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Abstract

We present new sums involving binomial coefficients for π and various loga-
rithms and polylogarithms constants. These sums are a generalization of BBP
formulas first introduced by D. Bailey, P. Borwein and S. Plouffe in 1995. In this
paper, we describe how to find and prove such sums using the Beta function at
integer and rational arguments.

1 Introduction

In 1995, David Bailey, Peter Borwein and Simon Plouffe discovered a new seminal
formula for π

π =
∞∑

n=0

1
16n

(
4

8n + 1
−

2
8n + 4

−
1

8n + 5
−

1
8n + 6

)
. (1)

This amazing formula allows extracting the n-th binary digit of π without knowledge
of previous digits [1]. Such sums are called BBP (Bailey-Borwein-Plouffe) formulas.
Many new BBP formulas for π, G (Catalan’s constant) or ζ(3) (Riemann Zeta function)
were subsequently discovered by Adamchik [2], Bellard [3], Broadhurst [4], Lupas [5]
and Huvent [6]. The main tool for finding BBP formulas is an algorithm designed
to detect linear combinations on the set of natural numbers N like PSLQ (from its
use of a partial-sum-of-squares (PS) vector and lower-diagonal-orthogonal (LQ) matrix
factorization) or LLL (Lenstra–Lenstra–Lovász) [7], [8]. To then prove such formulas,
an integral is evaluated giving rise to logarithms or polylogarithms (Lip(z) =

∑∞
n=1

zn

np ,
[9]).

In October 2001, Almkvist and colleagues presented new sums for π involving bi-
nomial coefficients such as

π =
∞∑

n=0

50n − 6(
3n
n

)
2n

. (2)
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238 Binomial Sums for π and Polylogarithmic Constants

They proved this formula using the so-called Beta method which is based on use of
Beta function B(r, s) =

∫ 1

0
xr−1(1 − x)s−1dx for positive integer values r and s [10].

In this paper, using an adapted Beta method, we show how to prove some more
general sums of the form

T =
∞∑

n=0

1
qn

(
mn
pn

)
(

b1

mn + 1
+

b2

mn + 2
+ · · ·+ bk

mn + k
+ · · ·+ bm−1

mn + (m − 1)

)
(3)

where T is a constant often related to π and the natural logarithm ln(z). These sums
involve binomial coefficients and they are similar to BBP formulas. We therefore call
them “BBP binomial formulas”. One example of such formulas is

π =
1

16807

∞∑

n=0

1
2n

(
7n
2n

)
(

59296
7n + 1

− 10326
7n + 2

− 3200
7n + 3

− 1352
7n + 4

− 792
7n + 5

+
552

7n + 6

)

(4)
that we discovered with LLL algorithm. An explicit proof of this formula is detailed in
this paper. Then we show how to generate an infinite set of similar formulas for π and
the natural logarithm ln(z). We also present outlines for proofs of formulas showing
that Beta method is not restrained to integer parameters.

2 Proofs of BBP Binomial Formulas

Consider the Eq. 3. Proof of such formula is reduced to the following proposition:

PROPOSITION 1 (The Beta Method). There exists a polynomial P (X) ∈ Qm−2[X]
(polynomial of degree m − 2 with coefficients in the set of rational numbers Q) such
that

T =
∫ 1

0

qP (x)
q − xp(1 − x)(m−p)

dx (5)

PROOF. The Beta function B(r, s) is

B(r, s) =
Γ(r)Γ(s)
Γ(r + s)

(6)

where Γ(z) =
∫ ∞
0 tz−1e−tdt is the Gamma function. With parameters m, p, n ∈ N, we

use Γ(n) = (n − 1)! to obtain

1(
mn
pn

) = (mn + 1)
∫ 1

0

xpn(1 − x)(m−p)n dx. (7)
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Summing Eq. (7) on n with 1
(mn+1)(mn

pn ) on the left side, we obtain

∞∑

n=0

1
qn

(
mn
pn

) 1
mn + 1

=
∞∑

n=0

1
qn

∫ 1

0

xpn(1 − x)(m−p)n dx

=
∫ 1

0

∞∑

n=0

(
xp(1 − x)(m−p)

q

)n

dx

=
∫ 1

0

q

q − xp(1 − x)(m−p)
dx. (8)

We can evaluate this integral by partial fraction decomposition. More generally, to

obtain the elements
1

mn + k
in Eq. (3) we write

∫ 1

0

xpn+k−1(1−x)(m−p)n dx =
1(

mn+k
pn+k−1

) =
1(

mn
pn

) (pn + 1)(pn + 2)...(pn + k − 1)
(mn + 1)(mn + 2)...(mn + k)

. (9)

For a given k, the partial fraction decomposition of (pn+1)(pn+2)...(pn+k−1)
(mn+1)(mn+2)...(mn+k) in n gives

(ak,j)j=1,..,k such that

∫ 1

0

xk−1xpn(1 − x)(m−p)n dx =
1(

mn
pn

)
(

ak,1

mn + 1
+

ak,2

mn + 2
+ ... +

ak,k

mn + k

)
(10)

with ak,j ∈ Q. For values k ranging from 1 to m − 1, we linearly combine (ak,j)j=1,..,k

in order to find the m−1 values bk of Eq. (3). This is equivalent to solving the system



a1,1 a2,1 ... am−1,1

0 a2,2 ... am−1,2

.... 0 ... ...
0 0 ... am−1,k


 V =




b1

b2

....
bm−1


 . (11)

Vector V contains the coefficients of the polynomial P (X) = V t.




1
X
....

Xm−2


 of degree

m − 2, such that

∞∑

n=0

1
qn

(
mn
pn

)
(

b1

mn + 1
+

b2

mn + 2
+ · · ·+ bm−1

mn + (m − 1)

)

=
∞∑

n=0

∫ 1

0

P (x)
xpn(1 − x)(m−p)n

qn
dx

=
∫ 1

0

qP (x)
q − xp(1 − x)(m−p)

dx

when we use Eq. (10).
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REMARK 1. Almkvist et al. [10] use the relation 1

(3n
n ) = (3n + 1)

∫ 1

0
x2n(1−x)ndx

in order to prove the formula in Eq. (2). In general, they consider formulas of the form

π =
∞∑

n=0

S(n)(
mn
pn

)
qn

(12)

where S ∈ Qm−2[X] and q ∈ N. However, such forms of sums lead to the intricate

evaluation of f(x) =
∑∞

n=0(mn + 1)S(n)
(

xp(1−x)m−p

q

)n

. f(x) is indeed an integral
whose denominator is a power of the one considered in Eq. (8). Our method uses

1

(mn+1)(mn
pn ) on the left side of Eq. (7), which produces formulas of the general form of

Eq. 3.

3 Proof of Eq. 4

We write Eq. (4) as
∞∑

n=0

Un = π

Using Proposition 1, we are looking for the polynomial P (x) such that
∞∑

n=0

Un =
∫ 1

0

P (x)
∞∑

n=0

x2n(1 − x)5n

2n
dx =

∫ 1

0

P (x)
1

1− x2(1 − x)5

2

dx

=
∫ 1

0

P (x)
2

(x2 − 2x + 2) (x5 − 3x4 + 2x3 + x + 1)
dx.

Because
∫ 1

0

4
(x2 − 2x + 2)

dx = π, it is likely that P (x) = 2
(
x5 − 3x4 + 2x3 + x + 1

)
.

Let us verify this conjecture.
To obtain the equivalent linear system in (11), and therefore vector V , we calculate

all coefficients (ak,i)i (columns of left matrix in Eq. (11)) with help from the compu-
tation of the integral in Eq. (10). For example, for k = 2 (2nd column of matrix), we
have

∫ 1

0

x.x2n(1 − x)5n dx = B(5n + 1, 2n + 2) =
1(
7n
2n

) (2n + 1)
(7n + 1)(7n + 2)

=
1(
7n
2n

)
(

5
7

1
(7n + 1)

− 3
7

1
(7n + 2)

)
.

Consequently, a2,1 = 5
7 and a2,2 = −3

7 . The whole linear system is



1 5
7

30
49

190
343

1235
2401

8151
16807

0 −3
7

−30
49

−255
343

−2040
2401

−15810
16807

0 0 4
49

60
343

660
2401

6380
16807

0 0 0 13
343

260
2401

3510
16807

0 0 0 0 − 99
2401

− 2475
16807

0 0 0 0 0 276
16807




V =




59296
16807

−10326
16807

− 3200
16807

− 1352
16807

− 792
16807
552

16807




.
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Its solution is V =
(

1 1 0 2 −3 1
)
. Finally, we have

P (X) = V t




1
X
....
X5


 = 2

(
1 + X + 2X3 − 3X4 + X5

)

which is the expected polynomial.

4 Construction and Prediction of BBP Binomial For-
mulas

Using proposition 1, we choose a suitable P (x) that simplifies qP (x)
q−x(m−p) (1−x)p . Know-

ing P then gives rise to a BBP formula by using Eq. (10), after combination and
simplification.

As an example, we find formulas for π choosing P (X) such that qP (x)
q−x(m−p) (1−x)p =

1
1+x2 due to

∫ 1

0
1

1+x2 dx = π
4
. To find m and p, we have to know when 1 + X2 divides

q − X(m−p)(1 −X)p i.e. when i and −i are roots of q −X(m−p)(1 −X)p. Case m = p
in Eq. (3) is excluded since it only provides classical BBP formulas without binomial
coefficients.

Let us choose p = 2, m = 3, then i(1 − i)2 = i(1 + i)2 = 2. Now there exists a
formula for π with

(
3n
2n

)
, p = 2 and q = 2. Moreover, i and −i are fourth roots of 1, so

we can multiply x(1− x)2 by x4k and keep roots i and −i. Thus there exists formulas
for π involving C2n

(3+4k)n, k ∈ N.

More generally, if K(X) = q − X(m−p)(1 − X)p,

{i and − i are roots of K, p < m} ⇔
{

q − (±i)(m−p) (1 ∓ i)p = 0, p < m
}

⇔ {(1 ± i)p = (−1)m+pq(±i)m , p < m}
⇔ {(1 + i)p = (−1)m+pqim, p < m} by complex conjugate

⇔
{(√

2
)p

= q and pπ
4
≡ (m + p)π + mπ

2
[2π] , p < m

}
with modulus and argu-

ment, where [x] designates modulo x

⇔
{
2

p
2 = q, p < m and − p ≡ 2m [8]

}

⇔
{
p = 2k, k ∈ N, 2k = q, p < m and 7p ≡ 2m [8]

}
.

This idea also leads to other constants using the root −1 ( ln(2) =
∫ 1

0
1

1+x
dx), or

the polynomial x2 − x + 1 (π
√

3 = 9
2

∫ 1

0
1

1−x+x2 dx).

For non-alternating sums
∑∞

n=0
1

qn(mn
pn )

(
b1

mn+1 + b2
mn+2 + ... + bm−1

mn+(m−1)

)
with equiv-

alent integral representation
∫ 1

0
qP (x)

q−xp(1−x)(m−p) dx, we obtain the following table for
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p < m:

Polynomial Constant Condition given by roots Existence of a sum for p < m

1 + x2 π (i)(m−p) (1 − i)p = q p = 2k, 2k = q, 7p ≡ 2m [8]
1 + x ln(2) (−1)m−p2p = q m = p + 2k, q = 2p

1 − x + x2 π
√

3 (−1)p
(

1+i
√

3
2

)p+m

= q q = 1, m = 2p + 6k

2 + x ln
(

3
2

)
(−2)(m−p) (3)p = q m = p + 2k, q = 22k3p

z − 1 + x ln
(

z+1
z

)
(1 − z)(m−p) (z)p = q m = p + 2k, q = (1 − z)2kzp

1 + (z − 1)x ln (z)
(
− 1

z−1

)(m−p) (
1 + 1

z−1

)p

= q m = p + 2k, q = zp

(z−1)p+2k

For alternating sums
∑∞

n=0
(−1)m

qn(mn
pn )

(
b1

mn+1
+ b2

mn+2
+ ... + bm−1

mn+(m−1)

)
with equiva-

lent integral representation
∫ 1

0
qP (x)

q+xp(1−x)(m−p) dx, we get the following table:

Polynomial Constant Condition given by roots Existence of a sum for p < m

1 + x2 π (i)(m−p) (1 − i)p = −q p = 2k, 2k = q, 7p ≡ 2m + 4 [8]
1 + x ln(2) (−1)m−p+12p = q m = p + 2k + 1, q = 2p

1 − x + x2 π
√

3 (−1)p+1
(

1+i
√

3
2

)p+m

= q q = 1, m = 2p + 3 + 6k

2 + x ln
(

3
2

)
(−2)(m−p) (3)p = −q m = p + 2k + 1, q = 22k3p

z − 1 + x ln
(

z+1
z

)
(1 − z)(m−p) (z)p = −q m = p + 2k + 1, q = (1 − z)2kzp

1 + (z − 1)x ln (z)
(
− 1

z−1

)(m−p) (
1 + 1

z−1

)p

= q m = p + 2k + 1, q = zp

(z−1)p+2k

5 Generalized Beta Function Method

Albeit more intricate, some similar formulas can also be found using fractional param-
eters in Beta function. Considering Beta function and a

b
, c

d
∈ Q, we have

∫ 1

0

xpn+ a
b (1 − x)mn+ c

d dx =
Γ

(
pn + a

b + 1
)
Γ

(
mn + c

d + 1
)

Γ
(
(p + m)n + a

b
+ c

d
+ 2

)

=

(
a
b

)
pn+1

(
c
d

)
mn+1

Γ
(

a
b

)
Γ

(
c
d

)
(

a
b + c

d

)
(p+m)n+2

Γ
(

a
b + c

d

) (13)

where (x)n =
Γ (x + n)

Γ (x)
= x(x+1) · · ·(x+n−1) is Pochhammer symbol. Γ

(
a
b

)
is often

known for small integers values of a et b. All following formulas stem from summing
this relation on n for particular values of a

b , c
d . We now emphasize three particular

cases of interest.
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5.1 Case 1 : a
b

= −1
2
, c

d
= 0

We have
∫ 1

0

1√
x

q

q − xp(1 − x)m
dx =

∫ 1

0

1√
x

∞∑

n=0

xpn(1 − x)mn

qn
dx

=
∞∑

n=0

∫ 1

0

q−nxpn−1
2 (1 − x)mndx

=
∞∑

n=0

q−n Γ
(
pn + 1

2

)
Γ (mn + 1)

Γ
(
(p + m)n + 1

2
+ 1

)

=
∞∑

n=0

(−1)n (2pn)!(mn + pn)!(mn)!
qn(2mn + 2pn)!(pn)!

. (14)

EXAMPLE 1. Case p = 3, m = 1. We have

−π = −2
∫ 1

0

1√
x(x + 1)

dx =
∫ 1

0

1√
x

(
x3 − 2x2 + 2x − 2

) (
2

2 − x3(1 − x)

)
dx

=
∫ 1

0

1√
x

(
x3 − 2x2 + 2x − 2

) ∞∑

n=0

(−1)nx3n(1 − x)n

2n
dx

=
∞∑

n=0

(−1)n

2n

∫ 1

0

(
x3 − 2x2 + 2x− 2

) x3n

√
x

(1 − x)ndx (15)

So now using Eq. (14), we have

−
∫ 1

0

(
x3 − 2x2 + 2x − 2

) x3n

√
x

(1 − x)ndx

= −[−1, 2,−2, 2]×
∫ 1

0

x3n+[5
2 , 3

2 , 1
2 ,−1

2 ]T (1 − x)ndx

= [−1, 2,−2, 2]×
Γ

(
3n +

[
7
2 , 5

2 , 3
2 , 1

2

]T
)

Γ(n + 1)

Γ
(
4n +

[
9
2
, 7

2
, 5

2
, 3

2

]T
)

=
(6n)!(4n)!n!4n

(3n)!(8n)!
1

512

(
1885

8n + 1
+

−965
8n + 3

+
363

8n + 5
+

−51
8n + 7

)
(16)

in simplified notations. Finally with Eq. (15) and Eq. (16), we have

29π =
∞∑

n=0

(−1)n2n

(
6n
3n

)
(
8n
4n

)(
4n
n

)
(

1885
8n + 1

+
−965
8n + 3

+
363

8n + 5
+

−51
8n + 7

)
.

5.2 Case 2 : a
b

+ c
d
∈ Z (positive and negative integers)

This case allows us to obtain special values of Γ
(

a
b

)
Γ

(
c
d

)
(equal to π multiplied by

an algebraic number). In some cases, π is absent and we obtain amazing formulas for
algebraic numbers.
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EXAMPLE 2. The following relations are based on Beta values for a
b = −4

3 , c
d = −2

3
or a

b = −1
3 , c

d = −2
3 or a

b = −5
3 , c

d = −1
3

(
3n
n

)

27n(3n − 1)
=

√
3

4π

∫ 1

0

xn−4
3 (1 − x)n− 2

3 dx−
√

3
2π

∫ 1

0

xn−1
3 (1 − x)n−2

3 dx

(
3n
n

)

27n(3n − 2)
=

√
3

8π

∫ 1

0

xn−5
3 (1 − x)n− 1

3 dx−
√

3
4π

∫ 1

0

xn−1
3 (1 − x)n−2

3 dx

which gives the formula

8
3

∞∑

n=0

(−1)n
(
3n
n

)

54n

(
−1

3n− 1
+

1
3n − 2

)
= 3

√
2.

5.3 Case 3 : a
b

+ c
d
∈ Q\N (rationals but not naturals)

We obtain Pochhammer symbols in sums then factors
Γ

(
a
b

)
Γ

(
c
d

)

Γ
(

a
b + c

d

) in the outcome.

EXAMPLE 3. Considering
∫ 1

0

xn− 1
4 (1 − x)n− 1

2 dx =
Γ

(
n + 3

4

)
Γ

(
n + 1

2

)

Γ
(
2n + 5

4

)

∫ 1

0

xn+3
4 (1 − x)n−1

2 dx =
Γ

(
n + 7

4

)
Γ

(
n + 1

2

)

Γ
(
2n + 9

4

)

and the following integral
∫ 1

0

(x − 2)
∞∑

n=0

(−1)n

2n
xn−1

4 (1 − x)n−1
2 dx = −2

∫ 1

0

1
4
√

x
√

1 − x(x + 1)
dx = −π

we obtain finally

∞∑

n=0

(−1)n

8n

(
1
2

)
n

(
1
2

)
2n(

1
4

)
n

(
1
4

)
2n

(
11

8n + 1
+

1
8n + 5

)
=

√
2

Γ
(

1
4

)2

√
π

= 4
√

2K
(

1√
2

)

where K(k) =
∫ π/2

0
dθ√

1−k2 sin2 θ
is the complete elliptic integral of the first kind, thus

making the connection with singular values of the elliptic integral.

6 Higher Order Constants

One point of interest is to generalize this method to higher order constants. A constant
is of order p if it is equal to a linear combination in N of p-th order polylogarithms. For
example, π or ln(2) are of order 1 whereas π ln(2) or G are of order 2 and ζ(3) or π3
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are of order 3. A BBP binomial sum involves a constant of order p, as for BBP sums,
if the polynomial in n in the denominator is of degree p. For example, we have

∞∑

n=0

(−1)n

(
2n
n

)
2n (n + 1)2

(
3

(2n + 1)

)
= −2 ln3(2) + 3ζ(3). (17)

However, the straightforward application of integral representation does not com-
pletely help since, for order 2 for instance, we have

∞∑

n=0

1
qn

(
mn
pn

)
(mn + 1)2

=
∫ 1

0

∫ 1

0

q

q − ymxm(1 − x)(m−p)
dxdy.

The evaluation is not often easy, there is no known proof of Eq. (17) to our knowl-
edge. Nevertheless, there is evidence for existence of BBP binomial formulas for higher
order constants.
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