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Abstract

We present new sums involving binomial coefficients for 7 and various loga-
rithms and polylogarithms constants. These sums are a generalization of BBP
formulas first introduced by D. Bailey, P. Borwein and S. Plouffe in 1995. In this
paper, we describe how to find and prove such sums using the Beta function at
integer and rational arguments.

1 Introduction

In 1995, David Bailey, Peter Borwein and Simon Plouffe discovered a new seminal
formula for 7

= 1 4 2 1 1
i ;mn (8n+1 8ntd 8n+h 8n+6> )
This amazing formula allows extracting the n-th binary digit of 7 without knowledge
of previous digits [1]. Such sums are called BBP (Bailey-Borwein-Plouffe) formulas.
Many new BBP formulas for 7, G (Catalan’s constant) or {(3) (Riemann Zeta function)
were subsequently discovered by Adamchik [2], Bellard [3], Broadhurst [4], Lupas [5]
and Huvent [6]. The main tool for finding BBP formulas is an algorithm designed
to detect linear combinations on the set of natural numbers N like PSLQ (from its
use of a partial-sum-of-squares (PS) vector and lower-diagonal-orthogonal (LQ) matrix
factorization) or LLL (Lenstra—Lenstra—Lovasz) [7], [§]. To then prove such formulas,
an integral is evaluated giving rise to logarithms or polylogarithms (Li,(z) = > 7, fl—z,
9)).
In October 2001, Almkvist and colleagues presented new sums for 7 involving bi-
nomial coeflicients such as
— 50n — 6
=) : (2)
n=0
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238 Binomial Sums for m and Polylogarithmic Constants

They proved this formula using the so-called Beta method which is based on use of
Beta function B(r, s) fo 2" 1(1 — x)*tdz for positive integer values r and s [10].

In this paper, using an adapted Beta method, we show how to prove some more
general sums of the form

b1 b2 bk bmfl
T= e —m=l 3
an (mn (mn+1+mn+2+ +mn+k+ +mn+(m—1)> 3)

where T is a constant often related to = and the natural logarithm In(z). These sums
involve binomial coeflicients and they are similar to BBP formulas. We therefore call
them “BBP binomial formulas”. One example of such formulas is

i 1 ( 59296 10326 3200 1352 792 n 552 )
16807 — Tn+1 Tn+2 Tn+3 Tn+4 Tn+5 Tn+6
(4)
that we discovered with LLL algorithm. An explicit proof of this formula is detailed in
this paper. Then we show how to generate an infinite set of similar formulas for 7= and
the natural logarithm In(z). We also present outlines for proofs of formulas showing
that Beta method is not restrained to integer parameters.

2 Proofs of BBP Binomial Formulas

Consider the Eq. 3. Proof of such formula is reduced to the following proposition:

PROPOSITION 1 (The Beta Method). There exists a polynomial P(X) € Q,,_2[X]
(polynomial of degree m — 2 with coefficients in the set of rational numbers Q) such
that

1
qP(x)
T = d
|| s ®)
PROOF. The Beta function B(r,s) is
B(r,s) = L(r)T(s) (6)

where I'(z) = [ t**e~"dt is the Gamma function. With parameters m,p,n € N, we
use I'(n) = (n — 1)! to obtain

= (mn + 1)/0 2P (1 — )P g, (7)
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1

Summing Eq. (7) on n with T ()

on the left side, we obtain

o0

1 n m n
S T L, s

an
P(1 — g)(m=p)
/ (x x) ) dx

_A q—xp(lq—x)(mfp)d ) (8)

We can evaluate this integral by partial fraction decomposition. More generally, to

obtain the elements

in Eq. (3) we write

+ k
! xanrkfl —x (m—p)n = 1 _ 1 (pn + 1)(])71 + 2)(])71 +k— 1)
/0 (1-2) d (p?ffzjfl) (’;:) (mn+1)(mn+2)...(mn+k)’ )

(pn+1)(pn+2)...(pn+k—1)

For a given k, the partial fraction decomposition of (mn k1) (mnt2).. (mn k)

(“kyj)jzlmk such that

1
1
/xklxp"(l—x)(mp)"dx_(mn)< Dkt | Ok2 4 Okk ) (10)
0

i mn+1 mn+2 mn + k

in n gives

with ag,; € Q. For values k ranging from 1 to m — 1, we linearly combine (a’kyj)jzl i

in order to find the m — 1 values by of Eq. (3). This is equivalent to solving the system

a1 a1 ... Gm—1,1 b1
O aéQ CLm,LQ V _ b2 ' (11)
O 0 amflyk bmfl
1
Vector V' contains the coefficients of the polynomial P(X) = V*. X of degree
m — 2, such that
— 1 b b by
P— ( (. S 71>
an( ) \mn+1 mn+2 mn+ (m—1)
Pr(] — g)(m=p)n
-3 [ O
qn

_ qP(z)
‘/o e

when we use Eq. (10).
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REMARK 1. Almkvist et al. [10] use the relation ﬁ =3Bn+1) fol 2?"(1 —z)"dx

in order to prove the formula in Eq. (2). In general, the;f consider formulas of the form
— S(n)
=) Ty om (12)
2
where S € Q,—2[X] and ¢ € N. However, such forms of sums lead to the intricate

evaluation of f(z) = Y 07 ((mn + 1)S(n) (W)n f(z) is indeed an integral

whose denominator is a power of the one considered in Eq. (8). Our method uses
on the left side of Eq. (7), which produces formulas of the general form of

1
Onn+4)(2f)
Eq. 3.
3 Proof of Eq. 4
We write Eq. (4) as

S0,

n=0
Using Proposition 1, we are looking for the polynomial P(x) such that

> B ! > (1 — )" . ! . 1 .
;U _/O P@;)Ziw d _/O P( )—xQ(l_x)5d

n=0 1—

2
! 2
/0 (x)(xQ—2x+2)(x5—3x4+2x3+x+1) v
4
Because fol mcﬂx = m, it is likely that P(z) = 2 (x5 — 3zt + 223 + 2+ 1).

Let us verify this conjecture.

To obtain the equivalent linear system in (11), and therefore vector V', we calculate
all coefficients (ag;); (columns of left matrix in Eq. (11)) with help from the compu-
tation of the integral in Eq. (10). For example, for k¥ = 2 (2nd column of matrix), we
have

1 (2n+1)
(") (Tn+1)(Tn + 2)

1
/ r.2?(1 —2)"dr = B(5n +1,2n+2) =
0

1 (5 1 3 1
(I (?(7n+1) _?(7n+2)>'

Consequently, as 1 = % and az 2 = —%. The whole linear system is
1 & 30 190 1235 8151 59296
R T T T 15585,
0 07 i49 i043 El 18807 - 16807
0 0 46) ?’1;433 ﬁ 136581%7 V= _ 1163 27
0 o o oo o 16507
T 2401 16807 T 16807
0 o o o EO g 195

16807 16807
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Its solutionis V. =(1 1 0 2 =3 1 ). Finally, we have

PX)=V" =2(1+ X +2X° - 3X"+ X)
x5

which is the expected polynomial.

4 Construction and Prediction of BBP Binomial For-
mulas

qP(z)
g—z(m—P) (1—x)P "

ing P then gives rise to a BBP formula by using Eq. (10), after combination and
simplification.

Using proposition 1, we choose a suitable P(z) that simplifies Know-

As an example, we find formulas for 7 choosing P(X) such that % =
H% due to fol 1Jr%da: = 7. To find m and p, we have to know when 1 + X? divides
q— X"=P)(1 — X)P i.e. when i and —i are roots of ¢ — X"~ P)(1 — X)P. Case m = p
in Eq. (3) is excluded since it only provides classical BBP formulas without binomial
coefficients.

Let us choose p = 2, m = 3, then i(1 —4)? = i(1 +4)?> = 2. Now there exists a
formula for 7 with (32), p =2 and g = 2. Moreover, ¢ and —i are fourth roots of 1, so
we can multiply x(1 — z)? by z** and keep roots i and —i. Thus there exists formulas
for 7 involving C(Q?Zl+4k)n’ ke N.

More generally, if K(X) =q— X(™=P)(1 - X)P,

{i and — ¢ are roots of K, p < m} < {q — (&)™ P 1Fi)P=0,p< m}

S {1 L7 = (=)™ Pg(xi)™,p < m}

S {(1+4)P = (-1)™"Pgi™, p < m} by complex conjugate

& {(ﬁ)p =gqand p§ = (m+p)r+m% [27],p < m} with modulus and argu-
ment, where [z] designates modulo

& {2§ =¢q, p<mand —p=2m[8]}

& {p:2k,k€N, 28 = ¢, p < m and 7pE2m[8]}.

This idea also leads to other constants usmg the root —1 ( fo e 4 —dx),
the polynomial 22 —z + 1 (7v/3 = 2 fo =z d).

For non-alternating sums Zn 0 (}M) ( by 4 mn+2 + ...+ m) with equiv-

mn+1
alent integral representation fo p— aP(z)

de, we obtain the following table for
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p<m:
Polynomial | Constant | Condition given by roots Existence of a sum for p < m
1+ 2? ™ ()(m p)(l—z)p*q p=2k, 28 =q,7p =2m[§]
1+ In(2) (=1)m—P2P = ¢ m=p+2k, ¢g=2°
T

1—x42? /3 (—=1)P (1“\/_) =q qg=1, m=2p+ 6k
24z In () (=2)" P 3 = ¢ m =p+ 2k, q=22k3p
z—1+ux In(2£1) | (1- )‘m P (2)P =gq m=p+2k, qg=(1—z)%zP

—-p) p P
1+ (=D | In(2) (- ) 1+ 25) =g | m=p+2% = e

For alternating sums Y - CH ( b + ...+ m) with equiva-

n=0 gn (m") mn—+1 mn+2

lent integral representation fo %dm, we get the following table:
Polynomial | Constant | Condition given by roots Existence of a sum for p < m
1+ a? m @) P (1—i) = —q p=2k, 2" = q,7p = 2m +4[§]
14+ In(2) (—1)m=pTigr = ¢ m=p+2k+1, ¢q=2?
1— 24 22 ™3 (— 1p+1(1+1\/_) g=1,m=2p+3+6k
2+a In (2) (—=2)" ) (3)p = m=p+2k+1, =223
z—1+=x In(2) [ (1-2)"" p)(z)p:—q m=p+2k+1, g=(1—z)%*zP

(m—p) P »
1+ (z—-1z | In(z) ( ) 1+Zil) =q m:p—i—2/€—i—1,q:(zflzW

5 Generalized Beta Function Method

Albeit more intricate, some similar formulas can also be found using fractional param-

eters in Beta function. Considering Beta function and 7, ¢ € Q, we have

L(pn+%¢+1)T (mn+<+1)
P((p+m)n+%+<+2)

1
/ 2P (1 — )™ ade
0

_ (aa)pn+cl (C)mn+1r(%a)r(cg) (13)
(% + @) rmynse T (5 +4)
where (), = w =z(x+1)- - (x+n—1) is Pochhammer symbol. T (%) is often
x

known for small integers values of a et b. All following formulas stem from summing

this relation on n for particular values of ¢, 5. We now emphasize three particular

cases of interest.
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. a _ 1 ¢ __
51 Casel: 7=—3,5=0
We have

1 1 oo
1 g / 1 & (1 — z)m™
——dz = — E —dx
VT gqg—aP(l—z)m o \/En:O q"

1
-2 / (1 - )
0

72 T+ 3)T(mn+1)
L((p+mn+14+1)

2pn mn + pn)!(mn)!
N Z " (2mn + 2pn)!(pn)! (14)

EXAMPLE 1. Case p =3, m = 1. We have

o[ e [ sy ()
/ o (o -2 +2x—2)z( 1)%?;(1_:”) da

n=0
_y
n=0

So now using Eq. (14), we have

_1\n 1 x3n
21) /0 (:c3 — 22 + 27 — 2) ﬁ(l —x)"dx (15)

1 3n
—/ (2% =22 + 22— 2) —=(1 — x)"dx
0

L 5 2 T
:—[—1,2,—2,2]></ Z3rtE3e-3] (1 - p)nde
0

=[-1,2,-2,2] x

_ (6n)!(4n)!nt4” 1 ( 1885  —965 363 —51 ) (16)

(3n)!(8n)! 512 8n+1+8n+3+8n+5+8n+7

in simplified notations. Finally with Eq. (15) and Eq. (16), we have

oo 6n
0 =, tynon_ lsn) 1885  —965 363 —51
“‘;:0( b2 RIS (8n+1 8n+3 8nt5  8ni7

5.2 Case 2: § + S € Z (positive and negative integers)

C

This case allows us to obtain special values of T’ (%) r (3) (equal to m multiplied by
an algebraic number). In some cases, 7 is absent and we obtain amazing formulas for

algebraic numbers.
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win

EXAMPLE 2. The following relations are based on Beta values for § = —%, =
a __ 1 ¢ __ 2 a __ 5 ¢ _ 1
Oy ="3a= "3~ "3d~ "3

alo

(3:) \/_ 2 ;L n7% \/g 1 ni% ni%
27 (3n—1)  4r (I—a)" s /:c (1—z)" 3dx

3n 1
%:@ xnf%(l_xnfédx__/ n—= % 1_xni'idx
2(3n—-2) 87 J,

which gives the formula
8en (1)) [ -1 1 ;
EZ 54n 1t e z) = V2

5.3 Case 3: § + 5 € Q\N (rationals but not naturals)

We obtain Pochhammer symbols i M i
ymbols in sums then factors T (g n £) in the outcome.
EXAMPLE 3. Considering v
1 3 1
/SC" 4(1—$)n72d$—r(n+4)r(?+2)
0 I'(2n+2)
1 7 1
/ anrZ(l_x)n de_r(n+4)r(g+2)
0 I (2n+9)

and the following integral

' D" et ety o [ 1 v
/O(x—Z)Z St (1 = )"y = 2/0 %m(x+1>d =

n=0

we obtain finally

> n l
Z )
l
4

o ()

1
2
L (5),, \8n+1  8n+5 N3

where K (k) = foﬂ/ 2 \/ﬁ is the complete elliptic integral of the first kind, thus

making the connection with singular values of the elliptic integral.

6 Higher Order Constants

One point of interest is to generalize this method to higher order constants. A constant
is of order p if it is equal to a linear combination in N of p-th order polylogarithms. For
example, 7 or In(2) are of order 1 whereas 71n(2) or G are of order 2 and ((3) or 3
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are of order 3. A BBP binomial sum involves a constant of order p, as for BBP sums,
if the polynomial in n in the denominator is of degree p. For example, we have

o0

n 3 o n3
Z 2" n+1) ((2n+1)>_ 21n7(2) + 3¢(3)- (17)

However, the straightforward application of integral representation does not com-
pletely help since, for order 2 for instance, we have

o0

Z ( ) mn+1 / /0 q—ymam(1 _x)(mfp)dxdy.

an

The evaluation is not often easy, there is no known proof of Eq. (17) to our knowl-
edge. Nevertheless, there is evidence for existence of BBP binomial formulas for higher
order constants.
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