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Abstract 

We propose a novel approach for detecting visual similarity between two web pages. The 

proposed approach applies Gestalt theory and considers a webpage as a single indivisible 

entity. The concept of supersignals, as a realization of Gestalt principles, supports our 

contention that web pages must be treated as indivisible entities. We objectify, and 

directly compare, these indivisible supersignals using algorithmic complexity theory. We 

apply our new approach to the domain of anti-Phishing technologies, which at once gives 

us both a reasonable ground truth for the concept of “visually similar,” and a high-value 

application of our proposed approach.  

Phishing attacks involve sophisticated, fraudulent websites that are realistic enough to 

fool a significant number of victims into providing their account credentials. There is a 

constant tug-of-war between anti-Phishing researchers who create new schemes to detect 

Phishing scams, and Phishers who create countermeasures. Our approach to Phishing 

detection is based on one major signature of Phishing webpage which can not be easily 

changed by those con artists –Visual Similarity. The only way to fool this significant 

characteristic appears to be to make a visually dissimilar Phishing webpage, which also 

reduces the successful rate of the Phishing scams or their criminal profits dramatically. 

For this reason, our application appears to be quite robust against a variety of common 

countermeasures Phishers have employed. To verify the practicality of our proposed 

method, we perform a large-scale, real-world case study, based on “live” Phish captured 

from the Internet.  

Compression algorithms (as a practical operational realization of algorithmic complexity 

theory) are a critical component of our approach. Out of the vast number of compression 



 

techniques in the literature, we must determine which compression technique is best 

suited for our visual similarity problem. We therefore perform a comparison of nine 

compressors (including both 1-dimensional string compressors and 2-dimensional image 

compressors). We finally determine that the LZMA algorithm performs best for our 

problem. 

With this determination made, we test the LZMA-based similarity technique in a realistic 

anti-Phishing scenario. We construct a whitelist of protected sites, and compare the 

performance of our similarity technique when presented with a) some of the most popular 

legitimate sites, and b) live Phishing sites targeting the protected sites. We found that the 

accuracy of our technique is extremely high in this test; the true positive and false 

positive rates reached 100% and 0.8%, respectively. 

We finally undertake a more detailed investigation of the LZMA compression technique. 

Other authors have argued that compression techniques map objects to an implicit feature 

space consisting of the dictionary elements generated by the compressor. In testing this 

possibility on live Phishing data, we found that derived variables computed directly from 

the dictionary elements were indeed excellent predictors. In fact, by taking advantage of 

the specific characteristic of dictionary compression algorithm, we slightly improve on 

our accuracy when using a modified/refined LZMA algorithm for our already perfect 

NCD classification application.    



 

Acknowledgement 

I would like to thank my supervisors, Dr. Miller and Dr. Dick, for their knowledgeable 

guidance and generous support. Without their help, I definitely can not reach the bay 

shore of my destination-the final defense. Thank you my bosses! You are the best!!    

 
 
 
 
 
 
 
 



 

Table of Contents 
 
Chapter 1 Introduction ........................................................................................................ 1 

1.1  Webpage similarity .................................................................................................. 1 
1.2  Anti-Phishing Application ....................................................................................... 3 
1.3  Optimization and Evaluation ................................................................................... 4 
1.4  Contributions and Dissertation Outline ................................................................... 5 

 
Chapter 2 Methods for Visually Similar Web Pages Detection ......................................... 7 

2.1  Feature-based similarity measures ........................................................................... 7 
2.2  What can we count on for visual similarity identification? ..................................... 9 

 
Chapter 3 Theoretical Foundation .................................................................................... 14 

3.1  Gestalt Theory........................................................................................................ 14 
3.2  Inattentional Blindness........................................................................................... 16 
3.3  Supersignals ........................................................................................................... 17 
3.4  Similarity Metric.................................................................................................... 20 

3.4.1 Normalized Compression Distance.................................................................. 21 
3.4.2 Compression Algorithms and Supersignals ..................................................... 23 

 
Chapter 4 Existing Anti-Phishing Mechanisms................................................................ 25 

4.1  Phishing Problem................................................................................................... 25 
4.2  Existing Anti-Phishing Solutions........................................................................... 27 
4.3  A Key characteristic of Phishing websites............................................................. 30 
4.4  Goals, research and hypothesis .............................................................................. 35 

 
Chapter 5 Our Empirical Proof-of-Concept Evaluation ................................................... 37 

5.1  The Twelve-pairs Experiment................................................................................ 39 
5.1.3 Design and methodology ................................................................................. 39 
5.1.4 Interpretation of results .................................................................................... 40 

5.2  The Clustering Experiment .................................................................................... 45 
5.2.1 Design and methodology ................................................................................. 46 
5.2.2 Interpretation of results .................................................................................... 48 

5.3  The Large Scale Experiment.................................................................................. 48 
5.3.1 Design .............................................................................................................. 49 
5.3.2 Methodology.................................................................................................... 51 
5.3.3 Interpretation of Results................................................................................... 53 

5.4  Effectiveness as an Anti-Phishing Classifier ......................................................... 54 
5.5  Robustness against Countermeasures .................................................................... 59 

5.5.1 Non-Structural Distortions............................................................................... 62 
5.5.2 Structural Distortions ....................................................................................... 65 

5.6  Other related works................................................................................................ 71 
 
Chapter 6 Review of Compression Algorithms ................................................................ 73 

6.1  Introduction............................................................................................................ 73 
6.2  Data compression................................................................................................... 74 



 

6.2.3 Statistical methods ........................................................................................... 74 
6.2.4 Dictionary methods.......................................................................................... 76 
6.2.5 Block sorting.................................................................................................... 81 

6.3  Image compression ................................................................................................ 83 
6.3.1 Lossless image compression ............................................................................ 83 
6.3.2 Lossy image compression ................................................................................ 87 

 
Chapter 7 Compression Algorithms for Anti-Phishing .................................................... 90 

7.1  Introduction............................................................................................................ 90 
7.2  Empirical evaluation .............................................................................................. 91 

7.2.3 Design .............................................................................................................. 92 
7.2.4 Methodology.................................................................................................... 98 

7.3  Interpretation and the evaluation result.................................................................. 99 
7.3.1 Null Hypothesis ............................................................................................... 99 
7.3.2 Magnitude of Effect ......................................................................................... 99 
7.3.3 ROC Curve..................................................................................................... 101 

7.4  Discussion ............................................................................................................ 105 
7.4.1 Obfuscation by advertisement banners .......................................................... 105 
7.4.2 Obfuscation by dynamic web DOM tree components................................... 107 

7.5  Conclusion and future works ............................................................................... 111 
 
Chapter 8 The Real World Scenario ............................................................................... 112 

8.1  Introduction.......................................................................................................... 112 
8.2  The Empirical evaluation..................................................................................... 113 

8.2.1 Design ............................................................................................................ 113 
8.2.2 Methodology.................................................................................................. 115 
8.2.3 Interpretation and the evaluation result.......................................................... 116 
8.2.3.1 Null Hypothesis .......................................................................................... 116 
8.2.3.2 Magnitude of Effect .................................................................................... 116 
8.2.3.3 ROC Curve.................................................................................................. 118 

8.3  A Phishing Classifier Based on NCD .................................................................. 121 
8.3.1 Design ............................................................................................................ 121 
8.3.2 Methodology.................................................................................................. 122 
8.3.3 Interpretation of results .................................................................................. 122 

8.4  Discussion ............................................................................................................ 134 
 
Chapter 9 Refinement for LZMA Compression Algorithm ........................................... 136 

9.1  Introduction.......................................................................................................... 136 
9.2  Regular LZMA compression algorithm process in details .................................. 136 

9.2.1 The LZ part .................................................................................................... 136 
9.2.2 The MA part................................................................................................... 139 

9.3  The Refined LZMA Compression Algorithm...................................................... 144 
9.3.1 The Concept ................................................................................................... 144 
9.3.2 The meaning of literals and pairs................................................................... 144 
9.3.3 The literals and pairs outputs for the range coding........................................ 145 
9.3.4 The Refined LZMA compression algorithm and diagram............................. 145 



 

9.4  The Empirical evaluation..................................................................................... 148 
9.5  Interpretation and the evaluation result................................................................ 148 

9.5.1 ROC Curve..................................................................................................... 150 
9.6  Discussion, Conclusions and Future Work.......................................................... 153 

 
Chapter 10 Conclusion and future work ......................................................................... 154 

10.1  Visually Similar Webpage Identification........................................................... 154 
10.2  Visual similarity for Phishing detection ............................................................ 154 
10.3  Real world scenario test ..................................................................................... 155 
10.4  Refined compression algorithm ......................................................................... 155 
10.5  Additional Possible Countermeasures ............................................................... 156 
10.6  Other Phishing clues .......................................................................................... 157 



 

List of Tables 

 
Table 5.1 Samples list for 12 Pairs test............................................................................. 40 
Table 5.2 The NCD values of RBC-L against other 23 websites ..................................... 42 
Table 5.3 The NCD Values for all 12 Pairs ...................................................................... 45 
Table 5.4 Sample list for the Clustering test..................................................................... 46 
Table 5.5 NCD Values Against BOA-L ........................................................................... 48 
Table 5.6 Samples for the Large Scale Experiment.......................................................... 51 
Table 5.7 Results From the Z-Test for Average ............................................................... 53 
Table 5.8 Results From the Z-Test for Maximum............................................................ 53 
Table 5.9 Comparison Against Existing Anti-Phishing Solutions (Without Blacklists) .. 59 
Table 7.1 The two groups of collected samples for the Experiment ................................ 94 
Table 7.2 The selected compression algorithms ............................................................... 95 
Table 7.3 The z-test result................................................................................................. 99 
Table 7.4 The result of effect size................................................................................... 100 
Table 7.5 TPR FPR at the corner point of the ROC curve for different compression 
algorithm......................................................................................................................... 102 
Table 7.6 AUC of the ROC curve for different compression algorithm ........................ 102 
Table 8.1 Alexa top 110 global websites ........................................................................ 114 
Table 8.2 The Z-test result .............................................................................................. 116 
Table 8.3 The result of effect size................................................................................... 117 
Table 8.4 TPR FPR at the corner point of the ROC curve ............................................. 118 
Table 8.5 AUC result ...................................................................................................... 118 
Table 8.6 TPR, FPR for C4.5 Parameterizations, LL vs. LP data .................................. 128 
Table 8.7 TPR, FPR for Ripper Parameterizations, LL vs. LP data ............................... 129 
Table 8.8 TPR, FPR for Logistic Parameterizations, LL vs. LP data............................. 130 
Table 8.9 TPR, FPR for SMO Parameterizations, LL vs. LP data ................................. 131 
Table 8.10 TPR, FPR for C4.5 Parameterizations, Alexa data....................................... 131 
Table 8.11 TPR, FPR for Ripper Parameterizations, Alexa data.................................... 133 
Table 8.12 TPR, FPR for Logistic Parameterizations, Alexa data ................................. 134 
Table 8.13 TPR, FPR for SMO Parameterizations, Alexa data...................................... 134 
Table 9.1 The Z-test ........................................................................................................ 148 
Table 9.2 The effect size result ....................................................................................... 149 
Table 9.3 TPR FPR at the corner point of the ROC curve ............................................. 150 
Table 9.4 AUC result ...................................................................................................... 150 
 
 



 

List of Figures 
 
Figure 2.1 Spam email with obfuscated characters made visible. .................................... 10 
Figure 2.2 Spam email as viewed by a user...................................................................... 10 
Figure 2.3 Spoof web page composed of three separate images ...................................... 13 
Figure 3.1 The perception of parts and wholes................................................................. 16 
Figure 4.1 The Phishing seven-step process [42] ............................................................. 26 
Figure 4.2 The Legitimate BOA web page....................................................................... 34 
Figure 4.3 The Phishing BOA web page .......................................................................... 34 
Figure 4.4 The Phishing BOA web page .......................................................................... 35 
Figure 5.1 Quartet tree visualization for 12 pairs experiment .......................................... 44 
Figure 5.2 Quartet tree visualization for clustering experiment ....................................... 47 
Figure 5.3 ROC curve for Blocksort, aggregated by arithmetic mean ............................. 56 
Figure 5.4 ROC curve for Blocksort, aggregated by maximum value ............................. 57 
Figure 5.5 ROC curve for LZMA, aggregated by arithmetic mean.................................. 57 
Figure 5.6 ROC curve for LZMA, aggregated by maximum value.................................. 59 
Figure 5.7 The effects of local noise on NCD values ....................................................... 63 
Figure 5.8 Phish before 40% of the pixels have been changed. ....................................... 63 
Figure 5.9 Phish after 40% of the pixels have been changed. .......................................... 64 
Figure 5.10 Impact of Structural Noise on NCD and SSIM values.................................. 66 
Figure 5.11 Phish before and after 3% structural distortion ............................................. 69 
Figure 6.1 The LZ77 Dictionary search............................................................................ 77 
Figure 6.2 The encoding of LZ77 ..................................................................................... 78 
Figure 6.3 The encoding output of LZ77.......................................................................... 78 
Figure 6.4 The encoding procedure of LZ77 .................................................................... 79 
Figure 6.5 The decoding process of LZ77 ........................................................................ 80 
Figure 7.1 The horizontal (left-right) concatenation for C(xy) ......................................... 97 
Figure 7.2 The vertical (top-bottom) concatenation for C(xy).......................................... 97 
Figure 7.3 The ROC curve.............................................................................................. 103 
Figure 7.4 Five times larger at the corner point.............................................................. 104 
Figure 7.5 The legitimate webpage from facebook [115]............................................... 106 
Figure 7.6 The Phishing webpage targeting facebook.................................................... 106 
Figure 7.7 The legitimate website images with the dynamic web DOM tree components 
captured at 1 second........................................................................................................ 108 
Figure 7.8 The legitimate website images with the dynamic web DOM tree components 
captured at 5 seconds ...................................................................................................... 109 
Figure 7.9 The legitimate website images with the dynamic web DOM tree components 
captured at 10 seconds .................................................................................................... 110 
Figure 8.1 The ROC curve.............................................................................................. 119 
Figure 8.2 Five times larger at the corner point.............................................................. 120 
Figure 8.3 C4.5 Classifier, LL vs. LP data ..................................................................... 124 
Figure 8.4 Ripper Classifier, LL vs. LP data .................................................................. 124 
Figure 8.5 Logistic Classifier, LL vs. LP data................................................................ 125 
Figure 8.6 SMO classifier, LL vs. LP data ..................................................................... 125 
Figure 8.7 C4.5 Classifier, Alexa (LA vs. LP) data........................................................ 126 
Figure 8.8 Ripper Classifier, Alexa (LA vs. LP) data .................................................... 126 



 

Figure 8.9 Logistic Classifier, Alexa (LA vs. LP) data .................................................. 127 
Figure 8.10 SMO Classifier, Alexa (LA vs. LP) data..................................................... 127 
Figure 9.1 The redundancy of (0, 0) for LZ77................................................................ 137 
Figure 9.2 The LZ Encoding........................................................................................... 138 
Figure 9.3 The MA part .................................................................................................. 139 
Figure 9.4 The range encoding ....................................................................................... 141 
Figure 9.5 The Regular LZMA Compression Diagram.................................................. 143 
Figure 9.6 The Refined LZMA compression diagram.................................................... 147 
Figure 9.7 The ROC Curve............................................................................................. 151 
Figure 9.8 Five times larger at the corner point.............................................................. 152 
 



 

List of Acronyms 

 
A 

 
AUC: Area Under Curve 
 

B 

 
BMP: BitMaP 
 

C 

 

CABAC: Context-based Adaptive Binary Arithmetic Coding 
 

D 

 
DCT: Discrete Cosine Transform 
 
DOM: Document Object Model 
 
DPCM: Differential Pulse Code Modulation 
 

E 

 
EMD: Earth Mover’s Distance 
 

F 

 

FNR: False Negative Rate 
 
FPR: False Positive Rate 
 

G 

 
GIF: Graphics Interchange Format 
 

H 

 

HTML: Hyper Text Markup Language 
 

I 

 
IB: Inattentional blindness 
 

L 



 

 
LZ 77: Lempel Ziv 77 
 
LZMA: Lempel Ziv Markov chain Algorithm 
 
LZW: Lempel Ziv Welch 
 

M 

 
MCC: Matthew’s Correlation Coefficient 
 
MOS: Mean Opinion Score 
 

N 

 

NCD: Normalized Compression Distance  
 
NID: Normalized Information Distance 
 

P 

 
PPM: Prediction by Partial Matching 
 
PNG Portable Network Graphics 
 

R 

 
RLE: Run Length Encoding 
 
ROC: Receiver Operating Characteristic 
 
RGB: Red Green Blue 
 

S 

 
SMO: Social Media Outsourcing 
 
SSIM: Structural SIMilarity 
 

T 

 
TPR: True Positive Rate 
 

W 

 
WEKA: Waikato Environment for Knowledge Analysis



 1 

Chapter 1 Introduction  

 

A fundamental idea is— are two items the same or different? In many situations, this 

binary decision has no absolute answer. Instead, the question must be evaluated in a 

probabilistic framework. Web pages fall into the category of entities where this question 

can be asked; and where the answer, and in fact the question, have no obvious unique 

definition. Alternatively, the answer can be recast onto a linear dimension that measures 

the similarity or difference between two web pages. The construction of such a question, 

and the implementation of an approach to provide an answer to this question, is the 

principle themes of this dissertation. 

 

1.1 Webpage similarity 

Web page similarity detection is widely used by many popular applications such as web 

search engines, automated categorization systems, and Phishing/Spam filtering 

mechanisms. With precise similarity identification results, web search engines and 

automated categorization systems could reduce their essential storage requirements. 

However, the question of what constitutes “precise” similarity identification is very much 

an open one; any reader who has used a web search engine has doubtless had to wade 

through a large number of irrelevant results to locate desired information. Algorithms 

such as PageRank cannot capture the human perception of “similarity,” but try to 

approximate it using term frequencies and link structures. In a number of applications, 

there is a clear need for a similarity metric that is congruent to human perception  
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The goal of our research is to provide a robust way to evaluate the similarity of web 

pages from the viewpoint of a human viewer. We start by considering human perception 

from a Gestalt viewpoint [1] as the theoretical foundation for our approach. Specifically, 

we follow the Gestalt viewpoint that images are interpreted in a holistic fashion rather 

than as a set of distinct features, which is common amongst other approaches. We 

augment our visual Gestalt viewpoint with the concept of supersignals [2], which 

provides an explanation of how humans use a holistic interpretation of visual input to 

drive rapid and frequent decision making. These concepts are expanded upon in Chapter 

3. Finally, we show how these visual supersignals can be encoded (or compressed) into 

simple numerical values to facilitate automation of this decision making process (i.e. 

similar or not). The supersignals are represented by an approximation of their algorithmic 

complexity description; and this description or the “distance” between two such 

descriptions is considered as an estimation of the perceived similarity of the two web 

pages. We have undertaken several experiments to demonstrate that our concept is viable. 

All of the experiments show that our new method is able to discriminate between similar 

and dissimilar web pages. In brief, the discriminative similarity evaluation by deeming 

the webpage as a whole object is another theme of this dissertation. 

  

Our proposed approach can be deployed in many different areas of applications. For 

example, an image search engine for visual object categorization [3]; detecting visual 

tricks used by spammers to fool Spam email filters [4]; and as an Anti-Phishing 

mechanism [5]. Clearly, however, the approach will require some tailoring to maximize 

its performance within any specific domain.   
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1.2 Anti-Phishing Application 

Phishing is a novel technique in criminal fraud, which takes advantage of the 

inconsistencies between human decision-making and the presentation of webpages in a 

browser. A Phishing scam, at its heart, involves the creation of a webpage that 

fraudulently claims to be the webpage of some trusted vendor (EBay, PayPal, and a 

variety of online banking services are prime targets). When a user is tricked into visiting 

a Phishing page, they can be fooled into inputting their account credentials, which are 

then stolen by the Phisher. Phishing scams cost over $3.2 billion dollars per year in the 

USA alone [6]. Existing techniques for countering Phishing scams (e.g. anti-Phishing 

toolbars) have not been effective in curtailing Phishing scams; the number of such scams 

doubled in just six months at the end of 2009 [7, 8]. There is plainly a need for more 

effective tools to help protect users from these online scams.   

 

We propose to create an anti-Phishing mechanism based on our visual similarity metric. 

The Phishing scam includes a critical mistake that users must make: they have to confuse 

the Phishing page with the legitimate website it imitates. Thus, if we can recognize highly 

webpages that are very similar to a known legitimate brand, it is likely that this is a 

Phishing page. In a series of experiments, we will validate this technique against “live” 

Phish, i.e. Phishing webpages that are captured from the Web while they are still active 

scams. We also consider some of the possible countermeasures that Phishers could 

employ against our system; we believe these would generally be image-manipulation 

techniques intended to create “significant” differences that are nonetheless imperceptible 
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to the human user. It is our expectation that manipulations sufficient to confuse our 

algorithm will also create large enough differences that the resulting Phishing pages no 

longer fool a human user. 

 

1.3 Optimization and Evaluation 

Following the initial validation of our anti-Phishing technique, we undertake performance 

tuning. Compression-based clustering has received some attention of late in the pattern-

recognition community, and two important characteristics of such approaches have been 

observed. Firstly, while the theoretical foundation for all compression-based clustering is 

Kolmogorov complexity, in practice real-world compression techniques are not designed 

to approximate the (incomputable) Kolmogorov complexity of any file or object. They 

are intended purely to reduce the size of a file/object, and thus the effectiveness of a 

classifier built from them is very context-dependent. Second, evidence indicates that 

compression-based clustering operates by creating an implicit feature space based on the 

internal workings of the compressor (e.g. dictionary elements in LZ-type compressors). 

Given these characteristics, our anti-Phishing mechanism can likely be optimized by 1) 

an optimal choice of compressors, and 2) feature extraction in the compression algorithm. 

As our anti-Phishing mechanism is a pattern-recognition technique, this must necessarily 

take the form of empirical exploration of the possible parameter space. Nine different 

compression algorithms will be tested; we will then investigate the implicit feature space 

of the “best” compressor. 
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Finally, with these optimizations determined, we will evaluate the resulting system in a 

realistic anti-phishing scenario. We envision our system being a browser helper object or 

plug-in, which is supplied with a whitelist of protected Web pages. Evidence indicates 

that this whitelist could be relatively short; in an average month, as few as 20 brands may 

be targeted by over 80% of all Phishing websites [9]. When a user visits a website, a 

screen capture of the rendered site is taken, and compared to the stored screen captures 

for the protected websites. The similarity measure for the closest site and an alert is 

issued if the website is classified as a Phish. The evaluation uses live Phish as before, as 

well as the most-popular sites on the Web as ranked by Alexa.com [10].   

 

1.4 Contributions and Dissertation Outline 

Our primary contributions in this dissertation are as follows: 

• We develop a novel approach for detecting similarity between webpages; 

• We apply this similarity detection technique to detect Phishing scams; 

• We optimize this technique by empirically comparing different compression 

algorithms and extracting the implicit feature space from the best-performing one; 

• We evaluate our technique in a realistic anti-Phishing scenario. 

 

The outline of this dissertation is as follows. Chapter 2 describes existing feature-based 

methods for detecting similarity between web pages. In Chapter 3, we introduce the 

theoretical foundations and address the similarity metric for our proposed approach. In 

Chapter 4, we discuss the Phishing problem and how our similarity measure could be 

applied to detecting Phishing scams. Our concept-proof experiments reported in Chapter 
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5 demonstrate the efficacy of this approach. Then we introduce the choices of the 

compression algorithms in Chapter 6. In Chapter 7, we perform the experiment to 

evaluate these compressors for our application. We evaluate the resulting system in 

Chapter 8. In Chapter 9, we discuss and modify the existing compression algorithm to fit 

our Anti-Phishing application. We end with a summary and discussion of the future work 

in Chapter 10. 
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Chapter 2 Methods for Visually Similar Web Pages Detection 

2.1 Feature-based similarity measures 

There are several approaches that utilize web page components as features for detecting 

near-duplicate web pages. In [11], they discuss and perform an evaluation of existing web 

document identification methods. After comparing a variety of approaches, [12]’s 

shingling method and [13]’s random projection algorithm were found to represent the 

current state-of-the-art in this domain. The shingling method is to use word sequences to 

detect the differences between documents. Charikar uses random projections of the words 

as a signature for their similarity identification method. In both algorithms, web pages (in 

HTML format) are converted into a token sequence by specific rules to represent the 

“fingerprint” of the web pages. Then, these “fingerprints” are used as a signature to 

determine the similarity between two pages. The word sequences (random projections of 

the words) in the HTML web page are the most important features within these two 

identification methods. A similar method, which uses the sequences of adjacent 

characters as the web page signature, was developed by [14] and [15]. Clearly, these 

methods are principally using the textual contents of a web page as the main feature for 

the similarity comparison. 

 

In the domain of web page clustering or categorization, web page elements such as web 

page structure, text, and link structure are used as features for comparison. In [16], they 

explore both text-based (with or without stemming), anchor-based, and text plus anchor-

based approaches for describing features within a web page. They extract these features 
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and then seek to recombine them using a number of weighting approaches.  The paper 

describes an extensive empirical exploration to find the best heuristics (based upon the 

empirical results) from the assembled list. In [17], web pages are compared based on their 

structure. A web page is separated into “blocks” by extracting its layout (or tag) structure 

for further analysis. Only tags which directly impact the visual display of the page are 

considered in this work. The encoding of the relationships between these “blocks” of a 

web page is considered as a description of the page. These descriptions are then 

compared as a measure of similarity between pages. 

 

In [18] a web page classification algorithm is proposed based upon web page textual 

summarization. Their approach is to extract the most relevant textual content from Web 

pages and then pass this information into a standard text classification algorithm. 

 

In [19] methods to cluster similar web pages based on web page hyperlinks are utilized. 

Web pages are classified as similar if they have similar hyperlink structures. In [20], an 

algorithm is introduced to cluster web pages by combining textual content and link 

analysis. The authors claim that this hybrid method can achieve superior identification 

performance than methods using either text or link analysis alone. 

 

Several different methods or algorithms for webpage classification by features are 

introduced in [21], they categorize webpage classification into subject classification (the 

subject of a webpage), functional classification (webpage function), sentiment 

classification (opinion presented in the web page), and other types of classification based 
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on the problem they are trying to solve. However, binary classification and multiclass 

classification are based on the number of topic classes in the webpage. For example, 

binary classification is the webpage separated its subject into commercial or non-

commercial classification and multiclass classification is related to the subjects 

categorized into more than two classes. These are context based webpage classification 

methods. 

 

These outlined methods all transform web pages elements into features to perform 

similarity identification or classification. These feature-based methods may identify 

textually related or structurally similar documents effectively for clustering applications, 

such as an automatic data categorization system. Nevertheless, these methods are often 

unable to recognize the similarity between two web pages that, to a user, would appear 

essentially identical. This may be due to innocent differences in web page 

implementations, or deliberate countermeasures employed by a spammer or Phisher. We 

will illustrate this idea in the following section. 

2.2 What can we count on for visual similarity identification? 

It is believed that traditional methods, based on web page elements, can not effectively 

identify visually similar web pages in a manner congruent to user perceptions. Many 

identification methods that use features such as the textual content of a web page can 

easily be evaded. Consider the web-based email shown in Figure 2.1  (which passes the 

Thunderbird Spam filter) as an example. This malicious email defeats the Spam detection 

mechanism, which is based on textual comparison, by arranging some meaningless 

character combinations in the web email textual content. At the same time, they also 
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create an illusion to unambiguously deliver their advertisement to the user (as shown in 

Figure 2.2). Spam detection methods based on textual content are easily foiled by this 

technique and its variations. 

 

Figure 2.1 Spam email with obfuscated characters made visible. 

 

Figure 2.2 Spam email as viewed by a user 
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Similar countermeasures can be employed against other similarity-detection algorithms 

employing different feature sets. The specific feature set is irrelevant; web page structure, 

hyperlinks, text, images, and their combinations have all been employed to generate 

feature sets. However, all of these features remain vulnerable to obfuscation attacks of 

one form or another. It is also entirely possible for obfuscation to occur by accident; the 

Web is now a rich media platform, and any given webpage can be encoded and presented 

using a great many alternative technologies. This implies that two pages that would be 

considered “identical” by users would exhibit vastly different “fingerprints” when 

feature-based techniques are employed. 

 

As another example, consider the web page in Figure 2.3. We built this web page – which 

is visually similar to the legitimate eBay login web page [22] – in order to simulate a 

Phishing attack. This web page is only composed of three separate images. Consequently, 

the “fingerprint” of this Phishing web page – whether judged by the textual content, 

hyperlinks, and/or web page structure – is totally different from the legitimate eBay web 

page. This simple tactic causes similarity identification methods based on web page 

element features (e.g. [23]; [12]; [13]; [16]) to report that these web pages are 

significantly different. Notice that this example also represents the case of unintentional 

obfuscation due to implementation differences. Perhaps a login page will not be 

presented as static images, but a vanity or information page might well be (in order to 

precisely control the page’s appearance). Web page elements become an unreliable clue 
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when we are looking for a solution to the problem of visually similar web page 

identification. 

 

Therefore, for applications where we need to identify visually similar web pages such as 

Phishing or Spamming detection, we require an identification method that can identify 

the visual similarity of a web document accurately, even in the presence of obfuscations. 

In considering this problem, we note that features based on page elements are inherently 

localized; that is, the information contained in a feature (in Shannon’s sense) is 

concentrated in discrete, identifiable page elements. Any adversary seeking to evade a 

detector need only identify those features, and alter them. Likewise, any implementation 

decision that results in substantially different page elements will also confound a 

similarity comparison. Our objective is to design a heuristic method which can simulate 

the process of human visual perception and decision making in this situation. 
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Figure 2.3 Spoof web page composed of three separate images 
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Chapter 3 Theoretical Foundation 

3.1 Gestalt Theory  

Gestalt theory [24, 25] provides us with the theoretical basis for our similarity 

identification approach. One of its central ideas is that the whole of a perceived image is 

different from the sum of its parts acting in isolation [26]:  

 

The fundamental formula of Gestalt theory might be expressed in this way: “There are 

wholes, the behavior of which is not determined by that of their individual elements, but 

where the part-processes are themselves determined by the intrinsic nature of the whole. 

It is the hope of Gestalt theory to determine the nature of such wholes.” [1] 

 

For example, as shown in Figure 3.1, the left part of the figure is a set of simple shapes. 

The human perception of the left part is interpreted as “several simple shapes scattered all 

around”. Nevertheless, when we rearrange those simple shapes in a certain way, suddenly 

the sum of those simple shapes becomes organized into to a recognizable illustration— a 

clown (as shown in the right part in Figure 3.1). Those simple shapes are endowed with a 

new interpretation when they are combined together. The parts are from the whole, but 

the whole changes the parts [26]. 

 

Gestalt visual psychology is based around a number of simple laws: figure/ground, 

proximity, closure, similarity, and continuation. With regard to our situation, the laws of 

proximity and similarity are the most important. In the proximity law, objects spatially 
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near each other are grouped together. On the contrary, objects spatially apart are 

separated. In [27], words in a text are perceived as separate entities because of their 

spatial characteristics; letters in one word are close together, and not separated by a 

whitespace (ideographic languages obviously excepted). Different spacing, in turn, can 

change the entire meaning of a phrase. In general, the closer items are spatially or 

temporally, the more likely they are to be considered part of an organized and unified 

group. In the similarity law, objects which are similar in shape, size, color, proximity, and 

direction are interpreted as part of a group. Even if the objects are spatially separated, we 

still tend to group them together. On the other hand, dissimilar objects can be separated 

even if they are spatially close. 

 

The combined effect of these two laws illustrate why humans tend to perceive an object 

with several elements as a whole. Consequently, we argue that an individual does not 

interpret a web page by examining individual web page elements such as banners, colors, 

pictures, and icons. Instead, the structure, layout, and media design of the website creates 

a specific perception, which is more important than the individual components of the web 

page. 
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Figure 3.1 The perception of parts and wholes 

 

3.2 Inattentional Blindness 

Inattentional blindness (IB) provides another argument against the use of feature-based 

systems for similarity detection [28]. IB can be summed up as the phenomenon of 

“looking without seeing”. When IB happens, even though an individual’s eyes are wide 

open and various objects are imaged on their retinas, individuals seem to perceive only 

very little thing. At the beginning stage of visual perception, the brain spontaneously and 

automatically performs Gestalt grouping operations to integrate all retinal inputs for 

further processing. However, only stimuli which capture attention at the later stages of 
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processing are perceived. This has been experimentally demonstrated [28]; these 

experiments show that objects’ features or stimuli such as location, motion, frequency 

and color were not perceived about 75% of the time in an inattentional condition. This is 

a well-known psychological phenomenon. 

 

Consequently, when users try to identify similar web pages (that is, recognize pages that 

have been previously seen), they spontaneously ignore fine details and perceive only the 

whole image. If they are later asked to recall the details of the web page (such as the 

exact color of icons, the exact text, or other web page components), a likely answer could 

be “I don’t know” or “I didn’t notice that” [28]. That is, the entire web page is likely to 

leave a single impression on their memory. Empirical research into phishing scams 

supports this notion; users commonly do not observe the address bar, status bar, or 

security indicators displayed by modern web browsers, and can be fooled up to 90% of 

the time by high-quality Phishing sites [29]. 

3.3 Supersignals 

 

Related to Gestalt psychology is the concept of “supersignals” [2], which seeks to explain 

how humans make rapid decisions when bombarded with a massive set of inputs. In this 

scenario, visual inputs tend to dominate, but other senses can play a role. We view the 

idea of supersignals as extending the basic Gestalt visual processing into a decision 

making mechanism. In our situation, the Gestalt process transforms the visual 

representation of a web page, producing a supersignal which acts as the input to the 

decision making process (is this page similar, or the same, as a page which was 
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previously viewed?). The content of these supersignals change with a number of factors – 

such as the individual’s perceived familiarity with the situation. Supersignals can be 

thought of as trying to provide an explanation of an individual’s behavior when they 

encounter a complex, but familiar, situation. The person can reduce the complexity of the 

situation by generating a supersignal which collapses a number of features into one 

impression, based upon their previous experience. Differences between the novice and 

the experienced driver are a good illustration of this idea. A novice needs to direct 

attention to many variables and traffic situations at once. Driving is a highly complex 

business for them. Any input variables can cause unexpected circumstances which need 

more processing time for the novice to handle. Complexity causes trouble, stress, and 

anxiety which make the situation more complicated to deal with. On the contrary, an 

experienced driver doesn’t notice this complex situation as requiring the processing of so 

many independent variables. They are able to generate many supersignals (that is, they 

are able to integrate large numbers of inputs into a small number of holistic signals) to 

reduce the complexity. Once the complicated situation has been simplified, the driver can 

recognize similar situations from their prior experience, and apply an appropriate 

response from that experience. This recognition is also not an “optimized” comparison; 

decision theory tells us that people will select the first familiar situation that comes to 

mind and appears to fit the current circumstances; this will often take just a fraction of a 

second. People do not usually spend time reflecting on how closely the current situation 

matches the prior experience; it is simply “good enough” [2]. 
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Similarity identification for humans is a decision making process related to many 

complicated factors. To complete the analogy, an individual who is new to the Internet 

acts as an inexperienced driver. However, the vast majority of Internet users can be 

consider as “highly experienced drivers” and hence their similarity decision process only 

accepts a very small number (potentially only 1) of input(s), or supersignal(s), into their 

decision making process. In order to design our similarity measure to be congruent to 

human perception, we will generate a “supersignal” that represents the whole of a web 

page. 

 

We view the construction of supersignals as a sampling or compression process. 

Cognitively, an individual is attempting to wade through a massive number of inputs and 

reduce it to a minimal, but sufficient, single representation to allow a decision to be 

successfully undertaken. This sampling approach is undoubtedly highly non-linear, and is 

characterized by emphasizing and integrating seemly important aspects of the input; 

while ignoring or discarding the seemly unimportant aspects of the input.  Hence, the 

process is unlikely to correspond to sampling in a traditional mathematical sense.  In 

essence, an individual is seeking to reduce the input to a single irreducible form.  Hence, 

we view the process as having parallels to approaches for defining Algorithmic 

Information theory [30] ; and hence, we seek to objectively measure the relationship (the 

basis of the decision) between supersignals within this framework. While, algorithmic 

information theory principally studies “complexity measures” on strings; clearly 

translating supersignals, or more accurately our representation of supersignals, into an 

appropriate form is not so straightforward. In addition, we seek to use these complexity 
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measures as the basis of objectifying our supersignals representation. Within Algorithmic 

Information Theory, Kolmogorov complexity [31] can be used to provide a theoretical 

definition of an objective evaluation of a pseudo-irreducible form of a signal; and the 

numerical difference between two such objective approximations can be considered 

proportional to the actual difference between two arbitrary signals. 

3.4 Similarity Metric 

While it can be stated that Kolmogorov Complexity is objective, this is clearly a 

theoretical position, as Kolmogorov Complexity is incomputable1 in anything apart from 

contrived situations. However, [32] recently demonstrated that Kolmogorov Complexity 

can be successfully approximated by current compression techniques. Kolmogorov 

Complexity can be viewed as the ultimate compressor – producing for any arbitrary 

string (or file or image), a minimum description of that string, given some form of 

description language. Hence, practical compression approaches that compress arbitrary 

strings or files or images can be viewed as approximations to the optimal, however 

unattainable, compressor. Kolmogorov complexity can be viewed as the limiting case for 

compression technology. Specifically, [33] introduce the Normalized Information 

Distance (NID), which approximates Kolmogorov complexity within known limits. 

Further, they prove that NID is a valid metric within these limits. They claim that NID 

can “discover all similarities between two arbitrary entities; and represents object 

similarity according to the dominating shared features between two objects.” 

 

                                                 
1 In a Turing sense. 
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NID can be defined as follows: Let K(x|y) refer to the Kolmogorov complexity, that is the 

length of the shortest binary program, which accepts as input y and outputs x; and let K(x) 

refers to the Kolmogorov complexity of x, that is the length of the shortest binary 

program with no inputs that outputs x. The value max (K(y|x), K(x|y)) can be considered 

as the length of the shortest binary program (with the reference universal prefix Turing 

machine) that with input y, computes x, and with input x, computes y. Given these 

definitions, NID can be defined as 
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Further details about NID and its properties can be found in [33]. However, the fact that 

Kolmogorov complexity is incomputable implies again that NID can not be used directly. 

Hence, [33]; [32] provide an approximation to this metric based upon real – world 

compression algorithms (denoted C) rather than the Kolmogorov complexity. 

 

3.4.1 Normalized Compression Distance  

 

Normalized Compression Distance (NCD) is described as a parameter-free distance 

metric which is believed to be able to uncover all similarities with a single metric [32, 33]. 

It is a practical metric approximating NID. It is computed from the lengths of compressed 
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data files, images, strings, etc. using real-world compression algorithms. For an arbitrary 

compression algorithm C, NCD is given by:   
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Clearly, the relationship between the denominators of NID and NCD is straightforward; 

however, the relationship between the numerators is less so. It is shown that the 

numerator of NID can be rewritten as 
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Note that   
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where xy and yx denote the concatenation of two signals. [32] argues that this numerator 

can be effectively approximated by 

)}(),(min{)}(),(min{ yCxCyxCxyC −  

(3.5) 

If we now assume that the symmetry property holds for the compression algorithm C, we 

have [32]: 

)()}(),(min{ xyCyxCxyC =   

(3.6) 
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Clearly, it is important to understand that NCD is an approximation of NID; and that the 

symmetry property may not hold for all real-world compression algorithms. In addition, 

practical compression algorithms may invalidate common properties found in theoretical 

measurement systems, e.g. is monotonicity (C(xy) ≥ C(x)) a guaranteed property of all 

block-coding compressors? Hence, this final approximation will require empirical 

verification within our context. (Note that much of the literature on applying the NCD 

uncritically treats it as a “universal similarity metric,” e.g. [34-36]. We find such a 

sweeping assertion to be dubious at best when modeling a phenomenon as complex as 

human perception.) 

 

In our context, the NCD value is a nonnegative number representing the 

distance/difference between two images (approximations of supersignals) which in turn 

represent a web page. Using the usual interpretation of similarity as an inverse of distance, 

we assert that the more similar two objects (images or web pages) are, the smaller the 

NCD distance between them should be. 

3.4.2 Compression Algorithms and Supersignals  

The gzip, bzip2, and PPM are popular data compression methods. Gzip is a Lempel-Ziv 

type compressor with a 32-kilobyte window [37]. Its reliability, speed, and simplicity 

make it become one of the most popular compressors. Bzip2 is a fast compressor which 

uses the Blocksorting algorithm [38]. It provides good compression and an expanded 

window of 900 kilobytes which has the ability to detect longer-range patterns. PPM 

(Prediction by Partial Matching) [39] is a compressor using a mix of statistical models 

arranged by trees, suffix trees or suffix arrays. It provides better performance but with the 
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side effect of slower speed and heavy memory consumption. Other compression 

algorithms such as LZMA provides better compression ability with the demand of 

smaller file size and faster processing time.  

 

Different data compression algorithms lead to different varieties of NCD. Some data 

compression programs use many complex schemes that involve stochastic modeling of 

the data at many levels simultaneously. While the NCD metric is in theory application 

neutral, in practice we believe the choice of the compressor needs to be tailored to the 

application domain. For example, the “Blocksort” virtual compressor (which also uses 

the Blocksorting algorithm) is appropriate for frequency analysis, spectral analysis, and 

substring matching combined. Clearly no unique or optimal presentation exists for the 

construction of our pseudo- supersignals – the input to the compression stage. This topic 

needs further research to find the most appropriate mechanism for this encoding; and a 

variety of empirical evaluations to confirm any such supposition. 
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Chapter 4 Existing Anti-Phishing Mechanisms  

4.1 Phishing Problem 

According to a report released by Gartner [6], Phishing scams cost $3.2 billion in losses, 

victimizing 3.6 million people in the U.S. alone in 2007. And in 2008 the number of 

Phishing attacks on U.S. Consumers increased by 40 percent [40]. From July to 

December in 2009,  the detected Phishing attacks from APWG [7] have increased to 

126,697 incidents which is twice than the Phishing attack count for the first half year in 

that year [8]. In 2010, APWG [7] has found a professional Phishing crime organization 

called “Avalanche” was responsible for two-thirds of all phishing attacks in the second 

half of 2009 [8]. This indicates the Phishing scam has become more sophisticated and 

complicated than ever before. It is not a simple game of script kiddies [41] anymore. It 

has become an organized crime business. 

 

Phishing is a type of online identity theft in which sensitive information is obtained by 

misleading people to access a malicious web page. While there are many different types 

of Phishing attacks, the most common Phishing scam seen today is a deceptive attack. 

Researchers usually conceptualize Phishing scams as a seven-step process [42] as shown 

in Figure 4.1. The scam begins when a malicious payload is sent to a user (often an email 

asking the user to login to one of their accounts). The second stage is when the user 

attempts to navigate to the login page for that account – but is instead directed to an 

attack page. The third and fourth stages are when the user is prompted for their account’s 

credentials – and provides them. In stage five, these credentials are transmitted to the 
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Phisher, who uses them to impersonate the user in stage six. Finally, in stage seven, the 

Phisher is able to steal the assets held in the account. Phishing attack sites are designed to 

seem visually very similar to the legitimate site they are impersonating. As we have 

argued, user recognition of a website (or what they believe is the website) takes place in 

the blink of an eye [29]. Users do not consciously reflect when they make this decision. 

We suggest that Anti-Phishing methods need to be developed to explicitly account for the 

user’s perceptions and actions. 

 

  

Figure 4.1 The Phishing seven-step process [42] 
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4.2 Existing Anti-Phishing Solutions 

Email-filtering approaches are server-side techniques that try to interfere with stage 1 of 

the Phishing scam. Email is a very common vector for delivering a malicious payload to a 

user – in this case, a message involving a “call to action” regarding one of the user’s 

accounts, and a “helpful” link to the website. By preventing users from receiving these 

emails, these approaches attempt to completely deflect the Phishing attack. They are 

closely related to Anti-Spam solutions, in that both rely on an analysis of the content of 

an email message. Therefore, they also suffer from the same weaknesses as Anti-Spam 

approaches. In particular, the image-based technique demonstrated in Figure 2.1 and 

Figure 2.2 is a potent countermeasure against content analysis. Some well-known email 

filtering solutions include Thunderbird [43] and PILFER [44]. 

 

Anti-Phishing tool bars are the most popular and widely-deployed solutions to fight 

Phishing websites. Most of the toolbars employ blacklists and whitelists. They determine 

the URL currently being viewed, and send it to the blacklist/whitelist (B/W) database for 

filtering. The result will be delivered back to the user with either an alert warning the user 

of a possible Phishing scam, or an assurance that the site is legitimate. IE8 [45], FireFox3 

[22], Spoofguard [46], and Netcraft [47] are popular toolbars in wide usage. The 

performance of the tool bar depends on the B/W database (except for SpoofGuard, which 

uses heuristics). Unfortunately, the average life time of a Phishing website is 3.4 days [9]. 

These short-lived websites can defeat these tool bars because the database is not updated 

fast enough to protect users from a brand-new Phishing site. It simply takes time to detect 

a new Phishing site. Another trick known as “DNS/URL redirection or domain 
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forwarding” [48] can fool the B/W databases by rapidly changing the DNS/URL IP 

address mapping in a dynamic DNS domain server. The “blocked” Phishing website can 

be back to business in only one minute. Although other heuristic analysis methods such 

as domain registration lifetime checking are proposed and deployed in the toolbars, the 

Phishers still can find a way to fool classifiers built on these heuristics. Human factors 

must also be acknowledged as another threat to the Anti-Phishing solutions. Some users 

input their credentials even when they receive warnings from the toolbars [49] . 

 

Mutual authentication is another common Anti-Phishing solution. By acquiring secret 

messages or preauthorized signals from the server (legitimate website) with a secure 

connection (usually SSL connection), the client (the user) can make sure they are 

browsing the legitimate website and their credentials can be safely transmitted. The most 

challenging part of this client and server-side method is human factors. Firstly, users 

must choose to install the software on their system, and follow complicated instructions 

in setting it up. Research indicates that the majority of computer users will never change 

the default configuration of their software [50]. Secondly, once users have set the system 

up, false positives will reduce the alertness of users. Such false alarms are known to 

destroy user trust in any Anti-Phishing system [29]. Thirdly, Phishers still have social 

engineering tricks that can fool users into disabling the Anti-Phishing systems. For 

example, a letter entitled “Incompatibility notice for your Anti-Phishing system,” if 

apparently sent from a trusted authority, can trick users into removing their Anti-Phishing 

system. Some well-known mutual authentication solutions include DSS[51], Pass Mark 
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(now part of the RSA Identity Protection & Verification Suite) [52] , and Yahoo Mail’s 

sign-in seals [53]. 

 

In [54], they develop the BogusBiter, a client side based anti-Phishing tool which feeds a 

relatively large number of bogus credentials to the Phishing website. They hope to cover 

the real user credentials by flooding the Phisher many fake ones generated by their 

system. The main limitation for this mechanism is it can only provide a second layer of 

defense from the Phishing attack. Their tool only activates after the browser based anti-

Phishing tool bar has identified the website as a suspected Phish. BogusBiter then 

attempts to increase the difficulties for the Phisher to use the acquired credentials. The 

second limitation (also mentioned in their work) is that by using some filtering 

techniques such as meaningful-word and statistical filtering, the Phisher is still able to 

pick out the valid credentials from a large number of invalid credentials. They also 

mentioned the nonstandard login web page can also be used to increase the difficulties to 

deploy this mechanism to the real world scenarios.   

 

We believe that any effective Anti-Phishing solution must be robust against the 

counterattacks of determined, inventive adversaries. This means that it is not enough to 

find features that discriminate Phishing web pages from legitimate pages; those features 

must also be extremely difficult or impossible for the Phisher to alter. Our approach is to 

examine the Phishing scam and find a critical item in the scam that cannot be changed 

without severely weakening the effectiveness of the scam. By finding such critical 
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characteristics of Phishing websites, we can design a classifier that is robust against the 

Phishers efforts to defeat it. 

 

4.3 A Key characteristic of Phishing websites 

Phishing websites usually look similar to a legitimate website, but not exactly the same. 

Designing a visually similar webpage is a crucial step in the Phishing scam. On arrival at 

a website (the point between stages three and four of the scam), a user faces a choice: 

they must either choose to believe that the site is legitimate, or that it is a fake. This 

choice is not made after a period of reflection; instead, the user looks for the 

“supersignal” of a recognized, trusted website. This decision is clearly for the Phisher; if 

the user is suspicious at this point, they will probably not provide their account 

credentials, and the scam fails. Thus, the Phisher must craft a page that closely imitates 

the legitimate page, causing the user to erroneously recognize the supersignal of the 

legitimate page. Once this decision is made, psychological studies [2] tell us that it is 

unlikely to be revisited until a significant amount of contrary evidence is observed. 

Therefore, a visually similar webpage becomes an inevitable element in the Phishing 

scam – and thus a characteristic that can be considered as a fundamental component of a 

Phishing attack. Although a Phisher’s goal is to make the Phishing website as similar to 

the legitimate website as possible, there are still differences between them. This is mainly 

due to the frequent updates of the legitimate website. Pictures, advertisements, and new 

information are renewed by the legitimate webmaster from time to time to keep the site 

fresh and interesting to users. Phishers, however, do not expend the effort on such 

renovations, leading to a difference. As long as the users believe they are browsing the 
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legitimate website, this small difference is irrelevant to the Phisher. Thus, by detecting 

visual similarity between an unknown page and a known legitimate page, we can 

recognize an attempt to trick the user. Because this attempted deception is critical for the 

Phisher, we believe that Phishers will not be able to alter this attribute of their sites to 

avoid detection. This attribute seems robust against anything short of a wholesale 

revamping of the current Phishing model. 

 

A key point to note is that using Phishing web pages to test a similarity algorithm 

immediately gives us an excellent “ground truth” for our evaluations. The authors of 

Phishing toolkits (who are now usually professional Internet criminals) go to great 

lengths to craft fraudulent pages that will fool human beings. This means that we can 

assume that captured Phishing pages will be perceived as highly similar to the legitimate 

brand they imitate; to the point that human beings will confuse them even with significant 

financial consequences at stake. Furthermore, monitoring sites such as the Phish Tank 

provides us with a corpus of Phishing web pages that essentially covers the entire domain 

of interest (current Phishing scams); the entire purpose of the Phish Tank is, after all, to 

provide “accurate and actionable” information to the anti-phishing community [55]. In 

contrast, corpora for Web clustering or search cannot possibly both cover the entire 

domain of “clustering webpages” or “finding relevant webpages” and provide a ground 

truth for that corpus. For instance, [11] created a corpus of 1.6 billion web pages by using 

the Google web crawler, in order to compare two existing similarity algorithms. However, 

as they freely acknowledge, it was impossible to create a ground truth for this dataset (i.e. 

what pairs of web pages would in fact be perceived as highly similar). In [16],  they 
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attempt to use human-created web directories (e.g. Yahoo! or the Open Directory Project) 

to create a ground truth, based on the relative position of two documents in the directory 

tree (the “familial distance”). The key assumption is that document similarity is 

monotonically related to this familial distance; however, as the authors acknowledge, this 

is not always so. Importantly, no evaluation or estimate of how frequently monotonicity 

fails is provided; thus, this evaluation metric cannot truly be said to be a ground truth. 

Our approach, by contrast, is a ground truth based on human perceptions. This does not 

mean (and we do not claim) that the NCD technique by itself is a complete anti-phishing 

solution.   

 

Our choice of the NCD technique is intended to overcome the primary weakness of 

feature-based similarity comparisons: the ability of a Phisher to easily craft a web page 

that seems visually similar to the legitimate page, but is not detected as such. The 

problem has some parallels to preventing message forgery in cryptographic systems; the 

mapping from the original to the encrypted message should be extremely difficult to 

reverse-engineer. The central characteristics for a successful encryption are confusion (a 

complex, non-monotonic mapping from plaintext to cipher text characters) and diffusion, 

which is the scattering of information across a message. However, Phishing scams cannot 

be dealt with using cryptographic techniques, because the human user accepts many 

similar “messages” as being identical – whereas cryptographic techniques such as AES 

map a one-bit difference in the plaintext to a change in 50% of the bits in cipher text. 

Such approaches are not congruent to human perceptions. We do believe, however, that 

the characteristic of diffusion is useful in preventing the Phisher from reverse-
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engineering our similarity technique and finding an economical countermeasure. NCD, 

being based on compression techniques, naturally makes use of information (in 

Shannon’s sense) that is diffused throughout the image of a web page. Thus, we feel our 

NCD technique is likely to be highly resistant to obfuscation countermeasures. 

 

As shown in Figure 4.2, Figure 4.3 and Figure 4.4, there are slight differences between 

the legitimate and Phishing websites targeting them. These real world web pages were 

collected from the Phish Tank [55] through 20/05/08 to 22/05/08. We can clearly observe 

that the text, pictures, links, and web structure in the Phishing web pages are not identical 

to the legitimate one.  In the next section, we will report on experiments that demonstrate 

the utility of our similarity-based approach to detecting Phishing scams. The Phishing 

web pages used in these experiments are actual Phishing pages drawn from the Phish 

Tank [55], demonstrating that the method works in current real-world scenarios. 
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Figure 4.2 The Legitimate BOA web page 

 

 
Figure 4.3 The Phishing BOA web page 
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Figure 4.4 The Phishing BOA web page 

4.4 Goals, research and hypothesis  

We have discussed our webpage similarity approach, and the domain we are going to 

apply this approach to (anti-Phishing). Now we are going to explain our research work 

plan. Our long-term goals, research and hypothesis can be stated as follows: Can repeated 

research efforts and results into improving the representation of a supersignal (both the 

initial representation and the compression component) continually provide mechanisms 

which will defeat Phishers’ attempts to construct effective Phishing web sites? We view 

these Phishing web sites as a “moving target”; as researchers produce mechanisms to 

prevent successful phishing attacks, Phishers will in turn produce new mechanisms to 

circumvent these defensive measures.   
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Our short-term goal, research and hypothesis (and the principal application in this thesis) 

can be stated as: Can an initial representation of a supersignal (both the initial 

representation and the compression component) defeat Phishers’ current attempts to 

construct effective Phishing web sites? We will explore this hypothesis in the remainder 

of the thesis by empirically evaluating our initial representation against current Phishing 

sites found “in the wild.” We have considered several possible representations of a 

supersignal (the DOM tree; the HTML code; the link structure of a page). We have 

chosen the rendered web page as the initial representation because that – and not, for 

instance, the DOM tree or HTML code – is what the user perceives at a web site. We 

therefore render the webpage and capture a high-resolution image representation thereof. 

And hence, subsequently two such images are the input to the compressor stage which 

produces the NCD value for the decision making process. 
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Chapter 5 Our Empirical Proof-of-Concept Evaluation  

 

We conducted four experiments to validate our method for measuring similarity between 

web pages. Due to the fact that all the samples are from the real world, this objective is 

combined with an assessment of our proposed similarity-based system for recognizing 

Phishing web pages. The first experiment, “12 Pairs” was designed to test if pairs of 

highly similar websites could be matched together while being distinguished from less-

similar pages. The second experiment, “Clustering” was designed to test whether we 

could find a cluster of similar pages within a larger group of dissimilar pages (i.e. to see 

if any successes from the “12 Pairs” experiment generalize to uneven distributions of 

similar and dissimilar web pages). Thirdly, we perform a large-scale experiment 

specifically to test the ability of our similarity measure to distinguish between legitimate 

and Phishing web pages. This last experiment involved a control group of 120 

comparisons between legitimate websites (legitimate versus legitimate), and 320 Phishing 

web pages targeting those sites (Phishing site versus the legitimate they imitate). We 

analyze these results using both statistical tests for a difference in means, and using the 

ROC curve for a putative decision-threshold classifier. Finally, we conduct a small scale 

test of possible obfuscations (based on image-processing techniques) to examine the 

robustness of our similarity technique. 

 

In using the NCD, one key decision is which of the many compressors in the literature 

will be employed. There is very little guidance in the literature on this point; the most 

significant result available is that NCD is skewed by the size of the objects to be 
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compared due to internal buffer limits in certain compression algorithms [56]. Moreover, 

our problem domain consists of rendered web pages. Converting a fundamentally 2-

dimensional object (a rendered web page) into a one-dimensional string (i.e. treating an 

image as a row-major array) seems likely to destroy the spatial relationships in the image. 

However, among the very limited work in applying the NCD to images, there is virtually 

no exploration of two-dimensional compression techniques (e.g. the wavelet-based 

approach in JPEG images). [57] only used black and white images; [58] and [59] 

explored NCD for grayscale images, and [60] used grayscale textures, all employing 

string-based compressors. In [61], they created a new distance based on parsing the 

dictionary of a (one-dimensional) Lempel-Ziv-type compressor and applied it to color 

images. The only usage of a two-dimensional compressor in the NCD we could find was 

an image co-registration algorithm that compared JPEG and bzip2 [62], and this also 

examined sets of monochrome images (the red, green and blue channels were separated).  

 

The paucity of guidance on applying NCD to images means that we need to select our 

compressors by considering how browsers render web pages from first principles. The 

web page’s source code (written in one or more markup and/or scripting languages) must 

be transformed into a visual representation by a fault-tolerant browser; indeed, browsers 

will render web pages even if they contain substantial errors [63], following the display 

preferences set by individual users. This means that even the same webpage might not be 

rendered to the same dimensions for two different users, and might be rendered quite 

differently by different browsers; this includes the size of the rendered image! Two-

dimensional compressors require a rectangular image and thus “concatenating” two 
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images of differing sizes (an essential step in the NCD) makes no logical sense. (Note 

that we cannot just concatenate files; two-dimensional compression is only appropriate 

for image data, not the headers of a JPEG file!) A one-dimensional compressor, on the 

other hand, imposes no such requirement. Furthermore, the co-registration results of [62] 

for the bzip2 compressor indicate that one-dimensional compressors can be relatively 

robust against spatial shifts (the relative variation of the NCD values is quite small under 

translation). These reasons provide a sound rationale for the use of one-dimensional 

compressors with a row-major image representation in our experiments; while this means 

we are following existing practice in applying the NCD to images, previous work has not 

developed a sound foundation for these choices. We are also applying the NCD to RGB 

color images rather than monochrome images. 

5.1 The Twelve-pairs Experiment 

The objective of this experiment is to see if we can group twelve legitimate web pages 

and twelve Phishing pages each targeting one of these pages together in pairs. Based on 

the argument that a legitimate page and a Phishing page targeting it are highly similar to 

one another, this experiment also tests the validity of our proposed similarity metric. The 

expected result for this test is that each legitimate page and its single Phish will be paired 

together as the most similar to one another, for all twelve pairs. 

5.1.3 Design and methodology 

We collected 12 different legitimate web pages and 12 Phishing web pages targeting 

them as the samples in this experiment (Table 5.1).We chose financial websites in Table 

5.1 based on the frequency with which Phishing sites attempt to imitate them. The Phish 
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were captured in the PhishTank [64]. In addition, one Italian and one Spanish website are 

added to the group to check if there was a language or regional dependency in our 

similarity metric. There are a total of 24 samples in this test, each of which is compared 

against all 23 other samples.  We use blocksorting [38] as the compressor for this 

experiment. Note that, although NCD is theoretically a distance metric (and therefore 

commutative), in practice this would require a “perfect” compression algorithm, which 

does not exist. Thus, the NCD values we observe are not commutative. Therefore, all the 

NCD values shown below are the average value of both orderings of every two websites. 

Lower NCD values indicate greater similarity (i.e. we consider distance the inverse of 

similarity). 

Table 5.1 Samples list for 12 Pairs test 

Name of the website Collection date 
(yy/mm/dd) 

1. ArkValley 08/02/26 

2. BancadiRoma(it) 08/02/26 

3. Chase 08/02/26 

4. CitiBank 08/02/26 

5. FifthThird 08/02/26 

6. ibercajadirecto(es) 08/02/26 

7. LloydsTSB 08/02/26 

8. RBC 08/02/26 

9. USBank 08/02/26 

10. Wachovia 08/02/27 

11. WaMu 08/02/27 

12. NatWest 08/02/28 

 

5.1.4 Interpretation of results 

Consider the Royal Bank of Canada (RBC) website as an example. The NCD values 

shown in Table 5.2 are the NCD of the remaining 23 samples against the legitimate RBC 

website (RBC-L). The “-L” in this table refers to the legitimate website of that brand, 
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while “-P” denotes a Phishing webpage targeting that brand. Most of the NCD values are 

between 1.01~1.07. The values in Row 15 and 16 are different. An NCD of ~0 in Row 15 

(RBC-L against RBC-L) indicates that the algorithm properly finds that there is perfect 

similarity between a webpage and itself. NCD value 0.632, found in Row 16 (RBC-L 

against RBC-P) is far less than the values against the other 22 web pages. According to 

this result, we can say RBC-L is most similar to RBC-P in this group of web pages. 
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Table 5.2 The NCD values of RBC-L against other 23 websites 

Name of the website NCD value 

1.ArkValley-L 1.059 

2.ArkValley-P 1.047 

3.BancadiRoma(it)-L 1.029 

4.BancadiRoma(it)-P 1.031 

5.Chase-L 1.041 

6.Chase-P 1.055 

7.CitiBank-L 1.039 

8.CitiBank-P 1.052 

9.FifthThird-L 1.037 

10.FifthThird-P 1.051 

11.ibercajadirecto(es)-L 1.025 

12.ibercajadirecto(es)-P 1.025 

13.LloydsTSB-L 1.059 

14.LloydsTSB-P 1.057 

15.RBC-L 0.168 

16.RBC-P 0.632 

17.USBank-L 1.024 

18.USBank-P 1.040 

19.Wachovia-L 1.073 

20.Wachovia-P 1.073 

21.WaMu-L 1.048 

22.WaMu-P 1.050 

23.NatWest-L 1.013 

24.NatWest-P 1.013 

 

The same pattern holds true for all other websites; the most similar web pages are always 

a Phishing site against the legitimate site it targets. For example, the lowest NCD value 

for ArkValley-L is against ArkValley-P, and vice versa. As shown in Table 5.3, all 

twelve legitimate websites are paired against the Phishing sites targeting them. Again, the 

values reported for NCD are the average of both computations of NCD between two 

websites. To visualize these results, we have employed the quartet trees [65] as shown in  
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Figure 5.1. We selected this technique because the quartet-puzzling algorithm is based on 

identifying locally optimal pairings of elements (in the maximum-likelihood sense), 

which is a good match to the data we wish to visualize. We interpret  

Figure 5.1 as indicating that the twelve pairs have been successfully grouped together, as 

the two members of a pair always share the same parent node (i.e. the branch length 

between them is minimal). 
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Table 5.3 The NCD Values for all 12 Pairs 

Name of the website In Pairs NCD values 

1. ArkValley-L against ArkValley-P YES 0.558 

2. BancadiRoma(it)-L against BancadiRoma(it)-P YES 0.352 

3. Chase-L against Chase-P YES 0.748 

4. CitiBank-L against CitiBank-P YES 0.808 

5. FifthThird-L against FifthThird-P YES 0.890 

6. ibercajadirecto(es)-L against ibercajadirecto(es)-P YES 0.221 

7. LloydsTSB-L against LloydsTSB-P YES 0.284 

8. RBC-L against RBC-P YES 0.632 

9. USBank-L against USBank-P YES 0.834 

10. Wachovia-L against Wachovia-P YES 0.149 

11. WaMu-L against WaMu-P YES 0.218 

12. NatWest-L against NatWest -P YES 0.329 

 

5.2 The Clustering Experiment 

The objective for this experiment is to determine if the NCD similarity technique can 

detect a single “cluster” of highly similar web pages within a larger group of web pages. 

This experiment examines the performance of the NCD similarity technique when the 

groups of highly similar websites are not balanced in size. This is known as the 

imbalanced-dataset problem in machine learning (alternatively, the sample selection bias 

problem in statistical modeling), and can profoundly affect the performance of a model. 

The expected result in this experiment is that all of the highly similar web pages will have 

a lower NCD value against one another than against the dissimilar pages, and that pages 

outside of the “cluster” will have higher NCD values against one another. 
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Table 5.4 Sample list for the Clustering test 

Name of the website Legitimate/Phishing Collection date 
(yy/mm/dd) 

01-BOA-P Phishing 08/05/09 

02-BOA-P Phishing 08/05/09 

03-BOA-P Phishing 08/05/09 

04-BOA-P Phishing 08/05/11 

05-BOA-P Phishing 08/05/13 

06-BOA-L Legitimate 08/05/09 

07-Wachovia-L Legitimate 08/05/11 

08-LloydsTSB-L Legitimate 08/05/09 

09-AbbeyNational-L Legitimate 08/05/10 

10-NatWest-L Legitimate 08/05/10 

 

5.2.1 Design and methodology 

We selected BOA (Bank of America) as the legitimate website and collected five 

Phishing websites against it from the Phish Tank[55] from 08/05/09 to 08/05/13. Then 

four other legitimate, and highly popular, financial websites were collected from 

08/05/09 to 08/05/11. We selected financial websites because this should make the test 

more rigorous; conceptually, two financial websites should be at least somewhat more 

similar to each other than, say, an online auction site is to a bank website. These 10 

samples are shown in 

Table 5.4.The block sorting compression algorithm is used for the NCD calculation in the 

experiment.  
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Table 5.5 NCD Values Against BOA-L 

Website NCD value 

01-BOA-P 0.802 

02-BOA-P 0.741 

03-BOA-P 0.743 

04-BOA-P 0.704 

05-BOA-P 0.663 

06-BOA-L 0.183 

07-Wachovia-L 1.009 

08-LloydsTSB-L 0.990 

09-AbbeyNational-L 0.979 

10-NatWest-L 0.966 

5.2.2 Interpretation of results 

In Table 5.5, we present the NCD of each webpage against the legitimate Bank of 

America webpage. Rows 1 to 5 correspond to Phishing pages that target Bank of America, 

while rows 7 to 10 correspond to different, legitimate financial websites. There appears to 

be a considerable difference between the Phishing web pages targeting BOA and the 

other four financial websites. Therefore, we can say that the legitimate BOA website is 

more similar to the five Phishing websites targeting it than the other four websites in our 

experiment, and these six web pages should be clustered together. A quartet tree 

visualization of the NCD values is presented in Figure 5.2.  

 

5.3 The Large Scale Experiment 

The objective of this experiment is to test our proposed similarity-based Anti-Phishing 

technique on a reasonably large corpus of legitimate and Phishing websites. We collected 

16 legitimate websites, and 20 Phishing web pages targeting each of these sites (total 320 
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Phishing web pages). Our initial experiments (12 Pairs and Clustering) have supported 

our assumption that a Phishing page will be highly similar to the legitimate website it 

targets. Furthermore, they also indicate that a legitimate page and the phish targeting it 

will be more similar to one another than to other legitimate websites. Thus, in this 

experiment, we will contrast two populations: one consists of the pair wise NCD between 

all of the legitimate sites, while the other consists of the NCD between a legitimate site 

and each of the Phishing web pages targeting it. The expected result of this experiment is 

that there should be a statistically significant difference in the means of the two 

populations, specifically with the mean of the latter group being lower. 

 

5.3.1 Design   

Our goal in this experiment is to examine how the NCD similarity technique would 

perform in a realistic, browser-level Anti-Phishing scenario. Assume that we have access 

to a whitelist of legitimate websites, which represent the likely targets of Phishing scams. 

This whitelist mainly contains the genuine information of our legitimate websites such as 

the up-to-date webpage captured images for NCD similarity classification and the domain 

name information (name and registration date) for further Phishing identification.   

This is plausible because the number of brands that Phishers attack in  a month is 

relatively constant (at less than 131 in Jan, 2008), with a small number of brands (less 

than 15 in Jan, 2008) accounting for over 80% of all Phishing attacks [9]. When we visit 

a website, we automatically execute an image capture, followed by a comparison (using 

the NCD similarity technique) against all websites in the whitelist. If there is a strong 

similarity to one of the white listed sites (i.e. the NCD is unusually low), we signal an 
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alert. This experiment is designed to determine whether or not a population of Phishing 

sites exhibits a statistically significant difference in the mean NCD against their target 

brand when compared to differences between different, legitimate websites. If such a 

difference exists, then the NCD similarity technique is viable in the Anti-Phishing 

scenario we have outlined. 

 

Using the same criteria as in the previous experiments (frequency of phish targeting a 

legitimate site), we chose 16 legitimate websites (see Table 5.6). As discussed, the great 

majority of Phishing scams (more than 80%) active in any one month target as few as 15 

websites. We thus chose 16 as a reasonable number of legitimate sites to “protect.” These 

16 sites were also the most heavily phished during our collection period, allowing us to 

reach our goal of capturing 20 “live” Phishing web pages for each legitimate website. 

“Live” phish are Phishing web pages that have not yet been taken down from their host 

servers; we captured these phish by visiting them as soon as we observed them in the 

PhishTank [55] or the Broadway PhishTracker [66] during the period May 10-July 10, 

2008. 
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Table 5.6 Samples for the Large Scale Experiment 

Group One Group Two 

01-ebay-L 01-ebay-P1 ~ ebay-P20 

02-PayPal-Home-L 02-PayPal-Home-P1 ~ PayPal-Home-P20 

03-PayPal-L 03-PayPal-P1 ~ PayPal-P20 

04-Halifax-L 04-Halifax-P1 ~ Halifax-P20 

05-NatWest-L 05-NatWest-P1 ~ NatWest-P20 

06-BOA-L 06-BOA-P1 ~ BOA-P20 

07-ebay(it)-L 07-ebay(it)-P1 ~ ebay(it)-P20 

08-Wachovia-L 08-Wachovia-P1 ~ Wachovia-P20 

09-LloydsTSB-L 09-LloydsTSB-P1 ~ LloydsTSB-P20 

10-RBS-L 10-RBS-P1 ~ RBS-P20 

11-AbbeyNational-L 11-AbbeyNational-P1~ AbbeyNational-P20 

12-PosteItaliane(it)-L 12- PosteItaliane(it)-P1 ~ PosteItaliane(it)-P20 

13-HSBC(uk)-L 13-HSBC(uk)-P1 ~ HSBC(uk)-P20 

14-Cartasi-L 14-Cartasi-P1 ~ Cartasi-P20 

15-WellsFargo-L 15-WellsFargo-P1 ~ WellsFargo-P20 

16-eppicard-L 16-eppicard-P1 ~ eppicard-P20 

Total samples count 

16 16*20=320 

 

We designed two groups in this experiment (shown in Table 5.6). The samples for group 

one are the 16 legitimate websites. The samples for group two are the 320 Phishing 

websites targeting the legitimate websites in group one. 

 

5.3.2 Methodology 

Two populations of NCD values are generated in this experiment, using the blocksorting 

compressor. Firstly, we compute all possible pair wise NCD values for the websites in 

group one (note that the NCD is, at this time, only defined for the comparison of two 

objects). This population represents the expected NCD between two different, legitimate 

sites, and is the control group for this experiment. The computation results in a 16*16 
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matrix; the diagonal values should be removed (NCD(x,x)~=0), and the corresponding 

entries in the upper and lower triangle of the matrix are aggregated together, yielding 

(16*16-16)/2=120 elements in this population. We have used both the arithmetic mean 

and the maximum to aggregate each of the two corresponding NCD values; there is 

currently no guidance available on which would be the more effective choice. Our 

decision to use the pair wise differences between our legitimate sites seems likely to 

cause an over-estimate of the false positive rate in our experiments; the 16 brands all 

have highly similar objectives, will likely share at least some common text, and the 

structural layout of the pages should be more similar than would a white list site and a 

random site. Given the importance the anti-Phishing community places on minimizing 

false positives, this seems to be a reasonable approach. To form the second population, 

we computed the NCD between each Phishing page and the legitimate page it targets. As 

we have captured 20 Phishing pages for each legitimate page, this yields 320 elements in 

the group two populations (again, we compute the average and maximum of the two 

NCD values). 

 

Our hypothesis is that the NCD values in group two are significantly less than group one. 

As we have more than 300 samples, we choose to employ the z-test for sample means to 

test this hypothesis. We repeat this experiment for both aggregating the NCD values by 

the arithmetic mean, and for aggregating by the maximum operation. Note that both the 

group one and group two populations are different in each of these repetitions, so the 

results are independent. 
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5.3.3 Interpretation of Results 

The results of the z-tests are given in Table 5.7 (aggregation by average) and in Table 5.8 

(aggregation by maximum). In both cases, we reject the null hypothesis with p <0.05, and 

so we conclude that our original hypothesis – that NCD values in group two are 

significantly less than group one – is supported. Furthermore, it appears that the choice of 

using arithmetic mean or maximum to aggregate corresponding NCD values does not 

influence this outcome. Thus, the NCD similarity technique is a viable Anti-Phishing 

strategy.     

 

Table 5.7 Results From the Z-Test for Average 

Two Sample for Means 

  
Legitimate vs. 
Legitimate 

Legitimate vs. 
Phishing 

Mean 1.005 0.745 

Known Variance 0.001 0.087 

Observations 120 320 

z 15.577 

P(Z<=z) one-tail < 0.001 

z Critical one-tail 1.645 

 

Table 5.8 Results From the Z-Test for Maximum 

Two Sample for Means 

  
Legitimate vs. 
Legitimate 

Legitimate vs. 
Phishing 

Mean 1.005 0.745 

Known Variance 0.001 0.087 

Observations 120 320 

z 15.578 

P(Z<=z) one-tail < 0.001 

z Critical one-tail 1.645 

 



 54 

5.4 Effectiveness as an Anti-Phishing Classifier 

The viability of our proposed approach has been evaluated in three experiments. 24 

samples (12 legitimate, 12 Phishing), 10 samples (5 Phishing, 1 matching legitimate, and 

4 other legitimates), and 440 samples (120 pairings of legitimate sites, 320 Phishing) of 

real-world web pages are used in these three experiments, respectively. In our small-scale 

“12-pairs” and “clustering” experiments, the NCD technique was 100% accurate in 

grouping a legitimate page with Phish targeting that brand. In our large-scale test (which 

simulates a reasonable client-side anti-Phishing scenario), a z-test reveals that the NCD 

between a Phish and its target brand is significantly less than that between two different, 

legitimate sites. 

 

The results presented in Table 5.7 and Table 5.8 show that our similarity metric is able to 

distinguish highly similar pages from dissimilar pages. However, since our technique 

seems effective in detecting (in a statistical sense) phishing pages, it is only sensible to 

inquire what the performance of this technique would be if it were used specifically as a 

classifier. For this discussion, we assume that we are implementing a simple decision 

threshold over the NCD values, with no other features. 

 

Anti-phishing researchers often evaluate their algorithms using two interrelated metrics: 

the true positive rate (true positives divided by the sum of true positives and false 

negatives) and the false positive rate (false positives divided by the sum of false positives 

and true negatives). (Note that these measures are equivalent to sensitivity and (1-

specificity) in the medical diagnostic testing literature.) However, the two measures are 
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not considered equally important; false positives are extremely annoying to the average 

user, and even a fairly low false positive rate may well lead to the abandonment of the 

system [29]; [67, 68]. In the machine learning literature, whenever such differential error 

costs are present, it is customary to analyze the performance of a classifier using the 

Receiver Operating Characteristic (ROC) curve [69]. The ROC curve is a plot of true 

positive rates against false positive rates, under a variety of “tradeoffs” between 

improving one metric or the other. The ROC curve allows one to visualize the 

capabilities of a classifier when the analyst is concerned with different costs (penalties) 

associated with false-negative errors versus false-positive errors, and to compare two 

different classifiers in the presence of differential error costs. 

 

Our analysis in this section is a different presentation of the same results from Table 5.7 

and Table 5.8. Instead of a z-test, we subject the NCD values to a simple threshold-based 

decision rule: if the NCD value is less than the threshold, we judge the page in question 

to be a phish targeting one of our protected pages; if it is greater, we deem the page 

legitimate. We vary the threshold across an adequate range to produce false positive rates 

from 0% to roughly 100%. The spacing of thresholds is non-uniform so as to reduce the 

importance of interpolations in the ROC curves. (The distribution of NCD values for 

legitimate sites has a much smaller variance than that for phishing pages against their 

targets, meaning there could be a large jump in FP rates for uniformly spaced thresholds.) 

We again compare aggregating NCD value pairs using the arithmetic mean or the 

maximum value. In addition, we also compare two different one-dimensional 

compression techniques: the Blocksort algorithm [38] and the LZMA algorithm [70, 71]. 
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(See our discussion at the beginning of Chapter 5 for our rationale in choosing one-

dimensional algorithms.) Plainly, these represent only two out of a great many possible 

choices of algorithms. At this time, we are not aware of any theoretical rationale for any 

given compression technique in this class to be more or less effective in computing the 

NCD value, and so we have simply picked two well-known techniques. These 

comparisons should thus be considered initial explorations of the impact of different 

compression techniques on an NCD-based decision threshold classifier. 
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Figure 5.3 ROC curve for Blocksort, aggregated by arithmetic mean 

 

As can be seen in Figure 5.3, Figure 5.4, Figure 5.5 and Figure 5.6, an NCD-based 

decision-threshold classifier would work extremely well on this dataset. The classifier 

would achieve a true positive rate of roughly 95% with a false positive rate of less than 

1.7% for all combinations of compression algorithm and aggregation technique. At the 

“corner” of the curves, LZMA is slightly superior (TPR = 95.6%, FPR = 0.8%), but this 

difference is miniscule; it amounts to one less false positive at the true positive rate of 

95.6%. This compares favorably with existing anti-phishing techniques (excluding 
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blacklist-based approaches) such as CANTINA [72](TPR = 97%, FPR = 6%), or 

SpoofGuard [46] [72] [72] (TPR = 91%, FPR = 48%), and is similar to the more recent 

hybrid approach in [73] (TPR = 90.06%, FPR = 1.95%). 
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Figure 5.4 ROC curve for Blocksort, aggregated by maximum value 
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Figure 5.5 ROC curve for LZMA, aggregated by arithmetic mean 
 

In Table 5.9, we compare our results at the “corner” of the curves with CANTINA, Spoof 

Guard, and the new hybrid method. We present five measures: the first is Cohen’s Kappa 
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statistic [74], which measures the chance-corrected agreement between the actual and 

predicted classification. Chance-correction means that the Kappa statistic explicitly 

accounts for classification biases due to uneven class distributions. Matthew’s 

Correlation Coefficient (MCC) is equivalent to Pearson’s correlation coefficient for 

binary data [75]. Precision and Recall are normally presented together, as with TP and FP 

rates; precision represents the fraction of examples labeled positive that were in fact 

positive, while recall is again the true positive rate. Finally, the F-Measure is computed as 

2*(precision*recall)/ (precision + recall). (Technically, this is the F-1 measure.) As can 

be seen, our similarity technique with either compressor (there was no difference between 

averaging & maximum value) compares favorably with the three existing techniques on 

all five measures. Additionally, LZMA is slightly superior to Blocksort, but only by a 

small amount. These results also support our earlier finding that our similarity metric 

effectively discriminates between similar and dissimilar websites. They also indicate that 

our technique is at least potentially robust against different choices of compression 

algorithms. This is an important practical finding, as different algorithms may have 

radically different computational demands (in both time and space), rendering some 

ineffective on mobile Internet-enabled devices. LZMA, for instance, is a fast and 

memory-efficient algorithm [70, 71].   
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Figure 5.6 ROC curve for LZMA, aggregated by maximum value 

 

Table 5.9 Comparison Against Existing Anti-Phishing Solutions (Without Blacklists) 

 Kappa MCC Precision Recall F-Measure 

Blocksort 0.9058 0.9082 0.9935 0.9531 0.9729 

LZMA 0.9169 0.9193 0.9967 0.9563 0.9761 

Hybrid 0.8345 0.8427 0.9904 0.9006 0.9434 

CANTINA 0.91 0.9104 0.9417 0.97 0.9557 

SpoofGuard 0.43 0.47 0.6547 0.91 0.7615 

 

5.5 Robustness against Countermeasures 

We have argued that our similarity technique could be robust against Phishing 

countermeasures because it does not use localized features. In this section, we will test 

this claim using obfuscations based on image processing techniques. This analysis will 

also indicate how our similarity technique will perform in general when a web page is 
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obfuscated, either deliberately or accidentally. However, the key characteristic of 

obfuscations employed by Phishers is that they are deliberately chosen by these 

adversaries. The sheer variety of possible obfuscations that an adversary could employ to 

alter the Phishing image has never been considered in the limited existing literature.  

Human experts readily recognize the difference between innocent similarity and fraud; 

crafting a computer-based technique to do so is another matter entirely. 

 

Our threat model for these experiments assumes that the Phisher will attempt to evade our 

similarity technique by manipulating the phishing page. Note, however, that our analysis 

of the Phishing scam in Section 4.3 leads us to argue that changes which are noticeable to 

the human being lead to the failure of the scam. Thus, the changes the Phisher makes 

must pass unnoticed. Specifically, while the Phisher’s goal is still to hijack a known 

brand by visually mimicking the page, they will also attempt to introduce discrepancies 

which are not visible to the human viewer but are significant to the system evaluating the 

similarity metric. Clearly, the Phisher has a wide variety of options for pursuing this 

objective and it is impossible to visualize all of the possibilities. Therefore, in this section, 

we will seek to provide some initial explorations of this possibility. The results of these 

explorations seem to hold over a wide range of web pages; however, in this section, the 

results will be given for a single (legitimate plus Phish) pair, and only for the NCD 

average value, for the sake of brevity. The pair was randomly selected from the set of 

pairs with low NCD values before obfuscation; this allows us to observe how 

progressively increasing the distortion impacts the NCD values.  In these trials, we utilize 
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the LZMA compressor as it seems to perform slightly better than Blocksort in the anti-

Phishing classifier, and is known to be fast and memory-efficient. 

 

We assume that the most likely attack possibilities are to change “small” details in the 

image; that is, in general, the Phisher will work at the pixel level. Broadly, these types of 

changes can be characterized into two types: 

 

• Non-structural Distortions (such as Luminance Changes,  Contrast Changes, 

Chromatic Distortions,  Spatial Shifts, etc) 

• Structural Distortions (such as Noise Contamination, Blurring, JPEG Blocking, 

Wavelet Ringing, etc) 

 

Structural Distortions are unlikely to be effective attacks as they introduce “unnatural” 

characteristics into the image. Images representing web pages are computer generated 

and tend to not suffer from structural distortions. By contrast, many non-structural 

distortions do not degrade image structure or quality and hence are more difficult to 

detect. Hence in this section, we will first explore the potential impact of introducing 

such non-structural distortions into phish as the detection of these types of distortions is 

not perfect. Non-structural distortions based upon spatial shifts will not be actively 

explored as the compression techniques used in this thesis are robust against spatial shifts 

which do not impact luminance, contrast, or chromatic characteristics. Unless otherwise 

stated, the legitimate image is left unaltered in these experiments. 
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5.5.1 Non-Structural Distortions 

Our design for this experiment employs the decision-threshold classifier explored in 

Section 5.4. As this is only a preliminary exploration, we are only comparing a single 

legitimate page against one phish targeting it. We introduce controlled levels of non-

structural distortion into the image, and seek to determine what level of distortion results 

in an NCD value exceeding the “best” decision threshold (from Figure 5.3, Figure 5.4, 

Figure 5.5, Figure 5.6). We then have two judges visually compare the original and 

obfuscated Phish. For this experiment, the non-structural distortion is a replacement of a 

pixel value with one of its immediate neighbors (i.e. one of the eight pixels surrounding 

the chosen one in a 3x3 convolution mask). We control the level of distortion by varying 

the fraction of pixels chosen for replacement in the image, from 1% to 99%. 
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Figure 5.7 The effects of local noise on NCD values 

 

Figure 5.8 Phish before 40% of the pixels have been changed. 
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Figure 5.9 Phish after 40% of the pixels have been changed. 

 

Figure 5.7 demonstrates a monotonic relationship between the level of the distortion and 

the NCD value. In the left-hand side of the figure, the NCD value rises steadily; the x-

axis labels “P-Rxx” encode the level of distortion, which begins at 1%, and rises by one 

percentage point for each category on the left-hand portion of the plot. In the right-hand 

portion, the NCD value approaches and exceeds the decision threshold value. Using 

thresholds determined from Section 5.4, the phish is still correctly classified with 40% 

distortion, but becomes a false-negative error with 60% distortion. We then submit the 

legitimate and phish pages to our two judges, who unanimously agree that the phish no 

longer mimics the legitimate web page at 60% distortion – nor at 40%. In Figure 5.9, we 

present the phish before and after 40% distortion; we believe it is clear that the Phisher 
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would now have failed in their principal objective of visually mimicking the legitimate 

page.   

 

5.5.2 Structural Distortions 

This experiment explores the issue of detecting “pure” structural distortion. While most 

distortions have some structural impacts, especially at higher “noise” levels, several types 

of distortions are considered to be principally structural. Our experimental design is the 

same as in Section 5.5.1: a controlled level of distortion is introduced into one Phish 

targeting one legitimate page, and we compare the resulting NCD values against the 

decision threshold. The legitimate and Phishing pages are then presented to our two 

judges for comparison. In this experiment, we are introducing random noise into the 

image; this is done by selecting a fraction of the pixels in an image, and randomizing the 

RGB color values for those pixels.    
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Figure 5.10 again shows a monotonic relationship between the distortion level and the 

NCD value. The decision-threshold classifier is expected to return a false-negative result 

for distortion levels above 3%, perhaps indicating that our similarity technique is more 

sensitive to this type of noise than to non-structural noise. However, both judges agreed 

that 3% distortion made the legitimate and obfuscated phish pages distinct (see Figure 

5.11). Again, the level of noise required to fool our similarity technique is great enough 

to be obvious to a human observer. 

 

These results are consistent with the existing literature on the NCD metric, which 

generally shows it is quite robust against noise. In [76] they studied how the NCD is 

affected by noise in the symmetric channel model, in which a random positive integer is 

added to individual bytes in a file, with the outcomes constrained to the legal domain for 

values in that file. For instance, genome data is limited to these characters such as A, C, 

G, T, while text bytes could be any ASCII character, and bytes in a MIDI file can be any 

integer value in [0,255]. Both theoretical analysis and empirical testing showed that 

NCD-based clustering degrades slowly with increasing levels of noise. In [77] they 

examine a noise model in text corpora, in which some percentage of the words in the 

corpus are distorted by either replacing characters at random, or by replacing characters 

with asterisks. Six variations on this noise model were tested, and a cluster validity 

measure was computed from a dendrogram of the corpus. In this case, the NCD was very 

resilient when the most frequent words were distorted, but less so when words were 
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randomly chosen. Finally, as noted earlier, the NCD seems to be resilient against 

translations [62]. 

 

In Figure 5.10, we compute and plot an additional metric, the Structural SIMilarity 

(SSIM) metric [78]. This is an “image quality” metric, which has been empirically shown 

to “match” human assessments of image quality in a number of experiments, e.g. [79]. 

We provide this metric to sketch a possible use of our similarity technique as a feature in 

a robust anti-Phishing classifier. We believe this is the most appropriate usage of our 

similarity technique in a realistic anti-phishing scenario; the NCD feature is highly 

discriminative, and a well-designed anti-phishing system should incorporate other 

complementary features to help defeat Phisher counter-measures. In this experiment, the 

SSIM values also change dramatically as the distortion level rises. 
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Figure 5.11 Phish before and after 3% structural distortion 
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We selected the SSIM metric because it is effective in detecting both structural and non-

structural distortions. Many non-structural distortions do not degrade image structure or 

quality and hence are more difficult to detect. However, SSIM is known to be effective at 

the detection of global luminance shifts and contrast stretching [80]; in addition, a 

chromatic-variant of SSIM [81] has been shown to be effective at detecting many 

chromatic, non-structural, distortions. However, as both the legitimate and Phishing 

pages can reasonably be considered montages of inter-related but independent images, it 

is unclear how successfully SSIM will be at detecting non-structural distortions. Further 

empirical analysis will be required to determine if SSIM remains effective in this context. 

 

SSIM, like NCD, is a full reference technique and as the number of brands being phished 

increases a risk exists that its discrimination performance will not scale. Under these 

circumstances, it may be necessary to adopt a no-reference image assessment approach 

(e.g. [82] [83] [84]). It should not be inferred from these experiments that the visual 

similarity metric is impervious to Phisher countermeasures. It is believed that all Phishing 

page detection techniques have limitations, and the visual similarity metric is likely to 

have limitations which the determined Phisher can expose by undertaking some form of 

image manipulation on their phishing page.  However, just as the Phisher can manipulate 

their page, the authors can manipulate the similarity detection approach to counteract 

these manipulations. For example, extending the similarity approach to include image 

reconstruction [85] and seam carving [86] components represents interesting “defensive” 

possibilities. 
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5.6 Other related works 

In the anti-Phishing literature, [5, 87] are the most closely related research results to the 

experiments reported in this thesis. In [87], they analyzes the similarity of web pages by 

comparing HTML tags in the pages. By extracting and comparing regular sub-graphs 

from the DOM tree representation they construct similarity metrics using webpage 

structure. Their approaches experienced significant false positive rates; for the 

identification of 200 Phishing web pages, the approaches experienced false positive rates 

of 16.90% and 30.29% for the isomorphic subtree identification algorithm and simple 

tags comparison approach, respectively. Moreover, Phishers can avoid this mechanism by 

using a combination of images to create a Phishing website that is visually recognized as 

the legitimate website (as we did with eBay in Figure 2.3). Due to the huge difference in 

webpage structure, this synthetic Phishing webpage easily evades the similarity metric in 

[87]. 

 

Another closely related approach is presented in [5]. They first convert the webpage into 

low resolution images, and then extract features from this image (dominant color 

category and the corresponding coordinate). The Earth Mover’s Distance approach (EMD) 

is then employed to create a feature-based similarity metric. In their evaluation, they 

demonstrated 8 Phishing web pages (collected from the authors own email accounts) 

could be successfully identified within a collection of legitimate web sites. This approach 

again appears vulnerable to obvious countermeasures. 
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In [88], they use three features which are text pieces/style, images embedded in the pages 

and the overall visual appearance of the page to identify the Phishing webpages. They 

compare 41 real Phishing webpages against their corresponding target legitimate 

webpages. Their overall were FPR=0% and FNR=7.4% (two Phishing pages were 

missed). Again, their attempt to identify Phishing sites via a feature-based method 

appears vulnerable to common countermeasures.   
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Chapter 6 Review of Compression Algorithms 

6.1 Introduction  

Our experiments in Chapter 5 have demonstrated that our similarity technique is a viable 

approach to constructing an anti-Phishing mechanism. We now turn our attention to 

optimizing this system. The literature on the NCD technique plainly indicates that the 

choice of compressor used is the most important “parameter” in the algorithm, and so 

must be optimized first. As our input samples are images, we have the choice to compress 

our subject in a byte-stream or data (one dimensional) fashion or in a rectangle-image 

(two dimensional) fashion. This two dimensional characteristic makes image 

compression algorithms different from data compression algorithms. Images can also be 

compressed in a lossy fashion due to the limits of human vision; this potentially provides 

higher levels of compression. We will review several popular compression algorithms in 

this chapter, which will be used in the experiments in the following chapter. We divide 

our discussion below into data (1-D) and image (2-D) compression algorithms. The 

development of new compression algorithms is an ongoing field of research, and it is 

obviously impossible to test every available compression technique. For our purposes, 

given that our usage of the compressors was (almost certainly) not contemplated during 

their design, we focus only on well-known, widely-used compression algorithms. These 

techniques will at least have the advantage of well-understood properties, observed across 

a huge number and variety of compression tasks. The generalizability of newer and less-

used techniques outside of their design specification is at least more questionable. 
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6.2 Data compression  

Data compressors commonly use either statistical, dictionary or block sorting methods to 

find and remove redundancy from the input stream. Then the compressed data can be 

decompressed back to the same representation as the original input. 

       

6.2.3 Statistical methods 

            Statistical methods assign fixed-size codes to the symbols that appear frequently in the 

input stream. In other words, it is an algorithm based on the probability of occurrence of 

the symbols. Statistical compression methods commonly have two phases:  

1) The modeling phases in which probabilities are assigned to each symbol. A 

statistical model will count the frequency of occurrence of each symbol in the input 

stream up to the current point.  

2) The coding phase, which encodes the symbol according to its observed probability. 

 

The statistical model for compression can be either static or dynamic. Fixed probabilities 

are used in the static model. Usually it is effective when compressing certain known, 

specific types of objects. For example, in the typical English written text object, the 

letters “E, A, I, R” appear very often. On the contrary, the letters “Z, X, J, Q” are 

relatively rare. By using the letter frequency table [89] as our static model, we can 

compress the English text object effectively. The dynamic or adaptive model modifies the 

statistical model according to the symbol stream observed from the compressor input. For 

example, assume 112 symbols have been processed by the compressor, of which seven 

are the symbol “m”. If the next input symbol is “m”, the probability 7/112 is assigned to 
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it; and the count for “m” is increased by one. The next time “m” shows up in the input 

stream, the probability will be 8/T, where T is the total number of input symbols at that 

time point. (The dynamic model is also called an adaptive coder.)   

 

Most of the statistical models are established by either the frequency approach or context 

approach. The frequency approach is to assign the probability by the symbol’s frequency 

of occurrence. Shorter codes are assigned to frequently seen symbols. The context 

approach assigns probabilities which are dependent on the context of a symbol. The 

context refers to the past text (the symbols already seen in the input stream). For example, 

the current symbol “K” has probability 0.05 in the past input. According to the past 

context probability model, there is a high probability to observe the symbol “I” next. In 

this case, the context based model predicts “I” as the next symbol. If the next symbol is 

really “I”, it is assigned large probability. If it is not, a small probability will be assigned 

to the symbol that was observed. The probability model is then updated.  

 

The performance of this compression technique is excellent when the occurrence rate of 

symbols stays approximately the same throughout the input stream. Usually this method 

is widely applied to lossless compressors. The idea can be illustrated with a simple Run-

Length Encoding (RLE) [70] compression technique. If a symbol K consecutively occurs 

n times in the input stream, the n occurrences are encoded as nK. For example, if we have 

an input stream “KKKKKK”, we encode this as “6K”, thus reducing or eliminating 

redundancy in the input stream. 
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PPMD [70] , a variant of PPM [90] (Prediction by Partial Matching), may be the most 

popular statistical data compression algorithm. PPM uses adaptive statistical data 

compression based on context modeling. The predicted probability for each symbol is 

adaptively updated from the frequency count. PPMD estimates the probability of 

occurrence of a new symbol (originally probability = 0) based upon the ratio of the 

frequency count. The ratio is calculated by that specific symbol’s count divided by the 

total number of previous observed/processed symbols.  

6.2.4 Dictionary methods 

Dictionary-based methods select strings of symbols and encode each string as a token in a 

search buffer (the dictionary). The dictionary can be static or dynamic and maps input 

symbol sequences to single tokens. There are various dictionary based compression 

algorithms, all of which are relatives of the LZ (Lempel–Ziv) 77 algorithm [91]. LZ77 

uses the previously processed part of the input stream as the dictionary. The encoder uses 

a technique called sliding windows to scan the unseen input stream for a match from the 

dictionary. As shown in Figure 6.1, the window is separated into two parts. The left part 

of the window is called the search buffer, which includes symbols that have already been 

input and encoded. The right part is called the look-ahead buffer, which contains the text 

to be encoded. At the very beginning of the compression, nothing exists in both of the 

buffers. Then the window shifts from left to right, and the first input string enters the 

look-ahead buffer. As nothing exists in the search buffer (dictionary), no match is found. 

The window continues to shift until the look-ahead buffer is full. Now the scanned input 

string enters the search buffer and becomes part of the dictionary. In a practical situation, 
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the size of the search buffer is very large when compared to the look-ahead buffer (which 

is usually ~10 bytes). 

 

Figure 6.1 The LZ77 Dictionary search 

 

Consider Figure 6.2, in which LZ77 sees the input stream “FGKPPKFKUKPPK 

PPKPPKU”. It has three components in the output stream – the offset, length and next 

symbol respectively. When the window slides one symbol, there is nothing in the search 

buffer (dictionary) resulting in (0, 0, F); see Figure 6.3. Similarly (0, 0, G) (0, 0, K) (0, 0, 

P) are the next three “mismatch” outputs. So far, “FGKP” exist in the dictionary; the next 

input is P which is a match in the dictionary. The “matched” output can be represented as 

(1, 1, K) which refers to the offset or distance 1 for the match in the dictionary, length 1 

for the match and the next symbol K to be in the dictionary. The next character results in 

another match (6, 1, K) ; followed by the  “mismatched” result (0,0,U). By finding a 

match at offset 7 for 4 symbols in the dictionary, we can acquire the output (7, 4, P). 

Finally (3, 5, U) is output using a specific characteristic of LZ77. For the last six input 

symbols, initially a match with the length 3 (PKP) is found in the dictionary. In this case, 

the next two symbols are “PK” which exists in the match “PKP”. Consequently, LZ77 

extends the length of its match from 3 to 5 which result in the output (3, 5, U). This 

special design is to deal with repetitive input such as PPPPPPPP. With this extendable 

Search Buffer Look-ahead Buffer 

 

(Dictionary) (Text to be encoded) 

Small (About 10 byte) Very Large (can be 1G byte) 

compress_the_image_with_the_compressor  
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characteristic, we can reduce the searching time in the dictionary dramatically. The whole 

process can be seen in Figure 6.4.           

 

 

Figure 6.2 The encoding of LZ77 

 

 

 

Figure 6.3 The encoding output of LZ77 
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Figure 6.4 The encoding procedure of LZ77  

 

The decoding process is much easier. First, by the first two components (offset and length) 

in the output data, we know the status information (match or mismatch) of the dictionary 

comparison. If we have (0, 0) we get a mismatch. If the first two components in the 

output are anything else, we get a match. The first component refers to the match offset 

or the distance in the dictionary and the second component refers to the length for the 

match. In our case, the first four output (0,0,F), (0,0,G), (0,0,K), (0,0,P) refer to four 

mismatches. Therefore, the decoded input should be FGKP. For (1, 1, K) refers to the fact 

that we get a match and its offset and length are 1 and 1 respectively. And the K is the 

next symbol in the search buffer. Consequently, the token (1, 1, K) is decoded as PK. We 

can decode (6,1,K) as FK, (0,0,U) as U, (7,4,P) as KPPKP and (3,5,U) as PKPPKU. The 

details can be seen in Figure 6.5.    
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Figure 6.5 The decoding process of LZ77 

 

6.2.4.1 Deflate 

Deflate is a lossless data compression algorithm based on the variation of LZ77[91] 

combined with Huffman encoding. The compression is accomplished via duplicate string 

elimination and bit reduction. The elimination starts with finding the match in the input 

stream then replacing the duplicate symbols with pointers based upon the frequency of 

use. The finding/matching strategy is the same as the sliding window technique used in 

LZ77. Bit reduction is done by using dynamic Huffman encoding which generates an 

optimized Huffman tree for each block in the input stream. Huffman encoding [92] tries 

to replace each symbol to a better representation based on its occurrence frequency.  
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6.2.4.2 LZMA 

LZMA (Lempel-Ziv-Markov chain-Algorithm) is variation of LZ77 [91] and uses 

adaptive binary range coding [93]. LZMA provides fast decompression speed, high 

compression ratio, and low memory requirements. Just like LZ77, LZMA uses a sliding-

window buffer, using the previously-scanned input stream as the dictionary for the next 

input. After the search buffer has found the longest string that matches the look-ahead 

buffer, it writes the output into the compressed stream. Eventually, the individual outputs 

are encoded by adaptive arithmetic binary range coding to achieve bit reduction. This 

encoding transforms a string of characters into a fixed number of bits (binary) per 

character based on its frequency of occurrence in the previous buffer. More frequent 

tokens in the input stream are assigned fewer bits for storage. 

 

LZMA is similar to Deflate, but uses adaptive range coding instead of Huffman coding. 

Range coding is very similar to the arithmetic coding [94]. The only difference between 

them is that range coding using a huge range number instead of the number fraction of 

arithmetic coding for their coding output. In many aspects, arithmetic/range coding is 

superior to the Huffman coding [95]. Unlike Huffman coding, which separates the input 

stream into block symbols and replaces each component with a code, arithmetic range 

coding encodes the entire message into a single fraction  (between 0 and 1).  

 

6.2.5 Block sorting 

            Block sorting [38] (also called the Burrows–Wheeler transform) is a lossless data 

compression algorithm which applies a reversible transformation (reordering) to a block 
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of input text. The total input stream is first divided into a number of multi-symbol blocks. 

Then these units are processed by a reversible transformation for reordering to form a 

block containing the same characters for earlier compression. The reordering process 

tends to group the same characters together and sort them into a lexicographical order 

which improves the probability and efficiency of finding a character. The main benefit 

for this lexicographical reordering action is to simplify finding redundancy (because the 

block is already in lexicographical order). This improvement can make a significant 

contribution when augmenting a local adaptive algorithm such as Huffman or arithmetic 

coding.  

6.2.5.1 Blocksorting with the statistical method 

We used the Blocksorting compression method from CompLearn 0.9.7 [96]. This 

specialized block sorting method first uses the same technique for the lexicographical 

reordering. When it finishes the sorting process, it uses a dynamic state lookup table to 

encode the input symbols by their occurrence probability. By keeping statistics on state 

transition frequencies through this state table that adapt to the input stream, we can 

encode the reordered input stream more efficiently. 

 

6.2.5.2 Blocksorting with Huffman coding (Bzip2) 

Bzip2 is a block-sorting compressor in which frequently-recurring character sequences 

are encoded by a move-to-front transform and Huffman coding [97].  
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6.3 Image compression 

      Similar to data compression, the main objective of image compression is to reduce the 

file size for an image. By definition, a digital image is a rectangular array of pixels 

arranged in rows and columns. Depending on different applications across various fields, 

there are two kinds of image compression techniques – lossless and lossy. Lossless image 

compression is like data compression, in that its goal is to recover an image that is 

identical to the original input after decompression.  Lossy image compression focuses on 

further reducing the file size by allowing the creation of some imperceptible differences. 

Losing information in exchange for better compression is a key characteristic for lossy 

methods. When the compressed result is recovered or decompressed, the result is not the 

same as the original input stream. If the loss is rather small but acquire lots of 

improvement for compression, we can deem it as an acceptable tradeoff. For example, 

digital photos and web images use lossy compression for smaller file size and faster 

Internet transmission. The loss is “small” in the sense that human vision is essentially 

unable to detect the difference, meaning that there is no practical degradation in 

performance – at least in this use case. 

 

6.3.1 Lossless image compression 

Just like data compression, lossless image compression attempts to remove redundancy 

present in image signals. This redundancy is proportional to the amount of correlation 

among the image data samples. Compressing an image using RLE may help illustrate 

lossless image compression. When we randomly pick a pixel in the image, it is very 

possible that the next to-be-compressed pixel has the same bitmap which creates high 
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correlation (spatial redundancy). Hence, the compressor scans the image row by row to 

find spatial redundancy. 

6.3.1.1 GIF [98] 

GIF (Graphics Interchange format) file format was developed to replace the earlier RLE 

format which was black and white only. It is widely used to on the World Wide Web. It is 

popular for web graphics because of its optional interlacing feature, which can partially 

download the image. With this, a user can abort the download if they so choose, saving 

Internet transmission time. This file format employs a variant of the Lempel-Ziv-Welch 

(LZW) lossless data compression technique to reduce the file size and avoid the loss of 

visual quality. LZW is a dictionary based compression algorithm which uses a dynamic, 

growing dictionary. Unlike some dictionary methods, the dictionary initially contains the 

single character strings for all kinds of the possible input character. For example, in the 

case of 1 byte symbols, the first 256 entries in the dictionary are used to store their 

predefined corresponding symbol. Due this initialization of the dictionary, the first input 

character can be always found in the dictionary. 

 

The algorithm scans through the input stream, successively finding longer substrings until 

it can not find any longer one in the dictionary. Once it can not find a longer substring, 

the index (in the dictionary) for that specific string matched part is sent to output and this 

new string (including the last character) is added into the dictionary. The last input 

character is then used as the next starting point to scan for substrings. Therefore, longer 

strings can be added into the dictionary and be available for the next encoding process. 

Input streams contain repeated context patterns are well suited for LZW compression 
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algorithm. With the initialization of this flexible dictionary, it gets better compression 

performance as the input stream grows. Importantly, the GIF format scans the input 

stream row by row, so it can only discover the correlations or redundancy of pixels in the 

rows but not between them. Or we can say GIF can not find the redundancy of pixels in 

columns.  

6.3.1.2 PNG [99] 

The PNG (Portable Network Graphics) file format employs the dictionary-based, lossless 

data compression Deflate method to encode the difference between pixels. Basically, 

there are two steps for the compression: 

1) It converts pixel values to numbers by a process called delta filtering which calculates 

a “predicted” value for each pixel. This prediction is done by evaluating the pixel value 

based on the neighboring pixels. Then this pixel will be replaced with a predicted 

difference value which is the offset of this original pixel and its predicted value.  

2) Then the Deflate compression algorithm (see Section 6.2.4.1) is applied to encode 

these predicted differences.  

 

Just like the characteristic of the GIF scanning pattern, filtering is done row by row on 

each image. The correlations or redundancy of pixels between rows are not able to be 

found or discovered by this process. 

6.3.1.3 JPG (Lossless) 

Although JPG is famous for its lossy compression, it also provides a lossless mode which 

uses a completely different technique in the same compression package. The JPEG 
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lossless mode uses a simple predictive coding model called DPCM (Differential Pulse 

Code Modulation) [100]. It predicts (based on previous samples) the nearest neighboring 

pixels and codes its prediction error. DPCM encodes differences between the predicted 

pixels but does not encode each pixel separately. The encoding method can be either 

Huffman or arithmetic coding. Usually arithmetic coding is applied for better 

compression [95].  

6.3.1.4 JP2 (Lossless) 

JPEG 2000 [101] is a wavelet-based image compression algorithm. For the normal RGB 

color image for example, it is divided into three components. Each component is 

partitioned into rectangular called tiles which are compressed individually. First, the sub-

bands of wavelet coefficients are computed by a wavelet transform. Wavelet analysis is 

an approach to identify and isolate the frequencies that represent the signal in that 

specific time interval. The tiles now have been transformed into the form of wavelet 

coefficients. The coefficients are quantized by the user specified bit rate. The quantized 

coefficients then are encoded arithmetically by the block based designated encoder. The 

bits generated from the coding process are in blocks called packets. These packets are the 

components to be rearranged for construction of the bit stream. The bit stream is 

organized in several layers which provide high-resolution image information for 

decoding. The reversible integer wavelet transform is used in the first step and the sizes 

of all quantization steps are set to 1 for lossless compression.  



 87 

6.3.2 Lossy image compression 

Lossy image compression is done by removing “irrelevant” or “unimportant” information 

based on human perception. A lossy image encoder must delete the information whose 

absence would not be noticed by humans. Therefore, the compression algorithms have to 

account for the physiology of human vision. Consequently, the point is to decide which 

part of information or details of image would be “unnoticed” by the viewer or 

“irrelevant” to a human. Usually the brightness of neighboring pixels in an image is 

highly correlated. The pixel and its neighbor may have different colors, however, their 

brightness are normally similar. Accordingly, we can convert RGB pixel components into 

another three-component representation, YCbCr. Y, or “luminance”, represents the 

brightness of the pixel, and the other two CbCr represent its color. Human perception is 

more sensitive to changes in brightness than changes in color. Accordingly, some loss of 

the Cb and Cr color component information during the compressing process becomes 

imperceptible to humans. This compression distortion is the core concept of lossy image 

compression to reduce image file size.  

 

Another issue for the lossy image compression is the image compression ratio, also called 

the visual fidelity issue. Human perception is very subjective from person to person; 

therefore, people may have different tolerances for the quality of the image. To perform 

the lossy image compression, users have the choice to choose what image quality they 

can accept. However, the subjective image quality is a trade-off for data compression. 

The better image compression you can achieve, the poorer image quality you may acquire. 



 88 

When we perform the lossy image compression, its ratio must be adjustable to fit 

different needs/requirements. 

6.3.2.1 JPG (Lossy) 

JPEG [102] is a lossy compression method which is parameterized to allow users to 

decide on the tradeoff between storage size and image quality. First, color images are 

transformed from the RGB (Red, Green, and Blue) additive color model into YCbCr 

(luminance, chrominance) alternative image format. The loss of chrominance information 

is accomplished by down sampling which creates low resolution pixels from the original 

image. Then the DCT (Discrete Cosine Transform) is applied to each 8*8 pixel data unit. 

This generates a quantization coefficient (a sum of cosine functions at specific 

frequencies) which will be compressed by the hybrid compression algorithm of RLE and 

Huffman encoding [70]. DCT transforms the data unit in terms of a sum of cosine 

functions which oscillates at different frequencies. Small high-frequency components can 

be discarded in this case to acquire better compression. 

6.3.2.2 JP2 (Lossy) 

                  JPEG 2000 also provides an option to manipulate the tradeoff between file size and 

image quality. Basically, the JPEG 2000 lossy compression algorithm is performed by the 

following four steps [103]: 

 

1. A wavelet transform of the image.  

2. The embedded encoding of block subdivisions of that wavelet transforms. 
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3. Optimal truncation of transformed values for optimizing PSNR (Peak Signal-to-

Noise Ratio) values. 

4. Encoding the raw binary output generated by step 3 using a sophisticated 

arithmetic encoding. 

 

                  In the lossy mode, either a reversible or a nonreversible integer wavelet transform can be 

used for the computation of the sub-bands of the wavelet coefficients. However, to 

achieve the better compression, the nonreversible is normally used. JPEG 2000 

compression is based on a fundamental idea which is “compress once, decompress many 

ways”[101]. Its encoder simply uses the maximum image quality Q and maximum 

resolution R to perform the compression. The decoder has the option to choose the image 

quality up to or including Q and the image resolution less than or equal to R. Another 

important feature of its decompression is it can also decompress parts of the user 

designated image or just exact parts of the compressed stream and reconstruct it to 

another new compressed stream. This gives the user the freedom to crop and transform 

the image without any decompression process which save time and file space. For 

example, the rotation of the image (90 or 180) can be done directly in the compressed 

stream without decompressing the image. 

 

 

 



 90 

 

Chapter 7  Compression Algorithms for Anti-Phishing  

7.1 Introduction 

In [32], they describe the NCD as a parameter-free, universal similarity distance which 

can utilize nearly any compressor. They demonstrate NCD with various compressors 

(gzip, bzip2, PPMZ) can acquire an excellent clustering result for Euthrian Orders in 

Genomics and Phylogeny field, and argue that “NCD can minorize all similarity metrics 

based on features that are captured by the reference compressor involved”. In [104], 

[105], [106], they cluster protein sequence, general textual documents, and chain letters 

using PPMZ, gzip, and bzip2, respectively. Moreover, in [107], they performed all their 

experimental subjects only with the CompLearn [96] default compressor. In [108], the 

PBM image file format is utilized as the sample for their image clustering experiments. 

Only the Bzip2 compression algorithm is applied in their tests. The reason for this 

selection is described as: “We chose the Bzip2 algorithm because it is a block 

compression algorithm which ensures that the compression of the concatenation of two 

objects will not vary appreciably with the ordering of the objects in the concatenation.” 

These articles appear to uncritically accept the argument proposed by [32] that clustering 

based on NCD is robust across application fields and compressors. On the other hand, 

there is a modest literature examining the characteristics of different compressors within 

the NCD algorithm. In [109], an image registration technique based on the NCD explored 

both  image (JPEG 2000) and data (bzip2) compressors; the image compressor was found 

to be more sensitive to translations, and thus more appropriate than data compression. In 
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[110] modified LZ78 and PPM compression algorithms are used to cluster grayscale 

image samples; specifically, the dictionary elements of LZ78 were used to form a new 

kernel function for support vector machines. 

   

Our application is to identify Phishing web pages by detecting a visually similar image 

amongst the webpage screenshot images of our protected sites. Therefore, an accurate 

(high TPR, low FPR) NCD classification result directly leads to successful Phishing 

webpage identification in our algorithm. As the impact of different compressors on the 

NCD clustering result in this domain is still relatively unexplored, the issue we want to 

explore here is: 

 

Do different compressing algorithms have any effect on the result of NCD classification 

method for our subject? 

 

An empirical evaluation of the impact of different compressing algorithms can help us to 

explore this unknown territory. According to the acquired result, we will select the best 

compressor for further analysis and evaluation in our anti-Phishing application.  

 

7.2 Empirical evaluation 

The objective of this evaluation is to employ several different compression algorithms 

over exactly the same samples to generate two different NCD populations which 

represent the comparison outcome of visually similar images and dissimilar images, 
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respectively. By analyzing the results, we are able to find the most appropriate 

compression algorithm for our application.  

7.2.3 Design  

We designed the experiment with two groups: 

• 16 legitimate webpage images; and 

• 20 respective Phishing webpage images group for this purpose. 

 

Then we use these two groups to generate two NCD populations (the population of NCD 

values of visually dissimilar websites, i.e. the legitimate against legitimate-LL webpage 

image population; and the population of visually similar websites, i.e. the legitimate 

against Phishing-LP webpage image population) for clustering purpose. These two 

populations are: 

• The LL NCD population: total 120 NCD values-(16*16-16)/2=120 comparing 

legitimate against legitimate webpage images; and 

• The LP NCD population: 320 NCD values-20*16=320 comparing legitimate 

webpages against Phishing webpages targeting them. 

 

We can estimate the compression algorithms’ impact from their ability to separate these 

two populations. Nine compression algorithms plus two additional parameterizations (0.5 

and lossless for each of the two lossy compressors) will be examined in the experiments.    



 93 

7.2.3.1 The collected samples for two groups 

Although the requirement of the samples for these experiments is almost the same with 

the samples we collected in Section 5.3.1, we still made the decision to recollect our test 

data. The reasons for doing this are: 

1) The Phishing websites adapt to existing Anti-Phishing mechanism-it is important to 

keep our Phish “fresh”. 

2) To examine if our experimental results vary over time.     

 

We recollected 16 different legitimate web pages and 320 Phishing web pages targeting 

them as the samples in this experiment (Table 7.1).We chose legitimate websites in Table 

7.1 based on the frequency with which Phishing sites attempt to imitate them. The Phish 

were captured in the PhishTank [55]. In addition, three Italian, one French and one 

Spanish website were added to the group to increase the language or regional diversity of 

the sample. There are a total of 336 samples are collected for the experiment. 

The Phishing samples are collected during the period of August 6-October 13, 2009 from 

the PhishTank website which gathers the link of Phishing websites from the real world. 

All the samples were collected by the purchased version of “Convert HTML to Image 

Ver.1.1”[111] which uses a virtual browser to capture the image of the website from the 

PhishTank links into the BMP file format..  
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Table 7.1 The two groups of collected samples for the Experiment 

Group One Group Two 

01-Abbey-L 01-Abbey-P1 ~ Abbey-P20 

02-Alliance(uk)-L 02-Alliance(uk)-P1 ~ Alliance(uk)-P20 

03-BOA-L 03-BOA-P1 ~ BOA-P20 

04-CartaSi-L 04-CartaSi(it)-P1 ~ CartaSi(it)-P20 

05-ebay(it)-L 05-ebay(it)-P1 ~ ebay(it)-P20 

06-paypal(fr)-L 06-paypal(fr)-P1 ~ paypal(fr)-P20 

07-Tibia-L 07-Tibia-P1 ~ Tibia-P20 

08-Halifax-L 08-Halifax-P1 ~ Halifax-P20 

09-Lloydstsb-L 09-Lloydstsb(uk)-P1 ~ Lloydstsb(uk)-P20 

10-Bradesco(br)-L 10-Bradesco(br) ~ Bradesco(br)-P20 

11-PosteItaliane(it)-L 11-PosteItaliane(it)-P1 ~ PosteItaliane(it)-P20 

12-Chase-L 12-Chase-P1 ~ Chase-P20 

13-facebook-L 13-facebook-P1 ~ facebook-P20 

14-cahoot(uk)-L 14-cahoot(uk)-P1 ~ cahoot(uk)-P20 

15-Warcraft-L 15-Warcraft-P1 ~ Warcraft-P20 

16-WellsFargo-L 16-WellsFargo-P1 ~ WellsFargo-P20 

Total samples count 

16 16*20=320 

 

7.2.3.2 Compressors for the test 

As shown in Table 7.2, nine compressors and two options (ratio=0.5 and lossless) for 

JPG and JPEG2000 compressors are utilized during the test. (JPG and JP2 each for two 

settings) 
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Table 7.2 The selected compression algorithms 

 Compressors 

 1. Block sorting 

 2. LZMA 

 3. PPMD 

 4. Bip2 

 5. Deflate 

 6. GIF 

 7. PNG 

 8. JPG-(0.5) 

 9. JPG-(Lossless) 

10 JP2-(0.5) 

11 JP2-(Lossless) 

7.2.3.3 The image quality for lossy JPG and JP2 

When we apply the lossy image compression algorithm to our NCD calculation, the first 

issue we should consider is the image quality ratio. We use MOS (Mean opinion score) 

[112] which is a numerical indication of the quality of received objects after compression 

(as perceived by human subjects), specifically  MOS=3. In most situations, a user can not 

tell the difference between the original webpage captured image and the modified 

MOS=3 webpage image. In [113] it was determined that commonly setting quality 

ratio=0.5 for both JPG and JP2 results in MOS=3.  

7.2.3.4 The calculation of compressed result C (xy) 

For the data based compressors such as Block sorting, LZMA, PPMD, Bip2 and Deflate, 

which simply deem our image objects x and y as two binary streams, and the compressed 

result )(xyC  is computed by concatenating the object x and y first and applying our 

selected data compressor to it. The only difference is the sequence of concatenation for 

)(xyC  and )( yxC . In Section 5.3.3, we have found the choice of using arithmetic mean or 
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maximum to aggregate corresponding NCD values-NCD(x,y) and NCD(y,x) or C (xy) and 

C (yx) does not influence our outcome statistically. Therefore, we use the average value 

of them.  

 

The situation becomes different when we calculate NCD values by using image based 

compressors such as GIF, PNG, JPG and JP2 which deem our compared image objects x 

and y as a two-dimensional square object. Therefore, there are two ways (horizontal and 

vertical scan directions) to concatenate the image objects. This yields the following 

equations:  

 

2

),(),(
),(

horizontalxyNCDhorizontalyxNCD
horizontalaverageyxNCD

+
=−  

(7.1) 

 

2

),(),(
),(

verticalxyNCDverticalyxNCD
verticalaverageyxNCD

+
=−  

(7.2) 

 

2

),(),(
),(

verticalaverageyxNCDhorizontalaverageyxNCD
aggregatedyxNCD

−+−
=  

(7.3) 
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Figure 7.1 The horizontal (left-right) concatenation for C(xy) 

 
Figure 7.2 The vertical (top-bottom) concatenation for C(xy) 
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7.2.4 Methodology 

Following the same methods as in Section 5.3.2, we create two populations: the LL 

population of 120 dissimilar webpages, and the LP population of 320 similar webpages. 

We compute NCD values across these datasets for eleven compressors in this experiment. 

 

As in Chapter 5, no optimal method exists for analyzing our experimental data; hence, we 

will use several statistical methods (Z-test, effect size, and ROC curves) for the 

comparison of the various compression algorithms. First, we use a Z-test to examine if 

our null hypothesis can be rejected for the two populations generated for our selected 

different compression algorithms. Second, the effect size [114] will give us the idea of 

quantification of the difference between our two populations for compressors. Finally, the 

ROC curve will be used to check the identification performance which means the true 

positive rate (sensitivity) and false positive rate (100-specificity) of our different 

compressors. By the comparison results for our nine selected compression algorithms, we 

can tell if the difference made for various compression algorithms.  

 

In the ROC curve, we focus on two indicators in the graph for the classification 

performance evaluation which are the corner point and AUC. The corner point (on the 

upper left) of the ROC curve is the representation of the highest accuracy which has the 

highest TPR and the lowest FPR. At the corner point, the higher TPR and the lower FPR, 

the better classification ability will be. AUC (Area Under Curve) can be interpreted as the 

probability that a randomly selected sample from the “positive” group has a test value 

larger than a randomly selected sample from the “negative” group. When there is no 
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difference, AUC=0.5. The greater AUC value, the better identification performance will 

be.  

7.3 Interpretation and the evaluation result 

7.3.1 Null Hypothesis 

From the result given in the Table 7.3, we can reject every null hypothesis with P<0.05. 

Consequently, the hypothesis we made- that NCD values in the dissimilar population (LL 

population) are significantly different (or higher) from the similar population (LP 

population) - is supported.  

 

Table 7.3 The z-test result 

 

  

7.3.2 Magnitude of Effect 

The greater value of the effect size, the better ability of the similarity classification will 

be. From the result given in the Table 7.4, we have found LZMA has the largest effect 

size. JPG-0.5 and Blocksorting have almost the second and the third highest values in the 

test respectively.  

Z-test 
Compressor z statistic P Significance 

 1. Blocksorting 31.052 <0.000001 
 2. LZMA 34.654 <0.000001 
 3. PPMD 18.436 <0.000001 
 4. Bzip2 13.894 <0.000001 
 5. Deflate 4.468   0.000004 
 6. GIF 14.156 <0.000001 
 7. PNG 22.504 <0.000001 
 8. JPG-(0.5) 13.122 <0.000001 
 9. JPG-Lossless 11.864 <0.000001 
10.JP2-(0.5) 3.309 0.000467 
11.JP2-( Lossless) 2.941 0.001635 



 
1
0
0
 

T
a
b

le
 7

.4
 T

h
e 

re
su

lt
 o

f 
ef

fe
ct

 s
iz

e 

*
 N

u
m

 s
ta

n
d
s 
fo

r 
n
u
m

b
er

 o
f 
sa

m
p
le

s;
 S

D
 s
ta

n
d
s 
fo

r 
S
ta

n
d
ar

d
 D

ev
ia

ti
o
n

 
L
P
 G

ro
u
p
 

L
L
 G

ro
u
p
 

 
 

C
o
m

p
re

ss
o
rs

 
M

ea
n
s 

N
u
m

*
 

S
D

*
 

M
ea

n
s 

N
u
m

*
 

S
D

*
 

S
D

 (
P
o
o
le

d
) 

E
ff
ec

t 
si

ze
 

 1
. 
B
lo

ck
so

rt
in

g
 

0
.5

3
0
1
8
2
8
 

3
2
0
 

0
.2

8
5
0
2
8
8
 

1
.0

2
7
1
6
3
9
 

1
2
0
 

0
.0

1
6
5
4
0
6
 

0
.2

8
5
6
4
8
4
 

1
.7

3
9
8
3
4
9
 

 2
. 
L
Z
M

A
 

0
.4

1
3
1
5
9
3
 

3
2
0
 

0
.3

1
5
9
1
4
6
 

0
.9

9
3
0
2
9
6
 

1
2
0
 

0
.0

0
7
1
0
3
3
 

0
.3

1
6
4
3
7
2
 

1
.8

3
2
4
9
7
1
 

 3
. 
P
P
M

D
 

0
.7

9
8
9
2
9
6
 

3
2
0
 

0
.2

0
6
8
1
7
9
 

1
.0

1
2
5
3
7
3
 

1
2
0
 

0
.0

0
8
3
0
0
9
 

0
.2

0
7
2
0
2
3
 

1
.0

3
0
9
1
3
5
 

 4
. 
B
zi

p
2
 

0
.8

5
0
8
2
8
7
 

3
2
0
 

0
.2

0
7
2
9
4
1
 

1
.0

1
3
4
0
6
6
 

1
2
0
 

0
.0

1
7
7
7
9
4
 

0
.2

0
7
8
9
8
6
 

0
.7

8
2
0
0
5
6
 

 5
. 
D

ef
la

te
 

0
.9

9
8
6
3
1
4
 

3
2
0
 

0
.0

0
1
7
2
8
8
 

0
.9

9
9
2
2
7
2
 

1
2
0
 

0
.0

0
1
0
0
6
5
 

0
.0

0
1
8
3
7
7
 

0
.3

2
4
2
2
3
4
 

 6
. 
G

IF
 

0
.9

7
3
4
9
8
1
 

3
2
0
 

0
.0

7
3
7
6
0
2
 

1
.0

6
5
0
4
1
4
 

1
2
0
 

0
.0

5
4
5
7
2
4
 

0
.0

8
1
0
6
1
8
 

1
.1

2
9
3
0
3
8
 

 7
. 
P
N

G
 

0
.8

1
2
9
6
9
7
 

3
2
0
 

0
.1

6
0
0
4
9
9
 

1
.0

1
5
1
9
5
4
 

1
2
0
 

0
.0

0
9
1
5
9
6
 

0
.1

6
0
3
9
6
9
 

1
.2

6
0
7
8
2
6
 

 8
. 
JP

G
-(
0
.5

) 
0
.9

9
6
6
5
0
5
3
 

3
2
0
 

0
.0

0
3
2
6
9
9
2
1
 

1
.0

0
8
5
7
8
1
 

1
2
0
 

0
.0

0
9
7
5
4
2
 

0
.0

0
6
8
0
6
5
3
6
 

1
.7

5
2
3
7
1
1
 

 9
. 
JP

G
-L

o
ss

le
ss

 
1
.0

0
0
0
2
4
7
4
 

3
2
0
 

0
.0

0
3
0
5
6
5
4
2
 

1
.0

1
2
0
2
8
4
 

1
2
0
 

0
.0

1
0
9
2
3
8
 

0
.0

0
7
3
5
0
2
 

1
.6

3
3
1
2
0
3
 

1
0
.J
P
2
-(
0
.5

) 
1
.0

0
1
2
0
7
8
4
 

3
2
0
 

0
.0

0
2
1
1
3
6
6
5
 

1
.0

0
1
9
2
6
4
 

1
2
0
 

0
.0

0
1
9
9
5
5
 

0
.0

0
2
4
4
3
7
 

0
.2

9
4
0
4
8
6
 

1
1
.J
P
2
- 
L
o
ss

le
ss

 
1
.0

0
1
6
6
5
5
4
 

3
2
0
 

0
.0

0
2
2
3
9
9
5
 

1
.0

0
2
3
4
8
4
 

1
2
0
 

0
.0

0
2
1
4
1
6
 

0
.0

0
2
5
9
8
0
 

0
.2

6
2
8
2
8
9
 



 101 

7.3.3 ROC Curve 

From the result given in the Table 7.5, we have found LZMA and PPMD compressor 

have the highest TPR and lowest FPR. From the result given in the  

Table 7.6, we have found Blocksorting, LZMA and PPMD have the highest AUC value. 

From the ROC curve plot shown in Figure 7.3 and Figure 7.4, we have found the graph 

for Blocksorting, LZMA and PPMD compressors provide the best performance. 
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7.4  Discussion 

In this section, we will discuss the problems created by some particular comparison 

samples or web images we collected. 

7.4.1 Obfuscation by advertisement banners 

Some real world Phishing websites created unexpected difficulties for our identification 

mechanism. For example, in Figure 7.5 and Figure 7.6, (Facebook and one Phish 

targeting it, respectively) the two website images differ in the two advertising banners on 

the Phish site. Their similarity comparison result (the NCD(x,y) value calculated by 

LZMA compressor) is 0.986, which is far higher than other “Phishing-facebook” 

subjects(0.224~0.718). One could argue that this particular Phishing webpage, with an 

advertisement banner on top added by the free hosting website, is not so similar to the 

legitimate webpage anymore, and the user should have the ability to tell the difference or 

identify it as a Phishing or suspicious webpage. However, according to [29], 23% of 

users do not look at browser-based cues such as the address bar, status bar and the 

security indicators; and from a Gestalt-viewpoint, we would accept this result. Hence, 

future mechanisms need to incorporate this issue into their decision making strategy. 

Hopefully, this issue can be tackled by considering simply the different “sizes” of any 

pair of images; however, currently such an investigation is beyond the scope of this thesis. 
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Figure 7.5 The legitimate webpage from facebook [115] 

 

 

Figure 7.6 The Phishing webpage targeting facebook  
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7.4.2 Obfuscation by dynamic web DOM tree components 

For our similarity identification mechanism, there should be only one captured image to 

represent our protected website. Nevertheless, our targeted websites such as Bradesco(br) 

and Chase we collected in Table 7.1 have dynamic web DOM tree components which 

generate different captured images for the same website through time. This kind of 

dynamic webpage components (commonly implemented via Adobe Flash [116]) are 

getting more and more popular for advertisements and information updates. Figure 7.7, 

Figure 7.8 and Figure 7.9 are captured at 1, 5 s and 10 seconds respectively after the 

webpage is fully loaded (the web browser will trigger the Document Complete event after 

the webpage completes the loading procedure). The dynamic web DOM tree components 

are marked with purple outlines in these figures. These dynamic components will 

obviously complicate our NCD comparison, by altering the information content of the 

page over short stretches of time.  
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Figure 7.7 The legitimate website images with the dynamic web DOM tree 

components captured at 1 second 
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Figure 7.8 The legitimate website images with the dynamic web DOM tree 

components captured at 5 seconds 
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Figure 7.9 The legitimate website images with the dynamic web DOM tree 

components captured at 10 seconds 
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7.5 Conclusion and future works 

The contribution from this experiment is: 

1. We’ve found that NCD classification performance  varies significantly for 

different compression algorithms; and 

2. We also have found that LZMA compression algorithm has the best clustering 

experimental results specifically for our application samples-the captured 

webpage images.  

However, the LZMA compressor is designed for data compression purposes. Hence, we 

should explore the possibility of customizing the compressor to improve the 

identification accuracy. We also need an approach that offers some help in solving the 

banner and the dynamic component obfuscations.    
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Chapter 8  The Real World Scenario  

8.1 Introduction 

In [29, 49] they demonstrated that neither the security indicators nor the toolbars can 

provide enough warnings to prevent the innocent users from being deceived by the 

Phishing websites. One of the reasons for this is the users tend to ignore the warning sign. 

Just like the famous fable “The Boy Who Cried Wolf”, it is obvious that users tend to 

ignore warnings when the system issues too many false alerts. High false positive rate 

(misidentify the ordinary legitimate webpage as the Phishing one) significantly damages 

user trust. Consequently, human factors should be a major concern for the developing 

systems. In our case, how to simulate a human user’s web browsing activity to challenge 

our mechanism’s FP Rate is a main concern. It is hard to predict what kind of web site 

users are going to browse. Therefore, it is crucial to use statistical data to assist us to 

simulate the human web browsing activities for examining the viability of our proposed 

system.  

 

We choose to use website popularity as a proxy for “common browsing behavior.” 

Alexa.com [10] is a well-known source of website popularity ratings. By selecting the top 

110 popular real-world websites from the Alexa.com rankings, we hope to simulate 

user’s possible browsing activity to examine the robustness of our anti-Phishing 

mechanism. We will simulate a realistic scenario where the website is visited, and a 

screenshot of the rendered webpage is captured. This is then passed to our anti-Phishing 

mechanism. This will provide a realistic test of our proposed system. 
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8.2 The Empirical evaluation 

The objective of this evaluation is to feed the most popular websites to our NCD white-

list based classification system to examine the discriminative performance of the system.     

8.2.1 Design 

We designed the experiment with the 16 legitimate websites we used in Table 7.1 Group 

one as our protected websites (the white-list). Then , as shown in Table 8.1, 110 

popular/top ranking websites were selected from Alexa top global websites list [117] on 

04/19/2010 as the web sites fed to the NCD classification system. The LZMA 

compression algorithm will be used for this experiment in that it has the better 

classification ability according to the result from our former test in Section 7.3. 

Because each protected website will be pair-wise compared against 110 Alexa websites, 

there will be 16*110=1760 NCD values generated. Then these calculated values are 

collected to form the “LA population”.  
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Table 8.1 Alexa top 110 global websites 

 

Number URL Number URL 

Alexa-001 http://www.google.com Alexa-031 http://www.imageshack.us 
Alexa-002 http://www.blogger.com Alexa-032 http://www.livejournal.com 
Alexa-003 http://www.baidu.com Alexa-033 http://www.megaupload.com 
Alexa-004 http://www.twitter.com Alexa-034 http://www.kaixin001.com 
Alexa-005 http://www.wordpress.com Alexa-035 http://www.filesress.com 
Alexa-006 http://www.myspace.com Alexa-036 http://www.hotfile.com 
Alexa-007 http://www.microsoft.com Alexa-037 http://www.cpxinteractive.com 
Alexa-008 http://www.bing.com Alexa-038 http://www.renren.com 
Alexa-009 http://www.yandex.ru Alexa-039 http://www.mixi.jp 
Alexa-010 http://www.linkedin.com Alexa-040 http://www.hao123.com 
Alexa-011 http://www.flickr.com Alexa-041 http://www.sogou.com 
Alexa-012 http://www.mail.ru Alexa-042 http://www.thepiratebay.org 
Alexa-013 http://www.fc2.com Alexa-043 http://www.odnoklassniki.ru 
Alexa-014 http://www.rapidshare.com Alexa-044 http://www.xtendmedia.com 
Alexa-015 http://www.craigslist.org Alexa-045 http://www.optmd.com 
Alexa-016 http://www.livejasmin.com Alexa-046 http://www.adultfriend.com 
Alexa-017 http://www.vkontakte.ru Alexa-047 http://www.rediff.com 
Alexa-018 http://www.soso.com Alexa-048 http://www.clicksor.com 
Alexa-019 http://www.mozilla.com Alexa-049 http://www.partypoker.com 
Alexa-020 http://www.doubleclick.com Alexa-050 http://www.ning.com 
Alexa-021 http://www.apple.com Alexa-051 http://www.mywebsearch.com 
Alexa-022 http://www.orkut.com.br Alexa-052 http://www.badoo.com 
Alexa-023 http://www.ask.com Alexa-053 http://www.cnzz.com 
Alexa-024 http://www.adobe.com Alexa-054 http://www.filestube.com 
Alexa-025 http://www.youporn.com Alexa-055 http://www.download.com 
Alexa-026 http://www.mediafire.com Alexa-056 http://www.zedo.com 
Alexa-027 http://www.about.com Alexa-057 http://www.twitpic.com 
Alexa-028 http://www.cnet.com Alexa-058 http://www.netflix.com 
Alexa-029 http://www.hi5.com Alexa-059 http://www.depositfiles.com 
Alexa-030 http://www.4shared.com Alexa-060 http://www.nasza-klasa.pl 
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Number URL Number URL 

Alexa-061 http://www.bit.ly Alexa-091 http://www.ameba.jp 
Alexa-062 http://www.tinypic.com Alexa-092 http://www.xing.com 
Alexa-063 http://www.tagged.com Alexa-093 http://www.118114.cn 
Alexa-064 http://www.free.fr Alexa-094 http://www.naver.com 
Alexa-065 http://www.tumblr.com Alexa-095 http://www.gamespot.com 
Alexa-066 http://www.zynga.com Alexa-096 http://www.51.la 
Alexa-067 http://www.sourceforge.net Alexa-097 http://www.leboncoin.fr 
Alexa-068 http://www.wikimedia.org Alexa-098 http://www.narod.ru 
Alexa-069 http://www.fastbrower.com Alexa-099 http://www.youdao.com 
Alexa-070 http://www.domainols.com Alexa-100 http://www.scribd.com 
Alexa-071 http://www.vk.com Alexa-101 http://www.avg.com 
Alexa-072 http://www.typepad.com Alexa-102 http://www.megaporn.com 
Alexa-073 http://www.torrentz.com Alexa-103 http://www.z5x.net 
Alexa-074 http://www.reference.com Alexa-104 http://www.skype.com 
Alexa-075 http://www.dell.com Alexa-105 http://www.formspring.me 
Alexa-076 http://www.archive.org Alexa-106 http://www.ucoz.ru 
Alexa-077 http://www.getpersos.com Alexa-107 http://www.leo.org 
Alexa-078 http://www.2ch.net Alexa-108 http://www.liveinternet.ru 
Alexa-079 http://www.blogfa.com Alexa-109 http://www.58.com 
Alexa-080 http://www.digitalpoint.com Alexa-110 http://www.clickbank.com 
Alexa-081 http://www.stumbleupon.com   
Alexa-082 http://www.hp.com   
Alexa-083 http://www.linkbucks.com   
Alexa-084 http://www.libero.it   
Alexa-085 http://www.angege.com   
Alexa-086 http://www.alipay.com   
Alexa-087 http://www.gougou.com   
Alexa-088 http://www.126.com   
Alexa-089 http://www.istockphoto.com   
Alexa-090 http://www.imagevenue.com   

 

8.2.2 Methodology 

To identify our LA population feeds are a Phish or Legitimate website population; we 

need another tested population as a reference group. We selected the LP population 

which we generated in Section 7.2.4. Then we use the same statistical methods (Z-test, 

effect size, and ROC curves) to examine/evaluate the difference between these two 

populations. The Z-test examines if there is a statistically significant difference for these 
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two populations. The effect size will quantify any difference found between our two 

populations. The ROC curve compares the two populations again using a decision-

threshold classifier. 

8.2.3 Interpretation and the evaluation result 

8.2.3.1 Null Hypothesis 

From the result given in the Table 8.2, we can reject every null hypothesis with P<0.05. 

Consequently, the hypothesis we made- that NCD values in the Alexa population (LA 

population) are significantly different from the Phishing population (LP population) - is 

supported. 

Table 8.2 The Z-test result 

 

Z-test   

Compression Algorithm z statistic P Significance 

LZMA 10.420 <0.000001 

 
 
 
 

8.2.3.2 Magnitude of Effect 

The greater value of the effect size, the better ability of the similarity classification will 

be. From the result given in the Table 8.3, we have found the effect size is very big. 
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8.2.3.3 ROC Curve 

From the result given in the Table 8.4, we have found the TPR is high and FPR is very 

low. From the result given in the Table 8.5, we have found the very high AUC value. 

From the ROC curve plot shown in Figure 8.1 and Figure 8.2, we have found the graph 

shown the identification performance is great.  

 

Table 8.4 TPR FPR at the corner point of the ROC curve 

 

 NCD 

TPR 99.99% >> 

FPR << 0.01% 

 

 

Table 8.5 AUC result 

 

 NCD 

AUC 1.000 
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8.3 A Phishing Classifier Based on NCD 

We believe that an actual anti-Phishing mechanism will not consist merely of a decision-

threshold classifier using only NCD values. Instead, we expect that some classification 

algorithm will be employed, which likely fuses the NCD feature with other useful 

information, forming a complete and robust anti-Phishing mechanism. In this section we 

investigate how such a system would work, using only the observed NCD values for 

websites. As we have not previously examined the performance of our system using a 

more complex classifier, we will examine both the LL vs. LP dataset of Section 7.2.4, 

and the LA vs. LP dataset of Section 8.2. For brevity, these are denoted as the “440” and 

“430” datasets in the following sections (based on the number of websites in each). 

 

8.3.1 Design 

Our experimental design simulates a browser help object / extension that implement our 

anti-Phishing mechanism. We assume that we have been provided with a whitelist of 

protected sites (this will be the same 16 protected sites as in Section 8.2). We assume that 

the browser helper object uses the NCD technique to compare each visited website 

against the sites in the whitelist. The minimum NCD value for the visited site against the 

whitelist is determined, and passed as the NCD feature value to a classifier. (NCD values 

must be computed for every whitelist site when a new website is visited. Our classifier 

only accepts the minimum NCD value, as this is the whitelist site most likely to be seen 

as similar to the website under examination.) If the classifier predicts that this site is a 

Phish, we raise an alert. 
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8.3.2 Methodology 

The features employed in our experiments were the NCD values for both orderings of the 

images in the concatenation (i.e. AB and BA), as well as the average of these two. For the 

Alexa dataset, we compare the website against only the whitelist site having the lowest 

NCD (AB) value. The learning algorithms tested were the C4.5 decision tree generator 

(J48 implementation in WEKA [118]); the Ripper rule-induction algorithm (JRip 

implementation in WEKA); a Logistic regression classifier; and support vector machines 

(trained using WEKA’s SMO implementation). In our experiments, we perform a tenfold 

cross-validation for each parameterization of the learning algorithms (changing the 

random seed each time), and obtain the average and sample standard deviation of the 

TPR and FPR. 

8.3.3 Interpretation of results 

ROC curves were generated on both the cross-comparison of whitelist sites (440 data 

points) and the top 110 most-popular websites as ranked by Alexa.com (430 data points).  

The means of TPR and FPR were plotted following the method in [119]; note that an 

alternative method of aggregating ROC curves for a cross-validation was proposed in 

[120],[121]. Parameterizations for the algorithms were varied to produce different (FPR, 

TPR) pairs as suggested in [120]; this corresponds to the experimental setting where FPR 

is uncontrollable by the analyst. Classifier parameters varied were as follows: 

• C4.5: we vary the minimum number of examples m and the confidence c per node; 

these control the pruning operation in C4.5.  
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• Ripper: we vary the minimum total instance weight per rule n and the number of 

optimizations o.  

• Logistic: we vary the ridge parameter r. 

• SMO: We choose the radial basis function kernel, and vary its width g. The 

complexity parameter C is held constant at 1 and all other parameters are left at 

default values. 

 

All classifiers performed extremely well on the two datasets; to the point where 

producing error bars to represent the standard deviations of TPR and FPR in the ROC 

curves is visually futile. This also means that the ROC curves would overlap heavily 

(almost completely) if plotted on the same graph. We therefore plot the ROC curve for 

each classifier individually. Figure 8.3, Figure 8.4, Figure 8.5 and Figure 8.6 present the 

ROC curves for the 440 (LL-vs.-LP) dataset, while Figure 8.7, Figure 8.8, Figure 8.9 and 

Figure 8.10 and present the ROC curves for the 430 (LA-vs.LP) dataset. 
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Figure 8.3 C4.5 Classifier, LL vs. LP data 

 

 

 
Figure 8.4 Ripper Classifier, LL vs. LP data 
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Figure 8.5 Logistic Classifier, LL vs. LP data 

 

 

 
Figure 8.6 SMO classifier, LL vs. LP data 
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Figure 8.7 C4.5 Classifier, Alexa (LA vs. LP) data 

 

 

 
Figure 8.8 Ripper Classifier, Alexa (LA vs. LP) data 
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Figure 8.9 Logistic Classifier, Alexa (LA vs. LP) data 

 

 

 
Figure 8.10 SMO Classifier, Alexa (LA vs. LP) data 
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As the figures above do not show the standard deviation for TPR and FPR, we provide 

them in the following tables. Table 8.6, Table 8.7, Table 8.8 and Table 8.9 are the 

average and sample standard deviations of FPR and TPR for each parameterization of an 

algorithm for the whitelist cross-comparison (LL vs. LP) dataset, and Table 8.10, Table 

8.11, Table 8.12 and Table 8.13 are the same information for the Alexa (LA vs. LP) 

dataset. 

 

Table 8.6 TPR, FPR for C4.5 Parameterizations, LL vs. LP data 

AvgTPR StdTPR AvgFPR StdFPR  

0.996875 0.009882 0 0 
0.996875 0.009882 0 0 
0.996875 0.009882 0 0 
0.996875 0.009882 0 0 
0.996875 0.009882 0 0 
0.996875 0.009882 0 0 
0.996875 0.009882 0 0 
0.996875 0.009882 0 0 
0.996875 0.009882 0 0 
0.996875 0.009882 0 0 
0.996875 0.009882 0 0 
0.996528 0.010417 0 0 
0.996875 0.009882 0 0 
0.996875 0.009882 0 0 
0.996875 0.009882 0 0 
0.99375 0.019764 0.008333 0.026352 
0.996875 0.009882 0.008333 0.026352 
0.996875 0.009882 0.008333 0.026352 
0.996875 0.009882 0.008333 0.026352 
0.996875 0.009882 0.008333 0.026352 
0.996875 0.009882 0.008333 0.026352 
0.996875 0.009882 0.008333 0.026352 
0.996875 0.009882 0.008333 0.026352 
0.996875 0.009882 0.008333 0.026352 
0.996875 0.009882 0.008333 0.026352 
0.996875 0.009882 0.008333 0.026352 
0.996875 0.009882 0.008333 0.026352 
0.996875 0.009882 0.008333 0.026352 
0.996875 0.009882 0.008333 0.026352 
0.996875 0.009882 0.008333 0.026352 
0.996875 0.009882 0.008333 0.026352 
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0.996875 0.009882 0.008333 0.026352 
0.996875 0.009882 0.008333 0.026352 
0.996875 0.009882 0.008333 0.026352 
0.996875 0.009882 0.008333 0.026352 
0.996875 0.009882 0.008333 0.026352 
0.99375 0.019764 0.008333 0.026352 
0.996875 0.009882 0.008333 0.026352 
0.996875 0.009882 0.008333 0.026352 
0.996875 0.009882 0.008333 0.026352 
0.996875 0.009882 0.008333 0.026352 
0.996875 0.009882 0.008333 0.026352 
0.996875 0.009882 0.008333 0.026352 
0.996875 0.009882 0.008333 0.026352 
0.996875 0.009882 0.008333 0.026352 
0.996875 0.009882 0.008333 0.026352 
0.996875 0.009882 0.008333 0.026352 

 

 

Table 8.7 TPR, FPR for Ripper Parameterizations, LL vs. LP data 

AvgTPR StdTPR AvgFPR StdFPR  

0.996875 0.009882 0.008333 0.026352 
1 0 0.008333 0.026352 
0.996875 0.009882 0.008333 0.026352 
0.996875 0.009882 0.008333 0.026352 
0.996875 0.009882 0.008333 0.026352 
0.996875 0.009882 0.008333 0.026352 
0.996875 0.009882 0.008333 0.026352 
0.996875 0.009882 0.008333 0.026352 
0.996875 0.009882 0.008333 0.026352 
0.996875 0.009882 0.008333 0.026352 
0.996875 0.009882 0.008333 0.026352 
0.996875 0.009882 0.008333 0.026352 
0.996875 0.009882 0.008333 0.026352 
0.996875 0.009882 0.008333 0.026352 
1 0 0.008333 0.026352 
0.996875 0.009882 0.008333 0.026352 
0.996875 0.009882 0.008333 0.026352 
0.996875 0.009882 0.008333 0.026352 
0.996875 0.009882 0.008333 0.026352 
0.996875 0.009882 0.008333 0.026352 
0.996875 0.009882 0.008333 0.026352 
0.996875 0.009882 0.008333 0.026352 
1 0 0.008333 0.026352 
1 0 0.008333 0.026352 
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0.996875 0.009882 0.008333 0.026352 
0.996875 0.009882 0.008333 0.026352 
0.996875 0.009882 0.008333 0.026352 
1 0 0.008333 0.026352 
0.996875 0.009882 0.008333 0.026352 
0.996875 0.009882 0.008333 0.026352 
0.996875 0.009882 0.008333 0.026352 
0.996875 0.009882 0.008333 0.026352 
0.996875 0.009882 0.008333 0.026352 
0.996875 0.009882 0.008333 0.026352 
0.996875 0.009882 0.008333 0.026352 
0.996875 0.009882 0.008333 0.026352 
0.996875 0.009882 0.008333 0.026352 
0.996875 0.009882 0.008333 0.026352 
0.996875 0.009882 0.008333 0.026352 
0.996875 0.009882 0.008333 0.026352 
0.996875 0.009882 0.008333 0.026352 
1 0 0.008333 0.026352 
0.996875 0.009882 0.008333 0.026352 
0.996875 0.009882 0.008333 0.026352 
0.996875 0.009882 0.008333 0.026352 
0.996875 0.009882 0.008333 0.026352 
0.996875 0.009882 0.008333 0.026352 
0.996875 0.009882 0.016667 0.052705 
0.996875 0.009882 0.016667 0.052705 
1 0 0.016667 0.035136 
0.996875 0.009882 0.016667 0.052705 
1 0 0.016667 0.035136 
1 0 0.016667 0.035136 
1 0 0.016667 0.035136 
0.996875 0.009882 0.025 0.056246 

 

 

Table 8.8 TPR, FPR for Logistic Parameterizations, LL vs. LP data 

AvgTPR StdTPR AvgFPR StdFPR  

0.9875 0.03019 0 0 
0.91875 0.044683 0 0 
0.95 0.03019 0 0 
0.996875 0.009882 0 0 
0.996875 0.009882 0 0 
0.996875 0.009882 0 0 
0.996875 0.009882 0.008333 0.026352 
0.996875 0.009882 0.008333 0.026352 
0.996875 0.009882 0.008333 0.026352 
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1 0 0.008333 0.026352 
0.379365 0.48332 0.333333 0.48795 
0.411111 0.499471 0.377778 0.485777 
0.455556 0.505787 0.388889 0.494681 
0.468889 0.49545 0.457143 0.507093 
0.333333 0.48795 0.457778 0.488514 
0.390476 0.496244 0.522222 0.507353 
0.468254 0.498107 0.52381 0.508432 
1 0 1 0 

 

 

Table 8.9 TPR, FPR for SMO Parameterizations, LL vs. LP data 

AvgTPR StdTPR AvgFPR StdFPR  

0.9125 0.038415 0 0 
0.946875 0.039115 0 0 
0.95 0.026352 0 0 
0.996875 0.009882 0 0 
0.95 0.039528 0 0 
0.996875 0.009882 0 0 
1 0 1 0 
1 0 1 0 
1 0 1 0 

 

 

Table 8.10 TPR, FPR for C4.5 Parameterizations, Alexa data 

AvgTPR StdTPR AvgFPR StdFPR  

0.996875 0.009882 0 0 
0.99375 0.019764 0 0 
0.99375 0.019764 0 0 
0.996875 0.009882 0 0 
0.996875 0.009882 0 0 
0.996875 0.009882 0 0 
0.996875 0.009882 0 0 
0.996875 0.009882 0 0 
0.996875 0.009882 0 0 
0.996875 0.009882 0 0 
0.996875 0.009882 0 0 
0.996875 0.009882 0 0 
0.996875 0.009882 0 0 
0.996875 0.009882 0 0 
0.996875 0.009882 0 0 
0.996875 0.009882 0 0 
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0.990625 0.029646 0 0 
0.996875 0.009882 0 0 
0.996875 0.009882 0 0 
0.996875 0.009882 0 0 
0.996875 0.009882 0 0 
0.996875 0.009882 0 0 
0.996875 0.009882 0 0 
0.996875 0.009882 0 0 
0.996875 0.009882 0 0 
0.996875 0.009882 0 0 
0.99375 0.019764 0 0 
0.996875 0.009882 0 0 
0.996875 0.009882 0 0 
0.996875 0.009882 0 0 
0.99375 0.019764 0 0 
0.996875 0.009882 0 0 
0.996875 0.009882 0 0 
0.996875 0.009882 0 0 
0.996875 0.009882 0 0 
0.99375 0.019764 0 0 
0.996875 0.009882 0 0 
0.996875 0.009882 0 0 
0.996875 0.009882 0 0 
0.996875 0.009882 0 0 
0.996875 0.009882 0 0 
0.996875 0.009882 0 0 
0.996875 0.009882 0 0 
0.996875 0.009882 0 0 
0.996875 0.009882 0 0 
0.996875 0.009882 0 0 
0.996875 0.009882 0 0 
0.996875 0.009882 0 0 
0.996875 0.009882 0 0 
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Table 8.11 TPR, FPR for Ripper Parameterizations, Alexa data 

AvgTPR StdTPR AvgFPR StdFPR  

1 0 0.009091 0.028748 
1 0 0.009091 0.028748 
1 0 0.009091 0.028748 
1 0 0.009091 0.028748 
1 0 0.009091 0.028748 
1 0 0.009091 0.028748 
1 0 0.009091 0.028748 
1 0 0.009091 0.028748 
1 0 0.009091 0.028748 
1 0 0.009091 0.028748 
1 0 0.009091 0.028748 
1 0 0.009091 0.028748 
1 0 0.009091 0.028748 
1 0 0.009091 0.028748 
1 0 0.009091 0.028748 
1 0 0.009091 0.028748 
1 0 0.009091 0.028748 
1 0 0.009091 0.028748 
1 0 0.009091 0.028748 
1 0 0.009091 0.028748 
1 0 0.009091 0.028748 
1 0 0.009091 0.028748 
1 0 0.009091 0.028748 
1 0 0.009091 0.028748 
1 0 0.009091 0.028748 
1 0 0.009091 0.028748 
1 0 0.018182 0.057496 
1 0 0.018182 0.057496 
1 0 0.018182 0.057496 
1 0 0.027273 0.086244 
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Table 8.12 TPR, FPR for Logistic Parameterizations, Alexa data 

AvgTPR StdTPR AvgFPR StdFPR  

0.996875 0.009882 0 0 
0.978125 0.025727 0 0 
0.95 0.033593 0 0 
0.925 0.078229 0 0 
0.996875 0.009882 0 0 
0.996875 0.009882 0 0 
0.996875 0.009882 0 0 
0.996875 0.009882 0 0 
1 0 0 0 
1 0 0 0 
0.996875 0.009882 0 0 

 

 

 

Table 8.13 TPR, FPR for SMO Parameterizations, Alexa data 

 

AvgTPR StdTPR AvgFPR StdFPR  

0.9125 0.062152 0 0 
0.94375 0.032275 0 0 
0.946875 0.029646 0 0 
0.996875 0.009882 0 0 
0.996875 0.009882 0 0 
1 0 1 0 
1 0 1 0 
1 0 1 0 

 

 

8.4 Discussion 

The main contribution from these experiments is that we have demonstrated the 

effectiveness and robustness of our NCD based identification system using a realistic set 

of popular websites. The low observed false positives rate (~0.8%) shows our mechanism 

will hopefully be trusted by users. We have demonstrated the discriminative power of our 

method using statistical tests, and confirmed those results using a variety of classification 

algorithms. Interestingly, the relatively simple Logistic regression classifier seems to 
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(very slightly) outperform decision trees and support vector machines. In the future, we 

hope to employ distributed computer system to challenge the robustness of our 

identification mechanism against a very large corpus of sites (Alexa.com [10] provides a 

list of the top 1,000,000 sites, for instance).   
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Chapter 9  Refinement for LZMA Compression Algorithm  

9.1 Introduction 

In the previous chapters, we found that LZMA is the best performing compression 

algorithm when clustering visually similar webpage images. However, is there any room 

for improvement? Can we modify the LZMA algorithm for our specific application 

purposes? The answer to this question must start from understanding how LZMA works. 

9.2 Regular LZMA compression algorithm process in details 

Basically, the LZMA algorithm has two major steps. The first part is the attempt to find 

matching symbols. This is done by the modified LZ77 sliding window technique – to be 

referred to as the LZ (Lempel–Ziv) part. The second part is the encoding of the output 

from the first part to make the output stream much smaller. The encoding operation is 

mainly done based on a Markov-chain [122] process which means the next output 

depends only on the current output. The probability of its occurrence is used to connect 

the relationship between these two outputs. An adaptive binary based range coding 

machine will be used during this process – to be referred to as the MA (Markov-chain 

Algorithm) part.    

9.2.1 The LZ part 

The LZ part starts from the modified LZ77 [91] searching method we have already 

described in Section 6.2.4. However, the author of LZMA has found the output format for 

LZ77 has a serious problem of wasting number space for unmatched output. 
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9.2.1.1 The redundancy of LZ77 mismatch format 

When LZ77 cannot find a match in the dictionary, it generates the mismatch output in the 

format of (0, 0, next symbol). When lots of mismatch results are found, as shown in 

Figure 9.1, the first two zero digits (0, 0) have significant redundancies.  

 

 

Figure 9.1 The redundancy of (0, 0) for LZ77 

 

9.2.1.2 The LZ output format for LZMA      

To remove this redundancy, LZMA changes its output format into a more concise one to 

minimize the size of the output stream. For the mismatch part, LZMA only places an 

unmatched character into the output which takes one character space instead of three for 

LZ77. 
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As shown in Figure 9.2, the searching method is the same as LZ77, which separates its 

sliding window into two parts, the search buffer (the dictionary) and the look-ahead 

buffer. 

 

 

Figure 9.2 The LZ Encoding 

 

There are three kinds of token after matching; these outputs will be sent to the adaptive 

range encoder (the MA part) separately. The first token is the literal (a value in the 

interval 0~255 with the Unicode format) if nothing matches the look-ahead buffer. The 

second token is the (length, offset) pair if a match is found. As with LZ77, length is the 

longest matching substring starting from the offset position in the search buffer. The third 

token is the pair of (length, index). As the large size of the search buffer causes large 

offset values, a four-entry array which contains the information of the most four recent 

distances that have been found is kept. In many cases, this offset history array can reduce 

the number of offset or distance dramatically. If the distance of the current match equals 

one of the four distances in this array, a short two-bit index will be written instead of the 

actual large distance. This offset history array design is especially effective in reducing 

the storage size for the consecutive repeat input characters or input stream. These three 

kinds of output tokens can be seen in Figure 9.3. 
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Figure 9.3 The MA part 

 

9.2.2 The MA part 

The MA part is called adaptive binary range coding. It is similar to Context-based 

Adaptive Binary Arithmetic Coding or CABAC in [123]. The difference between 

arithmetic coding and range coding is the representation of the output.  Arithmetic 

Coding uses the probability which is less than or equal to one during the process. The 

range coding uses a fixed range instead of the probability for encoding [94]. The three 

kinds of tokens after the searching process from the LZ part will be sent to range encoder 

separately. The literals will be transformed into binary before the encoding process. The 
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other two kinds of pair token outputs (length, offset) and (length, index) are sent to the 

encoder directly because their output formats are already in the binary form.  

 

Range coding is based on Markov chains which use a large integer range and a frequency 

or probability estimation for the character to encode all the input characters of the 

message into one single number. The frequency algorithm will be used to reduce the 

current range integer down to another smaller range which corresponds to the next 

character to be encoded. Then the next character will be encoded by the same procedure. 

For decoding, the decoder must acquire the same frequency algorithm in advance as the 

encoder used. By using the same probability estimation, the decoder can recover the 

original message in the reverse way. 

 

Here is a simplified example to show how the range coding works. Assume we have a 4-

character input stream “PPQA” for our example demonstration. The initial range is [0, 

10000) and assume the initial frequency algorithm is P: .50; Q: .30; A: .20. Therefore, the 

first three sub ranges are divided as: 

 

P: [0, 5000), Q: [5000, 8000), A: [8000, 10000).  

 

Our first input character is P, so we can reduce our initial range to [0, 5000). This makes 

the second three sub ranges:  

PP: [0, 2500), PQ: [2500, 4000), PA: [4000, 5000). 
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The second input P reduces the range to [0, 2500). The third three sub ranges are  

PPP: [0, 1250), PPQ: [1250, 2000), PPA: [2000, 2500) 

 

The third input Q reduces our range to [1250, 2000), and so The fourth three sub ranges 

are:  

PPQP: [1250, 1625), PPQQ: [1625, 1850), PPQA: [1850, 2000) 

 

The range coding output can be any number between 1850~1999 which also provides 

some degree of error tolerance. In a normal situation, we will use the integer in the 

midpoint; or1925 in this situation. The decoding procedure is to perform the encoding 

process in the reverse way. The visual representation can be seen as follows in Figure 9.4. 

 

 

Figure 9.4 The range encoding 
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The concept of the adaptive range coding was introduced in [93]. The frequency 

algorithm or the probability is fixed at the beginning of the encoding process, then 

changes depending on the occurrence of that specific character in the input stream. This 

means the region sizes are continually adjusted depending upon the input during the 

operation and adapts itself directly to the system and the environment.  

Figure 9.5 provides a visualization of the complete LZMA compression process. 
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9.3 The Refined LZMA Compression Algorithm 

After understanding the LZMA compression algorithm process in detail, we started to 

consider the possibility to modify the algorithm to our specific needs-clustering by 

similarity based on the NCD metric.  

9.3.1 The Concept 

The concept basically comes from the idea of lossy image compressors which lose some 

part of the image that is “redundant” for human perception. Recall that this is possible 

due to the division of the image into two specific parts which are the luminance intensity 

Y(highly obvious to the human ) and presence of blue Cb and red Cr (not so obvious to 

the human ) based on the physiology  of the eye. The lossy compressor separates the 

sensitive part and insensitive part for advanced compression process. Thus, is it possible 

to separate our object into two specific parts - the similar and dissimilar part - to improve 

our similarity detection still further? By analyzing the characteristic of our data 

compression algorithms, we might have the chance to find the answer. 

9.3.2 The meaning of literals and pairs 

The dictionary compression algorithm is specialized in searching and categorizing 

matched and unmatched terms from its dictionary. If we define or set the dictionary size 

as the same of the object size, then the dictionary can be deemed as the whole object 

itself. Therefore, the match or mismatch in the dictionary can be seen in another form: the 

similar and dissimilar parts of the object. Consequently, if we apply the dictionary 

compression searching method to the object, by setting the dictionary size as the same or 
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larger than the object, it is definitely possible to separate the similar and dissimilar part in 

the form of match or mismatch. 

 

The literals and pairs of the dictionary from the LZ part of LZMA mean dissimilar and 

similar parts of the object when the dictionary size is set to the object file size. As we 

mentioned in the former section, when LZMA algorithm can not find the match in the 

dictionary, it will send this mismatched symbol called literal to the output stream. On the 

contrary, when a match is found, it will send the matched outputs (two kinds of tokens: 

either the (length, offset) or (length, index)) to the output stream. When we set the 

dictionary size to the object size, the dynamic sliding dictionary becomes the object itself, 

the literals or the mismatched outputs become the dissimilarity of the object to itself, and 

the pairs or the matched output becomes the similarity of the object to itself.  

9.3.3 The literals and pairs outputs for the range coding 

Basically speaking, the range coder of LZMA (MA part) processes the literals and pairs 

outputs from LZ part separately. The range coder encodes the literals output via its 

context generated modeler (frequency algorithm). The pairs output pass through another 

context modeler which focuses on length-offset and length-index pairs. Consequently, 

there won’t be any effect on the pairs outputs if we separate the results (the compressed 

file size) for literals and pairs and evaluate them independently.  

9.3.4 The Refined LZMA compression algorithm and diagram 

We customize our compressor to evaluate the similarity of the object by only including 

the pairs output from the original LZMA compression algorithm. A refined LZMA (pairs 



 146 

only) compression algorithm process diagram (as shown in Figure 9.6) illustrates the idea 

of this modification.    
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9.4 The Empirical evaluation 

The objective of this experiment is to ask if there is any clustering improvement made by 

the redefined compression algorithm. Using the same data, design and methodology as in 

Chapter 7, we will compare NCD using the usual LZMA against NCD using the altered 

process.  

9.5 Interpretation and the evaluation result 

The only fact we can confirm from the statistical Z-test is the null hypothesis will be 

rejected or not. From the result given in the Table 9.1, for our new refined LZMA 

compression algorithm (Pairs NCD), we can reject the null hypothesis with P<0.05.  

 

Table 9.1 The Z-test 

Z-test   

Compression Algorithm z statistic P Significance 

01-Regular LZMA-NCD 
34.654 <0.000001 

02-Refined LZMA (Pairs)-NCD 
35.137 <0.000001 

 

 

We use effect size for the numerical quantification of the difference between the 

dissimilar population-LL population and 320 for the similar population-LP population. 

From the result given in the Table 9.2, we have found the effect size for our refined 

LZMA compression algorithm (Pairs NCD) is greater than the regular LZMA algorithm. 
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9.5.1 ROC Curve 

From the result given in the Table 9.1, we have found both the regular LZMA and refined 

LZMA compressor have very high TPR and low FPR. From the result given in the Table 

9.2, we also have found both regular LZMA and refined LZMA compression algorithm 

have the AUC value of 1. From the ROC curve plot shown in Figure 9.7, the graph for 

regular LZMA and refined LZMA compression algorithm, both graphs are near perfect; 

hence conclusions are difficult to draw. However, from the plot shown in  

Figure 9.8 which is enlarged five times at the corner point of the Figure 9.7, we can view 

that the refined LZMA compressor has slightly better (the most upper left corner) 

performance than the regular LZMA. 

 

Table 9.3 TPR FPR at the corner point of the ROC curve 

 01-Regular LZMA-NCD 02-Refined LZMA (Pairs)-NCD 

TPR 99.99%>> 99.99%>> 

FPR <<0.01% <<0.01% 

 

 

Table 9.4 AUC result 

 01-Regular LZMA-NCD 02-Refined LZMA (Pairs)-NCD 

AUC 1.000 1.000 
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9.6 Discussion, Conclusions and Future Work 

Although our existing NCD clustering mechanism based on regular LZMA compressor 

has already achieved a remarkable identification performance (TPR >> 99.99%, FPR << 

0.01%), from the result shown in Section 9.5, we still have made some improvements for 

image similarity classification by using our refined LZMA compression algorithm. We 

have demonstrated that the refined LZMA is a viable alternative to the traditional 

algorithm.  

   

 In future work, we examine the ability of our refined LZMA algorithm to solve the 

obfuscation problems we identified in Section 7.4 (advertising banners, dynamic DOM 

tree components). Our refined method provides us the opportunity to extract only the 

similar components of the webpage but ignore the dissimilar components; by taking only 

the similarity as a significant feature for objects comparison/classification, our new 

proposed compression method potentially can be a promising solution to these difficult 

conundrums. 
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Chapter 10 Conclusion and future work 

10.1 Visually Similar Webpage Identification 

Web page similarity detection is widely used by many popular applications. However, the 

existing methods cannot always successfully identify web pages that humans would 

perceive as similar. We propose a robust way to evaluate the similarity of web pages 

from the viewpoint of their reader. The concepts of Gestalt theory and supersignals 

provide us with a theoretical rationale for the conjecture that web pages must be treated 

as indivisible entities (i.e. a whole) to be congruent to human perceptions.  

10.2 Visual similarity for Phishing detection 

We use the domain of Anti-Phishing technology to derive test scenarios for our 

experiments, as visual similarity between a Phishing page and its target is an essential 

part of the Phishing scam. In a series of experiments, we have demonstrated that that we 

are able to consistently discriminate between similar and dissimilar web pages. In a large 

scale, real-world case study, we have showed that our approach is highly effective at 

detecting similar web pages, in particular for Anti-Phishing applications. By optimizing 

the choice of compressors for our NCD system, we also acquire the near perfect 

classification results. We hope based on these initial results, a novel and robust Anti-

Phishing system can be developed in the future; this will need to address issues including 

the sensitivity and specificity of the NCD technique.  
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Another issue should be discussed is our mechanism can not prevent some of the specific 

class of Phishing attack such as the MITM attack or the “man in the middle” attack under 

the system “hacked” situation. Most of this kind of attacks are involved in the security 

system breach such as DNS poisoning [124] of personal computer or even the ISP 

(Internet Service Provider) server. Although we can still identify the Phishing website as 

the suspicious webpage due to its visual similarity, we might fail to identify it as a 

Phishing one in that false identification results from the other Phishing clues such as 

wrong domain name verification caused by the domain name poisoning. In this case, the 

main identification failure is caused by the malfunction of the user system but not the 

defect of our mechanism.     

10.3 Real world scenario test  

We also tested our system using the most popular Web pages to examine its practicality 

for the real world situation. The low false positives rate shows that when users are 

browsing websites the chance for our mechanism to identify legitimate websites as a 

Phishing website is low. This is very important in that such an inconvenience will 

decrease the confidence of user in any Anti-Phishing tools[29]. Hopefully, our proposed 

system will be acceptable to the user population. 

10.4 Refined compression algorithm  

We modified the original LZMA and applied it to our classification application. A better 

experimental result shows the refined LZMA is a viable alternative to the traditional 

algorithm. This provides us the opportunity to solve some of the obfuscation problems 
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cause by the complicated structure of web sites or countermeasures created by Phishers 

who want to defeat our system.   

10.5 Additional Possible Countermeasures  

In the future, we will undertake a more complete evaluation of the robustness of our NCD 

similarity technique against countermeasures Phishers could employ. While we think that 

it will be difficult (at least effort consuming) for Phishers to evade our NCD similarity 

technique, we believe it is still important to seek empirical evidence to support this 

statement. We will attempt to quantify the robustness of the NCD similarity technique 

using a variation of mutation testing. A mutation will be defined as any operation that 

alters a webpage to avoid our similarity identification (such as the one in Figure 7.6). 

These mutations include changes in image color, object coordinates (i.e. rearranging 

DOM elements), icon resolution, and textual contents (i.e. garbage text, out-of-context 

phrases, etc.). In mutation testing, the tester attempts to find a test suite that “kills” (i.e. 

detects) each mutation; in this approach multiple variants of a single program are 

developed, each containing one or more mutations. The effectiveness of a test suite is 

measured by the fraction of “mutant” programs killed. In this application, we will be 

attempting to quantify the effectiveness of a single test (NCD similarity) on a population 

of mutants. We will also seek an understanding of what mutations (if any) are able to 

evade this test, and hence of the limitations of the NCD similarity technique. The possible 

“counter counter-measures” to these “counter measure-mutations” is by using our refined 

compression algorithm to specifically extract the similarity part from a protected 

webpage to form a unique signature for our NCD based similarity identification. 
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10.6 Other Phishing clues 

Another avenue of future work is to consider other characteristics of the website that can 

be identified as a Phishing website. In [72], they mentioned clues such as 1) Age of 

domain: many Phishing websites only registered their domains for a few days; 2) Known 

images: a webpage contains its brand logos but is not using its brand domain, then  it 

probably is a Phishing webpage; 3) Suspicious URL and links: a page’s URL contains an 

(@) or (-) in the URL or link for its webpage; 4) IP Address: domain name is an IP 

address; 5) Dots in URL: Phishing webpages tend to use many dots (.) in their URLs; 6) 

Forms: the HTML content for the <input> tags contains the labels with sensitive 

keywords such as “credit card” or “password”. None of the listed features on its own can 

be the mighty silver bullet to “kill” the Phish. Different malicious strategies are 

developed by the Phishers just to avoid their Phishing webpage to form a specific feature 

as the “clues” for Phishing detection.  

 

In [29], after performing the a serious tests for human factors about Phishing, they 

suggest “the standard security indicators (which widely deployed in nowadays Anti-

Phishing tools) are not effective for a substantial fraction of users, and an alternative 

approaches are needed”. This alternative method must have the ability to accurately 

identify the Phishing web pages via its own intelligent decision making mechanism 

instead of the list. Furthermore, to increase the accuracy of the identification, it has to be 

heuristic to prevent the “mutation” of Phishing websites. In [125], they mentioned both  

famous Internet browsers-IE and Firefox put the heuristic functions into their mainly 

black-list based system for better identification concern. An embedded heuristic Anti-
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Phishing mechanism is an absolute necessity in the trend of the Anti-Phishing tool 

development.   

 

Our proposed method which identifies the Phishing websites via its visual similarity 

provides a new approach to this area. Although we have proofed it is robust to accurately 

identify the Phishing websites, it is still important to consider adding other Phishing 

features to assist in Phish identification. We believe by combining other reliable Phishing 

website features, we can develop a hybrid heuristic Anti-Phishing mechanism based on 

our NCD similarity clustering core technology with accurate Phishing webpage 

identification results in the near future.    
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