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Abstract

A physiologic signature can be defined as a consistent and robust collection of physiologic 

measurements characterizing a disease process and its temporal evolution. If a library of 

physiologic signatures of impending cardiopulmonary instability were available to clinicians 

caring for inpatients, many episodes of clinical decompensation and their downstream effects 

could potentially be averted. The development and resolution of cardiopulmonary instability are 

processes that take time to become clinically apparent, and the treatments provided take time to 

have an impact. The characterization of dynamic changes in hemodynamic and metabolic 

variables is implicit in the concept of physiologic signatures. Changes in vital signs such as blood 

pressure and heart rate, as well as measures of flow such as cardiac output are some of the 

standard variables used by clinicians to determine cardiopulmonary instability. When these 

primary variables are collected with high enough frequency to derive new variables, this data 

hierarchy can be used to development physiologic signatures. The construction of new variables 

from primary variables, and therefore the creation of physiologic signatures requires no new 

information; additional knowledge is extracted from data that already exists. It is possible to create 

physiologic signatures for each stage in the process of clinical decompensation and recovery to 

improve patient outcomes.
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Introduction

Cardiopulmonary instability can occur in any disease process when the body’s metabolic 

needs are not being met with adequate supply. Cardiopulmonary equilibrium is achieved in 

the presence of adequate oxygenation, preload, contractility, and vasomotor tone. While the 

body may be able to compensate for a significant change in any one of these components 

from baseline, any change may still lead to significant morbidity and mortality. Each 

component can contribute to cardiopulmonary instability. In the setting of trauma, there is a 

loss of adequate preload due to hemorrhage. Hemorrhage accounts for 50% of deaths within 
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the first 24 hours of hospitalization for a traumatic injury.1 Vasomotor tone is the most 

prominent derangement in sepsis, though these patients can also experience hypovolemia 

with reduced preload, and decreased contractility due to myocardial suppression. 

Inflammatory and apoptotic mediators contribute significantly to the pathophysiology of all 

three components in sepsis.2 For patients with global tissue hypoxia, as evidenced by 

elevated lactate levels or hypotension, mortality can range from 36% to 46.5%.3–6 In 

addition to global circulatory function, organ and microcirculatory function should also be 

addressed.7 Early identification and management of threats to physiologic equilibrium, 

preferably before instability is clinically apparent, may prevent untoward patient outcomes.

In recent years, advances in hemodynamic monitoring have ushered the concept of 

physiologic signatures, specific physiologic profiles describing a disease process through 

time. Such profiles are constructed using an expanded set of physiologic variables and can 

be used to identify and manage critical illness in a timely manner. In this chapter we will 

summarize many of the physiologic variables available in current clinical practice, the 

successes and challenges of protocolized care that use many of these physiologic variables 

(goal-oriented therapy), as well as ways to address some of those challenges by building 

physiologic signatures. The substrate for these signatures is created through the use of a data 

hierarchy (table 1), or the idea that new variables can be created from existing clinical 

variables collected at different frequencies. The goal of signature creation would be to 

identify a patient’s location on the spectrum of critical illness and continuously assess the 

response to therapy.

Diagnosis and management of critical illness through contemporary 

monitoring is good, but can be improved

Cardiopulmonary parameters used in clinical practice

There are many simple variables currently available to assess cardiopulmonary function and 

the balance between global oxygen supply and demand, but they may be nonspecific or late 

markers of cardiopulmonary compromise. Blood pressure is a primary determinant of organ 

blood flow,8 and also provides some insight into cardiac afterload. Combined with other 

traditional vital signs such as heart rate- a measure of sympathetic response to physiologic 

stress7- clinicians can get an overall sense of cardiopulmonary health via noninvasive 

variables. Tachycardia is the most sensitive of all vital signs for detecting hemodynamic 

anomalies, but it is nonspecific and may not be present until 15% of blood volume is lost.9

In addition to traditional vital signs, many more reliable variables that were once only 

measureable through invasive devices have become available in less invasive ones. These 

parameters, many of them highlighted in table 2, can serve to complement simple vital signs. 

Cardiac output is a measure of global blood flow, and therefore systemic oxygen delivery. 

Cardiac output changes to match metabolic demands.7 Since cardiac output normally varies 

with changing end organ requirements, cardiac output measurements must be interpreted in 

context. One must know the changes in tissue oxygen extraction to get a more complete 

picture of the balance between metabolic need and demand. The central venous oxygen 
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saturation (ScvO2) is a minimally invasive metric used to quantify this balance. An increase 

in ScvO2 after volume expansion reflects volume responsiveness.10

Some surrogate markers that are commonly used to provide hemodynamic information may 

be inadequate. For instance, central venous pressure (CVP) is often used as a surrogate for 

cardiovascular preload. However, CVP is the back-pressure to, and not a synonym for 

venous return.8 Independent of the volume of blood returning to the right heart, factors 

intrinsic to cardiac performance and structure can influence CVP. It is therefore not 

surprising that CVP is a poor marker for circulating blood volume and volume 

responsiveness.11–13

Other variables are used in clinical practice to quantify global metabolic demands. One 

multicenter study showed that lactate clearance of 10% of the initial value was as effective 

as ScvO2 in the protocolized resuscitation of patients during early septic shock.14 Central 

venous-to-arterial partial pressure difference of carbon dioxide (ΔpCO2) is another useful 

measure for determining hemodynamic status. According to the Fick principle, changes in 

ΔpCO2 are inversely related to changes in CO, if we assume constant total body CO2 

production. The addition of ΔpCO2 to ScvO2 may predict outcome in patients with septic 

shock better than ScvO2 alone.15, 16

Early detection of cardiopulmonary instability in contemporary practice through static 
variables

Early detection of critical illness through the use of isolated hemodynamic and laboratory-

based measures can be a first step toward improving outcome in patients at risk for, or those 

experiencing cardiopulmonary decompensation.

• One observational study demonstrated that patients who developed shock later than 

48 hours after hospital admission had a 15.6% higher ICU mortality compared with 

those who developed shock within 48 hours of admission.17

• Zhen et al18 showed that septic patients identified from the emergency department 

had lower in-patient mortality, less mechanical ventilation in the first 24 hours 

following onset of shock, and a shorter time to achieve a target ScvO2 than those 

identified later.

In the very early stages of cardiopulmonary instability, prior to the development of 

hypotension or respiratory failure, clinicians may be uncertain about the presence of 

abnormal physiology. Generally, the triggers to initiate therapeutic interventions are quite 

crude, often using some combination of static vital signs and laboratory tests indicative of 

global tissue hypoperfusion such as lactate. These methods lack sensitivity for detecting 

cardiopulmonary instability at its very early stages. However, these methods have proven 

moderately successful in clinical practice.

• Observational studies have shown that trauma patients with elevated base deficit, 

and strong ion difference- both measures of abnormal tissue perfusion- were most 

correlated with mortality.19, 20 Interestingly, neither lactate20 nor lactate 

clearance21 have been shown to be predictive of outcomes in trauma patients.
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• Measures of exhaled CO2 such as end-tidal CO2 (petCO2) and volume of exhaled 

CO2 (VCO2) can be used as surrogate measures of CO because of their dependence 

on pulmonary capillary blood flow. Young et al22 showed that petCO2 and VCO2 

were both associated with volume responsiveness in patients with shock if they had 

no baseline lung disease. Furthermore, Dunham et al23 showed that low petCO2 

was correlated with low CO in trauma, and was therefore associated with higher 

injury severity scores, hypotension, major blood loss, and death.

Early goal-oriented therapies: the current gold-standard for dynamic cardiopulmonary 
assessment and optimization

Goal-oriented therapeutic strategies are systematic approaches to the identification and 

management of cardiopulmonary decompensation that ensure the use of dynamic 

physiologic assessment and reassessment. While it is very important to identify impending 

or obvious cardiopulmonary compromise early with instantaneously measured variables, it is 

crucial to follow the effects of therapy with repeated measures of these variables. Early 

identification of impending critical illness will not itself have an effect on outcome unless it 

is tied to therapeutic interventions which affect outcome.7 In applying these strategies, one 

must know whether they are providing the desired effect(s), or if the management strategy 

should be changed. Goal-oriented therapies encompass a group of proven, widely applied 

management strategies that use physiologic data to not only identify pathology early, but to 

track disease and its response to therapy over time.

Goal-oriented therapies are often multi-step strategies that combine the information gained 

from physiologic variables obtained by noninvasive and minimally invasive means (table 2) 

to optimize cardiopulmonary performance. It has become important in many areas of 

medical practice.3, 24–32 They have proven useful for a number of reasons: (1) Most studies 

assessing the use of goal-oriented therapies highlight the need to correct cardiopulmonary 

collapse early to minimize end organ injury and ischemia;3, 24–29, 31, 32 (2) Goal-oriented 

approaches provide clear targets for resuscitation, with the intention of avoiding many of the 

complications, morbidity, and mortality of excessive resuscitation; and (3) Goal-oriented 

approaches often prioritize the most important physiologic problem to correct at any given 

moment, with the aim of focusing clinician resources.

Goal-oriented approaches to therapy, when applied as early as possible in the disease course, 

positively affect outcome:

• Recent meta-analyses demonstrated that goal-oriented approaches implemented 

preoperatively or perioperatively decreased the likelihood of complications in both 

cardiac24, 26 and noncardiac surgeries33–35 using a range of physiologic variables.

• Other meta-analyses showed that perioperative hemodynamic optimization through 

use of parameter targets decreased postoperative GI and renal dysfunction.25, 36 

The benefits to renal function were seen among the highest-risk surgical patients. 

Moreover, when patients were stratified by the therapeutic strategy design- fluids 

and inotropes vs. fluids alone- the benefit of goal-oriented therapy on postoperative 

renal function was only statistically significant with the fluids and inotropes 

strategy.
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• Dalfino et al37 showed in another meta-analysis that early goal-oriented therapy 

based on flow parameters such as cardiac output decreased the risk of postoperative 

infections, including pneumonia, urinary tract infections, and surgical site 

infections.

• A few studies have shown that goal-oriented therapies decrease perioperative 

wound-healing and length of stay.27, 38, 39

• Rivers et al demonstrated a 16% ARR in mortality (RRR 34%) when early goal-

directed therapy (EGDT) was applied to patients with severe sepsis and septic 

shock.3 Their approach targeted the problems of hypovolemia, vasomotor tone, 

oxygen carrying capacity, and cardiac dysfunction that can be present in the septic 

population.

• EGDT and its dynamic use of physiologic variables is a key component of many 

so-called “sepsis bundles” that have revolutionized care of patients with severe 

sepsis/septic shock. Sepsis bundles involve the protocolization of every aspect of 

sepsis management, including not just hemodynamic optimization but also (early) 

antibiotic administration. One meta-analysis showed that early implementation of 

sepsis bundles can decrease morbidity and mortality in patients with severe sepsis 

and septic shock.40 Early hemodynamic optimization is the most important feature 

in bundles to improve patient outcome.41 Early hemodynamic optimization 

received some of the highest recommendations in the most recent edition of the 

Surviving Sepsis Campaign Guidelines.4

After a patient is identified as being at risk for, or is experiencing cardiopulmonary 

decompensation, therapeutic interventions used to correct the problem can lead to further 

problems if done in excess.

• One study showed an association between positive fluid balance and mortality in 

postoperative noncardiac surgery patients.42

• Among patients enrolled in the Vasopressin in Septic Shock Trial (VASST), those 

with the highest fluid balance after volume resuscitation had the highest adjusted 

mortality, particularly among those who had impairment in abdominal visceral 

perfusion secondary to profound volume overload.43

• A few studies have shown that a restrictive goal-oriented fluid management 

strategy decreased post-operative complications when compared to a more liberal 

approach.44, 45

• Hayes et al46 demonstrated that goal-oriented care in critically ill patients using 

supranormal targets of oxygen delivery caused an absolute risk increase in 

mortality of 19% in the treatment group.

The aim of any goal-oriented approach to therapy should be to resuscitate only to what is 

physiologically necessary. The end-points of resuscitation can be defined in a number of 

ways. One approach is to use prespecified “hard” targets for physiologic variables without 

regard for individual metabolic demand. One example of this would be a fluid resuscitation 

strategy that only targets a prespecified CVP range. While this approach may streamline the 
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process and allow for broad, easy implementation of a goal-oriented resuscitation strategy, it 

may lead to either over- or under-resuscitation depending on a patient’s other underlying 

disease(s). A better, more common approach in goal-oriented care is to: (1) correct oxygen 

debt, as determined by the reversal of lactic acidosis and/or base deficit; and (2) match 

metabolic supply with demand using cardiac output and/or ScvO2, and clinical markers of 

end organ perfusion such as urine output and mental status assessment. This practice is 

highlighted in a number of goal-oriented approaches with proven utility in clinical 

practice.3, 30, 47

In the event that multiple physiologic issues contribute to clinical decline, goal-oriented 

approaches streamline the management strategy for ease of execution. For instance, early 

goal-directed therapy in the management of septic patients is designed to first reverse 

decreased organ perfusion and global tissue hypoxia by addressing hypovolemia. Once 

volume status is optimized (as determined by appropriate increase in CVP to a prespecified 

target range), vasomotor tone is increased using vasopressors to a target mean arterial 

pressure. If there are still signs of oxygen supply-demand mismatch as evidenced by a 

ScvO2 less than 70%, only then is the patient transfused or given inotropes to increase 

oxygen delivery to tissues.3

While an ordered approach of therapy allows for easy execution of resuscitation and 

efficient mobilization of resources, it may not represent an optimal strategy. Many of the 

goal-oriented approaches we have discussed collect continuous beat-to-beat data. When data 

is collected at this frequency, clinicians can exploit interactions between physiologic 

variables that could be used to identify impending cardiopulmonary instability. These 

variable interactions could not have been utilized if abnormalities in physiologic variables 

are addressed sequentially. If high-frequency data is used in new and innovative ways, 

taking advantage of inter-variable (and thus inter-organ) interaction, clinicians may discover 

new derived variables from these interactions that could be incorporated into physiologic 

signatures of critical illness.

Towards an earlier diagnosis of cardiopulmonary collapse: Derived 

variables from high-frequency continuous data

Until now, we have only discussed the use of primary variables, the first level in the 

physiologic data hierarchy (table 1). If these variables are collected at high frequency, then 

derived variables can be constructed to aid in earlier, more accurate diagnosis of 

cardiopulmonary collapse (table 3).

Variability analysis

Organ cross-talk constantly takes place between multiple organs along anatomical, neural, 

and endocrine channels.48 This interaction of organs forms a highly structured and tightly 

regulated system which on the surface seems chaotic in view of the various physical and 

time scales involved, but serves to couple organs for more efficient function of the entire 

organism.49, 50
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When the body encounters a disease process that acts as a systemic stressor, communication 

between organs, and consequently variability in organ system read-out (as measured using a 

set of primary and secondary physiological signals) decreases considerably or ceases 

altogether.49, 51 Saturation phenomena in autonomic response is the most commonly 

proposed explanation for decreased variability in critical illness,52–55 but there could be 

additional explanations from other aspects of organ interaction manifested at different time 

scales. Heart rate variability (HRV) is a well-known domain comprising many secondary 

variables that describe various aspects of the beat-to-beat interval time series. Because beat-

to-beat intervals can be acquired from any monitor that provides continuous heart rate 

measurements, the computation of all of these secondary variables is easily implemented at 

the bedside if one has the appropriate computer software.56

A decrease in HRV represents increased regularity in the beat-to-beat interval time series, as 

measured by one or more secondary variables of the HRV domain. The association between 

decreased HRV and poor outcome in cardiovascular disease have been known for decades,57 

and stimulated work in other disease processes such as sepsis58 and trauma.53, 59

• There is a growing amount of literature linking reduced heart rate variability and 

sepsis in adults. Chen et al60 showed in 81 emergency department (ED) patients 

with early sepsis that HRV can be a useful method to predict impending septic 

shock.

• A study of 15 ED patients demonstrated that HRV decreased in all patients who 

decompensated.61

• A pilot study of 17 bone marrow transplant patients demonstrated that a consistent 

drop in HRV occurred as sepsis developed in these patients- approximately 30 

hours before conventional vital signs.62

• Fathizadeh et al53 showed that pathological changes in autonomic function 

occurred prior to tachycardia among a cohort of trauma patients without severe 

injury.

• Growing evidence from human data59 and animal models63 suggests that HRV is 

superior to traditional vital signs in detecting hemodynamic decompensation from 

trauma. Decreased HRV is associated with mortality among trauma patients in the 

pre-hospital setting64 and in the trauma ICU.59

While the evidence linking decreased HRV and other variability analyses to clinical 

decompensation is growing, there are still many challenges limiting their clinical use. Most 

bedside monitors do not hold in memory the continuous vitals data that are displayed at a 

degree of granularity necessary to compute secondary variables characterizing HRV in real-

time. However, variability analyses can be performed in real-time with appropriate 

software.56 Even if one is able to perform variability analysis, HRV and respiratory rate 

variability (RRV) can be affected by medications such as sedatives or vasopressors. One 

study showed that HRV and RRV can still be reliably identified in mechanically ventilated 

patients on sedation.65 Finally, HRV can be characterized by dozens of derived variables 

(table 4) with varying degrees of correlation between these variables. There is no clear 

evidence demonstrating the superiority of any HRV-related variable, and there are no 
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guidelines as to how to obtain an overall assessment of HRV. This extends to variability 

analyses of all other primary physiologic signals such as blood pressure, oximetry, 

respiratory rate, or temperature. The potential benefits of variability analysis needs to be 

clarified and confirmed in more rigorous study among different populations at risk for 

clinical deterioration.

Arterial pressure variation and plethysmograph variability

When physiologic variables are collected on a beat-to-beat, or continuous basis (> 100Hz), a 

larger number of additional variables can be computed from these primary signals. Together 

with the time series of primary physiologic variables, these secondary, or derived, variables 

could potentially identify impending cardiopulmonary collapse earlier than the variables 

from which they are derived. It can be speculated that such predictive secondary variables 

reflect deep physiologic interactions that are perturbed early in the process of cardiovascular 

instability.

Variables calculated from arterial pressure variation are dynamic and therefore estimate 

preload dependence, the key factor in predicting volume responsiveness. Preload 

dependence is superior to static measures of preload such as CVP because preload is not the 

only determinant of preload dependence.66 A fluid bolus will lead to an increase in cardiac 

output only if: (1) the patient has good baseline cardiac function; and (2) the patient’s 

cardiovascular status places him/her on the “steep”, or preload-dependent portion of the 

Frank-Starling curve. Volume responsiveness is best estimated with dynamic assessment of 

physiologic variables collected at high frequency.

Measures of arterial pressure variation- namely pulse pressure variation (PPV), systolic 

pressure variation (SPV), and stroke volume variation (SVV)- utilize the normal changes 

that occur in the arterial waveform during mechanical ventilation to assess hypovolemia. 

Early in a positive pressure breath, the increase in intrathoracic pressure will cause 

compression of pulmonary veins. This leads to an increase in left atrial pressure, and left 

ventricular (LV) preload. The concomitant decrease in left sided afterload causes an increase 

in left ventricular stroke volume (SV) and blood pressure. Meanwhile, the increased 

intrathoracic pressure decreases venous return, and thus right sided preload and SV. 

Towards the end of inspiration or beginning of expiration, the lower SV from the right 

ventricle (RV) will reach the left heart, causing a drop in LVSV and blood pressure.67 This 

normal heart-lung interaction will be exaggerated in someone who is hypovolemic.

• In one meta-analysis, arterial pressure variation was shown to be sensitive and 

specific in predicting volume responsiveness, outperforming static measures of 

preload such as CVP.68 PPV seemed to perform slightly better than SVV (AUC 

0.94 vs. 0.84, respectively).

• Michard et al69 showed that PPV of 13% or more identified volume responders 

with a sensitivity of 94% and specificity of 98%. While their study was conducted 

on patients with rather large tidal volumes, these findings were validated in an 

ARDS population getting lower tidal volumes and high positive end-expiratory 

pressure (PEEP).70
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• Zhang et al71 showed in one meta-analysis that SVV had an diagnostic odds ratio 

of 18.4 to predict volume responsiveness in the OR and ICU, with good sensitivity 

and specificity. The literature supports measuring SVV only in patients on a control 

mode ventilation with tidal volumes of 8cc/kg or more.71 However, many studies in 

this paper measured SVV in patients receiving smaller tidal volumes and published 

AUCs of 0.8 or greater for predicting volume responsiveness. The authors did not 

report the positive end-expiratory pressure (PEEP) for the patients in these studies.

• A number of studies have validated the use of arterial pressure variation as a 

marker of volume responsiveness in goal-oriented therapeutic protocols which 

decreased many complications, including organ failure.33–35, 72

• Multiple studies have looked at SPV as a marker of volume of responsiveness, with 

conflicting results.69, 73–76 However, Tevernier et al77 showed that when systolic 

blood pressure (SBP) is measured during a clinician-initiated expiratory pause on 

the ventilator, the difference between that SBP measurement and the minimum 

SBP in the next respiratory cycle- termed the Δdown- can predict volume 

responsiveness.

Prior to the development of new noninvasive devices that can produce arterial tracings78–80 

investigators have studied whether plethysmograph variation can be a noninvasive surrogate 

for the arterial pressure variation taken from an arterial catheter.

• Canneson et al81 showed that changes in pulse oximetry plethysmograph tracings 

correlated highly with PPV.

• Forget et al82 demonstrated lower lactate levels among patients in whom 

plethysmograph variation was used as a marker of volume responsiveness, 

compared with patients who had no dynamic measure of preload dependence.

• Finally, one meta-analysis involving 326 critically-ill and perioperative patients 

showed that the pleth variability index (PVI)- one measure of plethysmograph 

variation- was able to identify preload responsive patients (diagnostic odds ratio 

16.0; AUROC 0.87).83 This was particularly true among adults and those on 

mechanical ventilation.

The usefulness of pulse pressure variation as a clinically relevant and actionable secondary 

variable is appealing from elementary physiological considerations. Many more variables 

derived from primary signals may also be useful predictors of instability that relate to 

deeper, more complex, but no less important physiological disruptions.

Advanced waveform analysis: untapped secondary variables

PPV, SVV, and SPV are all detected via very simple analyses of arterial waveforms, but 

there is a wealth of information that potentially could be gathered from more sophisticated 

analyses of digitized waveform data. Physiologic waveforms contain information collected 

at a much higher frequency than is available from intervals- such as the R-R interval in 

HRV. There is potential to uncover more about impending cardiopulmonary 

decompensation than what could be gathered from beat-to-beat-dependent variables. It is 
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thus at the highest level in the data hierarchy constructed to create physiologic signatures of 

critical illness (table 1). Moreover, it is possible to extract important information not only 

from arterial waveforms (as is already available clinically through arterial pressure 

variation) but also from CVP and other waveforms that are currently underutilized. The 

information collected from these secondary signals could play a key role in the construction 

of physiologic signatures.

One straightforward, yet potentially productive approach is to track changes in the 

morphology of waveforms. All physiologic waveforms have a characteristic shape for one 

“normal” cycle. Certain disease processes cause changes to the shape of these waveforms 

which, while not pathognomonic, can identify the presence of pathology.67, 84 For instance, 

cardiac tamponade is one well-known cause of the pulsus paradoxus pattern in the arterial 

waveform which morphologically is very distinct from the normal shape and structure of the 

arterial wave. Similarly, in the presence of an atrial arrhythmia or tricuspid regurgitation, the 

CVP waveform also undergoes changes from its normal morphology.67 In contemporary 

practice, the CVP waveform is used simply to extract the CVP value at end expiration.85 

With the appropriate technology85 other secondary variables can be extracted from CVP 

which could be used to predict cardiopulmonary decompensation by expressing the 

underlying physiology.

• Roy et al86 showed that it is possible to measure the difference in size of the wave 

components in one cycle of CVP through time. While they found no difference 

between fluid responders and nonresponders, they did not look at how these wave 

components change in size with time, potentially providing additional key 

information.

A more complicated, but more comprehensive approach for morphologic analysis and 

secondary predictor extraction from waveforms would be to use harmonic analysis. This 

approach breaks a waveform down into a superposition of sinusoidal waves of decreasing 

wavelengths, which in turn undergo signal processing to extract useful information. Fourier 

transform (FT) is the most commonly used signal processing approach performed on 

physiologic waveforms.87 FT yields a power spectrum, a summary of the contribution of 

sine waves of varying frequencies to the original waveform. The goal in advanced waveform 

analysis is to detect changes in the underlying physiology over time. FT requires additional 

modifications to be applied on dynamically changing waveforms, and therefore it would be 

more useful to use a signal processing approach that inherently takes this into account.

Wavelet analysis incorporates the temporal evolution of a signal, potentially allowing one to 

better identify physiologic decompensation. DeMelis et al88 have shown that it is possible to 

implement these transforms on arterial pressure waveform data. Wavelet transform offers 

the added advantage of analyzing time windows of different lengths.88

The challenge of data granularity

Any tool used to create physiologic signatures of critical illness should retrieve the most 

meaningful variables at a specific point in disease progression, and present them to 

clinicians to inform decision-making. For instance, if PPV and SVV are elevated (indicating 
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volume responsiveness) in a patient who is at risk for pneumonia, this may indicate the early 

stages of sepsis (simple hypovolemia). However, if a clinician encounters the same patient 

with a high PPV and SVV, abnormal variables extracted from the CVP waveform, low CO, 

and some of the HRV variables are decreased indicating some aberrancy in autonomic tone, 

then this patient may be much further along the disease process. The physiologic signature 

of the former state may even be able to predict when the latter state would occur.

There are a number of potential variables at different data hierarchy levels that could be 

incorporated into a physiologic signature at any given point in the evolution of a disease 

process (table 1). Tables 2 and 3 review some variables that are already used in 

contemporary practice. If we add to that the dozens of available variability variables (table 

4), and the hundreds of variables that could be extracted from each waveform, it would be 

impossible for a busy bedside clinician to manually synthesize all of this potentially useful 

data to find those that are abnormal, and then make decisions about where patients are in the 

critical illness spectrum.89

The challenge of data granularity- the density of information that can be used in a prediction 

model- is illustrated in figure 1. The top of the figure represents raw data (as outlined in 

table 2) collected at different frequencies- some intermittent, and some waveform data. As 

more secondary variables are extrapolated from the primary signals (table 2 and variables 

from advanced waveform analyses), the data granularity increases. When critical mass is 

reached (represented by the very bottom of figure 1), there are hundreds, if not thousands of 

secondary variables. How does one process all of this data to retrieve meaningful 

information to construct physiologic signatures of critical illness? We will summarize a 

number of existing approaches used to create physiologic signatures for early diagnosis and 

therapeutic management of critical illness.

Creating physiologic signatures of critical illness using machine learning

Machine learning refers to a rich discipline in computer science dedicated to the design and 

implementation of automated computer-based methods and algorithms to identify patterns in 

typically large datasets. Standard statistical analysis such as logistic regression can be 

construed as a subset of those methods. The application of a machine learning approach can 

efficiently deal with densely granular data. While there are many different approaches that 

could be employed (table 5), there is a common process that can be applied to the 

identification of physiologic signatures in critical illness as depicted in figure 2:

• Any machine learning approach has to generate models that are generalizeable, 

therefore learning must proceed on a patient cohort of a sufficient size as to include 

several instances of signatures representative of disease evolution. The learned 

signatures are disease process-specific.

• All primary, secondary variables, and extracted variables from waveforms are 

obtained or computed from the primary patient data.

• All variables in the data hierarchy (table 1) will be used as input to machine 

learning algorithms. Different machine learning approaches have different tools for 

classifying and predicting. The algorithms generate models that offer a prediction 
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given primary data. The nature of the prediction depends on the learning task. A 

typical learning task relevant to the identification of clinically applicable 

physiologic signatures is to estimate a normal trajectory of predictor variables and 

classify a new case as abnormal if one or more predictors deviate from that 

trajectory.90

• Since it is not necessary, and would likely be inefficient for the model to use all 

data for accurate classification, the algorithm will choose the most informative 

features at a particular point in time in the disease process.

• A set of algorithms are applied to maximize external validity of the predictions.

• In a typical application, the model is applied to data from a test case, continuously 

updated as data accrues, and generates an instantaneous predictive forecast of what 

is expected to happen over a specified time horizon.

• More patients and their data could then be added to the derivation/validation 

cohorts for model refinement.

Static forms of machine learning algorithms have already been applied in many fields, 

including weather forecasting91 and infectious disease biosurveillance.92 It has also been 

applied in medicine.93–96 Machine learning is applicable to a broad scope of acute care 

settings, including ED triage,97 and the ICU.98, 99 It is also applicable to specific diseases 

like sepsis100–103 and traumatic hemorrhage.95, 100, 104–106 Applications of machine learning 

to learn physiological signatures represents a step forward from static classifications and 

predictions, in that it is dynamic in nature; predictions are updated, and models can 

potentially continue to learn adaptively as data is accrued.

The machine learning approach has a few advantages: first, machine learning can utilize all 

available physiologic data- primary data collected intermittently or continuously, and 

variables derived from beat-to-beat data (PPV, SVV, HRV, etc.) and advanced waveform 

features. Second, once a subject is classified, a model can demonstrate other aspects of the 

disease process, such as the amount of fluid/blood that was lost. Glass et al107 was able to 

identify not only bleeding, but the amount of blood lost under experimental conditions of 

controlled hemorrhage in an animal model using machine learning. The same findings were 

confirmed in simulated “hemorrhage” in patients using lower body negative pressure to 

reduce central blood volume.108 This would be critical to an approach used to identify the 

physiologic signatures at all points in the evolution of impending critical illness. Third, 

many algorithms deal effectively with correlated or missing data. Finally, model building 

through machine learning is an iterative process. New patient data is incorporated into older 

versions of the model to refine prediction. Model-building from machine learning represents 

best clinical practice; clinicians identify and treat disease more effectively when they 

encounter more patients with the disease.

Machine learning algorithms are utilized by a number of existing models in critical illness 

prediction. Many models build fused parameters that function as an effective simplification 

of multiparameter physiologic signatures. Fused parameters incorporate multiple data inputs 
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and integrate them to form a single value used in decision-making. We will highlight three 

such parameters from the literature.

The Visensia Stability Index

The Visensia Stability Index (VSI) is a fused parameter built by the Visensia software (OBS 

Medical, Oxford, UK) designed as an integrated monitoring tool. Visensia automatically 

processes and integrates simple noninvasively measured vital sign data in real-time. It 

converts multiparameter monitoring into a single parameter for interpretation by health care 

professionals (figure 3).

Development of the VSI is data-driven and specific to the patient population. Unlike many 

of the existing goal-directed strategies for early identification of critical illness discussed in 

previous sections, Visensia does not depend on an artificial cut-off of vital signs for 

abnormality. Instead, it employs k-means clustering (table 5) which is trained on a robust 

cohort of similar patients before the VSI is used for decision-making purposes. It identifies 

normality and then quantifies departures from this, and an alert is triggered if one vital sign 

is ±3 standard deviations (SD) from normal, or if 2 or more vital signs are outside of normal 

range by a smaller amount.109 The appropriate cutoff value for the VSI is determined from 

the training dataset based on these training-specific norms. An alert is triggered when the 

VSI value goes over this cutoff for 80% of the time in a time window of a set length. The 

algorithm’s major strength is that it triggers an alert before patients show signs of obvious 

abnormality such as hypotension.

To date, there are two major publications that discuss the VSI, and its role in instability 

identification:

• Watkinson et al110 randomized 402 high-risk medical and surgical ward patients to 

usual monitoring versus VSI monitoring. Their primary outcome was the 

proportion of patients experiencing major adverse events, including the activation 

of a rapid response service, transfer to an ICU, and mortality. They found no 

difference in these outcomes between the two groups. Note that the study design 

did not institute a protocol to address an emergency if one arose, so no intervention 

was tied to the monitoring. Moreover, many patients in the control arm had 

multiparameter monitoring- e.g. an ECG monitor and pulse oximeter. There was 

likely “contamination” of the control group if clinicians recognized instability that 

the VSI also would have recognized.

• Hravnak et al111 studied the difference in the incidence of cardiopulmonary 

instability before and after implementation of the Visensia system in a step-down-

unit population. They found that the number of alerts decreased by 58%, and the 

amount of time patients spent with unstable vital signs decreased by 60%. The 

number of instability episodes- defined by the local medical emergency team 

(MET) protocol and not the VSI- decreased by 70%. Lastly, in those patients with 

both VSI alerts and unstable vitals (again defined by the local MET) the VSI alert 

preceded the unstable vital sign by an average of 9 minutes.
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Survival probability

Bayard et al devised a search and display, or stochastic program that outputs a survival 

probability. The survival probability (SP) is another fused parameter derived from a 

probabilistic model that integrates a number of physiologic predictors representative of 

global (CO, SpO2) and regional perfusion (transcutaneous oxygen and CO2 tensions).

Similar to the VSI, the SP is derived from a training set of patients with similar clinical and 

physiologic states, defined by their primary diagnoses, comorbidities, and hemodynamics, 

among other factors. The machine learning approach of choice was k nearest neighbors 

(table 5). The algorithm looks at 40 or more similar nearest neighbor states, and predicts 

survival of a test case based upon these training set examples.

• When the SP system was applied to a cohort of 396 severely ill trauma patients, the 

SP was 25% lower among nonsurvivors compared with survivors.112 It accurately 

classified survivors and nonsurvivors 91.4% of the time.

Unlike the VSI, there is a decision-support component built into the system that creates the 

SP. One can quantify the relative efficiency of a therapy used in the nearest neighbors case 

to inform decision-making.113

Compensatory reserve index

The compensatory reserve index was devised to identify acute volume loss. It is a fused 

parameter calculated from waveform analysis, SV, SpO2, petCO2, along with vital sign data. 

The CRI is calculated by comparing the patient’s arterial waveform features to that of a 

similar patient in the training set. The model estimates the CRI for a given patient based on 

the CRI value of those in the training set with similar input features.

• Convertino et al114 assessed if the CRI was able to identify persons with low 

stressor tolerance (fainters) and high stressor tolerance (nonfainters) among 101 

participants exposed to lower body negative pressure (LBNP). (LBNP was used to 

simulate a decrease in central blood volume, and thus intravascular blood volume.) 

CRI was able to identify low-tolerance patients with hemodynamic decompensation 

when SV was not decreased. From these results, the authors inferred that the CRI is 

an estimate of cardiovascular reserve.

Creating physiologic signatures of critical illness from heuristic models: 

the Rothman Index

Fused parameters can be calculated from rule-based approaches applied on a broad scale that 

serve similar goals as machine learning algorithms- i.e., these rule-based algorithms can 

select the most useful data from the wealth of information that is clinically available to come 

up with the best “guess” of what may be happening to a patient at any given moment. The 

Rothman index (RI) is a heuristic model that uses not only physiologic data (vital signs), but 

also standardized nursing assessments of organ systems, laboratory data, and cardiac rhythm 

information from hemodynamic monitors to construct a fused parameter. Unlike fused 

parameters that use machine learning the goal is not to forecast what could happen, the goal 

of the RI is simply to describe a patient’s current condition.115
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According to Rothman et al, the RI takes 43 continuously streaming clinical variables from a 

range of sources in the electronic medical records of patients and applies risk functions, or 

mathematical equations to their behavior with respect to some outcome. The creators of the 

RI defined “excess risk” as a percent increase in 1-year all-cause mortality associated with a 

given value of a variable when compared with the minimum possible mortality of that 

variable. These mortality risks were determined from a derivation cohort. The goal was not 

to predict mortality but to use an easily determined outcome that closely correlated with 

discharge condition. The model was constructed by summing the excess risk input from the 

26 variables that independently affected 1-year all cause mortality; the excess risk values for 

each variable were subtracted from 100 to calculate the RI. The granularity of certain data 

sources such as laboratory values may be low. The RI controlled for that by applying 

smoothing functions that would scale the relative importance of data based on its age; newer 

values for certain variables weighted more with respect to their excess risk input compared 

with older values of other variables. Scores were calculated on a derivation cohort and 

validated in five separate cohorts.

The RI can identify clinical instability based on a number of studies:

• Among a cohort of medical and surgical patients, Bradley et al116 showed that 

patients with highest-risk RIs (RI<70) and moderate-risk RIs (RI 70–79) had 2.65 

higher odds, and 2.40 higher odds of readmission, respectively, compared with 

those with the lowest-risk RIs.

• Another study showed that the RI, when compared with the Modified Early 

Warning Score (MEWS; an established early warning system designed to predict 

impending cardiopulmonary arrest), correlated better with 24-hour mortality (ROC 

0.82 and 0.93, respectively).117

• Tepas et al118 showed that initial RI values correlated with postoperative 

complication rates in a cohort of surgical patients. Moreover, as complications 

ensued in any given patient, the RI decreased, suggesting progressive physiologic 

dysfunction.

The RI’s strength is that it gives a longitudinal view of patient condition with the goal of 

early detection of pathologic trends.

Creating physiologic signatures of critical illness from heart rate 

characteristics: the HeRO score

Some fused parameters may utilize a portion of the available variables that could be used to 

create physiologic signatures. The HeRO score is a fused parameter used to detect neonatal 

sepsis, a rather prevalent disease process in the neonatal ICU with a significant mortality 

reaching 20% in preterm infants.119 The score is not derived from a large number of 

components, but it is a powerful physiologic signature for identifying impending neonatal 

critical illness.

The HeRO score incorporates two common HRV variables- standard deviation of R-R 

intervals from two nonectopic heartbeats (SDNN) and sample entropy (SampEn). (SampEn 
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is a robust measure of the “irregularity”, or randomness in a time series.120, 121) The HeRO 

score also incorporates information about heart rate accelerations and decelerations. Sample 

asymmetry refers to the relative frequency of heart rate accelerations and decelerations. 

Sudden transient decelerations in heart rate are pathologic phenomena of unexplained 

etiology unique to the neonatal population, causing an increase in sample asymmetry.120

The HeRO score is a composite metric derived from SDNN, SampEn, and sample 

asymmetry. It measures the patient’s probability of developing sepsis in 24 hours, 

normalized to the average probability of a similar patient population. It is displayed as the 

fold-increase in probability of developing sepsis, with ≤1 being normal or low risk and 5 

representing a 5-fold increased risk of developing sepsis over the next 24 hours.120

In the years since the creators first noted the association between transient heart rate 

decelerations and the clinical diagnosis of sepsis122, the HeRO score has proven itself to be 

a highly useful early detection tool in neonates:

• Griffin et al123 showed that reduced variability and transient decelerations- the 

latter being specific to the neonatal population- can identify culture-positive and 

culture-negative sepsis up to 5 days prior to the clinical suspicion of sepsis 

determined by traditional vital sign measurements.

• In the largest clinical trial of very low birth weight (VLBW) infants to date, 

Moorman et al124 randomized 3003 VLBW neonates to traditional monitoring 

versus HeRO monitoring. They found that simply providing health care providers 

with the HeRO monitor caused a statistically significant relative risk reduction 

(RRR) in mortality of 20.5% (ARR=2.1%) among VLBW infants. Similar findings 

were seen in extremely low birth weight (ELBW) infants (RRR=25%; 

ARR=4.4%).

The HeRO score stands out as a physiologic signature of disease. The overwhelming 

majority of clinical decompensation seen in neonates is due to sepsis,120 and the 

interventions are usually very specific (blood culture with or without antibiotic 

administration). So while there are no specific therapeutic interventions tied to early 

detection, it appears that the score’s success lies in its ability to draw attention to a particular 

patient for the initiation of those interventions. Also, clinicians using the HeRO monitor are 

encouraged to incorporate the HeRO score into routine clinical assessment. One study 

prepared a scorecard to help predict sepsis, incorporating information from the HeRO score 

and routinely used clinical signs. The HeRO score incrementally improved accurate 

prediction of sepsis in those with low risk determined from clinical evaluation.125

Because the HeRO score doesn’t utilize the scope of all potentially useful data, there is no 

need for machine learning approaches in its implementation. It is constructed from three 

variables that the designers proved would provide the most valuable information in the 

neonatal population.121 These variables exemplify the complex nonlinear behavior of 

physiology and organ-organ interaction that may be lost in the process of clinical 

decompensation, specifically in the development of neonatal sepsis.
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Creating physiologic signatures of critical illness from multiorgan 

monitoring

Seely et al126 describe the Continuous Individualized Multiorgan Variability Analysis 

(CIMVA™) software as a tool designed to take multiorgan input- mainly cardiac (ECG) and 

respiratory (end-tidal capnography)- and perform variability analyses. The output from the 

system is the following: (1) a matrix of numerical results (the variability measures) 

organized in chronological order of analysis windows; and (2) a summary report. The 

creators expect that by producing these variability measures at every point in the evolution 

of disease, users would gain some insight into changing organ-organ dynamics, identifying 

new emergent properties of this complex system that would be informative.

There are preliminary studies that demonstrate the potential utility of a technology like 

CIMVA for creating physiologic signatures of critical illness:

• In a study of 33 patients, Green et al127 assessed the trajectory of CIMVA 

multiorgan output during the development of shock, and the resolution of 

respiratory failure. HRV and RRV variables started to decrease about 12–18 hours 

before the onset of shock. Patients who were successfully extubated had higher 

HRV measurements before and after extubation. RRV showed an upward trend 

beginning 10 hours before extubation indicating the resolution of pathology.

• Seely et al126 assessed whether there was a correlation between multi-organ 

monitoring and failed extubation after a spontaneous breathing trial (SBT). Patients 

who failed extubation after SBT had a greater loss of certain RRV measures 

compared to patients who passed extubation. (Some HRV measures showed a 

similar reduction that was not statistically significant.)

CIMVA could constitute a feasible128 and viable platform from which physiologic 

signatures can be generated.

Challenges to the generation of physiologic signatures in critical illness

The techniques described for physiologic signature creation in the critically ill are cutting-

edge; most have not been executed in widespread clinical practice, and none of them is 

considered standard of care for cardiopulmonary monitoring in any disease process. 

Potential challenges must be overcome before this groundbreaking research can be applied 

on a large scale.

Current hardware and network configurations are not readily amenable to data intensive, 

third party applications, which may need to draw from physiological data streams and the 

electronic health record. Improving system interoperability is a necessary step towards the 

implementation of advanced physiologic monitoring tools on standard monitoring platforms.

Some clinicians and hospitals may be skeptical of using machine learning algorithms to 

drive identification and therapeutic management of critical illness. They may fear the 

application of a process that occurs, from their perspective, in a black-box. Some may even 

feel that they are being replaced by these algorithms. However, as available data grows in 
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number, it will eventually become impossible for clinicians in a busy work environment to 

select the most important variables to use for medical decision-making at any given time.129 

Hospitals and health-care professionals will need to be in-serviced on the benefits of 

integrating machine learning approaches into everyday practice.

Clinicians are not accustomed to seeing physiologic data “merged” to form new values, 

making it difficult to interpret the output of numerical fused parameters derived from 

machine learning techniques, the Rothman index or the HeRO score. Perhaps one way to 

deal with fused parameters is to provide a visual tool, an innovative way that can explain 

what component of the cardiopulmonary system is wrong. This could provide clinicians 

some structure on how to therapeutically correct the abnormalities detected. Some fused 

parameters already provide some graphical or diagrammatic platform,130 including the 

HeRO score (figure 4) and VSI. The key is to provide the means by which clinicians can 

apply/change management in response to what they see. It is possible that the application of 

certain fused parameters did not show the expected outcomes because this was not done.110

Summary

Physiologic data are the building blocks for the physiologic signatures of critical illness. It is 

the dynamic behavior of physiologic variables that make them ideal for this purpose. The 

numeric value of a physiologic variable and its relation to prior measurements can identify 

the presence of pathology, and inform clinicians about a patient’s current position in the 

evolution of a disease process. By looking at physiologic data in new ways, an increasing 

number of derived variables are being created from primarily-measured data like CO. 

Derived variables, many already available for bedside use, provide additional information 

previously unavailable to clinicians about the physiologic behavior of certain diseases. 

Waveforms contain physiologic data that is grossly underutilized, and may be more useful 

than the static, intermittent values that are extracted from them. There are many ways to 

construct physiologic signatures from available data to identify and manage impending 

critical illness in a timely manner. If all data is to be utilized, eventually the granularity, or 

density of data will reach a point where novel techniques of data synthesis will be essential. 

Machine learning approaches can be very helpful for that purpose. Fused parameters can be 

constructed to synthesize the data into a useable format, though machine learning may not 

be needed if the data isn’t highly granular. Future study is necessary to assess the use of 

physiologic signatures in improving patient outcome, particularly when signature use is tied 

to interventions. It is clear that timely identification and management of critical illness or 

impending decompensation is important. Clinicians should utilize all available data to their 

full potential to reach this goal.
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Keypoints

• Physiologic monitoring of dynamic changes is more useful than static variables 

for the early detection of critical illness, and the guidance and appropriate 

cessation of therapeutic interventions.

• Physiologic monitoring techniques that take advantage of complex organ-organ 

interaction- such as heart rate variability, arterial pressure variation, and 

secondary variables from hemodynamic waveforms- are valuable, but an 

underutilized resource for identifying critical illness.

• Using new tools to analyze available physiologic variables, it is possible to 

construct the physiologic signatures at every point in a disease process to 

identify and treat critical illness as early as possible.

• Tools that integrate large amounts of physiologic data are complex to develop; 

their use requires collaboration with information technology experts.

• The integration of physiologic predictors and applications in critical illness is an 

area of research still under intense investigation.
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Figure 1. 
Data granularity

An illustration of how data granularity can dramatically increase with secondary variable 

derivation. The top of this diagram shows approximately 1.5 patient-years of data. As 

derived variables are extracted from primary parameters- intermittent, continuous, and 

waveform data- there is a remarkable increase in data granularity. The bottom of the figure 

represents >7000 variables- more than the amount of pixels needed to display all of them on 

a screen.
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Figure 2. Generation of a machine learning-based model
An overview of the application of the machine learning approach as it relates to physiologic 

signature generation. New patient data is featurized to create input from physiologic 

variables. The model is derived and internally validated on a cohort of training data. It is 

then applied to a test case for the detection and prediction of clinical instability. New data 

may be added to the training set to refine model performance.

Holder and Clermont Page 28

Crit Care Clin. Author manuscript; available in PMC 2015 June 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. The Visensia Stability Index
Top panel: The time series of a modified VSI (without temperature) utilized in one 

academic center is shown for one step-down unit patient, alongside the vital sign 

components of the VSI. A VSI of 3.2 (red line) was the cutoff value selected based on a 

training dataset of a similar patient population. If the VSI was consistently above this value, 

the alert would be triggered (red arrows) and would stay activated as long as the VSI stayed 

above 3.2 (red portions of VSI tracing). A medical emergency team (MET) was called to see 

this patient at 13:29; the VSI alert was triggered 4 times beforehand based often on subtle 

changes in one or more vital signs. (The first alert was over 4 hours prior to the MET 

activation.) Bottom panel: A monitor showing the VSI and its component vitals from 

multiple patients simultaneously. The monitor shows not only the current VSI value for a 

given patient, but the trend based on prior values. (Note that the cutoff value in this patient 

population was 3.0.) (Reprinted with permission from OBS Medical, Ltd.)
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Figure 4. Contrasting normal and abnormal patient data on the HeRO (HRC) monitor
Top panel: Still photo of patient in a NICU. The bottom half represents 30 minutes of heart 

rate data (green tracing, in beats per minute). Note the normal variation in heart rate. The top 

half represents 5 days of continuous HRC output, representing a fold increase in risk of 

sepsis over the next 24 hours (orange tracing). The HeRO score (HRC index) at the time was 

less than 1, indicating a low risk of developing sepsis. Bottom panel: By contrast, a still 

photo of a different patient shows a heart rate tracing with frequent decelerations. The 

corresponding HRC tracing has a spike (red arrow) corresponding to a HeRO score of 4.29. 

When this photo was taken, this patient was over four times more likely to develop sepsis in 

the next 24 hours when compared to similar patients in a control sample.
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Table 1

Levels of data hierarchy

Data hierarchy Examples Notes

Primary variables HR, MAP, CVP, ScvO2, SV, 
SpO2

• Used most frequently in goal-oriented therapy protocols

Secondary (derived) variables HRV measuresa, PPV, SVV • Requires high-frequency data collection

• Increasingly being integrated into goal- oriented therapy 
protocols

Advanced waveform analyses Morphologic changesb, 
harmonic analysesb

• Requires data collection via waveforms (>/= 100 Hz)

• Can be performed on any variable derived from a waveform 
(CVP, ABP, etc.)

HR=heart rate; MAP=mean arterial pressure; CVP=central venous pressure; ScvO2=central venous oxygen saturation; SV=stroke volume; SpO2= 

arterial oxygen saturation measured by pulse oximetry; HRV=heart rate variability; PPV=pulse pressure variability; SVV=stroke volume variation; 
ABP=arterial blood pressure

a
The term HRV measures represents dozens of independent variables

b
Represent potentially hundreds of variables
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Table 2

Abbreviated list of available primary physiologic parameters

Physiologic parameter Interpretation Device used to obtain 
measurement

Level of invasiveness

HR Sympathetic tone ECG monitor Noninvasive

SBP
DBP
MAP
PP

Sympathetic tone, cardiac contractility, 
vasomotor tone, & volume status

Sphygmomanometry, finger 
plethysmography, or Arterial catheter

Noninvasive or Minimally 
invasivea

SPAP
DPAP
MPAP
PAPP

Pulmonary vascular tone, right heart 
contractility, and volume status

Pulmonary artery catheter Highly invasive

Pra or CVP
Ppaob

Preload (static measures) Central venous catheter, or 
pulmonary artery catheter

Minimally invasive or 
Highly invasivec

SV
CO

Cardiac contractility Finger plethysmographd, Arterial 
catheterd, thoracic bioimpedence, 
pulmonary artery catheter, etc.

Noninvasive, Minimally 
invasive or Highly invasivec

SpO2 Arterial oxygenation Pulse oximetry Noninvasive

SvO2 Total body oxygen extractione Pulmonary artery catheter Highly invasive

Arterial pH
paO2

SaO2

pCO2

Hemoglobin

Arterial oxygenation and carrying 
capacity

Arterial blood gas analysisf Minimally invasive

Central venous pH
pcvO2

ScvO2

pcvCO2

Approximate total body oxygen 
extraction & delivery, and metabolic 

clearancee,g

Central venous catheter Minimally invasive

Central venous pH
pvO2

SvO2

pvCO2

Total body oxygen extraction & delivery, 
and metabolic clearancee

Pulmonary artery catheter Highly invasive

petCO2

VCO2

Cardiac contractilityh Capnograph Noninvasive

Global DO2

Global VO2

Global oxygen delivery
Global oxygen consumption

Pulmonary artery catheter Highly invasive

HR=Heart rate; ECG=electrocardiogram; SBP=systolic blood pressure; DBP=diastolic blood pressure; MAP=mean arterial pressure; PP=pulse 
pressure; SPAP=systolic pulmonary artery pressure; DPAP=diastolic pulmonary artery pressure; MPAP=mean pulmonary artery pressure; 
PAPP=pulmonary artery pulse pressure; Pra=right atrial pressure; CVP=central venous pressure; Ppao=pulmonary artery occlusion pressure; 

SV=stroke volume; CO=cardiac output; SpO2=arterial oxygen saturation measured by pulse oximetry; SvO2=mixed venous oxygen saturation; 

paO2=partial pressure of oxygen; SaO2=arterial oxygen saturation; pCO2=partial pressure of carbon dioxide; pcvO2=partial pressure of central 

venous oxygen; ScvO2=central venous oxygen saturation; pcvCO2=partial pressure of central venous carbon dioxide; pvO2=partial pressure of 

mixed venous oxygen; SvO2=mixed venous oxygen saturation; pvCO2=partial pressure of mixed venous carbon dioxide; petCO2=end-tidal partial 

pressure of carbon dioxide; VCO2=volume of exhaled carbon dioxide

a
Noninvasive if obtained from sphygmomanometry, and minimally invasive if from arterial catheter

b
Ppao is obtained from a pulmonary artery catheter only

c
Noninvasive if measured by thoracic bioimpedence or finger cuff, minimally invasive if obtained from central venous catheter or arterial catheter; 

Highly invasive if from pulmonary artery catheter or esophageal doppler (latter not mentioned in table)
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d
Any measures of SV or CO obtained from the finger plethysmograph or arterial catheter are from approximate calculations from arterial pressure 

waveform analysis. These measurements can only be made by attaching an additional monitoring device to the arterial catheter.

e
Oxygen delivery (and CO2 production/clearance) can be calculated as the difference in arterial and mixed/central venous values (ΔpvCO2)

f
From arterial vessel puncture or an arterial catheter.

g
Central venous values only take into account the metabolic activity of the upper body, but the differences between them and their mixed venous 

counterparts is marginal

h
petCO2 and VO2 used as a surrogate for CO
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Table 3

Derived (secondary) variables and their source data

Derived variables Type Source/primary data Calculation

PPV Arterial pressure variation Pulse pressurea (PPmax − PPmin) / [(PPmax − PPmin) × 0.5]

SVV Arterial pressure variation SV (SVmax − SVmin) / SVmean

SPV Arterial pressure variation SBP SBPmax − SBPmin

SBPexp − SBPminb

ΔPOP Plethysmographic variation Pulse oximeter waveformc (POPmax − POPmin) / [(POPmax − POPmin) × 0.5]

PVI Plethysmographic variation Pulse oximeter waveformc [(PImax − PImin) / PImax]×100

HRV Variability analysis ECG R-R interval Variable [See table 4 for further details]

RRV Variability analysis Respiratory rate Variable

BPV Variability analysis SBP, DBP, MAP Variable

Temperature variability Variability analysis Continuous temperature Variable

Glucose variability Variability analysis Continuous blood glucose Variable

PPV=pulse pressure variation; PPmax=maximum pulse pressure over a single respiratory cycle; PPmi n=minimum pulse pressure over a single 

respiratory cycle; SVV=stroke volume variation; SV=stroke volume; SVmax=maximum stroke volume over a given time interval; 

SVmin=minimum stroke volume over a given time interval; SVmean=mean stroke volume over a given time interval; PPV=systolic pressure 

variation; SBP=systolic blood pressure; SBPmax=maximum systolic blood pressure over a single respiratory cycle; SBPmin=minimum systolic 

blood pressure over a single respiratory cycle; SBPexp=systolic blood pressure during an expiratory hold; ΔPOP=Pulse oximeter plethysmographic 

waveform amplitude; POPmax=maximum pulse oximeter plethysmographic amplitude; POPmin=minimum pulse oximeter plethysmographic 

amplitude; PVI=pleth variability index; PImax=maximum pleth variability index value over one respiratory cycle; PImin=minimum pleth 

variability index value over one respiratory cycle; HRV=heart rate variability; ECG=electrocardiogram; RRV=respiratory rate variability; 
BPV=blood pressure variability; DBP=diastolic blood pressure; MAP=mean arterial pressure

a
Blood pressure parameters are measured from an arterial catheter only

b
This difference is also referred to as the Δdown in the literature

c
Plethysmograph variation is not dependent on the raw pulse oximetry value- i.e. arterial oxygen saturation. It is calculated from the relative 

changes in the pulse oximeter pleth waveform
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Table 4

HRV domain groups and an abbreviated list of derived variable examples

Domain Comments Variable examples

Statistical Describe statistical features of time-series data; assumes the state of 
subsequent data is determined independent of prior data

SDNN, RMSSD, NN50, pNN50, IQRNN

Frequency Deconstructs R-R interval sequences into their spectral components to 
construct the power distribution of the time series

Total power, ULF, VLF, LF, HF, LF/HF

Geometric Identifies and creates a “shape” from the histogram representation of 
some specified property in an R-R interval series (see indices column).

NN interval length distribution, Poincare 
plot, Differential index, TINN, HTI

Nonlinear methods Describes properties that demonstrate fractality, and other 
characteristics that do not vary in time and space

SampEn, ApEn, Shannon entropy, DFA, 
Lyapunov exponents, Dispersion analysis

HRV=heart rate variability; NN= The interval between two normal R-waves (i.e., from non-ectopic beats); RMSSD=Squared root of the mean 
squared differences of successive; NN50=number of interval differences of successive NN intervals >50ms; pNN50=proportion derived by diving 
NN50 by the total NN intervals; IQRNN=Interquartile range of NN; SDSD=Standard deviation of the first derivative of the time series; ULH= 
“ultralow” frequency (</=0.003 Hz); VLF= very low range (0.003–0.04 Hz); LF= low frequency (0.04–0.15 Hz); HF=high frequency (0.15–0.4 
Hz); TINN= Triangular interpolation of NN interval histogram; HTI= HRV triangular index; SampEn= sample entropy; ApEn= approximate 
entropy; DFA=Detrended fluctuation analysis; FDDA= fractal dimension by dispersion analysis; FDCL= fractal dimension of the signal
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Table 5

Some commonly used machine learning techniques

Technique Overview Comments

Regression analysis Determines the probable expectation of a dependent variable based on 
training data from an independent variable(s) in a subject sample. 
Dependent variables can be dichotomous or continuous, depending on 
the type of regression.

Every type of regression has 
assumptions- for instance, about 
linear/nonlinear relationships 
between dependent and 
independent variables. Care 
must be taken to know these 
assumptions before application

Decision tree learning Uses decision trees to classify data. Algorithm determines the most 
informative attribute given a set of observations, and splits the dataset 
according to this attribute (“divide-and-conquer” algorithm). Process 
repeated recursively.

Overfitting is common; 
prevented by “pruning” 
algorithms

Support Vector Machine (SVM) Based on linear optimization; subjects are classified in a way that 
maximizes the “distance” between the observations and a separation 
hyperplane (hyperplane margin).

k-Nearest Neighbor (kNN) Given an unlabeled (test) observation, kNN looks for the k most 
similar observations in the training cohort. k and the definition of 
“similarity” are defined by the user. The most represented class of 
labeled observations from the training cohort is the output

Relatively simple to construct

k-means clustering Iterative process used to partition data into k clusters. Clusters initiated 
by picking k centroids, or cluster focal points. Iteration involves 
assigning new data points to the “closest” centroid (closeness is user-
defined), then reweighting each cluster mean to the geometric center 
of the new cluster.

Simple to understand and 
execute. Sensitive to initiation 
and therefore may change with 
every execution. Algorithm may 
fail if clusters aren’t distinct 
when the process is complete. 
Optimal k often tested by trial 
and error

Artificial neural networks 
(ANN)

Models simulate brain organization. “Neurons” (nodes) receive 
weighted inputs, and output a transfer function. Groups of these 
building blocks form a network. Training data adjust input weights 
and build/destroy connections.

Exhibit complex/nonlinear 
behavior based on the 
connection network. Can be 
used for supervised (involving 
experts) or unsupervised 
(automated) learning

Ensemble learning algorithms Learns sets of classifiers and merges their outputs. Classifiers are 
trained independently on specific sets of training observations. In 
boosting, each subsequent training set emphasizes importance of 
training samples that have been problematic for the models that are 
already part of the ensemble. Some ensembles (e.g. Random Forest) 
utilize a bagging (bootstrap aggregation) approach. Separate decision 
trees are learned from independent samples of the training data. 
Multiple random samples- of subjects or attributes- yield the ensemble 
of models.

Robust; can handle small 
number of samples
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