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SUMMARY

Neuronal types in the central nervous system differ
dramatically in their resilience to injury or other in-
sults. Here we studied the selective resilience of
mouse retinal ganglion cells (RGCs) following optic
nerve crush (ONC), which severs their axons and
leads to death of �80% of RGCs within 2 weeks. To
identify expression programs associated with differ-
ential resilience, we first used single-cell RNA-seq
(scRNA-seq) to generate a comprehensivemolecular
atlas of 46 RGC types in adult retina. We then tracked
their survival after ONC; characterized transcrip-
tomic, physiological, and morphological changes
that preceded degeneration; and identified genes
selectively expressed by each type. Finally, using
loss- and gain-of-function assays in vivo, we showed
that manipulating some of these genes improved
neuronal survival and axon regeneration following
ONC. This study provides a systematic framework
for parsing type-specific responses to injury and
demonstrates that differential gene expression can
be used to reveal molecular targets for intervention.

INTRODUCTION

Insults to the central nervous system (CNS), whether acute (e.g.,

traumatic injury) or chronic (e.g., neurodegenerative disease),

typically lead to irreversible damage. Some neurons die, and

those that survive generally fail to grow new axons and reestab-

lish synaptic connections. A common but poorly understood

characteristic of these phenomena is that specific neuronal

types are disproportionately affected even though causative

insults are widely shared. For example, both huntingtin (HTT)

and alpha-synuclein (SNCA) are broadly expressed in neurons,

but mutations in HTT lead to Huntington’s disease with striatal

GABAergic neurons as a main target, while mutations in SNCA

lead to Parkinson’s disease with basal ganglia dopaminergic

neurons as a main target (Fu et al., 2018; Saxena and Caroni,

2011). Similar differential effects have been documented for

many other diseases and injuries (Conta Steencken et al.,

2011; Welin et al., 2008).

We reasoned that comparing patterns of gene expression

among neuronal types that are similar in many respects but

differ in vulnerability might pinpoint pathways that contribute

to resilience. Although seldom used (Duan et al., 2015; Kaplan

et al., 2014; Bray et al., 2019), this approach could complement

strategies that involve comparing neurons from different ages

(regenerative developing versus nonregenerative adult neurons;

Maclaren and Taylor, 1997), regions (regenerative peripheral

versus nonregenerative central neurons; Huebner and Strittmat-

ter, 2009), or species (regenerative fish versus nonregenerative

mouse neurons; Kizil et al., 2012).

To explore this strategy, we analyzed the responses of mouse

retinal ganglion cells (RGCs) to optic nerve crush (ONC), a long-

studied model of traumatic axonal injury (Aguayo et al., 1991).

RGCs send their axons through the optic nerve, conveying visual

information to retinorecipient areas in the brain (Figure 1A; Sanes

and Masland, 2015). ONC transects RGC axons, causing the

death of �80% of RGCs within 2 weeks. Few survivors regen-

erate axons, but some can be provoked to do so by a variety

of interventions, although none to date have proven capable of

restoring useful vision (Benowitz et al., 2017).

Several features make ONC an ideal model to study differential

vulnerability. (1) All and only RGC axons pass through the optic

nerve, so injury is precisely controlled, simultaneous, and specific.

(2) RGCs that live and die share the same microenvironment. (3)
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Figure 1. scRNA-seq Reveals 45 Molecularly Distinct RGC Types in Adult Mice

(A) RGCs (green) reside within the innermost layer of the retina, the ganglion cell layer (GCL). Their axons bundle together to form the optic nerve. IPL, inner

plexiform layer; GCL, ganglion cell layer.

(B) Dendrites of different RGC types have distinct lamination patterns within sublaminae (S)1–5 of the IPL, which determines their choice of presynaptic partners.

Stereotyped morphologies are illustrated here for several RGC subclasses and types. INL, inner nuclear layer.

(C) t-distributed stochastic neighbor embedding (t-SNE) visualization of the transcriptional heterogeneity of 35,699 adult mouse RGCs. Cells are colored by

cluster assignments, determined using graph clustering. Clusters are numbered in order of decreasing frequency.

(legend continued on next page)
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Although all RGCs share numerous features, they comprise >40

discrete types in mice, each with distinct morphological and

physiological features (Figure 1B and see below). (4) Some RGC

types were recently shown to differ in their ability to survive or

regenerate axons following ONC (Duan et al., 2015; Norsworthy

et al., 2017; Pérez de Sevilla M€uller et al., 2014).

To survey the resilience of RGC types,weused single-cell RNA-

seq (scRNA-seq), which we previously applied to mouse and ma-

caque retina (Macosko et al., 2015; Peng et al., 2019; Shekhar

et al., 2016). We first generated an atlas of 46 molecularly distinct

types and then used histological approaches to relate transcrip-

tomic clusters to known and novel RGC types. Using this atlas

as a foundation, we surveyed resilience at 6 time points after

ONC. We determined the kinetics of loss for each RGC type,

finding dramatic differences, and assessed physiological and

morphological changes that precede death. We then analyzed

expression differences among RGC types, identifying genes that

correlated with resilience or susceptibility. Finally, we used loss-

and gain-of-function methods in vivo to test 10 of these genes,

identifying some that regulate RGC survival and/or axon regener-

ation. Taken together, our work provides a comprehensive

molecular atlas of adult RGCs, documents changes preceding

degeneration, and demonstrates that this approach can be

leveraged to identify novel neuroprotective mechanisms.

RESULTS

An Atlas of Molecularly Defined RGC Types
To generate a molecular atlas of RGC types, we isolated RGCs

from adult (postnatal day [P]56) mice by fluorescence-activated

cell sorting (FACS) and profiled them by droplet-based scRNA-

seq. Computational analysis of 35,699 high-quality single cell

transcriptomes revealed 45 molecularly distinct clusters (Fig-

ure 1C), one of which was subsequently subdivided (see below),

resulting in 46 types. They ranged in frequency from 0.15% to

8.4% (Figure 1D). All clusters expressed pan-RGC markers

such as Slc17a6 (which encodes the transporter VGLUT2),

Rbpms, and at least one of the three Pou4 (Brn3) transcription

factors (Figure 1E). Some clusters could be matched 1:1 to

previously characterized types based on differential expression

(DE) of a single gene (e.g., Jam2 for J-RGCs [Kim et al., 2008]

andMmp17 for nasal motion-preferring ONOFF direction-selec-

tive ganglion cells [N-ooDSGCs] [Kay et al., 2011]), but for most,

unique identity was conferred only by two-marker combinations

(Figure 1F).

Since �3 h elapsed between enucleation and RNA capture,

we considered that clustering could be influenced by post-mor-

tem transcription. To test this possibility, we analyzed �11,800

RGCs from retinas treated with the transcription blocker Actino-

mycinD (ActD) immediately after enucleation (Hrvatin et al., 2018;

Wu et al., 2017). Although some differences were observed, such

as the expected upregulation of immediate early genes (IEGs) in

untreated retinas, the frequency of types and their distinguishing

markers were identical between Act-treated and untreated

RGCs (Figures 1G, 1H, S1A, and S1B).

Clusters were reproducible across biological replicates and

computational approaches (Figures S1C–S1F). In addition, we

compared the relative frequencies of several RGC groups

labeled immunohistochemically in retinal whole-mounts to their

frequencies in the scRNA-seq data and found a striking corre-

spondence (Figure 1I). Together, these results indicate that our

atlas is comprehensive (Table S1).

scRNA-seq Clusters Correspond to Morphologically
Defined RGC Types
To assess the morphology of molecularly-defined RGCs, we

applied fluorescent in situ hybridization (FISH) and immunohisto-

chemistry (IHC) to retinas in which RGCs were sparsely labeled

(YFP-H line; �200 RGCs per retina; Samuel et al., 2011). Using

genes expressed by one or a few clusters, we validated novel

markers for known types and characterized potentially novel

types. For example, novel RGC clusters C10 and C24, which

specifically expressed Gpr88 and Fam19a4, respectively,

possessed dendrites that were bistratified in sublaminae (S)2

and S4 of the inner plexiform layer (IPL), while dendrites of

C25, which expressed Slc17a7 (Vglut1), stratified exclusively in

S5 (Figure 2A). (We divide the IPL into 5 sublaminae, S1–5; Fig-

ure 1B). Other examples are shown in Figures S2A–S2E and re-

sults are summarized in Table S2.

Transcriptome-Assisted Division of RGCs into
Subclasses
We and others have previously defined several groups of related

RGC types, which we call subclasses. They include aRGCs,

which express Spp1 (osteopontin); T- and F-RGCs, defined by

expression of the transcription factors Tbr1 and Foxp2, respec-

tively; ooDSGCs, defined by physiological properties and bistra-

tified dendrites; and intrinsically photosensitive RGCs (ipRGCs),

defined by expression ofOpn4 (melanopsin) (Krieger et al., 2017;

Liu et al., 2018; Rousso et al., 2016; Schmidt et al., 2011; Vaney

(D) Relative frequencies of RGC clusters C1–45 (mean ± SD, n = 10 replicates). Clusters that matched to known types or subclasses are labeled.

(E) Dotplot showing the expression patterns of marker genes (rows) specific to different retinal classes across RGC and non-RGC clusters in the data (columns;

see color bars, top and right). The size of each circle is proportional to the percentage of cells expressing the gene, and the color depicts the average normalized

transcript count in expressing cells. GABA-AC andGly-AC, GABAergic and glycinergic amacrine cells; HC, horizontal cells; BC, bipolar cells; PR, photoreceptors;

Endo, endothelial cells.

(F) Dotplot showing gene combinations (rows) that uniquely mark RGC clusters (columns). Representation is as in (E) for single genes, here normalized to 1. 2- or

3-marker codes, always involve the presence of a marker A, and the presence (e.g., A+B+ or A+B+C+) or absence (e.g., A+B-, or A+B-C+) of markers B andC. In

such cases, the size of the circle indicates the percentage of cells satisfying the expression pattern, and the color depicts the average transcript count of positive

markers in the cells, normalized to 1 for each combination.

(G) RGC type frequencies are highly similar between ActinomycinD (ActD)-treated (y axis) and atlas (x axis) retinas.

(H) Dotplot showing gene combinations that uniquely define each RGC type in nominal controls (as in F) and are preserved in ActD-treated retinas. Row and

column order as in (F).

(I) Scatterplot showing tight correspondence (RPearson = 0.93) between relative frequencies of RGC groups found by scRNA-seq (y axis) versus IHC (x axis).
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Figure 2. Correspondence of scRNA-seq Clusters to RGC Types

(A) Characterization of novel RGC types by combining FISH (magenta) and IHC on sparsely labeled RGCs in the YFP-H line (green). Examples of S2/S4 laminating

C10 and C24 RGCs expressing Gpr88 (left) and Fam19a4 (middle), respectively, and an S5 laminating C25 RGC expressing Slc17a7 (right) are shown. IPL

sublaminae are drawn based on CALB1 or CALB2 staining (white dashed lines). Merge in ‘‘C25’’ panel shows labeled cell at a higher gain to reveal dendritic

morphology.

(B–F) Dotplots highlighting transcriptional distinctions among RGC types within subclasses. Dotted lines separate previously described markers (above) from

novel markers identified in this study (below). (B) aRGC types. (C) T-RGC types. (D) F-RGC types. (E) ipRGC types. (F) S2/S4 laminating RGC types.

(G) C16 comprising D/V-ooDSGCs can be partitioned into Calb1+ (putative D-ooDSGCs) and Calb1-� (putative V-ooDSGCs) cells.

(H) Consistent with the interpretation in (G), GFP+ cells in the Hb9 mouse line, which labels V-ooDSGCs, are CALB1-� and CALB2+ (magenta).

(legend continued on next page)
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et al., 2012) (Table S2). Subclasses exhibit somemolecular over-

lap (for example ON- and OFF-sustained aRGCs express Opn4

and Tbr1, respectively) but are largely distinct.

By double-labeling retinas for a subclassmarker and a cluster-

specific marker, we validated gene combinations that distin-

guish RGC types within each of these subclasses. For aRGCs

(C41–43, 45), the novel marker combinations of the 4 types are

more selective than those found previously by a candidate

approach (Krieger et al., 2017) (Figures 2B and S2A). Our previ-

ous studies identified 4 T-RGC and 4 F-RGC types, but this new

approach revealed a fifth type within each subclass (C9 and C32,

respectively; Figures 2C, 2D, and S2B). For ipRGCs, we discov-

eredmarkers for M1 (C33 and 40), M2 (C31), andM4 (C43) types,

including some that divide M1-RGCs (identified by high levels of

Opn4 and expression of Adcyap1; Hannibal et al., 2002) into two

types (M1a, M1b), as well as an additional cluster (C22) that

could correspond to the morphologically and physiologically

characterized M3, M5, or M6 types (Figure 2E) (Quattrochi

et al., 2019; Schmidt et al., 2011; Stabio et al., 2018; Berg

et al., 2019). For ooDSGCs, most of which are Cartpt+, we iden-

tified the nasal-preferring type (N-ooDSGC) by expression of

Mmp17, but only a single cluster (C16) expressed Col25a1, a

marker of both D- and V-ooDSGCs (Kay et al., 2011). However,

supervised analysis split this cluster with Calb1 and Calb2 in

largely nonoverlapping cells, bringing the total number of RGC

types to 46. Labeling of a line that marks only V-ooDSGCs

confirmed that CALB1-positive cells are D-ooDSGCs and

CALB2-high cells are V-ooDSGCs (Figures 2F–2H).

Another potential subclass is defined by the transgene TYW3,

which exhibits insertion-site-dependent expression in several

types of RGCs that share dendritic lamination in the middle third

of the IPL; one is labeled brightly (W3B) and the others dimly

(W3D) (Figure S2F) (Kim et al., 2010; Zhang et al., 2012; Krish-

naswamy et al., 2015; Laboulaye et al., 2018). We isolated W3-

RGCs by FACS and profiled them using Smart-seq2 to obtain

deeper coverage (Ding et al., 2019; Picelli et al., 2013). Of 341

RGCs, 97%matched to 1 of 6 types in the atlas: W3B (identified

by high expression of Sdk2; Krishnaswamy et al., 2015), F-mini-

ON, F-mini-OFF, and three others that we call W3D1–3. The re-

maining 3% corresponded to T-RGC-S2 (Figures S2G and S2H).

Interestingly, all of these types expressed the integral membrane

protein Tusc5/Trarg1 (Figure 2J). Two additional atlas clusters,

C1 and C13, were transcriptionally proximate to these types

and Tusc5/Trarg1-positive; we call them W3-like (W3L) 1 and 2

(Figure 2J). This congruence identifies 9 types as members of

a subclass that we provisionally call T5-RGCs. It includes 5 of

the 6most abundant RGC types and accounts for approximately

40% of all RGCs.

Collectively, these subclasses account for 26/46 RGC types,

with each type occupying no more than two subclasses. Types

within a subclass were usually but not always closely related

molecularly: 4/5 T-RGCs (Tbr1+), 4/5 F-RGCs (Foxp2+), 5/9

T5-RGCs (Tusc5+), 4/5 ipRGCs (Opn4+), and 3/4 aRGCs

(Spp1+) were close relatives based on a hierarchical clustering

analysis (Figure 2J). Our dataset also enabled the identification

of a novel subclass based on transcriptional similarity and mo-

lecular markers: 8 closely related types co-expressed the tran-

scription factors Neurod2 and Satb2 (provisionally N-RGCs; Fig-

ure 2J). Types within this group, 7/8 of which are apparently

novel, might share cellular characteristics. The remaining 11/45

types were not assigned to a subclass due to the lack of amarker

sharedwith proximal clusters, but they do exhibit some intriguing

transcriptome-wide relationships to other types (Figure 2J). For

example, C10 and C24 are transcriptionally proximate to D/V-

ooDSGCs (C16) and, like known ooDSGCs, are S2/S4 laminating

(Figure 2A); they are candidates for the temporal-preferring (T)

ooDSGC type.

RGC Types Vary Dramatically in Susceptibility to ONC
Using the adult RGC atlas as a foundation, we assessed the re-

silience of types to ONC (Figure 3A). To this end, we profiled

�8,500 RGCs 14 days post ONC (dpc), at which point �80%

had died. Extensive injury-related changes in gene expression

initially limited our ability to classify surviving RGCs to types

using a ‘‘one-step’’ supervised classification framework (Fig-

ure 3C). We therefore formulated an alternative approach,

leveraging data from RGCs collected at 5 intermediate time

points. In this approach, transcriptomic signatures of RGC types

were redefined at each time to assign cells at the next time point

(Figure 3B). This allowed us to disambiguate gradual injury-

related ‘‘state’’ changes from intrinsic type-specific signatures.

RGCs were then assigned to types using a hybrid algorithm

combining supervised classification (Chen and Guestrin, 2016)

and graph-based voting; we call the approach iterative-Graph-

Boost (iGraphBoost; see STAR Methods).

iGraphBoost assigned 89% of total injured RGCs to types,

including 77% at 14dpc (Figures 3C). All types maintained

expression of Rbpms (Figures S3H and S3I) as well as their spe-

cific marker genes through 14dpc (compare Figures 1F and 3D).

To visualize the injured RGCs in a 2D representation, we com-

bined Liger, which utilizes non-negative matrix factorization

(Welch et al., 2019), and t-distributed stochastic neighbor

embedding (t-SNE) (Figure S3A). Encouragingly, clusters identi-

fied using the Liger representation were associated more

strongly with type-specific identities assigned by iGraphBoost

than with other metadata such as time, mouse strain, or collec-

tion (Figures S3C). Nonetheless, some surviving RGCs could not

be confidently classified. The proportion of ‘‘unassigned’’ cells

increased over time, consistent with the idea that injury-related

transcriptional changes mask type-intrinsic signatures (Figures

S3D–S3F).

We next ranked RGC types by their frequency at 14dpc

compared to control (Figure 3E). Survival rates varied continu-

ously from �1% to �98%. We refer to the 7 types that showed

an increase in relative frequency >2-fold as ‘‘resilient’’ (resRGCs).

Because some differences in apparent resilience could result

(I) Dotplot showing consistent patterns of DE gene expression between W3 types (rows) detected in the droplet-based scRNA-seq atlas (red) and plate-based

data from FACS-sorted W3 RGCs (green). Labeled by atlas cluster ID.

(J) Transcriptional relatedness of RGC clusters visualized as a dendrogram reveals subclasses of RGC types (annotation bar, bottom). Dotplot shows expression

of key subclass-enriched or -defining genes (rows) in clusters (columns).
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Figure 3. scRNA-seq Profiling of RGCs following ONC

(A) scRNA-seq was performed on RGCs collected before and at six times following ONC. 8,456–13,619 RGCs were collected at each time point.

(B) Illustration of a single step of the iGraphBoost procedure to classify RGCs collected at time tn+1 based on an atlas of RGC types at the previous time point tn.

The procedure is initiated with Atlas RGCs at t0. In step 1, gradient boosted trees trained on tn RGC types are used to classify tn+1 RGCs. Only high-confidence

assignments are applied, and a large number of RGCs remain unclassified at this stage. In step 2, a Jaccard-weighted k-nearest neighbor graph built on all tn+1
RGCs is used to propagate labels via nearest-neighbor voting to unassigned RGCs, using the classified RGCs in step 1 as anchors. Successfully classified tn+1
RGCs are used to classify tn+2 RGCs in the next iteration.

(C) Fraction of RGCs that can be confidently assigned to types (y axis) at each time point following ONC (x axis). The ‘‘one-step’’ approach (gray) using the atlas

RGCs as training data results in a significantly lower proportion of assigned cells among late injured RGCs compared to iGraphBoost (black).

(D) Dotplot showing that gene combinations uniquely defining each RGC type (row and column order as in Figure 1F) are maintained in 14dpc assigned by

iGraphBoost, though reduction in expression level of some markers was observed.

(legend continued on next page)
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from biases in collection, loss of particularly fragile cells, or mis-

assignment by our computational approach, we also assessed

survival for selected types using IHC (Figure S4; Table S3). Histo-

logically and transcriptionally derived frequencies were as highly

correlated (Pearson r = 0.97) at 14dpc (Figure 3H; Table S3) as in

controls (Figure 1I). Together, these data provide a comprehen-

sive catalog of type-specific vulnerability of RGCs to injury.

We then asked whether relative resilience of RGC types corre-

lated with overall molecular relationships. In some cases, corre-

spondence was striking. For example, all ipRGC (Opn4+) types

were resilient, and all N-RGC types were susceptible (Figure 3F).

Other transcriptionally defined groupings of RGCs, however, con-

tained types that differedgreatly in resilience. For example, among

aRGCs, which had previously been characterized as a resilient

subclass (Duan et al., 2015), the two sustained types (C42, 43)

werehighly resilient but the two transient types (C41, 45)were rela-

tively susceptible, despite transcriptional proximity (Figures 3F,

S5A, and S5B). Likewise, both rare and abundant types could be

either resilient or vulnerable (Figure3G). Thus, transcriptional prox-

imity and frequency are imperfect predictors of resilience.

Dynamics of RGC Survival after Injury Define Three
Survival Groups
Few RGCs die during the first 3 days after ONC, �70% die over

the next 5 days, and numbers then decline gradually to�10%sur-

vival at 28dpc (Figures 3I and S5F). Based on their kinetics of loss,

we partitioned RGC types into three groups: the 7 resilient types

(8.1% of control RGCs) declined gradually, reaching �50% sur-

vival at 14dpc; 11 ‘‘intermediate’’ types (27.2% of control RGCs)

exhibited a striking decline between 4 and 7dpc; and 27 suscep-

tible types (64.7% of control RGCs) were severely reduced by

4dpc (Figures 3J–3M). Thus, survival of the intermediate and sus-

ceptible RGCs (intRGCs and susRGCs, respectively) differed

dramatically at 4dpc (susRGCs: 39% ± 21%; intRGCs: 95% ±

25%). Unsurprisingly, these groups correlated well with rankings

by survival at 14dpc alone (Figure S3G). As above, we validated

scRNA-seq-derived survival kinetics of RGC subclasses with

distinct survival rates using IHC (Figures S5F–S5H).

Physiological Characteristics of Resilient and
Susceptible RGCs
To determine whether resilient RGCs share functional proper-

ties, we monitored physiological characteristics of individual

injured RGCs over time, using our recently developed method

for in vivo recording (Hong et al., 2018). Briefly, a flexible mesh

carrying 32 electrodes is injected intravitreally, where it coats

the inner retina without disturbing normal eye function; spike

sorting protocols identify up to 4 cells per electrode and provide

wave-form signatures that allow longitudinal tracking of the

same cell over multiple recording sessions (Figures 4A and 4B).

We implanted the mesh directly after ONC and recorded RGC

activity every 1–2 days for 6–14 days, obtaining data from 142

cells in 4 mice. We used full-field illumination and moving grat-

ings to determine whether RGCs exhibited responses that

were sustained or transient; orientation-, direction-, or non-se-

lective (OSGCs, DSGCs, and NSGCs, respectively; Figure 4C);

and ON, OFF, or ON/OFF (firing in response to luminance in-

crease, decrease, or both). At 1dpc, we detected all these func-

tional types, indicating that the method sampled RGC types

broadly (Figure 4D).

We then tracked RGCs to identify resilient and susceptible

populations. We defined a cell as ‘‘dead’’ if its mean firing rate

decreased below 0.5 Hz for at least 2 consecutive days. �60%

of RGCs died between 3 and 7dpc, with �74% dead by 14dpc

(Figure 4E). In contrast, <10% of cells were lost over 2 weeks

of recordings from uninjured retinas (Hong et al., 2018), indi-

cating that the loss reflects ONC-related death rather than

recording instability. Survival dynamics mirror those determined

histologically (Figure 3I), suggesting that neurons are not silent

for substantial periods prior to their death.

We used this method to ask whether surviving RGCs were

enriched for specific response types. RGCs with sustained

responses survived �3-fold better than those with transient re-

sponses (Figure 4F), consistent with scRNA-seq results for sus-

tained and transient aRGCs. Because aRGCs comprise <5% of

all RGCs, the physiological result suggests that the relationship

between sustained responses and resilience is a general one.

Orientation-selective RGCs (OSGCs) were more susceptible

than direction-selective RGCs (DSGC) or non-selective RGCs

(NSGCs) (Figure 4G). Resilience did not differ between ON

or OFF types but ON-OFF types were more vulnerable, inde-

pendent of feature selectivity (Figure 4H). This vulnerability is

consistent with the known susceptibility of ooDGCS, which

have transient responses, but it did not extend to other DSGCs

(Figure 4I). These results reveal a correlation between physiolog-

ical properties and resilience.

(E) RGC type-specific resilience at 14dpc relative to control (Ctrl) rank ordered based on decreasing values of the relative frequency ratio at 14dpc versus Ctrl.

RGC types exhibit a wide spectrum of survival at 14dpc ranging from 1% to 98%.

(F) 14d survival ranking (as in E) colored by RGC subclasses. Overlapping subclasses are denoted by two-tone color bars.

(G) 14d survival ranking (as in E) colored by relative abundance in control.

(H) Scatterplot showing correspondence between the 14dpc survival rates of RGC groups as determined by scRNA-seq and IHC (RPearson = 0.97). 26 combi-

nations of antibodies and transgenic lines (Table S3) were used label groups of RGC types covering a broad frequency range.

(I) Loss of RGC somas as determined by IHC for RBPMS in this study (diamonds; see Figure S4F for example images) or by retrograde labeling from superior

colliculus (triangles; redrawn from Galindo-Romero et al., 2011).

(J–M) Each RGC type can be assigned to one of three survival groups based on the pattern of cell loss across time. Shown are individual graphs of relative

survival, defined as the fraction of cells surviving at each time point, for 7 resilient types (J), 11 intermediate types (K), and 27 susceptible types (L) (see also

Figure S3G). Fluctuations in sampling frequency resulted in relative survival values >1 through 2dpc (where there is little death) for rare RGC types (fre-

quency <0.5%). Error bars are not included for individual types in (J–L) for clarity of presentation. Gray lines, relative survival for each type within the survival

group; colored lines, mean relative survival across types; shaded ribbons, standard deviation of relative survival values across types. Fluctuations observed

through 2dpc were within expected error (colored ribbons), in contrast to later time points. Solid lines, mean relative survival across types within a survival group;

shaded ribbons, standard deviation. Group means are superimposed in (M).
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Figure 4. Physiological Characteristics of Resilient and Susceptible RGCs
(A) Representative recordings of two out of 32 channels in 1dpc and 14dpc mesh-implanted retinas.

(B) Sorted spike waveforms for two individual RGCs per channel (rows) represented in (A) recorded over multiple days. Ch1 shows spike waveforms of two sorted

RGCs (purple and green lines) on 1dpc and 3dpc; cells have died by 8dpc. Ch2 shows waveforms of two sorted RGCs (blue and red) on 1dpc and 3dpc, but only

one RGC was still detectable at 8dpc.

(C) Polar plots of responses of direction-selective (DS), orientation-selective (OS), and neither orientation- nor directions-selective (NS) RGCs to gratings moving

in each of 8 directions. Each plot shows measurements from the same cell on different days.

(legend continued on next page)
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Our longitudinal measurements also enabled the assessment

of physiological changes preceding cell death. The overall firing

rate of resilient RGCs (those detectable at 14dpc) varied little

during the measurement period (Figure 4J). Similarly, for RGCs

that died between 3 and 5dpc, the firing rate and orientation-

and direction-selectivity indices were largely unchanged be-

tween days 1 and 3 (Figures 4K and 4L). These results suggest

that RGCs maintain activity levels and presynaptic inputs, which

determine response properties, until shortly before they die.

Morphological Changes in Resilient and
Susceptible RGCs
The observation that functional responses of RGCs were re-

tained until at least 48 h prior to death raised the question as

to whether their structural integrity was similarly maintained.

We therefore tracked changes in dendritic morphology of 3

resRGC types (ipRGC M2, aRGC OFF-S, and aRGC ON-S/

ipRGCCM4) and 3 susRGC types (aRGC OFF-T and 2 ooDSGC

types) after ONC. We used the YFP-H line for sparse labeling in

combination with IHC and dendritic lamination to identify types

(Figures S5A–S5C).

Strikingly, resRGCs maintained robust dendritic morphology

through 14dpc, with no significant decrease in dendritic area

or arbor complexity (Figures 4M, 4N, S6D, and S6E). Along

with functional results, this implies that resRGCs maintain their

integrity after ONC. As expected, susRGC types were scarce

by 7dpc. Interestingly, however, susRGCs maintained their den-

dritic area through 4dpc, though their dendrites often appeared

thinner and fainter than those in controls, and two susRGC types

exhibited a significant reduction in dendritic complexity (Figures

4O, 4P, S6F, and S6G). Together with physiological measure-

ments, this morphological analysis raises the possibility that a

substantial window exists during which surviving RGCs could

be receptive to regenerative therapies.

Global Gene Expression Changes after ONC
To ask when injury response programs are activated in RGCs,

we first characterized the dynamics of globally regulated gene

expression after ONC, identifying 771 temporally DE genes

that were broadly shared across types (Table S4). Genes were

partitioned into 8 modules (Mod1–8) by k-means clustering (Fig-

ure 5A), identifying gene sets with distinct temporal dynamics

that were enriched for different gene ontology (GO) biological

processes (Table S5). For example, module 1 (Mod1), which

comprised genes whose expression began to decline by

0.5dpc, was enriched in GO terms associated with functions car-

ried out in healthy neurons such as action potential, synaptic

vesicle exo/endocytosis, and retrograde axon transport (Fig-

ure 5B). In contrast, Mod5 andMod6, comprising genes upregu-

lated around 2dpc, were associated with apoptosis and stress

pathways (Figure 5C). DE genes showed few strong type-spe-

cific differences, with the notable exception of ipRGC types,

which exhibited considerably lower upregulation of Mod5, 6,

and 7 genes than other types (Figures 5D–5E, S7A, and S7B).

Gene Expression Correlating with Resilience and
Vulnerability
Next, we sought type-specific gene expression patterns that

correlated with resilience or vulnerability. First, we compared

baseline (control) transcriptomic profiles across the three sur-

vival groups (Figure 3N). Several genes were expressed in multi-

ple resRGC types but showed little to no expression in susRGC

or intRGC types (Figures 5F and S7C). Among them were two

IEGs (Junb and Egr1), enriched in ipRGCs. In light of the upregu-

lation of IEGs by dissociation (Figure S1F), we verified that IEG

and other type-specific expression patterns were maintained in

RGCs treated with ActD and are therefore likely to be intrinsic

properties (compare Figures 5F and S7D). With the exception

of Igf1, we found no DE genes that were enriched in all resRGCs

but no susRGCs or vice versa, suggesting heterogeneity in fac-

tors in mediating resilience or susceptibility across types.

We also asked if resilient and susRGC types up- or downregu-

lated different sets of genes following injury. As was the case for

the analysis at baseline, few genes were up- or downregulated in

all resRGC or susRGC types, but many were upregulated selec-

tively in several resRGC but no susRGC types or vice versa (Fig-

ures 5G–5J). Thrombospondin 1 was also subtly but selectively

upregulated in ipRGCs beginning at 12 h post-ONC, consistent

with results of Bray et al. (2019). resRGC-enriched genes were

generally maintained through 14dpc, suggesting that they could

play a role in long-term survival. In contrast, expression of

susRGC-enriched genes generally peaked at 2–4dpc, coinci-

dent with the onset of degeneration, suggesting that their

expression could be predictive of cell death.

(D) Proportion of RGCs by response type within each response category (columns) at 1dpc. S, sustained; T, transient; ON, OFF, and ON/OFF, responds to light

increments, decrements, or both.

(E) RGC survival as a function of time in physiological recordings following ONC (black line) compared to uncrushed control (dotted line shows data replotted from

Hong et al., 2018).

(F) Sustained RGCs survive better than transient RGCs as assessed by physiology (*p < 0.03 by Fisher’s Exact Test).

(G) OSGCs are more susceptible than DSGCs or NSGCs (*p < 0.04 by Fisher’s Exact Test).

(H) Among RGCs that are either OS or NS, ON-OFF cells are more susceptible than ON or OFF cells (*p < 0.03 by Fisher’s Exact Test).

(I) Among DSGCs, ON-OFF cells (ooDSGCs) are more susceptible than ON or OFF cells (p = 0.06 at 14dpc by Fisher’s Exact Test).

(J) Average firing rates for RGCs that survive until 14dpc or die by 8dpc.

(K) RGCs that are dead by 5dpc exhibit little changes in firing rate between 1 and 3dpc.

(L) RGCs that are dead by 5dpc exhibit little change in direction/orientation selectivity index (DSI/OSI) between 1 and 3dpc.

(M) En face morphology of resilient RGCs (aOFF-S, C42) at Ctrl, 4, 7, and 14dpc.

(N) Quantification of C42 morphological complexity (total branch points) and size (dendritic area) shows no significant difference between time points for either

measure (one-way ANOVA with post hoc Tukey HSD test). Data are shown as mean ± SD.

(O) En face morphology of susceptible RGCs (aOFF-T, C45) at Ctrl, 3, and 4dpc. O’ shows zoomed in views of dendrites at Ctrl and 4dpc.

(P) Quantification of C45 morphological complexity as in (N). *p < 0.04; one-way ANOVA with post hoc Tukey HSD test. Data are shown as mean ± SD.
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scRNA-seq-Derived Candidates Promote
Neuroprotection of RGCs
Genes enriched in resRGCs included three previously described

mediators of RGC survival and/or axon regeneration: Igf1 (7/7

resRGCs), Opn4 (5/7), and Spp1 (3/7) (Duan et al., 2015; Dupraz

et al., 2013; Li et al., 2016; Zhang et al., 2019). To ask whether

genes selectively expressed in resilient or susceptible RGC

types included additional factors that affected survival, we

tested 10 candidates (Table S6). AAV2 vectors were used to

overexpress (OE) genes correlating with resilience or to mutate

(knockout; KO) genes correlating with susceptibility. For KO

experiments, we infected retinas from LSL-Cas9 mice crossed

to Vglut2-Cremice (to express Cas9 in all RGCs) with vectors en-

coding a single-guide RNA (sgRNA). We injected AAV intravi-

treally 14d prior to ONC and quantified RGC survival by IHC at

14dpc (Figures 6J and S8E).

We began with a pair of genes that displayed intriguing

expression patterns: urocortin (Ucn), which encodes a peptide

from the corticotropin-releasing factor family, and cortico-

A B C

D E

F G H

I J

Figure 5. Global Changes in Gene Expres-

sion following Injury

(A) Heatmap of genes showing temporal variation

following ONC. Expression values of each gene

(row) are averaged across all RGCs at a given time

point (columns) and then z-scored across times

prior to plotting. Black bars separate genes into 8

modules (Mod) based on temporal dynamics.

(B) Mean temporal dynamics of individual genes

(lines) from Module 1 that were associated with

gene ontology (GO) biological processes related

to axon and neuronal functions. Genes and the GO

processes from which they were selected are lis-

ted in Table S4.

(C) As in (B), for Modules 5 and 6 for genes asso-

ciated with GO biological processes related to

apoptosis or various stress pathways.

(D) Expression dynamics of genes from (B) plotted

for each RGC type (lines). Blue lines correspond to

ipRGC types (C31, 22, 40, and 33). Expression

values for each type were z-scored to track rela-

tive changes.

(E) Same as in (D), but for genes from (C).

(F) Expression patterns of DE genes (rows) dis-

tinguishing the 7 resRGC types and the 10 most

susceptible RGC types (columns) based on 14dpc

survival in the uninjured retina (Figure 3F). Values

were z-scored along each row prior to plotting.

(G–J) Averaged temporal dynamics of candidate

genes selectively upregulated in resRGC or

susRGC types (lines). Blue lines correspond to the

7 resRGC types, including types that upregulate

Ucn (C42, 43) or Nppb (C22, 31, 33, 40, 43) (left

panels), which were not enriched for Tac1 orCidea

(right panels).

tropin releasing hormone binding pro-

tein (Crhbp), a secreted glycoprotein

that inhibits UCN-mediated activity

(Seasholtz et al., 2002). Ucn was upre-

gulated post-ONC in the two sustained

aRGC types but not in other RGCs,

while Crhbp was selectively expressed in multiple susRGC

types (Figures 6A and 6B). The CRH receptor (Crhr1), through

which UCN signals, was broadly expressed among RGC types

(Figure S8B). We increased Ucn levels by AAV2-based OE or

by injection of recombinant protein and decreased Crhbp

expression by AAV2-CRISPR-based KO with two different

sgRNAs (Figure S8A). All four treatments significantly

increased RGC survival (Figures 6C and 6J; Table S6).

A second pair of related genes was Timp2, an inhibitor of ma-

trix metalloproteinases (MMPs), and Mmp12, a TIMP2 target

(Koppisetti et al., 2014). Timp2 was selectively enriched in resil-

ient ipRGCs, whereas Mmp12 was broadly upregulated after

ONC but upregulation was particularly modest in ipRGCs (Fig-

ures 6D and 6E). AAV-OE of Timp2 enhanced survival, as did

AAV-KO of Mmp12 with one of two sgRNAs (Figures 6F and

6J, Table S6). A small-molecule inhibitor selective for MMP12

also improved survival. Because MMPs have overlapping func-

tions, we surveyed their expression in our scRNA-seq data and

found that only Mmp9 was expressed at a detectable level in
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Figure 6. Genes That Affect RGC Survival

(A) Ucn is selectively upregulated in sustained aRGCs (a-RGC-S; C42 and 43) and Crhbp is selectively expressed in a subset of susRGC types (C14, 15, 17, 24,

26, 28, and 39). Violin plots show merged expression for indicated clusters at 0 and 7dpc. The number above the violins indicates the percentage of cells ex-

pressing the marker within each subset. Boxplots depict the median and interquartile range.

(B) FISH of retinal sections shows Ucn upregulation at 7dpc in Spp1+ RGCs (a-RGCs marker): white circles. Crhbp is expressed in a set of Spp1- RGCs (non-

a-RGCs) before and after ONC: green circles.

(legend continued on next page)
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multiple RGC types (Figure S8C). TargetingMmp9with either of

two sgRNAs also improved survival (Figures 6F and 6J).

Of the other five genes tested, two selectively expressed by

resRGCs improved survival: neuron-derived neurotrophic fac-

tor, Ndnf, which encodes a secretory protein (Kuang et al.,

2010), and peripherin, Prph, which encodes a neurofilament

protein (Thompson and Ziff, 1989) (Figures 6G–6J; Table S6).

In contrast, KO of three genes enriched in subsets of susRGCs

(Evc2, Tac1, and Hpcal1) had no significant effect (Figures S8D

and S8E).

Genes would be particularly useful targets if they were able to

rescue neurons that do not express them endogenously. We

asked whether OE of the protective genes Ucn and Timp2 could

improve survival of susceptible RGCs. To test this idea, we used

two markers (CARTPT and NEUROD2) that label susceptible

RGC subclasses (Figure 3H), neither of which expresses Ucn

or Timp2 at high levels before or after ONC. Both OE-Ucn

and OE-Timp2 increased survival of CARTPT+ RGCs but not

NEUROD2-RGCs (Figures 6K and 6L). Thus, these interventions

can protect some but not all susceptible RGC types.

Factors Correlating with Resilience Also Stimulate Axon
Regeneration
While our screen was focused on neuroprotection, the targets

we identified might also promote axon regeneration. To test

this possibility, we anterogradely labeled RGC axons by intravi-

treal injection of fluorescently conjugated cholera toxin B subunit

(CTB647) at 12dpc, then counted labeled axons at 14dpc (Fig-

ure 7A). OE-Ucn, UCN protein, OE-Timp2, KO-Crhbp, and KO-

Mmp9 all promoted significant overall regeneration (Figures

7B, 7C, 7E, and 7F; Table S6), with some regenerating axons ex-

tending >1,500 mm. OE of Ndnf and Prph promoted modest

regeneration but only at short distances (Figures 7D and 7G).

These results encourage the hope that our screen will be useful

for discovery of targets for axon regeneration as well as

neuroprotection.

DISCUSSION

We generated an atlas of adult mouse RGC types and used it as

a foundation to track type-specific responses to injury. We

identified a spectrum of resilience among RGC types and

documented transcriptomic, physiological, and morphological

changes preceding degeneration. We then manipulated genes

selectively expressed in resilient or vulnerable types, finding

some that promote RGC survival and axon regeneration

following ONC.

An Atlas of Mouse RGC Types
Analysis of 35,699 adult RGC transcriptomes revealed 45 cell

clusters. Several lines of evidence indicate that these clusters

correspond to cell types. (1) The number of types is similar to

those from recent large-scale surveys based on serial section

electron microscopy (R35; Bae et al., 2018), optical imaging of

electrical activity (R32; Baden et al., 2016), and scRNA-seq of

neonatal retina (40; Rheaume et al., 2018). (2) Several clusters

could be assigned to types based on previously known markers.

(3) For others, in situ hybridization with genes identified from

scRNA-seq allowed us to assign clusters to known types or

findmorphological signatures of previously uncharacterizedmo-

lecular types. Thus, RGCs join retinal bipolar cells (Shekhar et al.,

2016) as a second neuronal class for which transcriptomic

criteria tightly correspond to types as defined by classical

criteria. This encourages the belief that high-throughput molec-

ular profiling methods, which are currently the most scalable,

represent a reliable approach to categorize cell types in the

mammalian nervous system.

We cannot, however, be sure that we have captured all RGC

types for three reasons. First, our sample size permitted the iden-

tification of a type that comprises �0.15% of all RGCs, but rarer

types may have gone undetected. Second, cell dissociation can

create biases and fragile types could be missed. Third, V- and

D-ooDSGCs formed a single cluster that we split by a semi-su-

pervised analysis, yielding a total of 46 types from 45 clusters.

These types are extremely similar; indeed, despite intensive

study, no endogenous markers had been found that distinguish

them (Kay et al., 2011). They do form separate clusters in

early postnatal retina (I.E.W, K.S., and J.R.S., unpublished

data), suggesting that distinguishing genes are downregulated

in adulthood. Although supervised analysis of other clusters

did not reveal additional subdivisions, we cannot rule out the

possibility that other closely related types also co-clustered.

(C) IHC in retinal whole-mounts for RBPMS shows increased survival of RGCs at 14dpc following OE-Ucn, KO-Crhbp, or injection of UCN protein.

(D) Timp2 is selectively expressed in the resilient ipRGCs (C22, 31, 33, 40, and 43) before and after ONC. Mmp12 is upregulated in a broad subset of susRGCs

(C7, 8, 11, 12, 14, 17, 18, 23, 24, 27, 28, 43, 37, 39, and 41) after crush but is low in ipRGCs in scRNA-seq data. Violin plots are as in (A).

(E) FISH of retinal sections as in (B).

(F) IHC in retinal whole-mounts as in (C).

(G) Expression in resRGC subsets at 0 and 7dpc of Ndnf (C22, 31, and 43) and Prph (C31 and 43). Violin plots are as in panel (A).

(H) FISH of retinal sections as in (B).

(I) IHC of retinal whole-mounts as in (C).

(J) Total RGC survival (RBPMS+ cells; mean ± SEM) in whole-mounts following interventions shown in (C), (F), and (I). Red line and ribbon, mean RBPMS density ±

SEM averaged from four sets of controls, which did not differ significantly from each other: no injection, PBS, UCN vehicle, and MMP12 inhibitor vehicle. n = 18;

details in STAR Methods and Figure S8F. *p < 0.05 (Bonferroni adjusted).

(K) IHC showing increased survival of CARTPT+ RGCs (circles) at 14dpc following OE-Ucn and OE-Timp2 compared to vehicle. Top row, CARTPT+ RGCs

at 0dpc.

(L) IHC quantification showing selective survival of CARTPT+ RGCs (C12, 14, 16, and 36) compared to NEUROD2+ RGCs (C12, 19, 20, 25, 26, 29, 35, and 39) at

14dpc following indicated treatments. y axis, #positive per section RGCs at 14dpc/control. Performed on retinal sagittal sections through the optic nerve. *p <

0.05 (FDR adjusted).

Scale bars: 25 mm for (B), (D), (H), and (K); 100 mm for (C), (F), and (I).
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The molecular atlas provided new insights into RGC sub-

classes. First, for several subclasses previously defined by

morphological, physiological, or genetic criteria, we identified

novel members; e.g., an additional T-RGC and F-RGC. Second,

members of a subclass generally showed a global transcrip-

tomic relationship. For example, the T5-RGC types, 6 of which

were previously shown to share dendritic lamination, were tran-

scriptomically proximate (5/9 types) and shared expression of

Tusc5.Neurod2 and Satb2 are co-expressed by 8 transcriptomi-

cally proximate types, 7 of which are novel. These and other

novel types clustering near known types may share cellular fea-

tures. On the other hand, types that share functional or structural

characteristics were not always neighbors on the dendrogram

(Figure 2J), particularly when a type was a member of multiple

subclasses.

Resilience to Injury Varies among Cell Types
To characterize RGC survival after ONC, we applied four inde-

pendent approaches: scRNA-Seq, IHC, sparse labeling and

in vivo physiology. We found strong agreement among the

criteria in their assessment of type-specific RGC resilience and

draw four main conclusions. First, survival differed dramatically

among types, from 1% to 98% over 2 weeks. Second, types

that differed in overall resilience also differed in the time course

of death. Third, resilience was not ‘‘binary’’ but rather varied

continuously across types. Fourth, in some but not all cases, re-

silience correlated with molecular or physiological properties of

A
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Figure 7. Genes That Promote RGC Axon

Regeneration

(A) In vivo OE and KO. An AAV2 carrying the OE

gene or KO sgRNA is injected intravitreally 14 days

before the crush. At 12dpc regenerating axons are

anterogradely labeled via CTB647 injection. UCN

protein was injected at 2dpc.

(B) Maximum projections of cleared optic nerves

showing anterograde-labeled RGC axons at 14dpc

following vehicle injection or indicated treatment of

Ucn (OE or protein) and KO-Crhbp (g1 and g2).

(C) Same as (B), but following OE-Timp2 and

KO-Mmp9 (g1 and g2).

(D) Same as (B), but following OE-Ndnf and

OE-Prph.

(E–G) Quantification of axon regeneration. Control

line represents mean ± SEM from three groups,

which did not differ significantly from each other:

PBS only, UCN vehicle, and AAV-Cre with no

sgRNA; n = 14; details in STARMethods and Figure

S8G. *p < 0.05, two-tailed Student’s t test of area

under the curve evaluated using numerical inte-

gration. Mixed effects analyses with Bonferroni

correction for individual distances are shown in

Table S6.

In (B)–(D), scale bar, 250 mm; X, crush site; red

lines, 500, 1,000, and 1,500 mm distances from

crush site.

RGC types. For example, all 5 ipRGC

types were resilient, RGCs with sustained

light responses outperformed those with

transient responses, and all 8 N-RGC

types survived poorly. Nonetheless, we did not find a single char-

acteristic that predicted resilience, suggesting that different

resilient neuronal types utilize different survival strategies.

The resilience of sustained RGCs provides an intriguing paral-

lel to patterns of motoneuron survival in Amyotrophic Lateral

Sclerosis: the ‘‘slow’’ motoneurons that innervate slow twitch

muscle fibers exhibit tonic (�sustained) activity survive better

than fast motoneurons, which exhibit phasic (�transient) activity

(Pun et al., 2006). This correspondence suggests a general asso-

ciation between firing pattern and resilience, the basis of which

remains to be explored.

Cellular Changes inNeuronswithDifferential Resilience
Knowing the kinetics of loss for each RGC type allowed us to

characterize molecular, morphological, and physiological alter-

ations in the days prior to death. Our main result is that these

changes were surprisingly mild up until shortly before somatic

loss: dendritic morphology, firing rate, and feature selectivity of

RGCs remained at close to control levels until at least 2 days

before death. This observation contrasts with models of glau-

coma, where dendritic shrinking and functional decline prior to

death is striking (Della Santina et al., 2013; Liu et al., 2011).

They also seemingly contrast with other studies that observe sig-

nificant dendritic shrinkage after ONC (e.g., Agostinone et al.,

2018); however, those studies focused on broader subclasses

of RGCs, so changes in dendritic area could reflect differential

survival of RGC types within the subclass being assayed.
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Genes That Affect Resilience and Regeneration
As noted above, we found no universal gene expression pro-

grams that predicted resilience. We did, however, identify genes

expressed selectively by multiple resilient or susceptible types,

some of which affect RGC survival and axon regeneration.

Among them were two intriguing pairs in which a gene and its

antagonist were expressed in opposing populations.

The first pair was Ucn and Crhbp, expressed by resRGCs and

susRGCs, respectively. UCN has been shown to promote sur-

vival of hippocampal and dopaminergic neurons (Abuirmeileh

et al., 2007; Huang et al., 2011; Pedersen et al., 2002). CRHBP

binds UCN and prevents it from activating CRHR1 (Seasholtz

et al., 2002). The second pair was Mmp12, expressed by

susRGCs, and its endogenous inhibitor, Timp2 (Dzwonek et al.,

2004), expressed by resRGCs. Administration of a soluble inhib-

itor of MMP12 was recently shown to improve RGC survival after

ONC (Vinet et al., 2018), a result we replicated, andMmp12 dele-

tion improves recovery from spinal cord injury (Wells et al., 2003)

and AAV-mediated gene-transfer of Timp1 and Timp2 reduced

neuronal damage in transient global ischemia (Magnoni et al.,

2007). Overexpression of Ucn or Timp2 improved RGC survival

as did KO of Crhbp or Mmp12.

A guiding hypothesis for this study was that protective genes

identified on the basis of their expression by resRGCswould pro-

tect other RGC types if expressed broadly. We tested this hy-

pothesis for Ucn and Timp2 and found that they improved the

survival of CARTPT+ RGCs, which are among the most suscep-

tible to ONC. This result supports the idea that targets identified

by our methods could be broadly useful. On the other hand,

these genes had no effect on survival of another susceptible sub-

class (NEUROD2+), indicating that neuroprotective strategies

may need to be tailored to particular neuronal populations.

Some of the targets identified in our screen for neuroprotec-

tion also promoted axon regeneration. These processes are

not always linked and can sometimes be antagonistic. For

instance, deletion of Dlk promotes broad RGC survival but

blocks Pten-mediated axon regeneration (Watkins et al., 2013),

while Sox11 OE promotes long-distance axon regeneration in

some RGCs but kills others (Norsworthy et al., 2017). Targets

that do both are preferable therapeutic candidates in many

neurodegenerative contexts.

Distinguishing Cell Types from Cell States
A general question about scRNA-seq-based cell atlases is

whether some clusters defined on the basis of transcriptional

similarity represent different states of the same cell type rather

than different cell types. Because ONC leads to a dramatic but

defined change in cell state, our results provided an opportunity

to explore this question.

Although injury-related gene expression changes were detect-

able at 1dpc, cells at this stage could be robustly assigned to type

using a one-step classifier. At later times, however, classification

was increasingly impacted by state-dependent changes. To reli-

ably assign cells to types at late stages, we devised iGraphBoost,

which iteratively assigns cells to types using a two-step approach

that combines supervised classification and graph-based voting,

while updating the model along the time course. We were able to

map a high percentage of RGCs accurately even in highly degen-

erated retina. We expect that this approach will be effective when

samples have sufficient temporal resolution to resolve gradual

changes in molecular state from intrinsic programs.

In conclusion, mining type-specific molecular correlates of re-

silience and vulnerability to injury provides a rich source of genes

that mediate neuronal survival and axon regeneration. Some of

the targets we found are likely to be effective in other contexts,

and the general approach is likely to be applicable to other

neuronal populations in the CNS.
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STAR+METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Mouse monoclonal anti-Brn3c (Pou4f3) Santa Cruz Cat#sc-81980; RRID: AB_2167543

Rabbit polyclonal anti-Calbindin Swant Cat#CB-38a; RRID: AB_10000340

Rabbit polyclonal anti-Calretinin Millipore Cat#AB5054; RRID: AB_2068506

Goat polyclonal anti-Chat Millipore Cat#AB144P; RRID: AB_2079751

Goat polyclonal anti-Foxp2 Abcam Cat#ab1307; RRID: AB_1268914

Chicken polyclonal anti-GFP Abcam Cat#ab13970; RRID: AB_300798

Rabbit polyclonal anti-DsRed Takara Cat#632496; RRID: AB_10013483

Mouse monoclonal anti-Mmp12 Santa Cruz Cat#sc-390863

Rabbit polyclonal anti-Mmp9 Abcam Cat#ab38898; RRID: AB_776512

Rabbit polyclonal anti-Neurod2 Abcam Cat#Ab104430; RRID: AB_10975628

Rabbit polyclonal anti-Opn4 Thermo Scientific Cat#PA1-780; RRID: AB_2267547

Guinea pig polyclonal anti-Prdm8 Kind gift from Sarah E. Ross lab Ross et al., 2012

Guinea pig polyclonal anti-Rbpms PhosphoSolutions Cat#1832-RBPMS; RRID: AB_2492226

Rabbit polyclonal anti-Rbpms Abcam Cat#ab194213

Rabbit polyclonal anti-Satb1 Epitomics Cat#2938-1; RRID: AB_2184447

Mouse monoclonal anti-Satb2 Abcam Cat#Ab51502; RRID: AB_882455

Mouse monoclonal anti-SMI32 Covance Cat#SMI-32P; RRID: AB_2314912

Goat polyclonal anti- Spp1 (Osteopontin) R&D Systems Cat#AF808; RRID: AB_2194992

Rabbit polyclonal anti-Tbr2 (Eomes) Abcam Cat#Ab183991; RRID: AB_2721040

Rabbit polyclonal anti-Tbx20 Boster Bio (discontinued) Cat#A04704

Rabbit polyclonal anti-Urocortin (Ucn) Sigma Aldrich Cat#SAB4300830

Goat polyclonal anti-Vacht Progema (discontinued) Cat#G4481; RRID: AB_430859

Chemicals, Peptides, and Recombinant Proteins

Alexa-conjugated cholera toxin subunit B (CTB647) Thermo Fisher Cat#C34778

AMES’ Medium Sigma Cat#A1420

Papain Worthington Cat#LS003126

Ovomucoid Worthington Cat#130042202

Fluoromount-G Southern Biotech Cat#0100-20

Visikol� HISTO-1� and Visikol� HISTO-2� Combo Visikol Cat#HH10

Anti-Fluorescin-POD, Fab fragments Roche Cat#11426346910

Anti-Digoxigenin-POD, Fab fragments Roche Cat#11207733910

Anti-DNP-HRP Perkin Elmer Cat#FP1129

TSA Cyanine 3 Plus Evaluation Kit Perkin Elmer Cat#NEL744E001KT (FP1170)

TSA Cyanine 5 Plus Evaluation Kit Perkin Elmer Cat#NEL745E001KT (FP1171)

TSA Fluorescein Plus Evaluation Kit Perkin Elmer Cat#NEL741E001KT (FP1168)

ActinomycinD Sigma-Aldrich Cat#A1410

Poly-D-lysine Sigma-Aldrich Cat#P6407

Urocortin (rat) small peptide Millipore Sigma Cat#U6631

Mmp12 Inhibitor Millipore Sigma Cat#444291

Critical Commercial Assays

Chromium Single Cell 30Library & Gel Bead Kit v2,

16rxns

10X Genomics Cat#120237

Chromium Single Cell A Chip Kit, 16rxns 10X Genomics Cat#1000009

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Chromium i7 Multiplex Kit 96 rxns 10X Genomics Cat#120262

TruSeq Total RNA Illumina N/A

RNAscope Fluorescent Multiplex Reagent Kit Advanced Cell Diagnostics Cat#320850

RNAscope� Probe Diluent Advanced Cell Diagnostics Cat#300041

Deposited Data

Raw data files for RNA-sequencing This manuscript https://singlecell.broadinstitute.org/

single_cell/study/SCP509/mouse-

retinal-ganglion-cell-adult-atlas-

and-optic-nerve-crush-time-series

Experimental Models: Organisms/Strains

Mouse: C57BL/6 Charles River or Jackson Labs Cat#JAX000664; RRID: IMSR_JAX:000664

Mouse: Slc17a6tm2(cre)Lowl/J Jackson Labs Cat#JAX016963; RRID: IMSR_JAX:016963

Mouse: B6.Cg-Tg(Thy1-EYFP)15Jrs/J Joshua Sanes (Buffelli et al., 2003) Cat#JAX005630; RRID: IMSR_JAX:005630

Mouse: B6.Cg-Tg(Thy1-YFP)W3Jrs/J Joshua Sanes (Kim et al., 2010) Cat#JAX033114; RRID: IMSR_JAX:033114

Mouse: B6.129(SJL)-Kcng4tm1.1(cre)Jrs/J Joshua Sanes (Duan et al., 2015) Cat#JAX029414; RRID: IMSR_JAX:029414

Mouse: Thy1-stop-YFP Line#1 Joshua Sanes (Buffelli et al., 2003) N/A

Mouse: Tg(Jam2-cre/ERT2)2Jrs/J Joshua Sanes (Kim et al., 2008) Cat#JAX029417; RRID: IMSR_JAX:029417

Mouse: Ccktm1.1(cre)Zjh/J Jackson Labs Cat#JAX012706; RRID: IMSR_JAX:012706

Mouse: B6.129P2-Pvalbtm1(cre)Arbr/J Jackson Labs Cat#JAX017320; RRID: IMSR_JAX:017320

Mouse: Opn4-Cre Ecker et al., 2010 N/A

Mouse:Rosa-lox-STOP-lox-Tomato Zhigang He (Madisen et al., 2010) N/A

Mouse: B6;129-Gt(ROSA)26Sortm1(CAG-cas9*,-EGFP)Fezh/J Jackson Labs Cat#JAX024857; RRID: IMSR_JAX:024857

Mouse: B6.Cg-Tg(Thy1-YFP)HJrs/J Joshua Sanes (Feng et al., 2000) Cat#JAX003782; RRID: IMSR_JAX:003782

Mouse: B6.Cg-Tg(Hlxb9-GFP)1Tmj/J (Gentleman et al., 2004; Wichterle

et al., 2002)

Cat#JAX005029; RRID: IMSR_JAX:005029

Mouse: TYW7 (Thy1-lox-YFP-STOP-lox_WGA-

ires-LacZ)

Joshua Sanes (Kim et al., 2010) N/A

Mouse: B6;129S-Penktm2(cre)Hze/J Jackson Labs Cat#JAX025112; RRID: IMSR_JAX:025112

Oligonucleotides

Primer used to generate ISH probes IDT Table S8

RNAScope probes A.D.T. Table S8

Primer for overexpression cloning IDT Table S8

Primer for sgRNA cloning IDT Table S8

Recombinant DNA

pAAV2-hSyn-hChR2(H134R)-EYFP Gift from Karl Deisseroth Addgene plasmid Cat#26793;

RRID: Addgene_26973

AAV-U6-sgRNA-hSyn-mCherry Gift from Alex Hewitt Addgene plasmid Cat#87916;

RRID: Addgene_87916

pAAV2-hSyn-Ucn-WPRE BCH Viral Core N/A

pAAV2-hSyn-Timp2-WPRE BCH Viral Core N/A

pAAV2-hSyn-Ndnf-WPRE BCH Viral Core N/A

pAAV2-hSyn-Prph-WPRE BCH Viral Core N/A

pAAV2-U6-Crhbp g1-hSyn-mCherry BCH Viral Core N/A

pAAV2-U6-Crhbp g2-hSyn-mCherry BCH Viral Core N/A

pAAV2-U6-Mmp12 g1-hSyn-mCherry BCH Viral Core N/A

pAAV2-U6-Mmp12 g2-hSyn-mCherry BCH Viral Core N/A

pAAV2-U6-Mmp9 g1-hSyn-mCherry BCH Viral Core N/A

pAAV2-U6-Mmp9 g2-hSyn-mCherry BCH Viral Core N/A

pAAV2-U6-Tac1 g1-hSyn-mCherry BCH Viral Core N/A

(Continued on next page)
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LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, J.R.S.

(sanesj@mcb.harvard.edu). All unique/stable reagents generated in this study are available from the LeadContact without restriction.

EXPERIMENTAL MODELS AND SUBJECT DETAILS

Mice
All animal experiments were approved by the Institutional Animal Care and Use Committees (IACUC) at Harvard University and Chil-

dren’s Hospital, Boston. Mice weremaintained in pathogen-free facilities under standard housing conditions with continuous access

to food and water. All experiments were carried out in adult mice from 6 to 20 weeks of age and include both males and females.

Contribution of gender was not considered in primary analysis, however our meta-analysis of scRNA-Seq variation among samples

within a given time point suggest sex-specific differences were a minimal factor (Figure S3C). The following mouse stains were used

for both fluorescence activated cell sorting (FACS) and histology: Vglut2-ires-cre (Slc17a6tm2(cre)Lowl/J;(Vong et al., 2011)) crossed to

the cre-dependent reporter Thy1-stop-YFP Line#15 (B6.Cg-Tg(Thy1-EYFP)15Jrs/J (Buffelli et al., 2003), C57BL/6J (JAX # 000664),

TWY3-YFP (Kim et al., 2010). The following mouse strains were used only for histology: Kcng4-cre (Duan et al., 2015) crossed to

Thy1-stop-YFP Line#1 (Buffelli et al., 2003), Jam-Creer (Kim et al., 2008) and Cck-Cre (Taniguchi et al., 2011) crossed to Thy1-

stop-YFP Line#15, Pv-Cre (JAX #017320) and Opn4-Cre (Ecker et al., 2010) crossed to Rosa-lox-STOP-lox-Tomato (Madisen

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

pAAV2-U6-Tac1 g2-hSyn-mCherry BCH Viral Core N/A

pAAV2-U6-Hpcal1 g1-hSyn-mCherry BCH Viral Core N/A

pAAV2-U6-Hpcal1 g2-hSyn-mCherry BCH Viral Core N/A

pAAV2-U6-Evc2 g1-hSyn-mCherry BCH Viral Core N/A

pAAV2-U6-Evc2 g2-hSyn-mCherry BCH Viral Core N/A

pAAV2-CAG-Cre-WPRE-hGH BCH Viral Core Belin et al., 2015

Software and Algorithms

ImageJ (Fiji) Schindelin et al., 2012 https://imagej.net/Fiji

SNT Longair et al., 2011 https://imagej.net/Simple_Neurite_Tracer

Cell Profiler Carpenter et al., 2006 https://cellprofiler.org

Prism 8.0 GraphPad Software https://www.graphpad.com/

SPSS IBM Corp. Released 2017. IBM SPSS

Statistics for Windows, Version 25.0.

Armonk, NY: IBM Corp.

https://www.ibm.com/products/spss-

statistics

StringTie v1.3.3 Pertea et al., 2016 https://ccb.jhu.edu/software/stringtie/

Cell Ranger v2.1.0 10X Genomics https://support.10xgenomics.com/

single-cell-gene-expression/software/

downloads/latest

Hisat2 Kim et al., 2019 https://ccb.jhu.edu/software/hisat2/

index.shtml

R for statistical computing version 3.6.0 N/A https://cran.r-project.org/

Bioconductor software packages Gentleman et al.,2004 http://bioconductor.org/

Mathworks custom written codes https://www.mathworks.com/

Custom R scripts This manuscript https://github.com/klarman-cell-

observatory/RetinalGanglionCell-ONC

Other

LSM 710 scanning confocal microscope Zeiss N/A

Olympus FV-1000 confocal microscope Olympus N/A

HiSeq 2500 System Illumina N/A

NextSeq 500 System Illumina N/A

Chromium controller 10x Genomics N/A

Mesh electronics (Hong et al., 2018) N/A
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et al., 2010), YFP-H (Feng et al., 2000), B6.Cg-Tg(Hlxb9-GFP)1Tmj/J (AKA Hb9-GFP) (Wichterle et al., 2002) TWY7-YFP (Kim et al.,

2010), and Penk-cre (JAX #025112). For Crispr-induced gene knockdown experiments Vglut2-Cre crossed to the Rosa26-LSL-Cas9

knockin (JAX #024857) was used.

METHOD DETAILS

Unless specified, experiments were not blinded for experimental condition. All experiments were performed on multiple biological

replicates to control for natural variation. For scRNA-Seq experiments, appropriate retinal ganglion cell sampling was determined

using a 50% down sampling approach, which yielded comparable clustering results. Additional details for cell inclusion for

scRNA-Seq experiments are provided in the Computational Methods section below.

Optic Nerve Crush
After anesthesia with ketamine/xylazine (ketamine 100-120 mg/kg and xylazine 10 mg/kg), we performed optic nerve injury as pre-

viously described (Park et al., 2008). Briefly, the optic nerve was exposed intraorbitally and crushedwith fine forceps (Dumont #5 FST)

for 2 s approximately 0.5-1mm behind the optic disc. Eye ointment was applied post-operatively to protect the cornea. All surgeries

were performed by an experienced surgeon, who visually confirmed optic nerve crush during the procedure.

Cell preparation and FACS
Retinas were dissected in AMES solution (equilibrated with 95% O2/5% CO2). Upon dissection, eyes and lenses were visually

inspected for damage, blood, or inflammation, which were used as criteria for exclusion. Retinas were digested in papain, and disso-

ciated to single cell suspensions using manual trituration in ovomucoid solution. Cells were spun down at 450 g for eight minutes, re-

suspended in AMES+4%BSA to a concentration of 10 million cells per 100ml. 0.5ml of 0.2mg/ml anti-CD90 (conjugated to various fluo-

rophores) (Thermo Fisher Scientific) per 100ml of cells was incubated for 15 min, washed with an excess of media, spun down and

resuspended again in AMES+4%BSA at a concentration of�7million cells per 1ml. For Actinomycin-treatment experiments, cell prep-

aration was performed as above and 30mM ActinomycinD (Millipore Sigma) was added to the oxygenated AMES, papain, and ovomu-

coid solutions. Cells were then resuspended in AMES + 4%BSA + 3mM ActinomycinD. Just prior to FACS the live cell marker calcein

bluewas added.Cellular debris, doublets, and deadcells (CalceinBlue negative) were excluded, andRGCswere collected based either

on high CD90 expression alone, or on CD90 and GFP co-expression. The former was usedwhen tissue came fromC57Bl6/J mice, and

the latter whenVglut2-cre;Stp15micewere used. Cells were collected into�100ul of AMES+4%BSA per 25,000 sorted cells. Following

collection cells were spun down and resuspended in PBS+0.1% non-acetylated BSA at a concentration range of 500-2000 cells/ul for

droplet-based scRNaseq per manufacturer’s instructions (10x Chromium). YFP+ RGCs from TWY3-YFP were collected in the same

way as RGCs from Vglut2-cre;Stp15 mice, but single cells were sorted into 96 well plates as described below.

RNA-sequencing
30 droplet-based scRNA-seq

Single cell libraries were prepared using the Single-cell gene expression 30 v2 kit on the Chromium platform (10X Genomics,

Pleasanton, CA) following the manufacturer’s protocol. Briefly, single cells were partitioned into Gel beads in EMulsion (GEMs) in

the Chromium instrument followed by cell lysis and barcoded reverse transcription of RNA, amplification, enzymatic fragmentation,

50 adaptor attachment and sample indexing. On average, approximately 8,000-12,000 single cells were loaded on each channel and

approximately 3,000-7,000 cells were recovered. Libraries were sequenced onNextSeq 500 or Illumina HiSeq 2500 platforms (Paired

end reads: Read 1, 26 bases, Read 2, 98 bases).

W3-YFP Smart-seq2

We profiled 768 single cells from the TYW3 mouse line (Kim et al., 2010), in which a subset of RGCs with S3-laminating dendrites is

labeled with YFP. We sorted single YFP+ cells from dissociated retinas into wells of 96-well plates preloaded with 2 ml of lysis buffer

containing 0.5% NP-40, 10 mM Tris-HCl, pH 7.6, 0.1 mM EDTA, 2 U/ml RNase Inhibitor (Clontech/TaKaRa). We generated single cell

RNA-Seq libraries using a modified Smart-seq2 method (Ding et al., 2019; Picelli et al., 2013) with the following minor change: We

added 3 ml instead of 4 ml of master mix containing only 1.7 ml instead of 2.7 ml of 1 M Trehalose (Sigma-Aldrich) directly to the 2 ml cell

lysate without a SPRI bead cleanup step. We pooled and sequenced the libraries with paired-end reads (50 bases for read 1 and 25

bases for read 2) on two flowcells with a NextSeq 500 instrument (Illumina).

Histological Methods
Eyes were either collected from animals intracardially perfused with 15-50ml of 4% paraformaldehyde (PFA), and post-fixed for an

additional 15 min, or dissected from an non-perfused animal and immersion fixed in 4% PFA for 30-60 min. Eyes were transferred to

PBS until retinas were dissected, following which retinas were either used for wholemount IHC or sunk in 30% sucrose and

embedded in tissue freezingmedia to cryosection into 20-25mm thick cross-sections. Upon dissection, eyes and lenses were visually

inspected for damage, blood, or inflammation, which were used as criteria for exclusion. To immunostain retinal wholemounts,

retinas were incubated in protein block (5% normal serum, 0.3% triton-x, 1x PBS) for 3-14 h, followed by incubation with primary

antibodies (in protein block) for 5-7 days, and secondary antibodies (in 1x PBS) overnight. All incubations were done at 4�C with
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gentle rocking. Retinal sections were then used for IHC or fluorescent in situ hybridization (FISH). For IHC, slides were incubated for

1 h in protein block, primary antibody incubation overnight, and secondary antibodies for 2-3 h. Initial block and secondary antibody

incubation were done at room temperature and primary antibody incubation at 4�C. Probe generation and FISH was performed as

described previously with minor modifications (Shekhar et al., 2016), specifically a reduced digestion with Proteinase K (0.5ug/mL for

5 min) to preserve the integrity of the GCL. In some cases, FISH was performed using the commercially available RNAscope fluores-

cent multiplex assay according to manufacturer’s instructions, with minor modifications (ACDbio). Specifically, we excluded the step

of boiling slides in target retrieval solution, which disrupted IHC staining. Analysis of IHC whole mounts for Figures 1, 3, and 4 were

single-blinded for sample identity.

Intravitreal injections for manipulation experiments
For AAV-based experiments, mice were anaesthetized with ketamine/xylazine (ketamine 100-120mg/kg and xylazine 10mg/kg) and

injected intravitreally with �2ml of volume of AAV2 (in 1x PBS) carrying the gene of interest driven by a CAG promoter, or an sgRNA

driven by a U6 promoter, two weeks before crush. Concentration of viruses was adjusted to �5 3 1012 gc/ml. Urocortin (rat) protein

(Millipore Sigma,�2ml of 40mM in 1x PBS + 0.1% acetic acid) was injected intravitreally at 2dpc. Mmp12 inhibitor (Mmp408) (Millipore

Sigma, �2ml of 2mM in 1x PBS+1:20 DMSO) was injected intravitreally at 2, 5, 8, 12dpc. For injections, we first removed �2ml

intravitreal fluid from the eye with a sterile micropipette glass. A sterile micropipette glass tip or 33-gauge Hamilton syringe was

then inserted through the sclera about 0.5 mm posterior to the limbus and into the vitreal chamber without touching the lens and

delivered reagent (�2ml) was injected through the same injection site. After injection, antibiotic ophthalmic ointment was applied

and mice stayed warmed on a heating pad until fully awake.

Design of overexpression and knockdown vectors
Boston Children’s Hospital Viral Core provided AAV virus. The AAV2-based Crispr/Cas9 approach we employ here has been estab-

lished as an effective modality for somatic knockdown in adult mouse RGCs (Hung et al., 2016). To account for possible off target

effects, we tested two gRNAs per gene, and for added RGC-specificity, we delivered AAV2 single-guide RNA (sgRNA) expression

vectors to the eyes of mice that express Cas9 specifically in RGCs (VGlut2-Cre; LSL-Cas9-eGFP), which lead to high infection rates

as exemplified here for Crhbp sgRNA #2 and OE Ucn (Figure S7A). Vectors and sequences used for manipulation experiments are

displayed in Key Resources Table and Table S7.

Anterograde tracing of regenerating axons
To assess axon regeneration, the axonswere anterogradely labeled by injecting CTB conjugatedwith Alexa-647 (Life Technology) via

an intravitreal injection 48 h before sacrifice. After 4%PFA perfusion mice heads were postfixed for 3 h in 4%PFA. Optic nerves were

microdissected and meninges surrounding the nerve were removed. Nerves were then cleared by the protocol provided from

Visikol�. In short, the nerves were dehydrated with 100% methanol for 4 min and then transferred into Visikol Histo-1 solution for

overnight incubation at 4�C. The next day the nerves were incubated in Visikol Histo-2 solution for at least 2 h before mounting

them in Visikol Histo-2 solution and imaged with the LSM710 confocal microscope. Optic nerves showing incomplete crushes as

evidenced by continuous labeling of axons through the chiasm and/or a different morphology than regenerating axons (pearls on

a string) were excluded from the analysis; they comprised < 4% percent of nerves analyzed.

In vivo Electrophysiology
Implantation of mesh electrodes

Fabrication and non-coaxial implantation of the mesh on the retina surface have been reported by (Hong et al., 2018) except that the

mesh electronic probe produced for our experiments carried 32 independently addressable recording electrodes rather than 16 elec-

trodes in the previous report. The mesh was loaded into a sterile borosilicate capillary needle Inner diameter: 200mm, outer diameter:

330mm; Produstrial LLC, Fredon, NJ). Mice were anesthetized by intraperitoneal injection of a mixture of ketamine/xylazine (ketamine

100-120 mg/kg and xylazine 10mg/kg), the optic nerve of the right eye was crushed as described above and immediately after that a

sterile 27-gauge hypodermic needle (BD Technologies, Durham, NC) was used to puncture a hole for sclerotomy below the limbus at

the lateral canthus for guiding the insertion of the capillary needle and at the medial canthus for draining the injected liquid to reduce

intraocular pressure during injection. Using a stereotactic stage, the capillary needle loaded with the mesh was allowed to advance

through the pre-punctured hole at the lateral canthus until its tip reached the nasal part of the retina, taking special caution to avoid

damaging the lens. Controlled injection of themesh electronic neural probe to achieve precise placement was previously reported (Fu

et al., 2016; Hong et al., 2018; Hong et al., 2015). After a 2-3mm length of themesh has been injected and placed on the retina surface,

conventional coaxial injection was used while the capillary needle was withdrawn simultaneously, leaving an external portion of the

mesh outside the eye. The exit point of the mesh probe in the lateral canthus was secured with a small amount of Kwik-Sil adhesive

silicone elastomer (Word Precision Instruments, Sarasota, FL). Themedial canthus of the eyewas sealedwith 3MTMVetbondTMTissue

Adhesive (Santa Cruz Biotechnology Inc., Dallas, TX). Antibiotic ointment was applied after eye injection.

The external portion of the mesh has all input/output (I/O) pads, which were unfolded onto a 32-channel flexible flat cable (FFC,

#0150200339, Molex, Lisle, IL) for individually addressable I/O connection (Fu et al., 2016; Hong et al., 2018; Hong et al., 2015). After

I/O connection, the bonding region of mesh on the FFC was carefully covered with dental cement to the skull with METABOND�.
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A mouse head-plate, with an opening, for head-fixation during retina recording and visual field stimulation was also cemented to the

skull using METABOND�. Additional dental cement was carefully applied to cover the silicone previously applied at the lateral

canthus of the injected mouse eye for protection of mesh electronics without touching any part of the mouse eye, eyelids or the

mesh, resulting in amonolithic piece of dental cement protecting themesh electronics and the FFC, and a chronically stable interface

for long-term retina electrophysiology.

In vivo recording and stimulation protocol

We obtained recordings from 4mice (total of 142 cells) every one or two days, starting from Day 1 following ONC andmesh injection.

Mice were placed in a Tailveiner restrainer (Braintree Scientific LLC., Braintree, MA) with the head-plate secured to reduce mechan-

ical noise during recording and fix the visual field of the recorded eye during visual stimulation. The FFC was connected to the signal

amplifier and digitizer (Intan Technologies, Los Angeles, CA) and RGC activities were recorded while visual stimuli were presented to

themouse on a computer screen (20.5’’3 12.5’’), placed a distance of 20cm from both eyes of themouse, covering an azimuth angle

range of ± 52�, similar to previously reported protocols (Hong et al., 2018). Recordings were made from the following visual stimuli:

1) Full-field ON/OFF stimulation: A full-field projection of a black screenwith 4 s duration was followed by a full-field projection of a

white screen, with its leading edge entering the screen in eight different directions. The full-field projection of the white screen

also lasted 4 s, which was followed by another 4 s full-field projection of black screen with its leading edge moving in the same

direction as the preceding white screen leading edge. Each direction was repeated 10 times.

2) Moving gratings: Gratings comprising alternating white and black bars filling the entire computer screen andmoving in different

directions were programmed in MATLAB. A complete moving grating test comprised 10 repetitive trials, where each trial

comprised 8 different directions in a randomized sequence. Baseline was established between repetitions with full-field

gray screen, which had the same luminous flux as the alternating white-and-black bars. Gratings moved into each direction

for 4 s. Data was acquired with a 20-kHz sampling rate and a 60-Hz notch filter.

For recordings during both visual stimulation protocols, data was acquired with a 20-kHz sampling rate and a 60-Hz notch filter.

Computational Methods
Alignment and quantification of gene expression in 30 droplet-based scRNA-seq data

Demultiplexing and alignment of sequencing reads to the mouse transcriptome (see below) was performed using the Cell Ranger

software (version 2.1.0, 10X Genomics). For each sample (i.e., 10X channel/reaction), Cell Ranger generated a matrix of gene counts

across cells. We used the option ‘‘–forcecells 6000’’ in ‘‘cellranger count’’ to deliberately extract a larger number of cell barcodes in

the data, as we found that the automatic estimate of Cell Ranger was too conservative. Here, 6,000 represented a ‘‘loose’’ upper

bound on the number of cells that could be recovered, a value that was calculated from the measured density of the cell suspension

loaded onto every channel per the manufacturer’s guidelines.

The 10 samples that were used to assemble the adult RGC atlas (Figure 1) were profiled prior to ONC experiments, and were

aligned to the standard mm10 mouse transcriptomic reference that is included in the Cell Ranger suite. For ONC-related scRNA-

seq experiments, we aligned the sequence data to an updated transcriptomic reference (see below). The countmatrices correspond-

ing to the atlas and the ONC datasets were combined separately to generate consolidated matrices Cij representing the Unique Mo-

lecular Identifier (UMI)-based transcript counts for gene i in cell j. For normalization, we first divided each Cij by
P,

i Cij representing

the library size of cell j to obtain a ‘‘concentration’’ matrix fCij . We then multiplied fCij by the median library size M (medianjð
P,

i CijÞ to
obtain the transcripts per median (TPMij matrix. We defined the normalized expression matrix Eij = logðTPMij + 1Þ.

Updated transcriptome for crush experiments
Weobtained high quality total RNA from uninjured control retinas and from a pooled sample of 1, 2, and 14dpc retinas, and processed

these separately to generate two (Ctrl and ONC) strand-specific RNA-seq libraries using the TruSeq Total RNA kit (Illumina Inc.). Each

library was sequenced on a NextSeq 500 system to obtain 75 million 100bp paired end reads. Next, we used the two datasets to

assemble a new mouse retina-specific transcriptomic reference, beginning with the original mm10 mouse reference as a scaffold.

We followed a procedure similar to the one we used recently to update a macaque retina transcriptome (Peng et al., 2019). Briefly,

following published guidelines (Pertea et al., 2016), we initially mapped the TruSeq reads onto the mm10 transcriptome in a strand-

specific manner using the Hisat2 software with command line options ‘‘–dta–rna-strandedness RF.’’ Next, we used StringTie v1.3.3

(Pertea et al., 2016) with command line option ‘‘–rf’’ to assemble a new transcriptome based only on the TruSeq reads. After the initial

assembly, we reran StringTie with the command line option ‘‘–merge’’ to unify the assembled transcripts with the previous reference

to obtain an updated transcriptome annotation. This resulted inmodified definitions of transcripts existing in the original reference, as

well as novel transcripts supported by the TruSeq reads. While the modified transcripts retained gene names from the original anno-

tation, the novel transcripts were initially named according to Stringtie’s naming convention (e.g., MSTRG.7121).

Defining a molecular atlas of mouse RGC types
Our scRNA-seq libraries consisted of three biological replicates (Batch 1-3). In each case, we collected CD90+GFP+ cells from the

retinas of Vglut2-cre;Stp15 mice. Cells in Batch 1 were processed in two 10X channels, while cells in Batches 2-3 were processed in
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four channels each, with an estimated recovery of �4000-5000 cells per channel. We consolidated the expression matrices, and

selected cells where a minimum of 1200 genes were detected. This resulted in a total of 39,750 cells across the three biological rep-

licates (8,091 cells from Batch 1, 17,327 cells from Batch 2 and 14,332 cells from Batch 3).

We identified 1285 highly variable genes fgig in the data using our previously described Poisson-Gammamodel (Pandey et al., 2018)

based on the raw count matrix Cij, and used the filtered expression matrix Efgigj for further analysis. We used randomized PCA (Halko

et al., 2011) to reduce the dimensionality of the data, and identified 61 statistically significant PCs, identified based on comparison of the

empirical eigenspectrum with a ‘‘null’’ spectrum based on the Tracy-Widom distribution, as described earlier (Peng et al., 2019). Next,

we built an unweighted k-nearest neighbor (k-NN) graph (k = 40) on the cells based on euclidean distance in the 61-dimensional PC

space. Each edge connecting a pair of cells i and j was re-weighted using the Jaccard-metric of neighborhood similarity,

Edgeði; jÞ = jNeighborhoodi XNeighborhoodJj
jNeighborhoodi WNeighborhoodJj

Where Neighborhoodi denotes the cells that are nearest neighbors of cell i, and |x| denotes the number of elements in the set de-

noted by x. Using the Infomap algorithm (Rosvall and Bergstrom, 2008), which in our previous experience over-clusters the data

(Shekhar et al., 2016), we identified 304 clusters in the data with sizes ranging from 502 cells to 6 cells. We scored each cluster based

on cell class-specific signatures for the major retinal neuronal classes - RGCs, Amacrine cells, Photoreceptors, Bipolar cells, Muller

glia, horizontal cells, pericytes and microglia (Table S1). Removal of contaminant clusters (Amacrine Cells, Photoreceptors, Immune

Cells and Glia) resulted in 251 RGC clusters comprised of 35,699 cells.

While the sensitivity of Infomap was beneficial in identifying, and eliminating contaminants, a large number of the remaining RGC

clusters could not be justified based on differential gene expression. In particular, a hierarchical clustering analysis (not shown) re-

vealed a number of instances where multiple clusters were close together in transcriptional space that exhibited minor and graded

differences in gene expression, likely representing oversplitting of a single RGC type/state or batch effects. We therefore reclustered

the RGCs using the Louvain algorithm (Blondel et al., 2008) applied on a Jaccard-weighted kNN graph (k = 30), and applied the iter-

ative approach described earlier (Peng et al., 2019) to identify 45 molecularly distinct clusters (putative RGC types). Through manual

inspection of a few Louvain clusters, we confirmed that theywere supersets comprised of Infomap clusters that were transcriptionally

proximal.

We bootstrapped on the number of genes and number of PCs to ensure that our results were insensitive to variations in these

choices (not shown). To further assess the robustness of these clusters, we used the output of two alternatives to PCA to reduce

the dimensionality of the data prior to Louvain Clustering - Independent Component Analysis (ICA; (Comon, 1994)) and Liger (Welch

et al., 2019), a recently proposed non-negative matrix factorization (NMF; (Lee and Seung, 1999)) based technique based data inte-

gration method. Encouragingly, the clusters identified in either space were highly consistent with the results from PCA (Figures S1C

and S1D).

Identifying 2-marker combinations to label RGC types in the atlas
We first identified genes enriched in each RGC type relative to the rest using the MAST framework (Finak et al., 2015). In contrast to

our previous study on retinal bipolar cells (Shekhar et al., 2016), we found that most RGC types were not specifically labeled by single

genes. We therefore evaluated combinations of two genes on their ability to specifically label cells of a given type.

For each type, we first selected genes that individually showed either a > 2-fold enrichment (‘‘+ve markers’’) or < 2-fold depletion

(‘‘-ve markers’’) compared to the background of other types. Here, fold-enrichment or depletion of gene i was evaluated as the

max(r1, r2) where,

r1 =
Average TPMi;: across cells in cluster

Average TPMi;: across cells in background
and

r2 =
Fraction of cells in cluster expressing gene i

Fraction of cells in background expressing gene i

Using these genes, for each RGC type we evaluated (1) all pairwise combinations of +vemarkers, and (2) all pairwise combinations

consisting of one positive and one negative marker for their ability to specifically label the type based on the area under the precision

recall curve (AUCPR). AUCPR is a measure of cluster specificity as described earlier (Pandey et al., 2018). We specifically favored

marker combinations that had a higher precision (low proportion of false positives) compared to recall (low proportion of false neg-

atives), as false negatives could arise because of dropouts in scRNA-seq data. The top candidates are displayed in Figure 1F. For few

types, we found that it was necessary to screen three marker combinations for achieving higher precision.

Assigning injured RGCs profiled following ONC to types using iGraphBoost
The ONC dataset consisted of cells enriched for RGCs profiled at 6 time points following crush (0.5, 1, 2, 4, 7, and 14dpc), and a

separate control dataset (0dpc) independent of the Atlas dataset. We first used an Infomap-based clustering procedure (see above)
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to remove non-RGCs from the data. The iGraphBoost procedure used to assign injured RGCs to types following ONCwas as follows:

Beginning with the RGC atlas as training data, iGraphBoost proceeds by sequentially assigning cells to types at each time point

through supervised classification followed by graph-based voting (see below), beginning with 0dpc. Cell type assignments at each

time point in the ONC dataset are incorporated into a ‘‘time point-specific’’ atlas, which, combined with previous atlases, is used to

classify cells at the next time point. This allows us to disambiguate changes in cell state due to injury from the intrinsic molecular

distinctions of each RGC type.

Given RGCs atlases at times t0; t1; :::;ti, we describe here the procedure to assign RGCs at time ti + 1 to types. Here, t0 may be re-

garded as the control RGC atlas and t1 may be regarded as 0dpc. We train decision-tree based ensemble classifiers Ut at each time

t < ti +1. We tested Random Forests (R package randomForest) and Gradient-boosted trees (R package xgboost), both yielding

consistent results. Results presented were derived from Gradient-boosted trees. Each classifier Ut was trained on 90% of cells at

time t, and validated on the remaining 10% ‘‘held out’’ cells. The classifier labels were compared to the true labels of the ‘‘held

out’’ cells to compute precision and recall values for each of the 45 RGC types. In the assignment of cells at ti + 1, a classifier Ut‘s

vote for a class m (when pm
k;tR0:8 was only ‘‘trusted’’ if during the validation round both the precision and recall for class m

exceeded 0.9.

In Step 1, we begin by individually applying the classifiers Ut to each cell k at time ti + 1. When applied to cell k Ut assigns a prob-

ability vector Pk;t = ðp1
k;t;p

2
k;t; :::;p

45
k;tÞ where pm

k;t is the Ut assigned probability that cell k belongs to RGC type m. pm
k;t is the fraction of

decision trees in Ut that vote for classm. For the classifier Ut, we assign cell k to classmt = argmaxmp
m
k;t if and only if pmt

k;tR0:6, and Ut

can be trusted with regards to classmt (see above). If pmt

k;t < 0:6, we regard cell k as ‘‘unassigned’’ from the point of view ofUt. The final

assignment of cell k in Step 1 is determined by collectively considering the votes from all theUt such that cell k is assigned to typem if

and only if at least one classifier amongUt assigns cell k to RGC typem, and the remaining classifiers deem it ‘‘unassigned.’’ In cases

where two or more classifiers among Ut assign cell k to different RGC types, it is deemed ‘‘unassigned.’’

Step 1 resulted in a subset of RGCs at time ti + 1 being assigned to types with high confidence. InStep 2, we use these as ‘‘anchors’’

to propagate labels using the neighborhood relationships.We built a k-nearest neighbor graph on the RGCswith k = 15 at ti + 1 in tSNE

space, which connects cells based on their transcriptional proximity. We hypothesized that if an unassigned cell’s neighbors were

predominantly of a single type, this can be used as evidence to assign the transcriptional identity of the unassigned cell. Thus, we

iteratively loop through the unassigned cells from Step 1 and assign a cell k to type m, if > 50% of the k = 15 nearest neighbors

of cell k are of typem. Each iteration decreases the fraction of unassigned cells, and the procedure terminates if the fraction of unas-

signed cells decreases less than 0.5%. The results were insensitive in variations of the voting threshold between 40% and 65%,

although there was a drop in quality outside of these limits. A high voting thresholding (�90%) resulted in a number of unassigned

cells, whereas a low voting threshold resulted in a number of spurious assignments, as assessed by post hoc DE analysis. We typi-

cally conducted 2-3 ‘‘passes’’ of nearest-neighbor voting, successively propagating labels in the data, stopping when the proportion

of newly classified cells was dropped below 1%.

Thus steps 1 and 2 assign type identities RGCs at ti + 1:While unassigned cells remained, they were far fewer than the naive ‘‘one-

step’’ classification approach, involving a direct assignment of cells based on a classifier Ut0 trained on the atlas (Figure S3).

Finally we summarize features of iGraphBoost that buffer against the forcible assignment of injured RGCs into a preexisting frame-

work. First, in Step 1, iGraphBoost learns type-specific expression patterns from securely classified cells at a previous time point.

This should, in principle, incorporate injury related changes that might be type specific to classify cells rather than relying on baseline

distinctions. Second, the classification relies on multi-dimensional expression of many markers, making it robust against injury

related ectopic changes (loss or gain) in individual markers. Thus, unless RGCs of a given type begin to express a large number

of genes characteristic of another type resulting from injury, we do not expect them to be misclassified. Third, the classification pro-

cess relies onmultiple (> 1000) decision trees, each trained on a subset of markers. Furthermore, only cells that are assigned to a type

by amajority (> 60%) of these decision trees are classified. Fourth, Step 2 of iGraphBoost involves an additional filter in that only cells

that have > 50% of neighbors of a single type (out of 45) are assigned to that type. Importantly, the classification is not forced upon

every cell in that a large number of cells (�25% at 4d,7d and 14d) remain unclassified as their expression signatures. The fidelity of

type assignments is demonstrated in Figure 3D, which shows that marker specificity was maintained, though some had lower

expression.

Clustering and visualization of atlas and injured RGC transcriptomes
As described previously, we used the PCA coordinates of atlas RGCs to determine clusters using the Louvain-Jaccard algorithm.

RGCs were visualized on a 2D map using t-distributed stochastic neighbor embedding (tSNE) (Maaten and Hinton, 2008). We

used a recently published scalable implementation of tSNE based on fast interpolation (FI-tSNE) (Linderman et al., 2019).

We initially used a similar procedure to visualize injured RGCs, but found that cells co-clustered by time (Figure S3A), resulting from

injury related changes, and to a lesser extent, batch effects (distinct batches from the same time point co-clustered, suggesting that

batch-effects were not predominant). We therefore aligned injured RGCs using Liger (Welch et al., 2019), a recently proposed non-

negative matrix factorization-based algorithm, to disambiguate shared (RGC type-specific signatures) and dataset-specific (injury

related changes) features across the different time points. We used the reduced dimensional coordinates provided by Liger as input

for FI-tSNE as well as Louvain-Jaccard clustering (Figure S3A). Compared to tSNE and clusters computed on PC scores, Liger co-

ordinates and clusters were driven far less by time (days post crush or dpc; Figure S3B) compared to iGraphBoost-assigned cell type
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identity, suggesting that Liger successfully aligns cell types across time. Note that iGraphBoost results did not inform the Liger visu-

alization and clustering).

Comparing relative frequencies of RGC subsets between scRNA-seq and immunohistochemistry
We quantified the frequency of multiple combinatorially labeled subsets of RGCs in retinal whole mounts using immunohistochem-

istry, and compared them to analogous frequencies quantified using the scRNA-seq data at 0 and 14dpc datasets (Table S3). Fre-

quencies were compared to IHC results, which were quantified as described below.

To compute corresponding frequencies in scRNA-seq, we identified RGCclusters that expressed the genes represented in the IHC

combination, and computed their relative frequency in the data at the same time point. For example, to calculate the frequency of

SPP1+OPN4-cre- labeled cells in scRNA-seq at 14dpc, we identified all RGC clusters that expressed Spp1, but did not express

Opn4 at 14dpc. A cluster was regarded as positively expressing a particular gene if > 30% of its cells expressed that gene. For

IHC combinations involving a transgene, we used either prior knowledge (e.g., W7) or the analysis reported in this paper (e.g.,

W3) to identify labeled types in the scRNA-seq. We included the ‘‘unassigned’’ RGCs in the background while computing relative

frequencies at any time point. Table S3 describes for each IHC combination, the list of associated types and their corresponding

relative frequencies in IHC and scRNA-seq. The procedure to convert estimates of relative frequencies to fractional survival is

described below.

Quantifying the survival and kinetics of loss of each type following ONC
Following iGraphBoost, RGCs in the ONC dataset was either assigned to one of 45 types, or were labeled ‘‘unassigned.’’ RFmðtÞ, the
relative frequency of RGC typem among surviving RGCs at time twas defined asRFm Here,NmðtÞwas the number of RGCs assigned

to type m at time t, and UðtÞ was the number of unassigned RGCs at time t. RFmðtÞ values were used to calculate the relative fre-

quency ratio for each type m in Figure 3F as ðRFmð14dpcÞ =RFmð0dpcÞÞ
To compute the kinetics of loss of each RGC type, wemultiplied the relative frequency RFmðtÞ of each type with sðtÞ, defined as the

total fraction of surviving RGCs at each time t, andwas estimated independently using IHC (Figure 3I). This enabled us to compute the

relative survival ðRSmðtÞÞ of each RGC type m,

RSmðtÞ = fmðtÞsðtÞ
fmð0Þ

Individual curves in Figures 3J–3L correspond to FSmðtÞ for all types. For each type, we obtain a vector RSm
��!

= ½RSmð0dpcÞ;
RSmð0:5dpcÞ; :::;RSmð14dpcÞ�, where RSmð0dpcÞ = 1, by construction. We applied k-means clustering to the vectors RSm

��!
, and

determined 3 clusters by the elbow method. These three clusters corresponded to the survival groups (Figure 3M).

Alignment and quantification of gene expression in full length, plate-based scRNA-seq data
For plate-based libraries, expression levels of gene loci were quantified using RNA-seq by Expectation Maximization (RSEM) (Li and

Dewey, 2011). Raw reads were mapped to a mouse transcriptome index (mm10 UCSC build) using Bowtie 2 (Langmead and Salz-

berg, 2012), as required by RSEM in its default mode. On average, 88% (range 75%–92%) of the reads mapped to the genome in

every sample. and 55% (range 20%–66%) of the reads mapped to the transcriptome. RSEM yielded an expression matrix (genes

x samples) of inferred gene counts, which was converted to TPM (here, defined as transcripts per million) values and then log-trans-

formed after the addition of 1 to avoid zeros. After filtering cells with low QCmetrics (< 400,000 mapped reads, transcriptomic map-

ping rate < 35% and < 1500 genes detected), we selected 636 cells for further analysis.

Analysis of W3 RGCs
An initial clustering analysis using Louvain-Jaccard clustering on a kNN graph (k = 15) in PCA space (17 significant PCs) identified 7

groups of cells comprised of RGCs (n = 341), microglia (n = 51), bipolar cells (n = 9), amacrine (n = 67), rods (n = 73), doublets involving

RGCs and rods (n = 77), and low quality cells (n = 18). Next, we separately reclustered the 341 RGCs using a similar procedure (13

significant PCs), and found 6 clusters. Supervised classification analysis using random forests trained on the atlas data matched 5/6

clusters 1:1 to atlas clusters C2 (W3D1), C4 (F-mini-OFF), C3 (F-mini-ON), C6 (W3B), and C23 (W3D2). The 6 SS2 cluster mapped to

C30 (W3D3) and C21 (Tbr1-S2), respectively.

Definition of resRGCs, susRGCs and intRGCs
resRGCs were initially defined as those RGC types m for which RFRm > 2, which included 7 types (C10, C22, C31, C33, C40, C42,

C43; see Figure 3E). Independently, as described above, we applied k-means clustering on the vectors FSm
��!

, which resulted in the

grouping of the 45 RGC types into 3 survival groups. The first cluster comprised the 7 resRGC types. A second cluster comprised 27/

45 vulnerable types whose survival rapidly declined by 4dpc, and we called these ‘‘susceptible RGCs’’ or susRGCs. The other group,

consisting of 11/45 types, also exhibited poor survival at 14dpc, but declined more slowly, and were termed ‘‘intermediate RGCs’’ or

intRGCs.
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Identifying shared differentially expressed genes following ONC, and gene modules
To identify genes that changed significantly across all RGC types, we computed for each gene g its average expression vector Eg

�!
=

½Eg;0;Eg;0:5; :::;Eg;14�, where Eg;t represents the average expression strength of gene g across all RGCs at t dpc. We defined Eg;t =

Pg;t avgTPMg;t, where Pg;t represents the fraction of RGCs at time t that express the g, and avgTPMg;t is the average normalized

expression of gene g in t dpc RGCs. We excluded genes such that minðPg; tÞ< 0:2 and ðmaxtðEg;tÞ�mintðEg;tÞ =mintðEg;tÞÞ< 0:4, re-

sulting in a total of 3,231 genes.

Next, we randomized the data by shuffling the temporal identities of all RGCs (while maintaining proportions), and computed a ran-

domized average expression vector, Erand
g

���!
= ½Erand

g;0 ;:::;Erand
g;14 �. We reasoned that genes with significant temporal variation would exhibit

larger differences between Eg
�!

and Erand
g

���!
, and therefore computed for each gene g a deviation score between the actual and random-

ized expression vectors,

Dg

�
Eg

�!
;Erand

g

��!�
=

P
t

�
Eg;t � Erand

g;t

�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
t
ðEg;t +gÞ2

T

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
t
ðErand

g;t +gÞ2
T

r

Here, T = 7, the total number of time points, and g represents a pseudocount which we set to 0.2. Here, the denominator acts as a

normalizing factor; in its absence we found that genes with higher expression levels were favored. To evaluate the significance of Dg

values, we used additional randomizations where we computed Drand
g ðErand1

g

���!
;Erand2

g

���!
Þ for 10,000 paired randomizations of the data

rand1 and rand2, which yielded empirical randomized distributions PðDrand
g Þ for each gene g. We found that randomized Dg values

did not exceed 0.2 for any gene. Based on this, we selected genes g such that Dg> 0.5, which yielded 771 genes. We partitioned

these genes into 8 modules using k-means clustering on the Eg
�!

values (elbow method). To identify biological processes enriched

in each module, we applied Gene Ontology (GO) analysis using the R package topGO.

Identifying genes associated with resilient types as targets for manipulation
To identify genes that were selectively enriched in resRGC types at baseline as well as along the time course, we subsampled the

data to equalize the representation of each cluster. This was done to reduce the influence of high-frequency types.

We first compared resRGCs versus intRGCs and susRGCs at baseline using theMAST framework (> 2-fold, FDR < 0.0001) to iden-

tify genes that were selectively enriched in resRGC types at baseline (Figure 5F).

P5 to adult correspondence
To evaluate the molecular correspondence between previously published P5 RGC types (Rheaume et al., 2018) and our adult RGC

types, we trained graph-boosted trees on our dataset using a set of common variable genes, and assigned each P5 RGC an adult

identity. The P5 cluster labels were not used to train the classifier or inform its assignment. We only considered assignments with

voting majoring margin > 50% as valid assignments. The correspondence between P5 cluster labels (as in (Rheaume et al.,

2018)) and adult type assignments was high, as evaluated by two measures of cluster similarity, the Adjusted Rand Index and

Normalized Mutual Information (Figure S1F).

Data analysis of in vivo recordings
The electrophysiological recording data was analyzed offline by two non-blinded researchers using methods described in

previous reports (Fu et al., 2016; Hong et al., 2015). In brief, raw recording data was filtered using non-causal Butterworth

bandpass filters (‘filtfilt’ function in MATLAB) in the 250-6000 Hz frequency range to extract single-unit spikes of RGCs. Sin-

gle-unit spike sorting was performed by amplitude thresholding of the filtered traces, where the threshold was automatically

determined the threshold based on the median of the background noise according to the improved noise estimation method

(Quiroga et al., 2004). Sorted spikes were clustered to determine the number of RGCs and to assign spikes to each RGCbased

on principal component analysis (PCA) using the WaveClus software that employs unsupervised superparamagnetic clustering

of single-unit spikes.

For each sorted and clustered spike, a firing time was assigned and all spike firing times belonging to the same cluster (i.e., the

same RGC) were used to compute the firing rates in response to different visual stimuli. Analysis of single-unit firing events was

different for the two different visual stimulation protocols:

1) Full-field ON/OFF stimulation: Firing rate was computed by dividing the number of firing events of the same RGC over time

segments for both ON and OFF phases, averaged over 10 trials. Analysis of variance (ANOVA) was performed using the

built-in function ‘anova1’ in MATLAB to evaluate the statistical significance between firing rates during ON and OFF phases

to determine the light response of each recorded RGC.
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2) Moving gratings: The number of firing events for a specific moving direction of the grating was averaged over 10 trials, divided

by the duration time for each direction to obtain the average firing rate for all eight directions. Angular distribution of firing rates

was plotted in the polar plots to reveal direction and orientation preference and selectivity of the recorded RGCs.

The direction selectivity index (DSi) is defined as:

DSi = rpref � ropp
rpref + ropp

where rpref and ropp are defined as the average firing rates during moving grating of the preferred direction and that of the opposite

direction, respectively.

Similarly, the orientation selectivity index (OSi) is defined as:

OSi = rpref � rortho
rpref + rortho

where rpref and rortho are defined as the average firing rates during moving grating of the preferred orientation and that of the

orthogonal orientation to the preferred orientation, respectively.

A DSi or OSi of greater than 0.3 is used to assign a specific single unit to DSGC or OSGC, and that of smaller than 0.3 to non-se-

lective ganglion cells (NSGC).

Cross-correlation analysis of spikes trains assigned to neurons belonging to different channels but showing similar direction/

orientation selectivity was carried out to identify potential overlap of recording across channels, that is, the same RGC recorded

by more than one electrodes, which was removed from the total count of RGCs.

To determine preferential survival of certain functional types through 14dpc in Figures 4F–4I, a one-sided Fisher’s Exact test was

used in R. A p-value smaller than 0.05 were considered statistically significant.

QUANTIFICATION AND STATISTICAL ANALYSIS

Information for statistical analysis for all experiments are provided in figure and table legends. Further details on these statistical

approaches are provided below.

Retinal wholemounts
Immunostained retinal wholemountswere imaged using a Zeiss 710 confocal microscope. For RGCsubset quantifications a tile scan

of the entire ventral quadrant of the retina was taken to control for topological differences in RGC types. The image was processed in

ImageJ (Schindelin et al., 2012) by generating a Z stack maximum projection of the GCL and by applying a local contrast normali-

zation filter (3 stdev). Circular regions-of-interest (ROIs) (8.3mm in diameter) were placed on > 500 RGC somas within a longitudinal

area spanning the central-peripheral axis. The centroid position and fluorescent intensity of each ROI was measured in ImageJ.

Background intensity was determined by selecting a subset of visually confirmed marker negative cells and calculating their linear

regression (marker intensity versus RBPMS intensity). The marker intensity standard deviation was calculated and a linear threshold

was set by adding 3x standard deviations to the linear regression y-intercept (Figure S4). Fluorescent intensity for each marker was

plotted against RBPMS (total RGCs) inMATLAB using customized scripts and thresholded (3x stdev above linear average of negative

cells). Thresholded ROIswere then overlaid onto thewholemount images and visually inspected for accuracy and the density for each

possiblemarker combination wasmeasured. To obtain frequencymeasurements, the density of eachmarker was divided by the total

density (RBPMS). Individual values are shown in Table S3. Established markers and mouse lines that label RGC types or subgroups

were selected for quantification before and after ONC. All selected markers/lines label somas or nuclei of RGC and could be easily

distinguished from background signal. Maintenance of expression after ONC was confirmed by IHC and in scRNA-seq data. Quan-

tification was performed using a single-blind for sample identity.

For AAV-mediated intervention experiments the maximally infected retinal quadrant was imaged excluding the temporal retina,

due to the higher presence of alpha RGCs in this region (Bleckert et al., 2014). Images were processed in ImageJ as previous. Since

RGCs at 14dpc are well spaced, it was possible to count them using automated cell segmentation. RGC ROIs were detected using

CellProfiler (Carpenter et al., 2006) for the entire retinal quadrant. ROIswere then exported to ImageJ, visually inspected for accuracy,

and the intensity and centroid position wasmeasured. Tomeasuremarker density, image+ROI overlays were plotted inMATLAB and

a polygonal boundary region was drawn around the area of the retina that was accurately segmented, taking care to exclude

damaged areas, edges where the retina was not viewed en face, and areas with high background staining e.g., blood vessels.

Individual values are shown in Table S6. To verify the accuracy of this automated segmentation approach, we re-quantified images

previously counted bymanual ROI placement and found both approaches gave comparable densities. In assessing survival following

interventions, we compared results to four sets of controls. The four were indistinguishable (Figure S8F), so they were averaged for

Figure 6J.
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Retinal FISH sections
After FISH, sagittal retinal cross sections through or proximal to the optic nerve (maximal width of retina) were imaged using a Zeiss

710 confocal microscope. To quantify markers, a tile scan image spanning the section was generated forR4 sections fromR2mice.

Marker costaining was counted using the ImageJ cell counter plugin. The fraction of each staining combination was recorded and

significance determined by two-tailed Student’s t test (p < 0.05).

AAV2 transduction rate
Maximum projections of images acquired also for RGC survival quantifications (see above) from AAV2 OE-Ucn (n = 2) and AAV2

Crhbp sgRNA #2 (n = 7) were quantified via the ImageJ using the ‘‘Analyze particles’’ function (after applying a threshold for back-

ground reduction). After visual inspection to ensure accuracy of cell segmentation, the total number of cells labeled with RBPMS (as

panRGC marker) and anti-UCN (IHC staining) or RBPMS and mCherry (AAV2 sgRNA for Crhbp tagged with mCherry to allow direct

visualization of virus transduction) was assessed to achieve the percentage of RGCs co-expressing either of them.

Axon regeneration
The cleared, whole nerve was imaged with a 20X air objective. From the center of the nerve, 7 single stacks (2mm stack size) were

maximum projected to a total volume of 14mm per nerve. After defining the crush site, lines spaced equidistant from each other at

500-mm intervals from the crush site to where the longest axon could be detected were introduced for bin-by-bin axon quantification.

As described previously (Duan et al., 2015; Park et al., 2008), we quantified the total number of regenerating axons, Sad, by using the

following formula: Sad =pr2 x [average axons/mm]/t, where the total number of axons extending distance d in a nerve having a radius

of rwas estimated by summing over all sections with thickness t (in our case, 14 mm). To assess significance of regeneration, we used

three sets of controls. The three were indistinguishable from each other (Figure S8G), so they were averaged for Figures 7E–7G and

for statistical analysis.

To assess an effect on regeneration, we first used a definite integral analysis ( = area underneath the curve) and then compared

each of our interventions to a control injected samples. Significance is determined by two-tailed Student’s t test showing p <

0.05 = *. Additionally, bin-by-bin axon quantification was used to assess significant differences between individual distances

(500, 1,000, 1,500, 2,000mm), determined by a mixed effects analysis followed by Bonferroni’s multiple comparison test with Graph-

Pad Prism, p < 0.05 = *. Individual values are shown in Table S6.

Morphometric Analysis
Retinal whole mounts were imaged on an Olympus Fluoview 1000 scanning laser confocal microscope with 20X or 40X oil immersion

objectives, optical stacks generated with images taken with z-steps of 0.5mm. Maximum projections and rotations of images were

generated in ImageJ, while brightness and contrast were adjusted in Adobe Photoshop CC. Individual cells were reconstructed and

analyzed using the ImageJ plugin Simple Neurite Tracer (SNT, (Longair et al., 2011)). Dendritic size was measured from the area of

convex polygons. Dendritic complexity was assessed using total branch points derived from the Stralher analysis in SNT. Significant

difference between groups was determined by one-way ANOVA followed by Tukey HSD with SPSS, p < 0.05 = *.

DATA AND CODE AVAILABILITY

Submission of all the raw and processed datasets reported in this study has been initiated to the Gene Expression Omnibus (GEO).

The accession number for the sequencing data reported in this paper is GEO: GSE137400. The single cell data can be visualized in

the Broad Institute’s Single Cell Portal at https://singlecell.broadinstitute.org/single_cell/study/SCP509/mouse-retinal-ganglion-

cell-adult-atlas-and-optic-nerve-crush-time-series, and the code for mapping injured RGCs is available on https://github.com/

klarman-cell-observatory/RetinalGanglionCell-ONC.
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