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Abstract 

Supervised learning is the dominant approach to automatic electronic health records-based phenotyping, but it is 

expensive due to the cost of manual chart review. Semi-supervised learning takes advantage of both scarce labeled 

and plentiful unlabeled data. In this work, we study a family of semi-supervised learning algorithms based on 

Expectation Maximization (EM) in the context of several phenotyping tasks. We first experiment with the basic EM 

algorithm. When the modeling assumptions are violated, basic EM leads to inaccurate parameter estimation. 

Augmented EM attenuates this shortcoming by introducing a weighting factor that downweights the unlabeled data. 

Cross-validation does not always lead to the best setting of the weighting factor and other heuristic methods may be 

preferred. We show that accurate phenotyping models can be trained with only a few hundred labeled (and a large 

number of unlabeled) examples, potentially providing substantial savings in the amount of the required manual 

chart review. 

Introduction 

Mining massive databases of electronic health records for patients who satisfy a set of predefined criteria is known 

in medical informatics as phenotyping. Phenotyping has numerous use cases: clinical trial recruitment, outcome 

prediction, survival analysis, and other kinds of retrospective studies [1]. Several translational science initiatives 

have made identifying patient phenotype cohorts from the Electronic Health Records (EHR) their primary focus. 

Among them are Electronic Medical Records and Genomics (eMERGE) [2], Pharmacogenomics Network (PGRN) 

[3], and Informatics for Integrating Biology and the Bedside (i2b2) [4]. Within each of these initiatives, disease-

specific phenotyping algorithms are developed and run against repositories containing millions of patient records. 

The identified patient cohorts are subsequently linked to biobanks for genetic analysis.  

 

Supervised machine learning is currently the predominant paradigm in phenotyping [1]. Unfortunately, supervised 

learning can be very costly due to the expenses associated with the manual chart review. A separate machine 

learning model is developed for each phenotype, typically requiring hundreds of manually labeled examples. For 

instance, about 600 hundred patient records had to be reviewed manually for each disease within the i2b2 initiative. 

At the same time, thousands more were left unlabeled. Investigating cheaper alternatives to supervised learning that 

take advantage of the bountiful unlabeled patient records thus holds great promise.  

 

Semi-supervised learning is a class of methods that is concerned with incorporating unlabeled data within machine 

learning models along with the data that have labels. In contrast with the general domain, semi-supervised learning 

has not received sufficient attention in the clinical NLP community. In this paper, we report on our experiments with 

several versions of the expectation maximization (EM) algorithm [5], a simple, yet powerful approach for semi-

supervised learning. We experiment with four phenotyping datasets developed within the i2b2 initiative and analyze 

the interaction between the key aspects of semi-supervised learning that determine its success: the amount of labeled 

and unlabeled data and the relative weight of the unlabeled data. For our experiments, we adapt and implement 

several flavors of the EM algorithm [6,7] for modeling the i2b2 phenotypes. We first experiment with the basic EM 

algorithm. While the outcome of this  experiment is promising, it becomes clear that unlabeled data often 

overwhelms the model, resulting in suboptimal parameter estimates. This shortcoming is ameliorated by introducing 

the weighting factor, allowing the unlabeled data to help characterize the parameter space without overwhelming the 

relatively small number of high quality gold labels. We investigate several alternatives for setting the value of the 

weighting factor including cross-validation and a simple heuristic. We discover that cross-validation is not always 

the optimal approach with the competing methods often leading to better models.  

 

Our results indicate that overall unlabeled data can be highly beneficial to the models. We show that high-quality 

models can be trained with only a few hundred labeled examples when combined with unlabeled instances, 

potentially providing large savings in the amount of the required manual chart review. We also discuss several 
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practical lessons that can be drawn from our experiments. Our work is a bid to bring semi-supervised learning to the 

attention of the community by detailing a simple yet versatile baseline method. 

 

The only study we are aware of that touches the subject of semi-supervised learning in the context of clinical NLP is 

the work by Garla et al. [8], who look at an application of Laplacian SVMs for detecting the presence of malignant 

liver lesions. While this work presents an encouraging result, it has several shortcomings that make it difficult to 

predict how well their findings would generalize to other tasks. First, the liver lesion model is based on complex 

rule-based features, whereas our model utilizes a simple bag of Unified Medical Language System (UMLS) [9] 

features that are successful in phenotyping [1,10–12]. Second, Garla et al. do not examine the effects of varying the 

amount of labeled data, which in our work leads to valuable insights about the practical aspects of semi-supervised 

learning. Finally, Garla et al. study a single dataset, employing a model with a large number of tunable parameters. 

In contrast, our work involves multiple datasets, while utilizing a simple and scalable model with a single tunable 

parameter (the weighting factor), the effects of which we carefully study. While our experiments with multiple 

datasets paint a more complex picture concerning the effects of unlabeled data, our conclusions are likely more 

generalizable and complete. 

 

This paper is organized as follows. We first discuss our models and the EM algorithm. We then outline an 

experiment providing the intuition why EM works. Next, we examine the effects of varying the amount of labeled 

and unlabeled data and different methods for setting the weighting factor. Finally, we discuss our findings and draw 

practical lessons from our results. 

Methods 

Data representation 

We perform our study in the setting where the unit of phenotype classification is the complete patient chart. We 

represent each chart as a set of UMLS concept unique identifiers (CUIs) which we extract from the patient’s records 

using Apache Clinical Text Analysis and Knowledge Extraction System (cTAKES; ctakes.apache.org) [13]. CUIs 

are commonly used as representations in clinical NLP [12,14,15] as they help to abstract from lexical variability of 

medical terminology and capture the clinically relevant terms. Each CUI can be either asserted or negated, as 

determined by the cTAKES negation module. Some CUI examples employed in one of our models can be seen in 

Table 3. 

 

Although cTAKES is capable of extracting most CUIs that exist in the UMLS, we only include the CUIs listed in 

phenotype-specific dictionaries. The dictionaries are created manually by i2b2 domain experts and define the 

relevant terms for each phenotype. Each phenotype-specific dictionary has D entries: CUI1 … CUID. We model a 

patient i as a D-dimensional vector of CUIs !! in which an element !!!! indicates how many times CUIk from the 

dictionary was seen in the patient’s chart. Wu et al. [16] refer to this as “sum aggregation” and found it to perform 

well across performance metrics in a task requiring aggregating representations of patient charts. 

 

Model 

In the setting where all data have labels, model parameter estimation is fairly straightforward: for example, such 

methods as maximum likelihood or maximum a posteriori estimation can be utilized. When some of the labels are 

not known, parameter estimation is harder, although methods for obtaining parameter estimates exist. One such 

method is the Expectation Maximization (EM) algorithm [5]. The EM algorithm is an iterative procedure that begins 

by estimating model parameters from labeled data only. The model is then used to assign probabilistically-weighted 

class labels to the unlabeled instances. The model parameters are subsequently re-estimated from all (labeled and 

unlabeled) data and the procedure repeats until the parameter estimates stabilize. The algorithm is outlined in Table 

1.  
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!

• Input: labeled and unlabeled data 

• Estimate model parameters from labeled data only (Equations 3 and 4) 

• Loop until convergence 

o E-step: use current model parameters to compute the class distributions for patients with 

no labels (Equation 2) 

o M-step: re-estimate model parameters from both labeled and unlabeled examples 

(Equations 3 and 4) 

• Output: model parameter estimates!!

Table 1. Basic EM Algorithm. 

The probabilistic framework we utilize in conjunction with the EM algorithm is based on a multinomial Naïve 

Bayes classifier, an approach frequently used in the context of text classification [17]. Phenotyping is cast as a 

binary patient classification task where a patient !! has a class label ! ! !!"#$! !"!#$%&!. The total number of 

patients in the training set is ! ! !!"#$!$% ! !!"#$%&#&', where !!"#$!$% and !!"#$%&#&' are the number of labeled and 

unlabeled examples respectively.  

 

The posterior probability distribution over the labels for a patient !! is given by Bayes rule: 

 

! ! !! ! !
! ! !!!!!!!

!!!!!
! "#$!

 

Incorporating the standard Naïve Bayes assumption, this equation can be factorized to include class-specific CUI 

distributions !!!"!!!!! and the prior class probabilities !!!! as model parameters: 

 

!!!!!!! !
! ! ! !"#! !

!!!!!

!!!

!!!!! ! !"#! !
! !!!!!

!!!!!! !"#$!!"!#$%&

! "%$!

 

The parameters of this model can be computed using maximum a posteriori estimation: 

 

! !"#! ! !
! ! ! !!!!!!!!!!!!

!

!!!

! ! ! !!!!!!!!!!!
!

!!!

!

!!!

! "&$!

 

! ! !
! ! !!!!!!!

!

!!!

! ! !
! "'$!

 

Notice that the generative model that gives rise to these equations assumes that the patients are generated from a 

mixture of two components that correspond to the two classes (case and noncase). These assumptions are likely to 

be violated in practice. The patient pool used for selecting the data to be labeled could potentially contain patients 

with other medical conditions whose class specific CUI distributions could not be captured well by model 

parameters !!!"!!!!!. It could also be that the “natural” (highest probability) clustering of the data does not fit well 

into the case/noncase class boundaries we adopted for the phenotyping task. Depending on the extent to which the 

modeling assumptions are violated, the unlabeled data could prove to be detrimental to the performance of the 

model. In order to alleviate the negative impact of the violated assumptions, Nigam et al. [7] augment their model 

with a parameter ! that determines the contribution of the unlabeled data. We investigate several strategies for 

setting this parameter and their effect on the quality of the ensuing model. 

 

The augmented version of EM is written as follows. We first define !! to be the weighting factor ! for the unlabeled 

examples and 1 for the labeled examples. We then rewrite the model parameters as follows: 

 

! !"#! ! !
! ! ! !!!!!!!!!!!!!!

!

!!!

! ! ! !!!!!!!!!!!!!
!

!!!

!

!!!

! "($!
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! ! !
! ! !!!!!!!!!

!

!!!

! ! !!"#$!$% ! !!!!"#$%&#&'
! ")$!

 

 

This augmented EM algorithm is identical to basic EM in Table 1 except Equations 3 and 4 are swapped for 

Equations 5 and 6 respectively. The weight of the unlabeled data ! can be set via n-fold cross-validation, splitting 

the labeled data into a training and test sets and attempting different values of lambda. In addition to cross-

validation, we introduce a heuristic that sets the weighting factor using a  simple equation: 

 

! ! !
!

!!"#$!$%

! "*$!

 

The rationale for this heuristic is the following: the model should be able to obtain accurate parameter estimates 

from the labeled data alone, when a large amount of it is available. Thus the weighting factor should decrease as the 

amount of labeled data increases.  

 
Datasets 

We utilize four datasets all of which were created within the i2b2 initiative [12,15,18,19]. We show various 

important characteristics of our datasets in Table 2.  

 

Phenotype 
Cohort size 

(patients) 

Manually labeled Instances 

(patients) 

Ulcerative Colitis (UC) 33,465 600 

Crohn’s Disease (CD) 33,465 600 

Multiple Sclerosis (MS) 172,447 595 

Type II Diabetes (T2D) 198,002 596 
 

Table 2. Phenotyping datasets used in the experiments. 

Domain experts defined the ICD-9 codes relevant for each phenotype. These were then used to create the initial 

cohort from more than  6 million patient EHRs of the Partners Healthcare System. From that initial cohort, about 

600 patients were randomly chosen for manual labeling. Each patient chart was reviewed by a domain expert and 

labeled at the patient level.  

 

Obviously, only a small portion of the initial cohort could be labeled manually, leaving a large number of unlabeled 

examples for our semi-supervised learning experiments. For each experiment, we sampled randomly 500, 1000, and 

3000 patients from the portion of the cohort that was never labeled. 

 

Experimental Setup 

The main objective of our evaluation is to determine whether unlabeled data can improve the classification accuracy 

of supervised models. The most natural baseline in these circumstances is, therefore, a supervised learning baseline 

in which the models are trained using labeled data only. During evaluation, we examine the behavior of semi-

supervised learning with respect to the supervised baseline. This type of evaluation is best conducted via an analysis 

of learning curves as this allows us to compare the performance of supervised and semi-supervised models at 

different sizes of the training set.  

 

To generate smoother curves, we utilize 10-fold cross-validation. In a typical experiment, within each fold we 

allocate a held-out test set and a pool of examples from which the labeled data is sampled. To produce a single point 

on a learning curve, we average the performance on the held-out test sets across all folds. To produce a point on the 

baseline curve, we train a Naïve Bayes classifier using labeled data only and evaluate its performance on the held-

out test set. To produce a point on the semi-supervised learning curve, we add the unlabeled data, run the EM 

algorithm for 25 iterations
1
, and use the resulting model to classify the test set. The resulting curves can be 

                                                             
1
 In our preliminary experiments, EM typically converged after 15-20 iterations. 
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compared visually or numerically in terms of the area under the curve (AUC) or increase in accuracy. For each 

phenotype, we generate the supervised baseline and semi-supervised learning curves for 500, 1000, and 3000 

unlabeled examples. 

 

We first experiment with the basic EM algorithm, which could also be viewed as a version of the augmented EM in 

which the weight of the labeled and unlabeled examples is the same. To illustrate the inner working of the EM 

algorithm, we examine the feature weights across EM iterations. Next, we experiment with augmented EM, down-

weighting the unlabeled examples. Finally we experiment with setting the weight parameter using our heuristic 

technique and 10-fold cross-validation. During cross-validation, the held-out test set is, of course, not used; instead a 

validation set is allocated within each fold and each of the following lambda values is evaluated: 0, 0.05, 0.25, 0.50, 

0.75, 1.0. 

 

Due to the limit on the number of figures, we are not able to provide individual learning curves for the four 

phenotypes for all experimental conditions. Instead, we summarize each condition by plotting the curves that are 

averaged across all four phenotypes. These plots are supplemented by individual phenotyping plots for several 

important experimental conditions. All experiments reported in this paper are based on our own implementation of 

the EM algorithm and the supervised baseline. 

Results 

The averaged learning curves obtained in the experiment with basic EM algorithm are shown in Figure 1 (upper 

left). 

 
Figure 1. Average Learning Curves 

 

The individual learning curves for each of the four phenotypes are in Figure 2. To take a peek “under the hood” of 

the EM algorithm, we train a Crohn’s Disease model using 10 labeled examples. The top ten features selected using 

log-likelihood ratio are shown in the first two columns of Table 3. The top ten features selected using log-likelihood 

ratio after running EM for 25 iterations with 3000 unlabeled examples are in the last two columns of Table 3. 
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Labeled data only Labeled and unlabeled data 

 CUI Description  CUI Description 

 c0006826 Neoplasms malignant -c1171255 Humira 

 c0032952 Prednisone  c2343521 Cimzia 

 c0030193 Pain  c1172734 Natalizumab 

 c0001418 Adenocarcinoma  c0001418 Adenocarcinoma 

 c0009324 Ulcerative colitis  c1171255 Humira 

 c0678172 Asacol  c1872109 Certolizumab pegol 

-c00007097 Carcinoma  c2343521 Cimzia 

-c1292819 Resection  c0162529 Ischemic colitis 

 c0007097 Carcinoma -c0086492 J pouch 

 c0009410 Colostomy  c0678171 Pentasa 

 

Table 3. Top ten features before and after execution of EM for Crohn’s Disease. The ‘-‘ preceding the CUI indicates 

negation. 

The results of running the augmented EM algorithm with ! set to 0.05, 0.20, and 0.50, are in the bottom row of 

Figure 1. We also provide the individual learning curves for !=0.05 in Figure 3. Finally, the results of using our ! 

selection heuristic and 10-fold cross validation are shown in Figure 1 (top middle and top right); the individual 

phenotype learning curves for these conditions are also available in Figures 4 and 5 respectively.  

 

One way to summarize these plots numerically is to examine the difference in the area under the curve (AUC) 

between the learning curve of a semi-supervised approach and the supervised baseline. Another is to compute the 

average improvement of a semi-supervised learning curve over the learning curve for the supervised baseline. We 

show both in Table 4 with the two metrics reported across phenotypes, number of unlabeled examples, and lambda 

selection criteria. The differences in AUC and the average improvement were computed across all training set sizes.  

 

 
! ! !!!! ! ! !!!" ! selection heuristic ! cross-validation 

500 1000 3000 500 1000 3000 500 1000 3000 500 1000 3000 

A
U

C
 

d
if

fe
r
e
n

c
e
 

CD 3.50 8.61 7.99 1.27 3.58 5.30 1.00 2.26 3.25 2.23 5.95 5.35 

UC 2.22 -1.56 -5.59 2.79 4.14 5.49 1.80 2.03 2.71 4.06 3.80 4.71 

MS 6.92 -1.43 -14.99 6.28 6.31 6.74 3.67 4.60 5.78 6.48 3.57 4.09 

T2D 4.12 6.91 5.86 1.61 2.37 3.82 0.19 0.65 1.90 2.36 5.96 2.65 

Average 1.88 4.14 2.49 4.27 

A
v

e
r
a

g
e
 

Im
p

r
o

v
e
m

e
n

t,
 

%
 

CD 0.91 2.31 2.19 0.32 1.01 1.50 0.29 0.68 0.97 0.56 1.57 1.43 

UC 0.60 -0.47 -1.57 0.79 1.07 1.38 0.50 0.51 0.63 1.11 0.98 1.19 

MS 1.98 -0.22 -3.79 1.84 1.83 1.92 1.15 1.37 1.62 1.81 1.02 1.19 

T2D 1.05 1.76 1.56 0.39 0.53 1.04 0.01 0.10 0.54 0.65 1.58 0.77 

Average 0.53 1.14 0.70 1.15 
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Table 4. Difference in AUC and average improvement of semi-supervised learning over the supervised baseline. 

Discussion 

Incorporating unlabeled data into the model using basic EM algorithm shows very promising results, as evidenced 

by Figure 1 (top left). For Crohn’s Disease dataset (Figure 2, top left), the fully supervised model trained on 10 

labeled examples is only 74% accurate. With 3000 unlabeled examples added, the model receives a large 

performance boost: the accuracy is now 85%. It takes more than 300 more labeled examples for the supervised 

model to achieve the same level of performance. Clearly semi-supervised learning has a great potential, offering a 

large reduction in the amount of manual annotation that is required to train an accurate model. 

 

!
Figure 2. Learning curves for ! ! !!!! 

!
Figure 3. Learning curves for ! ! !!!" 

 

Why does EM algorithm work? The top ten features (Table 3, left) learned by the supervised model are simply too 

general to reliably identify a Crohn’s Disease patient: notice the “Pain” and “Prednisone” features (“Prednisone” is a 

drug used to treat many inflammatory diseases). On the other hand, adding unlabeled data (Table 3, right) leads to a 

feature set that is much more specific to Crohn’s Disease: “Pain” no longer appears on the list; Humira, Cimzia, 

Natalizumab, Certolizumab pegol, and Pentasa are all medications that are used to treat this condition. With few 

labeled examples, there is apparently not enough signal to capture the high number of drug names. However, by 

adding data that cluster with the positive labeled examples, the drug name features are found to be highly 

discriminative. Thus, unlabeled data helps to obtain better model parameter estimates. 

 

However, the behavior of the remaining three phenotypes in Figure 2 paints a more complex picture. To remind the 

reader, Figure 2 presents the performance of the models where labeled and unlabeled instances are both given the 

same weight. While injecting a small amount of unlabeled data (500 unlabeled examples) improves the model 

performance, adding a larger amount (1000 and 3000 examples) is detrimental to classification accuracy for two out 

of four datasets we tried (Ulcerative Colitis and Multiple Sclerosis). This effect of unlabeled data is likely caused by 

violated model assumptions. When a large number of unlabeled examples is present, model parameter estimation is 

strongly influenced by the counts from the unlabeled data. The model essentially performs unsupervised clustering, 

using the labeled examples mostly to assign cluster memberships. When the most probable two-class clustering of 

the data does not match the annotated class boundaries, the unlabeled data can skew parameter estimation, 

potentially even leading to worse estimates than with labeled data only. 
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Introducing the ! parameter that downweights the unlabeled data leads to more accurate model parameter 

estimation. As we decrease !, injecting additional unlabeled examples should more thoroughly describe the space 

we are classifying in without swamping the highly valuable gold standard instances. This results in more consistent 

improvements over the supervised baseline. Observe that basic EM (Figure 1, top left) did not seem to take full 

advantage of unlabeled data: increasing the amount of unlabeled data from 500 to 3000 resulted in a reduction in 

accuracy. By lowering the value of ! (Figure 1, bottom row), EM makes increasingly better use of unlabeled data, 

pushing the 3000 curve higher. At ! ! !!!" (Figure 1, bottom left; Figure 3) as the amount of unlabeled data is 

increased to 3000 examples, the semi-supervised models beat the supervised baseline for most training set sizes.  

 

Applying our lambda selection heuristic results in a similar behavior (Figure 1, top center; Figure 4), although the 

overall gains over the supervised baseline are smaller both in terms of the AUC (2.49 vs. 4.14 for ! ! !!!") and the 

average improvement in accuracy (0.70 vs. 1.14 percent average improvement).   

 

Using 10-fold cross-validation for lambda selection (Figure 1, top right; Figure 5) brings about overall gains that are 

comparable to using a small lambda, both in terms of AUC and the average improvement in accuracy. However, 

cross-validation does not appear to consistently pick the best lambda. For example, for the Crohn’s Disease dataset, 

it is possible for the semi-supervised models to do better if ! ! !!!! is selected for all amounts of unlabeled data we 

evaluated, in terms of both AUC and average accuracy improvements. For Multiple Sclerosis (see Table 4), cross-

validation does not seem to take full advantage of the unlabeled data: the model that has access to 500 unlabeled 

examples outperforms the models that have access to more unlabeled data. At the same time for ! ! !!!" the best 

result is achieved by the model that has 3000 unlabeled examples; that model also outperforms all models selected 

via cross-validation in terms of both AUC (6.74) and average accuracy improvement (1.92). Surprisingly, even the 

simple lambda selection heuristic makes better use of unlabeled data than cross-validation: the models that utilize 

the heuristic, outperform the models where lambda was selected through cross-validation when 1000 and 3000 

unlabeled examples are included. 

 

Overall, whether lambda is computed using our simple heuristic, using 10-fold cross-validation, or simply set to 

some small value, the unlabeled data has the strongest positive effect on model performance when the amount of 

labeled data is relatively small. For ! ! !!!" (Figure 1, bottom left) the best semi-supervised model reaches its top 

performance at around 150 labeled examples. It takes more than twice as many labeled examples for the supervised 

model to reach the same level of performance. Eventually, as the number of labeled examples in the training set 

grows, the models are capable of finding good parameter estimates from the labeled data alone and the learning 

curves for the supervised and semi-supervised cases become very similar. 

 

These findings are relevant to scaling up phenotype algorithm development for projects such as eMERGE, PGRN, 

and now BD2K. Domain expert time is always limited, and if a maximum performance can be achieved by  

!
Figure 4. Learning curves for ! set by heuristic. 

!
Figure 5. Learning curves for ! set by cross-validation. 
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combining a small seed of label instances (100-200) with unlabeled data, that would lead to gains in efficiency. If  

 

the domain expert time is plentiful, then large amounts of labeled data would be preferable as the completely 

supervised model will reach accurate parameter estimates. 

Conclusion 

Even though for some datasets the basic version of EM did not succeed in beating the supervised baseline for larger 

amounts of unlabeled data, it appears to be possible to overcome this shortcoming. Introducing the lambda 

parameter that downweights the unlabeled data leads to more consistent gains over the supervised baseline. Clearly, 

semi-supervised learning can be of high importance in practice. Are there any practical lessons we can learn from 

the experiments we presented?  

 

To answer this question, let us first identify two properties of a model that makes use of unlabeled data that a 

practitioner of semi-supervised learning would find desirable. First, a semi-supervised model should not perform 

worse than the corresponding supervised baseline. Clearly, if adding unlabeled data is as likely to lead to 

performance deterioration as to improvement, it is too risky to use in practice. Second, the semi-supervised model 

should make a full use of unlabeled data that is available to it. Out of two models, we prefer the one that can 

“squeeze” more out of unlabeled data, resulting in larger gains over the supervised baseline.  

 

In light of these properties, we can draw several lessons from our experiments. It appears that semi-supervised 

learning of the type we discussed in this work has a higher chance of success if augmented EM is used. A priori, the 

most obvious approach to setting its lambda parameter would be to use n-fold cross-validation. Empirically, simply 

setting lambda conservatively (i.e. to some small value) works a little better, possibly due to the sensitivity of semi-

supervised learning to the amount of labeled data (n-fold cross-validation has to allocate some portion of the labeled 

data as a validation set for parameter evaluation). The simple lambda selection heuristic we introduced also has 

some desirable properties over n-fold cross-validation: it often results in more consistent improvements over the 

supervised baseline and for larger training set sizes it results in performance level that is no worse than the 

supervised baseline. At the same time, it is much more efficient, which may be important for rapid development of 

multiple phenotyping models. Finally, the heuristic does not require the implicit supervision of a human-generated 

list of acceptable weights as in cross-validation. If the size of the unlabeled data were increased by an order of 

magnitude, the cross-validation procedure may require manual adjustments to its inputs to find a suitable value. 

 

For future work, we are planning to examine the behavior of semi-supervised learning under the scenario where an 

order of magnitude more unlabeled data is available to the models. We will also investigate the use of Bayesian 

inference methods for model parameter estimation such as Gibbs sampling. 
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