and studied the existence and pervasiveness of large-
variance clones. For all the methods in the experiments, we

calculated the number of reported clone pairs according to
the definition of large-variance clones in Section II.

To validate the precision, for each project, if the reported
clones were more than 100 pairs, we randomly selected 100
samples from the results to validate whether they were true
clone pairs or not. If the reported clone pairs were less
than 100, we validated all the pairs. Two judges manually
validated the pairs according to the definitions of different
clone types. One of the judges was the author of this paper
and the other was not. They were kept blind for the pairs
from different tools. If there were conflicts, they discussed
with each other to resolve the conflicts.

In order to compare the detection ability of LVMapper
with the state-of-the-art tools, we selected two clone de-
tection tools SourcererCC and CCAligner, which performed
well in Type-3 and large-gap clone detection [3], respectively.
The results data of SourcererCC and CCAligner were taken
from that study straightforwardly. And we also compared
LVMapper with the recent tool Oreo which was based on
machine learning. Oreo was executed with the default config-
uration. We did not provide the result of NiCad here, because
NiCad detected almost none of clones with largely different
sizes or variances. For all the experiments using these 8
projects, we considered the clones with minimum length of
10 lines, which is consistent with that of the experiments in
paper of CCAligner.

The detecting number of large-variance clones (shorted
as LV) and the precision (shorted as Prec) in 8 projects
are shown in Table 3. Because Oreo only supported clone
detection with Java code, the results of Oreo in 4 C projects
were denoted as “–”. The number of large variance clones
detected by LVMapper was markedly more than that detected
by SourcererCC, CCAligner and Oreo. In project JDK1.2.2,
the large-variance clones reported by LVMapper are 949
while Oreo reported 194, CCAligner only reported 15 and
SourcererCC only reported 4. Oreo were the second best
in large-variance clone detection but the portions of large-
variance clones that reported by Oreo and LVMapper were
20% or lower. CCAligner performed better than SourcererCC
at detecting the clones with largely different sizes, which was
in fact the target of CCAligner. For all projects we tested
on, the precisions of LVMapper were all above 80% and
the average precision was 88%. Among the reported pairs
of LVMapper, we found that many clone pairs has scattered
modifications and insertions which were missed by Oreo and
CCAligner.

We summarized the number of different types clones and
the proportion of LV clones detected by LVMapper in Ta-
ble 4. We classified the clone pairs reported by LVMapper to
Type-1&Type-2, Type-3 and LV clones. As we can see from
Table 4, the majority of reported pairs belong to the clones of
Type-3. The proportion of the large-variance clones LVMap-
per reported ranges from 18% to 54% in these projects. There
is a high proportion of large-variance clones in open source
projects and they should not be overlooked.

VOLUME 4, 2016 7



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2971545, IEEE Access

Ming Wu et al.: LVMapper: A Large-variance Clone Detector Using Sequencing Alignment Approach

TABLE 3. Large-variance Clone Evaluation Results for 8 projects

Project
LVMapper Oreo CCAligner SourcererCC
LV Prec LV Prec LV Prec LV Prec

JDK 1.2.2 949 88% 194 90% 15 93.3% 4 100%
Ant 1.10.1 447 87% 74 97% 87 88.6% 13 100%

Maven 3.5.0 398 89% 18 100% 217 86.2% 38 97.4%
Opennlp 1.8.1 2779 86% 38 100% 221 92.3% 5 100%

Cook 2.34 651 95% – – 63 96.8% 14 100%
Redis 4.0.0 142 88% – – 22 90.9% 7 100%

PostgreSQL 6.0 793 90% – – 219 94.1% 38 100%
Linux 1.0 620 82% – – 27 96.3% 12 91.7%

TABLE 4. Proportion of Large-variance Clones Detected by LVMapper

Project Type-1&2 Type-3 All LV LV/ALL

JDK 1.2.2 1201 3956 5157 949 18.4%

Ant 1.10.1 130 1458 1588 447 28.1%

Maven 3.5.0 484 1220 1704 398 23.4%

Opennlp 1.8.1 191 4898 5089 2779 54.6%

Cook 2.34 138 1751 1889 651 34.5%

Redis 4.0.0 46 460 506 142 28.0%

PostgreSQL 6.0 135 1805 1940 793 40.8%

Linux 1.0 145 1539 1684 620 36.8%

D. GENERAL CLONE DETECTION
Apart from the evaluation of detection ability for large-
variance clones above, we also compared the detection per-
formance of LVMapper for general clones (i.e. from Type1
to Type3) with other clone detectors. We used BigCloneEval
[25] to test the recall of tools on BigCloneBench [16]. The
configuration of NiCad was minimum length 6 lines, similar-
ity threshold 70%, blind renaming and literal abstraction. We
used the default configuration of LVMapper, which has seed
length of 3-line, and the threshold is described previously.
The configuration of SourcererCC was minimum one token
and similarity threshold 70%. We set CCAligner with mini-
mum clone size of 6 lines, window size q = 6, edit distance e
= 1, and similarity threshold of 60%. The result of Deckard
[11], iClones [17] and CCFinderX [8] and Oreo were from
[7]. The number of Weakly Type-3&4 of Deckard was esti-
mated by the recall rate in [7]. As iClones and CCFinderX did
not perform well in detecting Moderately Type-3 clones, we
did not run them for the performance of Weakly Type-3&4
(denoted as “–” in Table 5). We evaluated the clone pairs in
BigCloneEval with the setting of considering minimum clone
size pretty-printed 6 source lines and minimum clone size 50
tokens.

For the measurement of precision, as a common practice in
[3], [7], [12], we randomly picked 400 pairs from the reported
clones of each tool and two judges manually validated the
true clone pairs as metioned in Section IV-C.

The results for general clone detection performance in Big-

CloneBench listed in Table 5 has two parts: the last line is the
precision and the rest are the recall. The precision of LVMap-
per is 88.5%, and the recall of LVMapper for Type-1, Type-
2 and Very Strongly Type-3 were 100% or nearly 100%.
For Strongly Type-3, NiCad performed the best, followed
by Oreo and LVMapper. But Nicad’s recall declined rapidly
for next types with lower similarities. For Moderately Type-3
and Weakly Type-3&4, although Deckard detected the most
pairs in Weakly Type-3&4, it had poor recall for other types
of clones and the precision was only 34.8%. Oreo performed
better than LVMapper on Moderately Type-3 and Weakly
Type-3&4 because its results included some semantic clones
[12] that existed in BigCloneBench. Through data analysis
on the results, we found that more than 50% large-variance
clones results reported by LVMapper could not be found by
Oreo.

E. SCALABILITY
To test the scalability of LVMapper, we selected 1M LOC,
10M LOC, 20M LOC, 30M LOC and 250M LOC from the
inter-project Java repository IJaDataset [26] as the target files
to detect clones. We used an Intel(R) Xeon(R) Gold 5120
CPU @ 2.20GHz machine with 28 cores and 512GB of
memory. We limited the memory use of each tool to 12GB
as described in [12]. As CCAligner, SourcererCC and Oreo
had relative good scalability in recent studies [3], [12], we
compared the execution time of LVMapper with those of
CCAligner, SourcererCC and Oreo. We asked the authors for
the proper configurations of these tools.

The execution time across different scales of datasets are
listed in Table 6. LVMapper was the fastest for 1M LOC
to 30M LOC and it scaled to 250M LOC dataset with the
execution time of 52 hours and 29 minutes. CCAligner scaled
to 10M LOC and it failed for the 20M LOC, 30M LOC and
250M LOC inputs with the out of memory error (denoted
as “–” in Table 6). SourcererCC took 16 hours and 41
minutes, and Oreo took 76 hours and 21 minutes for clone
detection of 250M LOC dataset. Although SourcererCC has
good scalability but the large-variance detection ability of
SourcererCC is limited.

V. THREATS TO VALIDITY
To estimate the precision of clone detection tools, judges
usually manually validate the clone pairs. A threat is that
the judges may not give the correct judgment. We mitigated
this threat by using two judges that one was the author and
one was not. They validated the code pairs according to the
definition of different types of clone and they discussed with
each other when they had different opinions until resolving
the conflict.

The performance of clone detection is influenced by the
parameter setting of methods. In Section IV-B we quanti-
tatively analyzed different settings for the recall, precision,
time and memory usage and selected a proper setting for
LVMapper. For other methods in our evaluation, we used
the configurations which had good performance in previous
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TABLE 5. Recall Per Clone Type and Precision Measured for BigCloneBench

Type LVMapper CCAligner Oreo NiCad SourcererCC Deckard iClones CCFinderX

Type-1 100 100 100 100 100 60 100 100
Type-2 99 99 99 100 98 58 82 93

Very Strongly Type-3 98 97 100 100 93 62 82 62
Strongly Type-3 82 70 89 95 61 31 24 15

Moderately Type-3 19 10 30 1 5 12 0 1
Weakly Type-3&4 (Num) 0.3 (23923) 0.2 (12540) 0.7 (57273) 0 (12) 0 (1892) 1 (77293) – –

Precision 88.5 78.8 89.5 94.5 98.8 34.8 91 72

TABLE 6. Execution time for different LOC

LOC 1M 10M 20M 30M 250M

LVMapper 11s 5m 25s 19m 9s 1h 33m 34s 52h 29m 18s
CCAligner 54s 48m 36s – – –

Oreo 4m 22s 24m 12s 1h 7m 45s 2h 11m 30s 76h 21m 25s
SoucererCC 5m 40s 27m 52s 1h 3m 59s 1h 48m 34s 16h 41m 35s

studies and also contacted the authors to set the proper
configurations, where available.

VI. RELATED WORK
There are many code clone detection tools proposed in the
literature. More descriptions of these tools and methods can
be found in [1], [2], [19], [28]–[33]. At present, the code
clone detection of Type-3 is still a difficult task, especially for
large-variance code clones. According to the types of clone
similarity, the clone detection methods can be divided into
two categories. One is the non-semantic (lexical and syntactic
similarity) method, and the other is the semantic (functional
and semantic similarity) method. Our method belongs to the
former.

A. NON-SEMANTIC METHODS

These methods or tools determine whether the code pairs are
clones or not base on the similarity of code words and code
sentences. These clone detection methods mainly include
the text based, the token based, the tree and graph based
and the metrics based methods. Among these methods, some
researchers classified the latter two as the semantic method.

For the text based tools [6], [18], [34], two code blocks are
compared in the form of text or strings. Johnson [6] proposed
a fingerprinting technique to identify similar source code and
to speed up processing speed. Ducasse [34] developed a line
based comparison detection tool. NiCad [18] is based on a
two phases process, viz., identification of potential clones
and code comparison using longest common subsequences.
Compared with LVMapper, it adopts similar locating and
verifying strategy. NiCad can detect Type-3 clones, but did
not perform well in the test of detection ability for clones
with large difference [3].

For the token based tools [7], [17], [35], tokens are firstly
extracted from the source code by lexical analysis, and it
is better than simple keyword matching since it tolerates
different identifiers. CCFinder [35] is a popular tool based on
token, but it does not support Type-3 clone detection. In their
work, they used suffix tree to find identical subsequences and
increase the threshold to filter small clones. Essentially, these
operations are equivalent to the indexing and filtering tech-
nology in LVMapper. ConQat [9] did an edit distance based
traversal of a suffix tree which is also investigated exten-
sively in bioinformatics, but the Type-1 recall measured by
BigCloneBench was low [10]. iClones [17] and SourcererCC
[7] are also influential representatives of such tools. Göde
and Koschke [17] developed the incremental tool iClones
by merging neighboring Type-1/Type-2 clones to big clones
or Type-3 clones. However, iClones can only detect Type-3
clones with small variance. Sajnani [7] developed a fast clone
detection tool SourcererCC which uses tokens composition to
verify clones, but it is constrained to the identification ability
of token granularity. CCAligner [3] has good performance in
detecting clones with relatively concentrated modifications
but it misses scenarios where modifications are scattered.

For the tree and graph based tools [11], [36]–[39], abstract
syntax tree (AST) is frequently used as the representation of
source code, and program dependency graph (PDG) is used
to represent the control and data flow dependencies in source
code. Yang [36] and Deckard [11] proposed AST approaches
for finding the syntactic differences between two programs.
Duplix [37] and PDG-DUP [38] are PDG-based tools which
use program slicing to find isomorphic subgraphs. These tree
and graph based tools suffer from large execution time and
poor scalability. To this end, CCSharp [39] improves the time
performance and accuracy of the PDG-based method, but it
still cannot achieve good performance in large scale dataset.
Besides, these tools will fail to detect large-variance clones
since structure of tree and graph may be changed during the
extension and modification of the code.

For the metrics based tools [40]–[42], some metrics and
characteristic features for tree and graph of source code can
be used for code clone detection. Both Mayrand [40] and
Balazinska [41] extracted metrics from an AST representa-
tion of source code and used the metrics for clone identifi-
cation. Patenaude [42] used the metrics of source code that
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can be divided into five categories, viz., classes, coupling,
methods, hierarchical structure and clones. These methods
extract some features from tree or graph or source code to
verify the semantic similarity of two code blocks. They have
similar limitations to that of the tree and graph based tools
for large-variance clones.

B. SEMANTIC METHODS & MACHINE LEARNING
METHODS

Apart from the tree and graph based and the metrics based
tools mentioned above, these kind of clone detection tools in-
clude the semantic space mapping based tools [43], the soft-
ware behavior based tools [44]–[46] and so on. Substantially,
the tools based on semantics adopt semantic abstraction or
modeling for source code rather than abstraction of lexical
and syntactic similarity. Due to overlap of semantic clones
and large-variance clones, however, the methods based on
semantics can also find a small part of large-variance clones.

Machine learning is always an effective way to deal with
complex problems, including code clone detection especially
for semantic clone. With the spread of deep learning method,
the clone detection using deep learning technologies is an
emerging area. White [47] presented an unsupervised deep
learning approach to detect clones, which can automatically
learn discriminating features of source code. Wei [48] pro-
posed a method to detect clones by learning representations
and Hamming distance of code fragments. Zhao [49] encoded
code control flow and data flow into a semantic matrix for
detecting semantic clones. Recently, Saini [12] put forwarded
a machine learning based method called Oreo, which can
find the code clones in the overlap between syntactic and
semantic zone. Oreo used the clones that are almost identical
or very similar to train the deep learning model and the large-
variance clone detection ability of Oreo is limited. Machine
learning methods always face the issues of dependency on the
initial training data. The experiment in Section IV-C shows
that the machine learning method could not detect the large-
variance clones well.

Overall, the clone detection tools previously discussed
have different application conditions and are still limited in
detecting large-variance clones for the following reasons:

• Existing text-based and token-based methods don’t have
specific strategy and solution for large-variance clones
because they mainly detect clones that are almost iden-
tical or very similar. They have to set the threshold of
similarity lower to detect large-variance clones, which
harms the precision.

• Tree-based and PDG-based methods suffer from large
execution time and poor scalability. Besides, large-
variance in code will change the structure of tree and
graph, which make it difficult for these methods to
detect large-variance clones. Metric-based and semantic
methods have similar limitation as they extract features
from tree or graph or source code to verify the semantic
similarity of two code blocks.

• Machine learning methods always face the issues of
dependency on the initial training data. Besides, they are
usually costly in deploying and training.

VII. CONCLUSION & FUTURE WORK
The large-variance code clones are generated by homolo-
gous modification and can be used in software development
and other applications. Our experiments found that these
clones were widespread in Type-3 clones, even in some
datasets up to half or more. And the large-variance code
clone changes the past clone detection methods that focus on
finding almost identical or very similar code pairs. Therefore,
the research on large-variance code clone is important and
meaningful. In this paper, we proposed a novel concrete
definition and a detector LVMapper borrowing from the idea
of sequencing alignment in bioinformatics for large-variance
code clones. Effective and innovative technologies such as
dynamic threshold, avoiding time-consuming dynamic pro-
gramming and seeds index are designed in our method. A
series of testing on real cases of software projects and the
state-of-the-art benchmarks showed the large-variance clone
detection performances of LVMapper are much better than
the other state-of-the-art tools, and it has comparable recall
and precision for general Type-1 to Type-3 clones. And it will
be important work to do research on software engineering
applications such as code recommendation and completion,
refactoring and bug propagation for large-variance clones in
the future.
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