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Abstract

In many complex diseases such as cancer, a patient undergoes various disease stages before 

reaching a terminal state (say disease free or death). This fits a multistate model framework where 

a prognosis may be equivalent to predicting the state occupation at a future time t. With the advent 

of high throughput genomic and proteomic assays, a clinician may intent to use such high 

dimensional covariates in making better prediction of state occupation.

In this article, we offer a practical solution to this problem by combining a useful technique, called 

pseudo value regression, with a latent factor or a penalized regression method such as the partial 

least squares (PLS) or the least absolute shrinkage and selection operator (LASSO), or their 

variants. We explore the predictive performances of these combinations in various high 

dimensional settings via extensive simulation studies. Overall, this strategy works fairly well 

provided the models are tuned properly. Overall, the PLS turns out to be slightly better than 

LASSO in most settings investigated by us, for the purpose of temporal prediction of future state 

occupation. We illustrate the utility of these pseudo-value based high dimensional regression 

methods using a lung cancer data set where we use the patients' baseline gene expression values.
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1. Introduction

Multistate models are typically used to describe the progression of a set of subjects through 

a succession of stages until they reach a certain endpoint. This endpoint is called an 

absorbing state as no more transitions are possible from this state. A simple example of such 

a model is the setting of a survival analysis where there are only two states, viz., alive or the 

initial state, and dead or the final state. In disease studies, like cancer, prognosis of patients 

is of much importance. This includes predicting how complicated the stage of the disease 

will be for a patient, e.g. whether the patient will still be at an intermediate stage II or at the 
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final and more severe stage IV of lung cancer, after t (say) months from the point of study, 

or, whether a patient can really survive till t months after a follow-up study. This requires 

estimation of state occupation probability, which is the probability that an individual would 

be occupying a particular stage of the disease process at a given time. For survival models 

the survival probability at a given time can be interpreted as one of the two state occupation 

probabilities. Estimation of these state occupation probabilities become difficult in the 

presence of censored data. In such cases one estimates the state occupation probability at 

given time in presence of censoring using the Aalen-Johansen estimator [1]. However, often 

we have baseline covariates on the patients during a disease study; one has to assimilate 

these additional covariate information for better prognosis of the disease pattern in a given 

individual. This can be done through regression modeling of state occupation probabilities at 

a given time incorporating the covariate information of the subjects under study and using 

the resultant model for prediction purposes.

Andersen, Klein, and Rosthoj [2] invented a simple yet effective technique for directly 

modeling state occupation probability in a multistate process based on a given set of 

covariates. They proposed the overall marginal estimation of a state occupation probability 

using Aalen-Johansen estimator, and then using the ‘leave-one-out’ jackknife based ‘pseudo-

values’ [3] of the marginal estimate as responses in regression modeling based on covariates. 

The leave-one-out jackknife method for a summary statistic (e.g. Aalen-Johansen estimator 

of marginal state occupation probabilities) makes it possible to attach a separate estimate for 

each individual under study. This leads to the formation of the pseudo-value (PV). A 

pseudo-value corresponding to an individual is constructed in such a way that it reflects the 

extent to which the overall marginal estimator is affected by the presence or absence of that 

individual in the study. So these pseudo-values can be, intuitively, related to the covariates at 

the individual level. In that case PV corresponding to an individual can be thought of 

containing information on how the covariates of that individual affect the overall marginal 

estimator. The usefulness of this pseudo-value based regression is largely due to the fact 

that, under suitable regularity conditions, the pseudo-values computed from an 

asymptotically linear and unbiased estimator will be approximately i.i.d with the same 

conditional expectation (regression function) that we are trying to estimate [4]. The pseudo-

value based regression technique has since then been applied to other time to event data 

problems; see, [5-8] among others. Although originally developed for testing the effects of 

covariates in censored data settings, the pseudo-value based regression technique can also be 

used for prediction of future state occupation. However, most of the existing works based on 

the pseudo value technique have been carried out under the generalized linear regression 

framework.

With the advent of high throughput genomic and proteomic assays, a clinician may want to 

use these information collected on a patient at baseline in making better prediction of future 

state occupation. In such situations, the standard linear or generalized linear models will not 

be applicable as the covariate dimension (e.g., number of genes in microarrays or next 

generation sequencing arrays, number of proteins in protein arrays, or mass over charge 

ratios in mass spectrometry based proteomic profiles) is typically very large compared to the 

number of individuals under study. A recent work involving the pseudo-value technique in 

high dimensional settings was pursued by Mogensen and Gerds [9] for a classification 
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problem through the random forest approach, but it was limited only to competing risk 

models. In this article, we consider estimating the probability that an individual would be in 

a certain state of a general multistate disease process at a given time based on his or her 

covariate profile. Generally speaking, either a latent factor regression, or a penalized 

regression, or a combination of the two, have been used in literature to handle high 

dimensional covariates. Thus we consider the pseudo-value based regression approach in 

combination with a latent factor or a penalized regression technique. We explore the 

predictive performances of latent factor regressions such as Partial Least Squares [10, 11] as 

well as, penalized regressions such as Least Absolute Shrinkage and Selection Operator [12] 

all using the pseudo-value approach in cases where the covariate dimension exceeds the 

sample size.

The rest of the article is organized as follows. In Section 2, we give an overview of the PV 

approach in regression modeling with special emphasis on the regression of state occupation 

probability in multistate models. Section 3 contains simulation studies involving an 

irreversible illness-death multistate model in which we compare the predictive performances 

of different PV based high dimensional regressions, namely, Partial Least Squares (PLS), 

Sparse PartialLeast Squares (SPLS) [13], Least Absolute Shrinkage and Selection Operator 

(LASSO), Elastic Net [14], and Adaptive LASSO (AdLASSO) [15]. This section also has a 

simulation study representing a two-state survival framework, where we compare the 

performances of Cox model based LASSO regression [16] and two competing PV based 

high dimensional regression methods. In Section 4, we demonstrate the use of the PV based 

high dimensional methods in predicting patient survival through a lung cancer dataset that 

contain censored observations. The article ends with a discussion in Section 5.

2. Background of the Methods

Let us briefly discuss the notations used in this article for developing the methods. Suppose 

we have a multistate model framework involving n individuals. We are interested in inferring 

the probability of occupation of a given state h of the multistate system at a given time t. We 

denote this probability by Ph(t). If U(t) denote the state at time t, then we have Ph(t) = 

E(I(U(t) = h)). We denote a marginal estimator of Ph(t) as P̂h(t). Also, we have information 

on q covariates related to each of the n subjects under study.

2.1 Pseudo-values and their Application in Regression Modeling

The pseudo-value approach was first obtained for the ‘leave-one-out’ jackknife resampling 

technique, with the initial purpose being studying the bias and standard error of an estimator. 

The idea behind the construction of pseudo-values is easily comprehensible when the 

estimator is linear. If θ̂ is an estimator of a parameter of interest θ based on a random sample 

of size n, and if θ̂(−i) is the estimate of θ obtained by deleting the ith observation from the 

original sample, then the ith pseudo-value is defined as ηi = nθ̂ – (n – 1)θ̂(−i), where i ∈ {1, 

2, …, n}. Intuitively, ηi can be regarded as the contribution of the individual i on the 

marginal estimator θ̂. Andersen et al. [2] proposed the use of these pseudo-values in the 

context of regression modeling of state occupation probabilities via generalized linear 

models and showed that this pseudo-value approach efficiently estimates the regression 
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parameters. Suppose data consists of n pairs of independent and identically distributed pairs 

(Xi, Zi), 1 ≤ i ≤ n, of response X and covariates Z, and we are interested in estimating θ(Z) = 

E(f(X)|Z), for some known function f. Starting with an asymptotically linear and unbiased 

estimator θ̂ of the corresponding marginal parameter θ = E(f(X)), Andersen et al. [2] 

proposed that one can regress the corresponding pseudo-values ηi on Zi to obtain an 

estimator of the regression function θ(Z). In this article, we let f be the indicator function 

I(U(t) = h) which denotes whether an individual is at state h at time t. With this choice, Ph(t), 
the occupation probability of a certain state h at a given time t, becomes the parameter θ of 

interest.

2.2 Estimation and Regression of State Occupation Probability in Multistate Models

Aalen and Johansen [1] proposed a non-parametric estimator of the state occupation 

probability in multistate models with censored outcomes. They showed that, under 

independent censoring, P̂h(t), the Aalen-Johansen estimate of occupation probability of state 

h at time t, is consistent for estimating the true occupation probability Ph(t) if the underlying 

multistate process is Markov. Later on, Datta and Satten [17] showed that even if the 

underlying process is non Markov, the Aalen-Johansen estimator of state occupation 

probability remains consistent. The Aalen-Johansen estimator can be thought of as a 

generalization of the Kaplan-Meier estimator of survival probability in a two-state survival 

framework. Steps for computing the Aalen-Johansen estimator and related details are 

discussed in the Web Appendix A of online Supplementary Material (See Appendix).

Two existing approaches for regression and prediction of state occupation are the pseudo-

value regression approach and the binomial regression approach [18]. The binomial 

regression approach only uses the binary indicator of an event status (e.g., occupation or 

non-occupation of the given state), at a given time point, as the outcome, unlike the pseudo-

value approach that considers a marginal estimator like Aalen-Johansen estimator. For 

prediction of state occupation in a system with multiple states, the pseudo-value approach 

based on the Aalen-Johansen estimator is expected to be more efficient than the binomial 

regression approach. This is so because the Aalen-Johansen estimator uses information on 

full event history up to the time point of interest rather than relying just on the binary event 

status at the time point of interest. Therefore, we focus on extending the pseudo-value 

approach for regressing the state occupation probabilities in multistate models, when the 

covariate dimension is high.

Aalen-Johansen estimator is a very suitable marginal estimator of state occupation 

probability when the aim is to regress the state occupation probabilities based on the 

covariates. If one wants to predict the occupation probability of a typical state h at some 

future time t through the pseudo-value based regression approach as discussed earlier then 

the pseudo-values of state occupation probability of state h at time t can be generated as
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where  is the Aalen-Johansen estimate of occupation probability of state h at time t 
calculated after removing the individual i from the data. Now, we can regress these pseudo-

values on available covariates through a linear model or a generalized linear model as 

discussed before.

2.3 High Dimensional Regression

In case the number of covariates (q) available for each individual exceed the total number of 

individuals (n) under study, i.e. n ≪ q, the standard linear or generalized linear models fail. 

Then we have to resort to one of the high dimensional regression techniques. Out of the 

different high dimensional regression techniques, we consider latent factor regression such 

as Partial Least Squares (PLS), Sparse Partial Least Squares (SPLS), and penalized 

regression methods such as LASSO, Elastic Net (ENET), and Adaptive LASSO 

(AdLASSO) in this article.

PLS is a latent factor regression technique which constructs a handful of latent variables 

from a collection of a large set of explanatory variables in such a way that most of the 

predictive power can be accomplished by these extracted latent variables. SPLS may lead to 

an improvement upon PLS as it performs latent factor extraction and variable selection 

simultaneously. SPLS imposes an additional L1 constraint during the formation of PLS 

components that leads to the variable selection feature. Penalized regression techniques are 

widely used in case the covariate dimension is too large compared to the sample size. 

LASSO is one of the most popular penalized regression methods that introduce an L1 

penalty to the regression coefficients so that many coefficients shrink to zero. This is a very 

useful feature when there is an enormous list of covariates with most of them not 

contributing to the outcome of interest. However, LASSO has the tendency of shrinking 

most coefficients to zero in a set of correlated regressors which can lead to the elimination of 

many important covariates. ENET regression is an extension of LASSO that addresses this 

issue of over-shrinking. ENET uses a mixture of L1 and L2 penalty and is robust to the 

presence of highly correlated variable. AdLASSO regression is another extension of LASSO 

where different adaptive weights are used in penalizing different coefficients in the L1 

penalty. The advantage of the AdLASSO method is that the estimated regression coefficients 

have the oracle property which means that the penalized estimator of the coefficients is 

consistent in the parameter estimation and variable selection. This feature is lacked by the 

regular LASSO. Details on these high dimensional methods, including their computational 

steps and important features, can be found in the Web Appendix B of online Supplementary 

Material.

The development of the pseudo-value based high dimensional regression of state occupation 

probabilities can be regarded as the unification of all the different concepts discussed in this 

section, namely, estimation and regression of state occupation probabilities, and the high 

dimensional regression methods.
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3. Simulation Studies

We now describe a number of simulation settings. Through the study of these varied 

simulation settings involving sparse and non-sparse scenarios, different censoring rates and 

noise-to signal ratios, we aim to find out which of the aforementioned pseudo-value based 

high dimensional regression methods is the most powerful for predicting future state 

occupation and survival. In the first setting, we have a multistate model framework where we 

compare the performances of different high dimensional regression methods such as PLS, 

SPLS, LASSO, Adaptive LASSO (AdLasso), and Elastic Net (ENET), based on pseudo-

values. In the second setting, we have a survival (two-state) model where we compare the 

performance of the Cox model based LASSO regression with that of the PV based high 

dimensional regression techniques when the underlying true model is non-Cox type.

3.1 Simulation designs for a multistate model

We generate an irreversible three-stage illness-death model with censored outcomes where 

all the state-to-state transition times of a typical individual are generated from an accelerated 

failure time (AFT) models based on the covariate information of that individual. The three 

states in this illness-death model are the ‘disease-free’ state, ‘ill’ or ‘disease’ state, and the 

‘death’ state, which are indexed as states 1, 2, and 3, respectively. Every individual starts 

from state 1 and can move into either state 2 or state 3. Once an individual leaves a state it 

cannot return to it. Also, no transition is possible from state 3 (absorbing state).

For a typical individual i, the transition time from the state h to the state k, Tihk (say), is such 

that the (log(T)ihk) is generated from a linear model based on the available covariates Zi1, 

Zi2, …, Ziq. For our illness death model, we generate the transition times as follows:

and

where ∊12 and ∊13 are the error components, q is the number of available covariates,

and i = 1, 2, …, n. For a typical i, if Ti13 < Ti12, we ignore all other transition times as the 

individual has moved to the absorbing state at the very first transition. Otherwise, we 

repeatedly simulate Ti23 till the condition Ti23 ≥ Ti12 is fulfilled. The transition times are 

generated so that the hazard of the second possible transition of an individual from state 2 to 

state 3 does not depend on the time of the first transition, and the resulting process is 
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Markov. Here we choose n = 200, q = 10,000. The regression coefficient parameters are 

chosen as one of the two following combinations:

Case (a) corresponds to the situation where only a few (0.5%) of the total covariates actually 

contribute to the time of transition of an individual from state 1 to state 2. So this can be 

thought of as a sparse regression model for transition into the disease state. In case (b), all 

the available covariates contribute to the transition time from state 1 to state 2, which implies 

a non-sparse (dense) regression model for transition to the disease state. In both the cases, 

the number of covariates contributing to the transition to state 3 is neither too large nor too 

small. Let Z be the design matrix such that covariate vector for the ith individual, namely Zi, 

defines the ith row of Z. We generate Zi from a multivariate normal distribution with zero 

mean vector and variance covariance matrix ΣZ. For our simulation we choose ΣZ as an 

identity matrix. We generate both the errors ∊12 and ∊13 from a normal distribution with 

mean 0 and variance rσ2. Here σ2 = max(βTΣβ, γTΣγ), where β and γ are normalized 

versions of regression coefficient vectors β and γ respectively, and r is a constant factor 

controlling the noise-to-signal ratio (NSR) of the simulated regression model. Two choices 

of NSR were considered, namely, 0.01 and 1.0. The censoring time, Ci for the ith individual 

at each of the states 1 and 2, is generated from a lognormal distribution such that 

 independently for i = 1, 2, …, n. Here c0 is determined by the overall 

censoring rate. We consider three different choices for the censoring rate, namely, 0% (no 

censoring), 35% (moderate censoring), and 80% (heavy censoring).

In order to directly predict the future state occupation based on the huge number of available 

covariates, we start with the Aalen-Johansen estimator as the marginal estimator for state 

occupation probability as discussed in Section 2.2. Here we focus on state 2 (illness state). 

So, in our simulation study we have directly modeled the state occupation probability of 

state 2 at a specific time t using the pseudo-value regression as outlined in section 2.2. We 

use different high dimensional regression methods discussed in Section 2.3 such as PLS, 

SPLS, LASSO, Adaptive LASSO, and Elastic net for this purpose. To get a complete picture 

on the performances of these high dimensional regression methods we vary the number of 

PLS or SPLS terms (latent factors) as well as the index of regularization (penalty) parameter 

in LASSO, AdLasso, and ENET. We obtain predicted values using different number of latent 

factors in PLS and SPLS regression, where the threshold tuning parameter (see Web 

Appendix B) for a fixed number of latent components in SPLS regression is obtained 

through cross-validation. Similarly for LASSO, ENET, and AdLasso, we compute the 

predicted values for the extensive solution path of the regularization parameter 

corresponding to the L1 penalty (refer Web Appendix B). In addition, for ENET regression 

we consider four choices for the elastic net mixing parameter α (described in Web Appendix 

B), namely 0.2, 0.4, 0.6, and 0.8. For AdLasso we take the ridge regression estimate of the 

regression coefficient corresponding to minimum cross-validated error as the initial 
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consistent estimator along with the three different choices of the weight tuning parameter γ, 

namely 0.5, 1 and 2 (as mentioned in Web Appendix B).

Performance measure—To evaluate the predictive performances of the PV based high 

dimensional regression methods, we can derive the theoretical (true) state occupation 

probability at a given time conditional on the covariates Z1, Z2, …, Zq, for the irreversible 

illness-death model described in our simulation settings. In this setting, P2(t; Zi) denotes the 

true occupation probability of the ith individual (conditional oncovariate vector Zi) at state 2 

at time t, and the detailed steps of deriving P2(t; Zi) can be found in Web Appendix C. Let 

P̂2; i(t; Zi) denote the estimated value of the state 2 occupation probability at time t for the ith 

individual using a PV based regression method. Then a measure of the predictive power of 

that PV based regression method can be given by the mean relative error of estimation

Here lower values of MREE indicate better prediction power of the corresponding regression 

method. In addition, to compare the performances of high dimensional regression methods 

with that of a ‘no-covariate’ model, i.e., a model based on the marginal probabilities without 

any covariate information, we calculate the above measures for a no covariate model, where 

P̂2; i(t; Zi) is replaced by the marginal Aalen-Johansen estimate P̂2(t) (ignoring the covariate 

information Zi) for state 2 for all values of i = 1, 2, …, n. For most parts of our simulation 

study, we choose the time point t as the median of all the first transition times obtained from 

the complete data on n individuals. We calculated all the MREE values of the pseudo-value 

based PLS, SPLS, LASSO, AdLasso, and ENET regression methods as well as that of the 

‘no-covariate’ model by averaging over 50 independent Monte-Carlo runs of the previously 

described data set.

Results—First we consider the sparse setting, i.e., case (a). Table 1 presents the optimal 

MREE values for the different regression methods based on pseudo-values as well as that of 

a ‘no-covariate’ model under different censoring rates at NSR value 0.01. From Table 1 we 

find that the optimal (minimum) MREE value for each of PLS, SPLS, LASSO, AdLasso, 

and ENET is substantially less than the MREE value of the ‘no-covariate’ model. This 

implies that indeed the PV based high dimensional regression methods are much more 

effective compared to a marginal model in predicting state occupation when covariates are 

involved. Also from Table 1, we see that among the penalized regression methods, the 

LASSO performs the best for all types of censoring rates considered. But even then, the 

optimal values of PLS and SPLS regression is less than that of LASSO, with PLS regression 

emerging out to be the best in terms of having minimum MREE values overall. Also, we see 

that with the increase in the censoring rate in the data, the MREE values tend to increase, 

albeit not by a large margin. Figure 1 compares the performances of PLS, SPLS, LASSO, 

and ENET for a range of PLS/SPLS components and varying index of regularization 

parameter of LASSO/ENET/AdLASSO under the two different NSR values of 0.01 and 1.0 

and a censoring rate of 80%, while Table 2 shows the optimal values of different regression 
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methods based MREE on pseudo-values as wellas that of the no-covariate model under the 

high NSR of 1.0 and 80% censoring. Interestingly, with the increase in the NSR the 

performances of the PV based regression methods tend to deteriorate to such an extent that it 

is difficult to distinguish them from a no-covariate model, although the optimal values of the 

PV based methods are marginally better (lower) than that of the no-covariate model. Also, 

we see that the wide difference between the PLS-type and the LASSO-type regression 

methods disappears under high NSR. Web-Figure 1 displays the MREE values of different 

regression methods based on pseudo-values for all the components or values of the index of 

regularization parameter considered and varying rates of censoring present in the data. Since 

the marginal estimator of state occupation probability is a function of time, one may be 

interested in observing how the MREE for the PV based regression methods behave as a 

function of time. Web-Figure 2 shows the optimal MREE values of the PLS and LASSO 

regression based on pseudo-values as a function of the time at which the underlying Aalen-

Johansen estimates are calculated.

Next we consider the case (b), the non-sparse regression scenario. Table 1 summarizes the 

optimal MREE values of these PV based regression techniques as well as that of a no-

covariate model for different censoring rates at a NSR value of 0.01. Table 1 shows that all 

the PV based regression methods perform substantially better than the no-covariate model, 

and PLS regression has the minimum overall MREE values among all the PV based 

regression techniques, similar to the results found in case (a). But the most striking 

difference in case (b) is that the difference between optimal MREE values of PLS and 

LASSO increase to such an extent that the minimum MREE of PLS is around six times 

smaller than that of LASSO, whereas in case (a) the minimum MREE of PLS was only 1.7 

times lower than that of LASSO. This signifies the fact in case of non-sparse (dense) 

regression scenario the PLS method is vastly superior to the penalized regression techniques 

in predicting state occupation. This is mainly because PLS regression, unlike the LASSO-

type penalized regression, does not remove covariates that have some predictive powers. 

Next, we investigate the predictive performances of the PV based methods in this simulation 

setting when we increase the NSR to 1.0. Figure 2 and Table 2 show that as the NSR 

increases the performances of the PV based regression methods do get worse and the wide 

difference between the optimal MREE values of PLS and LASSO vanishes. However, the 

optimal MREE values are still better than the MREE of the no-covariate model. Web-Figure 

3 displays the MREE values for all the components of PLS, SPLS and the values of the 

index of regularization parameter of LASSO, AdLasso, and ENET regression under different 

censoring rates when the NSR is 0.01.

3.2 Simulation designs for a survival model

In case of survival model, S(t), the survival probability of an individual at time t, can be 

interpreted as S(t) = P1(t) = 1 – P2(t), where P2(t) is the probability that individual is 

occupying state 2 at that time t. So the PV based regression method can be applied to 

directly model the survival probabilities based on large number of covariates and small 

sample sizes in presence of potential censoring. There exists a LASSO regression method 

based on Cox regression model in survival framework [16]. Note that, PLS regression can 

also be carried out under the assumption of an underlying Cox model. But, on trying to 
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implement PLS with Cox model in our simulated data setting, the estimation of the model 

parameters failed due to the non-convergence of the algorithm. While Cox regression may 

be a natural choice for analyzing data that are known to follow proportional hazard 

assumption, it might be interesting to see how the PV based regression methods fare 

compared to the Cox model based LASSO method in survival prediction when the 

underlying survival model is not a Cox type model (i.e., the hazards are not proportional). 

For the purpose of comparison, we engage PLS as well as LASSO, based on pseudo-values, 

as these two high dimensional methods performed near the top in our simulation studies in 

Section 3.1. We choose the Kaplan-Meier estimator of survival probability as the marginal 

estimator and compute the pseudo-values based on this estimator in the same way as we do 

it for the Aalen-Johansen estimator of state occupation probability.

For carrying out this comparison we simulate a survival data with right censoring. The true 

event (transition from state 1 to state 2) times are generated via an AFT model based on the 

available covariates Z1, Z2, …, Zq. This results in a model that is not Cox-type. If Ti denote 

the true event time for the ith individual, then we have , where ∊i is 

the error component, q is the covariate dimension, and i = 1, 2, …, n. Here we choose n as 

200, and q as 10,000. The regression coefficient vector β in the above mentioned regression 

model is chosen in one of the two following combinations:

Case (a) corresponds to a highly sparse regression scenario where only a few (0.8%) of the 

total covariates actually contribute to the true event time. In case (b) the number of 

covariates contributing to the true event time is neither too large nor too small. We generate 

Zi, the ith row of the design matrix Z, from a multivariate normal distribution with zero mean 

vector and variance covariance matrix ΣZ. For our simulation we choose ΣZ as an identity 

matrix. We generate the errors ∊12 from a normal distribution with mean 0 and variance 

10σ2, where σ2 = βTΣZβ, where β is the normalized version of regression coefficient vectors 

β. Also, Ci, the right censoring time for the ith individual, is generated such that (log(C)i)

∼N(c0, σ2) independently for i = 1, 2, …, n. Here c0 is determined by the censoring rate. For 

this simulation we choose the censoring rate to be around 50%.

With the right censored data generated from the above simulation setting, we estimate the 

marginal survival probability at time t through the Kaplan-Meier estimator, and then 

calculate the pseudo-values of the survival probability for each of the n individuals. Now, 

with these pseudo values as responses we fit a regression model based on either LASSO or 

PLS regression technique, and predict the survival probabilities of the individuals from the 

fitted model. In addition, we separately fit a Cox proportional hazard model with LASSO-

type (L1) penalization on the simulated right censored data and again estimate the survival 

probabilities of all the individuals at time t using the fitted Cox-LASSO regression model 

with Breslow estimate of baseline survival.

Dutta et al. Page 10

J Stat Comput Simul. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Performance measure—Similar to the simulation study in Section 3.1, we derive the 

theoretical survival probabilities (assuming no censoring) at a given time conditional on the 

covariates Z1, Z2, …, Zq. If S(t; Zi) denote the theoretical survival probability at time t of the 

ith individual with covariate information Zi, then for the above mentioned simulation setting, 

we have  (say). In addition, if Ŝi(t) denote the 

estimated survival probability of the ith individual at time t, either from the pseudo-value 

based high dimensional regression or a Cox model based LASSO regression, then

Results—The performances of the different methods in simulation scenarios (a) and (b) are 

displayed in Figure 3. In regression scenario (a), the optimal (minimum) MREE values of 

Cox-LASSO, pseudo-value based LASSO, and pseudo-value based PLS regression are 

obtained as 0.5117, 0.4633, and 0.1241 respectively. For regression scenario (b), the optimal 

MREE of Cox-LASSO, pseudo-value based LASSO, and pseudo-value based PLS 

regression are 0.8826, 0.9577, and 0.7305 respectively. In case of the highly sparse 

regression scenario (a), the minimum MREE value for the pseudo-value based LASSO is 

lower than that of a Cox model based LASSO. It is the other way around in case (b) when 

the underlying model is less sparse. In both cases, however, the pseudo-value based PLS 

regression has the least minimum MREE value amongst the three.

4. Applications

4.1 Michigan Lung Cancer Data

We demonstrate the use of pseudo-value based PLS and LASSO regression methods in 

predicting patient survival using a Michigan lung adenocarcinoma data set which was 

originally analyzed by Beer et al.[19]. The original data set had 7129 gene expressions for 

86 lung tumor samples and 10 normal tissue samples. Genes with extremely low levels of 

expressions were excluded from the final data set. The remaining 4966 genes were used for 

dividing the 86 lung cancer patients into three clusters by hierarchical clustering. In the 

original study, Beer et al. [19] found that these three clusters showed significant differences 

based on tumor stage and tumor differentiation. That study intended to investigate the 

relationships between clusters, cancer stages, gene differentiation and overall survival, 

details of which can be found in [19].

In this article we use the 4966 gene expressions obtained from the original study along with 

the survival times, survival indicator, information on tumor status (either stage 1 tumor or 

stage 3 tumor) and gender information of the 86 lung cancer patients to demonstrate the 

pseudo-value based prediction of patient survival in presence of a high dimensional 

covariate. There are 67 patients with stage 1 tumor whereas there are 19 patients with stage 

2 tumor. From the full data of 86 lung cancer patients, we estimate the overall survival 

probability at a given time t (in months) by the Kaplan-Meier estimator. We predict the 
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survival at time t of each of the 86 patients based on his or her gene expression profile, 

irrespective of the censoring status. For this we use the PV based PLS and LASSO 

regression where the pseudo-values are based on the Kaplan-Meier estimator as described in 

details in Section 3. The data under study has 70% of censored observations.

Unlike in simulation studies, we do not have the true (theoretical) survival probability at any 

given time for any of the patients. At a given time t, the only information we have is that 

whether a patient is alive and under study at that time, or is dead at some time before t, or is 

censored at some time before t. We use the survival status of the set of individuals who are 

alive at time t to tune the regression model parameters, while we use the survival status of 

the set of patients who are known to be dead by time t to check the predictive power of the 

optimally tuned regression models at time t. Thus, for choosing the optimal number of PLS 

components or optimal index of regularization parameter in LASSO, we calculate the 

following data-based measure of mean absolute error of prediction

where δi(t) = 1 if the ith patient is alive and under study at time t, and δi(t) = 0 otherwise, 

, and Ŝi(t; Zi) is the estimated survival probability at time t for the ith 

patient using PV based regression. Note that MAEP measures average absolute error of fit 

for the state prediction amongst subjects who are still known to be alive at the time point 

under consideration. The regression model having the minimum MAEP value at a given time 

t is chosen as the optimal model.

Next we test the classification ability of our optimally tuned model when applied to the 

individuals who are dead by time t. In other words, we check for individuals who are already 

dead by the time t, how well this could have been predicted from their baseline covariates by 

using the optimal PV based regression model. For better interpretation of the estimated 

survival probability as an indicator of the survival status, we classify a typical individual i as 

0 or 1 based on whether the estimated survival probability Ŝi(t; Zi) is less than 0.5 or not, 

respectively. We define Di(t) = 0 if Ŝi(t; Zi) < 0.5 and Di(t) = 1 if Ŝi(t; Zi) ≥ 0.5, implying that 

the patient i is predicted to be more likely to be dead than alive at time t if Di(t) = 0. In that 

case a measure of the misclassification rate for the set of patients already known to be dead 

at time t can be obtained as

where αi(t) = 1 if the ith patient is known to be dead by time t, and αi(t) = 0 if the ith patient 

is not known to be dead by time t, . It is easy to see that 0 ≤ MR ≤ 1, 

Dutta et al. Page 12

J Stat Comput Simul. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where 0 denotes the case of no misclassification while 1 represents the case of maximum 

misclassification.

We have calculated the MAEP values for different values of the index of regularization 

parameter of LASSO and different PLS components for a wide range of the values of time t. 
For the choice of t as 30 months, the minimum value of MAEP using LASSO is 0.0315, 

while the minimum value of MAEP using PLS is 0.0477 corresponding to a PLS regression 

with 7 components. Details of the performances of LASSO and PLS regression at 30 months 

can be obtained from Web-Figure 4. Next, we check how well the optimal PV based 

regression model at a given time point t perform in terms of the misclassification rate (MR) 

for the individuals already dead by time t. Interestingly, for the optimal PV based regression 

model at a given time t obtained by minimizing MAEP, the MR value turns out to be 0 

implying perfect classification, and this is true for all the choices of t considered in our 

analyses. This indicates that, indeed, the optimal regression model having the minimum 

MAEP value at a given time t, perfectly identifies the individuals who have died before time 

t.

One interesting question is whether there is any difference in the survival chances based on 

tumor status. For this we predict the survival at time t for each of the 86 patients through 

both the PLS and LASSO regression based on pseudo-values where the optimal number of 

PLS components and the optimal value of the index of regularization of LASSO are 

obtained by the procedure described in the last paragraph. Then we classify the patients 

according to their tumor status, namely stage 1 and stage 3, and then take the average of the 

estimated probabilities in each of the two groups. We repeat this for different choices of t 
and plot these average survival probabilities of stage 1 and stage 3 tumors as a function of 

time as shown in Web-Figure 5. It can be seen that at any time point t the average survival 

probability of a stage 3 tumor patient ismuch less than that of a stage 1 tumor patient. So 

tumor status does play a differentiating role in overall patient survival. Web-Figure 6 

compares the average predicted survival probability of the male population with that of 

female population at different points of time. At initial time points there appear to be no 

significant differences between the average survival probabilities of the male and the female 

population, but the male and female survival do differ at later time points. Due to the 

censoring present in the data the main challenge is to get survival information of the patients 

who have already been censored before the time point of interest. We demonstrate the use of 

pseudo-value regression in estimating the survival probability of a patient at time point later 

than its censoring time. Figure 4 shows the temporal estimated survival probability of a lung 

cancer patient who was censored at 28.3 months. Survival probabilities are estimated using 

both LASSO and PLS regression methods based on pseudo-values where the optimal value 

of the regularization index of LASSO or the optimal number of PLS components is chosen 

in the same way of minimizing MAEP. We can see that the estimated survival probability of 

this patient goes on decreasing as time increases which is consistent with the general nature 

of survival function. Due to the lack of adequate methods for obtaining exact confidence 

intervals for LASSO based estimates, we rely on bootstrap percentile based confidence 

interval (CI) for the estimated survival of a patient at a given time. We calculate the 95% 

confidence intervals based on bootstrap percentile method (considering 1000 bootstrap 

resamples). We compute these confidence intervals of the estimated survival probabilities at 
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multiple time points for the patient censored at 28.3 months. Using the LASSO based PV 

regression we obtain the bootstrap based 95% CI for survival at time points 12, 36, and 48 as 

(0.619, 1.000), (0.516, 1.000) and (0.502, 1.000), respectively. Using PLS based PV 

regression the bootstrap based 95% CIs for survival at time points 12, 36, and 48 turn out to 

be (0.618, 1.000), (0.445, 1.000) and (0.405, 1.000), respectively. Although the bootstrap 

based confidence intervals appear to be wide in this case, these are the only CI that can give 

some idea on the variability of the LASSO based estimates of survival probabilities.

5. Discussion

The pseudo-value method allows direct prediction of future state occupation instead of 

indirect modeling through state-to-state transition hazards even when censoring is present. 

This is particularly useful when the main objective is to interpret the estimated probability 

that an individual is in a particular stage of a multistate disease process at a given time in 

terms of the covariate profile of that individual. When the dimension of the covariate profile 

(e.g. gene expression profile) exceeds the underlying sample size, one can use latent factor 

regressions such as PLS regression or penalized regression such as LASSO regression in 

conjunction with the pseudo-value approach. Through extensive simulation studies, we have 

seen that, among the various high dimensional regression techniques that we considered, 

overall PLS works the best with the pseudo-value based responses for predicting future state 

occupation or survival. In cases of underlying sparsity, where a majority of the available 

covariates are noise variables not contributing to the state occupation or survival 

probabilities, the pseudo-value based LASSO regression is a powerful alternative to PLS 

regression for prediction purposes. Even in case of simple survival (two-state) model with a 

huge covariate dimension, the pseudo-value based regression methods seem to work better 

than the Cox model based penalized regression for predicting survival when the proportional 

hazards assumption is violated.

We have demonstrated the use of pseudo-value based high dimensional regression using a 

lung cancer data set which had a high proportion of censored samples. We employed 

pseudo-value regression using PLS as well as LASSO regression in predicting patient 

survival at a given time. Overall, meaningful and consistent results were obtained on patient 

survival, e.g., differentiation based on tumor stages.

This article is mainly motivated by the question of forecasting the state occupation or 

survival probability of a typical patient at some future time point based on its high 

dimensional covariate profile. Another interesting task can be finding out which of the 

available covariates (genes in case of gene expression profiles) are most significant in 

predicting state occupation or survival. But as state occupation probabilities are functions of 

time, one may have different optimal pseudo-value based regression models at different time 

points leading to the possibility of non-uniformity in the list of significant covariates over 

time. For example, some genes may turn out to be significant at two widely different time 

points but insignificant in the intermediate time points. Such results may be difficult to 

interpret from a biological perspective, and we plan to focus on this need of using the 

pseudo-value based high dimensional regression techniques for variable selection in future 

studies.
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In our current work, as well as most of the past works based on pseudo-value regression, it 

has been assumed that the censoring mechanism is independent of the covariates under 

study. This assumption can be relaxed and a recent work in this direction [20] suggests using 

a correctly specified regression model for the censoring time in a competing risk framework 

where the covariate dimension is smaller than the sample size. However, extension of this 

approach to high dimensional settings, especially in the presence of huge covariate 

dimensions consisting of omic expression profiles, is not straightforward as it would be 

challenging to specify the correct model for the censoring time based on the high 

dimensional genomic or proteomic covariates. So, the idea of including covariate dependent 

censoring in the temporal prediction of state occupation based on high dimensional baseline 

covariates needs separate attention in future studies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The values of different pseudo-value based MREE regression methods under low and high 

NSR values and 80% censoring for sparse regression scenario (a) of illness-death model 

from Section 3.1
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Figure 2. 
The values of different pseudo-value based MREE regression methods under low and high 

NSR values and 80% censoring for non-sparse regression scenario (b) of illness-death model 

from Section 3.1
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Figure 3. 
The MREE values for Cox-LASSO, Pseudo-value (PV) LASSO and pseudo-value PLS for 

survival models with sparse scenario (a) and the non-sparse scenario (b) from Section 3.2.
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Figure 4. 
Predicted survival (using both LASSO and PLS methods) of a patient in the Michigan Lung 

cancer study who was actually censored at 28.3 months of the study.
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Table 2

Minimum values for different pseudo-value MREE based regression as well as MREE of a no-covariate model 

under a high NSR of 1.0 and 80% censoring rate for the sparse regression scenario (a) and the non-sparse 

scenario (b) from the illness-death model in Section 3.1

Type of regression Sparse scenario(a) Non-sparse scenario(b)

PLS 22.9332 2.4591

LASSO 22.9922 2.8076

ENET (0.8) 22.9886 2.8096

ENET (0.6) 22.9839 2.8138

ENET (0.4) 22.9780 2.8213

ENET (0.2) 22.9686 2.8428

No-covariate 24.0535 24.1069
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