

Towards a Utility Framework for Enterprise Business Intelligence

Mashups

by

Sabbir Ahmed

Thesis submitted to the Faculty of the Graduate and Postdoctoral Studies

in partial fulfillment of the requirements for the degree of

Master of Science

in

Electronic Business Technologies

Supervisor: Dr. Umar Ruhi

University of Ottawa

Ottawa, Ontario, Canada

© Sabbir Ahmed, Ottawa, Canada, 2014

i

In the name of Allah,

the Compassionate,, the Merciful

ii

Abstract

Organizations today are adopting business intelligence (BI) systems at a fast pace with the

expectation that these systems will help them make better business decisions and improve their

performance. But with the ever changing industry dynamics and variable business needs of end-

users, the BI requirements of organizations are also getting unpredictable and increasingly harder

to deliver by the service providers. Additionally, the advancement of web 2.0 & enterprise 2.0

technologies has opened up more possibilities for the development of user-centric innovative

business applications. Enterprise BI Mashups are a specific breed of such technologies that have

the potential to empower end-users with self-service capabilities and facilitate problem-solving

in ad-hoc situational BI scenarios. This research project attempts to explore the current landscape

of Business Intelligence (BI) Mashups and to identify gaps in technology with respect to user

requirements and corporate objectives. Through an empirical investigation of BI mashups use

cases, specific issues and challenges associated with the use of mashups in BI have been

ascertained. Working in collaboration with IBM Cognos, we have formulated a taxonomy and

utility framework for Enterprise BI Mashups. The formulated taxonomy provides a basic

framework for understanding the domain of BI mashups and is aimed to aid application

development initiatives for creating BI mashups toolkits. The utility framework draws upon real-

world use cases for BI Mashups as well as pertinent software design patterns that can facilitate

the development of BI mashup tools and services. These frameworks are expected to advance an

understanding of business process requirements that can be satisfied through the use of

Enterprise BI Mashups, and also aid in the development of mashup toolkits targeted at BI end-

users.

iii

Acknowledgment

I would like to take this opportunity to express my appreciation to all the wonderful and kind

people around me whose help and support have abled me to write this thesis.

It is with immense gratitude that I acknowledge my supervisor, Dr. Umar Ruhi, for his guidance

and help throughout this thesis project. It has been an immense learning experience working

under his supervision. I thank him for believing in me and for giving me the opportunity to work

with all the great people at IBM Cognos.

I would also like to thank my manager at IBM, Mrs. Emilia Clein and my mentor Hassan

Bassam for their support during my internship.

I am thankful to the IBM Center for Business Analytics & Performance and Mitacs Accelerate

program for their financial support towards my thesis.

I am grateful to my dear friend Sara Mohammadi for her close friendship during the difficult

times of my graduate studies.

Finally, I would like to dedicate this thesis to my parents and my brother who have been the

source of inspiration and hope for me. My family has always encouraged me throughout my

studies and more importantly my life.

iv

Publications

Ahmed, S., & Ruhi, U. (2013). Towards a Functional Taxonomy of Enterprise Business

Intelligence Mashups. In The Second International Conference on Informatics and Applications

(ICIA2013) (pp. 98–103)

v

Table of Contents

Chapter 1 Introduction…………………………………………………………………………1

1.1 Research Motivation ... 2

1.2 Problem Definition.. 6

1.3 Objectives ... 8

1.4 Contribution of the Thesis and Key Benefits .. 9

1.5 Structure of the Thesis .. 10

Chapter 2 Background and Literature Review ……………………………………………..11

2.1 The Mashup Concept .. 11

2.1.1 Web 2.0 ... 12

2.1.2 Enterprise 2.0 .. 13

2.1.3 The Birth of Mashups ... 15

2.2 Mashup Categories: .. 16

2.2.1 Mashup Categories based on Functional Range ... 17

2.2.2 Mashup Categories based on Target/User Groups ... 18

2.2.3 Mashup Genres ... 20

2.3 Benefits of Enterprise Mashups .. 22

2.4 Mashup Patterns: ... 26

2.4.1 Activities Related to Mashup Patterns .. 27

2.4.2 Pattern Descriptions .. 29

2.4.2.1 Harvest Patterns .. 29

2.4.2.2 Enhance Patterns ... 31

2.4.2.3Assemble Patterns .. 34

2.4.2.4 Manage Patterns .. 36

2.4.2.5Testing Patterns .. 37

2.4.3 Mashup Design and Architecture ... 38

2.4.4 Mashup Development Classifications .. 41

2.4.4.1 Manual and Tool-Assisted Mashup Development .. 41

2.5 Business Intelligence .. 52

vi

2.5.1 Business Intelligence Tool: IBM Cognos BI .. 56

2.5.2 Situational Business Intelligence .. 56

2.5.3 Business Intelligence & Self-Service ... 61

2.6 Enterprise BI Mashups and their current landscape ... 64

2.6.1 BI Mashup Development Tools .. 68

2.6.1.1 IBM Cognos Software Development Kit (SDK) .. 68

2.6.1.2 IBM Cognos Mashup Service (CMS) ... 69

Chapter 3 Research Methodology …………………………………………………………… 70

3.1 Design Science Research methodology for Information Systems………………………70

3.2 Research Methods and Steps…………………………………………………………….73

3.3 Methodology of Taxonomy Construction ... 74

3.4. Taxonomy Construction for Our Research ... 76

3.5 Research Evaluation and Validation ... 76

Chapter 4 Results and Findings ……………………………………………………………...80

4.1 Proposed Functional Taxonomy for Entperise BI Mashups ... 80

4.1.1 Taxonomy Construction... 81

4.1.2 Taxonomy Analysis ... 84

4.1.2.1 Enterprise BI Mashup Enablers .. 85

4.1.2.2 Enterprise Users .. 87

4.1.2.3 Development Method.. 88

4.1.2.4 Functional Range .. 89

4.1.2.5 Data Sources ... 93

4.1.3 Mashup Pattern Mapping .. 95

i. Patterns for Mashup Presentation ... 96

ii. Patterns for Data Utilization ... 97

iii. Patterns for mashup functionality ... 98

iv. Patterns for Processes ... 98

v. Patterns for Supporting required Data Sources .. 99

4.2 Proposed Utility Framework for Enterprise BI Mashups ... 99

4.2.1 Underlying Infrastructure... 101

i. Content Sources.. 101

vii

ii. BI Mashup and BI Enabler Components .. 103

4.2.2. User Types .. 105

4.2.3 User Tasks .. 105

4.2.4 Mashup Platform Client Composition .. 108

4.2.5 Required Functionalities ... 109

Chapter 5 Prototypes and Evaluation .……………………………………………………..114

5.1 Prototype 1: Airplane Seat Information .. 114

5.1.1 Overview .. 114

5.1.2 Application Requirements .. 115

5.1.3 Prototype Mashup Implementation .. 115

5.1.3.1 Cognos Report Creation and Access to the Report ... 115

5.1.3.2 Mashup Composition ... 116

5.2 Prototype 2: Organizational Hierarchy Mashup ... 119

5.2.1 Overview .. 119

5.2.2 Application Requirements .. 119

5.2.3 Prototype Mashup Implementation .. 119

5.2.3.1 Cognos Report Access through CMS and Direct URL 120

5.2.3.2 Data Modeling and Transformation .. 122

5.2.3.3 Mashup Presentation Composition.. 125

5.3 Evaluation of the Prototype Mashup Applications ... 127

Chapter 6 Conclusions ………….……………………………………………………………131

6.1 Summary of the Research ... 131

6.2 Contributions of the Thesis ... 132

6.3 Limitations .. 134

6.4 Future Work and Research Directions .. 136

References ... 138

viii

List of Figures

Figure 1: Enterprise Mashups & Long Tail Applications .. 6

Figure 2:Typcial Organizational Hierarchy .. 14

Figure 3: Enterprise Mashups data sources ... 20

Figure 4: Benefit Model for Enterprise Mashups ... 23

Figure 5: Enterprise Mashup Environment .. 39

Figure 6:Comparison summarization of SOA and Mashups .. 51

Figure 7:Information Provision Process .. 58

Figure 8: How BI Mashups Work ... 65

Figure 9: Integration of the mashup platform into a DWH architecture 66

Figure 10: BI mashup maturity model .. 67

Figure 11: Research Framework .. 72

Figure 12: Preliminary Taxonomy Framework for Enterprise BI Mashups 84

Figure 13: Mashup Pattern Mapping with Taxanomy Elements .. 96

Figure 14: Proposed Utility Framework .. 101

Figure 15: Underlying infrastructure for a Enterprise BI Mashup Platform 102

Figure 16: Report Prompt Selection and Report Generation ... 116

Figure 17: Report URL for Mashup Center Usage .. 116

Figure 18: Configuring the URL customizer widget .. 117

Figure 19: Wiring congfiguration of the widgets ... 118

Figure 20: Airplane Seat Information Mashup .. 118

Figure 21: Organization Hierarchy Report .. 120

Figure 22: Accessing the Report data through Web Service .. 121

Figure 23: Employee Posistion and Pay-Scale Information Report .. 121

Figure 24: Organization Hierarchical Data Level Mashup ... 122

Figure 25: Source Operator Configuration .. 123

Figure 26: Data Modeling and Transformation ... 124

Figure 27: Organizational Hierarchy Data Mashup in XML format ... 125

Figure 28: URL Customizer Widget Configuration.. 125

Figure 29: Organization Hierarchical Mashup Presentation .. 126

file:///C:/Users/asif/Dropbox/BI%20mashups/summer%202013/writeups/finalz/22.docx%23_Toc370688935

ix

List of Tables

Table 1: Framing the Research Problem.. 7

Table 2: Bitzer and Schumann (2009) classification model ... 17

Table 3: Summarization of Harvest Patterns.. 29

Table 4: Summarization of Enhance Patterns .. 32

Table 5: Summarization of Assemble Patterns ... 34

Table 6: Summarization of Manage Patterns ... 37

Table 7: Summarization of Testing Patterns .. 38

Table 8: Mashup component and composition model summary ... 41

Table 9: Functionality classification of mashup tools .. 42

Table 10: Information Workers’ Decision Support Nirvana .. 63

Table 11:Comparison of mashup prototype implementations with avaiable IT developed

solutions .. 129

viii

 List of Acronyms

Acronym Definition

CRM Customer Relationship Management

DWH Data Warehouse

Ajax Asynchronous Javascript & XML

AOP Aspect Oriented Mashup

API Application Programming Interface

B2b Business to Business

CMS Cognos Mashup Service

DSR Design Science Research

DTD Document Definition Type

EMML Enterprise Mashup Markup Language

ERP Enterprise Resource Planning

ETL Extract, Transform and Load

GUI Graphical User Interface

IS Information System

JSON Javascript Object Notation

LDX Layout Data XML

ODS Operational Data Stores

RDF Resource Description Framework

REST Representational State Transfer

RSS Rich Site Summary

SCM Supply Chain Management

SLA Service Layer Agreement

SOAP Simple Object Access Protocol

UI User Interface

XML Extensible Markup Language

1 | P a g e

Chapter 1 Introduction

“If I have seen further it is only by standing on the shoulders of giants.”

- Isaac Newton

In this wonderful statement, Newton not only acknowledges and gives credit to the work

of others, but also confirms that what his mind has seen is a result of contributions from many

other great minds. Those minds provided him with a stream of thoughts, which were put together

to create new insights. The mind is indeed the ultimate knowledge mashup. What if technology

tools and applications were able to mirror such behavior and facilitate the discovery of new

insights by their end-users? Mashups provide a means to achieve this objective. Mashups are

composite applications that combine content, presentation, and application functionality from

multiple disparate sources and create useful new services and applications (Makki & Sangtani,

2008; J. Yu, Benatallah, Casati, & Daniel, 2008).

Mashup technologies are especially well-suited to the context of enterprise Business

Intelligence (BI) solutions by virtue of their primary purpose, which is to empower end-users to

create and adapt individual information centric and situational applications (Volker Hoyer &

Fischer, 2008). BI systems are increasingly becoming critical to the daily operation of

organizations. But with ever changing business needs of the users, their BI requirements are

getting unpredictable and increasingly harder to deliver by the service providers. BI Mashups are

a new breed of web based user-centric enterprise applications that unify disparate data and

services to respond to situational requirements i.e. ad-hoc and on-going analytical needs at

personal and enterprise scales(Grimes, 2010; Hassanzadeh et al., 2011). Situational applications

pertain to these unpredictable and transient organizational requirements and follow an end-user

centric approach (Volker Hoyer & Fischer, 2008; Watt, 2007). Such applications are extremely

2 | P a g e

common in today’s dynamic and complex business environments – there is a constant demand

for information, and more importantly, for insights obtained through the information to assist in

decision making practices. More than ever before, knowledge workers are faced with many

unpredictable events which result in novel situations that require just-in-time management of

information (Watt, 2007). In use contexts such as these, traditional methodologies for BI

development and deployment can prove to be insufficient and the economics of formal

development processes may no longer make sense (Mohammadi, Khalili, & Ashoori, 2009; J. Yu

et al., 2008).

In this project, we aim to investigate the scope and application of enterprise mashup

technologies within the realm of business intelligence (BI) solutions. By deliberating how

enterprise mashups can support the business intelligence needs and requirements of

organizations and their end-users, this project aims to formulate a utility framework for

Enterprise BI Mashups. Such a framework is expected to advance an understanding of business

process requirements that can be satisfied through the use of Enterprise BI Mashups, and also aid

in the development of mashup toolkits targeted at BI end-users.

1.1 Research Motivation

Industry experts agree that mashups will play an increasingly important and major role in

future enterprise BI strategies. Previously Gartner Research had predicted that one-third of

analytics applications applied to business processes will be delivered through coarse-grained

application mashups (Gartner, 2009). The Forrester Group predicted that the enterprise mashups

market would reach nearly $700 million by 2013 (Young, Gualtieri, Daley, Shey, & Ashour,

2008). According to the Forrestor Group mashup based tools will also play a significant role in

3 | P a g e

bringing BI to end-users across the organization (Kobielus, 2009). Following are some drivers

for the adoption and use of Enterprise BI Mashups:

BI Mashups assist in increasing BI end-user adoption

BI Mashups, by their very nature, complement traditional BI offerings. They provide

building blocks (components) such as widgets, feeds, and interfaces for knowledge users to

assemble their own information views and analytics dashboards, hence acting as an enabler for

the self-service BI paradigm (Hassanzadeh et al., 2011; Watt, 2007). Self-service BI capabilities

go well beyond user friendly or intuitive interfaces. The potential of mashup technology in

enabling situational BI applications, providing self-service, and facilitating real-time business

intelligence are some of the benefits purported by industry leaders who have adopted these

tools to complement and enhance their BI technology base (Grimes, 2010; Kobielus, 2009;

Zou & Pavlovski, 2007).

BI Mashups enhance decision-making by leveraging contextual internal and external

resources

With the huge growth of data available through the Web, many BI use contexts comprise

leveraging information available on the Internet. BI Mashups have the potential to incorporate

information from these external sources with data and views from internal sources to aid the

enterprise decision-making process (Hassanzadeh et al., 2011). The growth of information on the

Internet has also been complemented by an evolution of various technologies, applications and

standards that facilitate the assimilation and integration of resources on the web. These include

4 | P a g e

the maturity of integration standards such as simple object access protocol (SOAP),

representational state transfer (REST), the advancement of structure and context specifications

through initiatives such as the resource description framework (RDF), and the availability of

easy-to-use graphical user interface (GUI) toolkits with visual drag-and-drop tools for

composition of elements and workflows. Together, these advancements have paved the way for

enterprise mashups to be included in an organization’s portfolio of technology applications

(Volker Hoyer & Fischer, 2008; Volker Hoyer, Stanoesvka-Slabeva, Janner, & Schroth, 2008;

Merrill, 2009).

In addition to standards that help leverage external data and application resources, many

organizations are revamping their internal application environments through the deployment of

service oriented architecture. Service-oriented architecture (SOA) is the foundation platform for

building agile business applications in which software is packaged into reusable, self-managed

services using a web services interface. In the context of BI infrastructures, an SOA based

implementation has the potential to enable more seamless integration of disparate technology

elements into a coherent business intelligence environment (Wu, Barash, & Bartolini, 2007).

Mashups offer a good fit within the context of SOA (Luo, Xu, Song, & Song, 2008) – they can

help organizations grasp new business opportunities and improve resource usage by letting users

assemble internal and external data sources in an opportunistic manner (Hassanzadeh et al.,

2011).

5 | P a g e

Mashups align with demands of current BI paradigms such as real-time & self-service BI and

agile development:

Traditional approaches in BI solutions often draw upon various assumptions such as

predetermined end-user requirements, resolved & concrete business requirements or knowledge

workers willing to adapt their working habits in order to accommodate the BI systems. However,

these assumptions do not always hold true. In fact, the varying requirements and needs of

businesses and end-users have compelled many organizations to focus on making their BI

initiatives more agile. Agile development methodology calls for incrementally delivering

products versus a big-bang approach, for rapid prototypes versus specifications, for reacting

versus planning and for personal interaction with business users versus documentation (Evelson,

2010). Agile processes have been identified as a central best practice in contemporary BI

initiatives (Evelson, 2011).

Mashup technologies offer a means to advance business agility through cross-platform

applications, flexible configurability of components, and reusability of workflows (Luo et al.,

2008; Xie, Xu, & de Vrieze, 2010). More specifically, BI Mashups have been purported to play

an increasingly important role in situational BI applications as mentioned before, BI projects

with real-time requirements (T. Yu et al., 2009), and use contexts with highly personalized BI

needs (Scientifique, 2003). In addition to realizing these personal needs, mashup features in BI

environments, lets non-technical users build context-rich, role-tailored, ad hoc views of disparate

data and explore information in greater depth (Kobielus, 2009).

6 | P a g e

1.2 Problem Definition

Despite years of investing in BI, many organizations have had great difficulty connecting

BI with their core decision making tasks and getting business users involved in the effective

utilization of BI tools and applications. According to industry reports, more than 60% of BI

implementations fail due to inadequate end-user adoption or perceived gaps in BI solution

offerings (Carney, 2012). This high failure rate is an indication of underlying problems with

traditional BI offerings. Some of the problems arise due to rigid data structures that are relatively

hard to modify, and in many cases, small modifications at the end-user level require a lot of

changes at the back-end and a considerable investment of time, effort and the involvement of IT

staff and database administrators.

Figure 1: Enterprise Mashups & Long Tail Applications, based on Pahlke et al. (2010)

Many industry experts believe that BI Mashups can help in decreasing the BI projects

failure rate and in facilitating the end-user adoption (Evelson, 2011; Hassanzadeh et al., 2011;

Zou & Pavlovski, 2007) . For example, as depicted in figure 1, traditional BI offerings address

the most common project requirements through major technology initiatives within the enterprise

7 | P a g e

(represented by the short-tail). However, there are many niche, short life-spanned, situational

projects for a small number of targeted users that require just-in-time delivery of good enough

solutions that are not addressed by traditional offerings. With the help of mashup technologies,

these long tail projects can be implemented with greater ease (Evelson, 2011; Hassanzadeh et al.,

2011; Volker Hoyer & Fischer, 2008; Nelson, Edia, & Ntertainment, 2010).

Additional user-adoption barriers include difficulties in unifying access to heterogeneous

data sources within the enterprise and the constant demand for BI developers and data

professionals who have limited time to cater to the needs of specific groups. These barriers affect

the overall quality and effectiveness of decision-making, present challenges for data integration,

and consequently affect end-user adoption (Popovic, Coelho, & Jaklič, 2009). With the

availability of mashup tools & supporting resources, these barriers can be overcome.

Table 1: Framing the Research Problem

Steps Description

Observation

End-users situational BI requirements are increasing with the growing

amount of unstructured data in the web (Löser, Hueske, & Markl, 2009).

The business users require these situational applications delivered to them in

a rapid manner so that they can make sense of their data right away right now

IT departments cannot cater to the long-tail of user requests due to resource

constraints

Thesis

An Enterprise BI Mashup platform will increase BI systems usage success

rate by enabling tech savvy end-users with self-service capabilities to meet

their own situational demands.

8 | P a g e

Enthymeme

An enterprise mashup platform providing self-service capabilities will offer

rapid situational application development capability by the BI end-users

themselves without requiring any assistance of the IT service providers.

Problem

Statement

There is a lack of formalized frameworks for the development of Enterprise

BI Mashup platforms which will enable end-users with self service

capabilities in order to meet their situational BI needs.

Objective

Formulate a utility framework for Enterprise BI Mashups. Such a framework

will draw upon real-world use cases for BI Mashups as well as pertinent

software design patterns that can facilitate the development of BI mashup

tools and services

 Research

Questions

What are the most common end-user requested situational BI applications

that go un-served or partially served by the service providers?

What characteristics within a mashup platform enable end-users with self-

service capabilities and create situational BI applications?

What are the functional and architectural requirements of an Enterprise BI

Mashup Platform?

1.3 Objectives

In this project, we aim to explore the current landscape of Enterprise BI Mashups and identify

the gaps in existing technology offerings with respect end-user requirements in terms of their

situational data needs. By explaining how enterprise mashups can support the business

9 | P a g e

intelligence needs and requirements of organizations and their end-users, this project aims to

formulate a utility framework for Enterprise BI Mashups. Such a framework will draw upon real-

world use cases for BI Mashups as well as pertinent software design patterns that can facilitate

the development of BI mashup tools and services. The framework is expected to advance an

understanding of end-user requirements that can be satisfied through the use of Enterprise BI

Mashups, and also aid in the development of mashup toolkits targeted at BI end-users.

1.4 Contribution of the Thesis and Key Benefits:

The goal of this study is to advance the knowledge base for Enterprise BI Mashups by offering

strategic insights and actionable guidelines that can improve the adoption of business intelligence

technologies across the enterprise and enhance the end-user experience with utilizing mashups

for their daily business analytics needs. Some of the key contributions of this thesis are as

follows:

1. Identifying and understanding the situational BI requirements of the clients as well as the

bottlenecks of the service delivery process of these requirements by the service providers.

2. A taxonomy of Enterprise BI Mashups through ontological modeling

3. Formulating a utility framework that identifies and describes the requirements for

suitable component and composition models for Enterprise BI Mashups

4. Integration of BI and Mashup products: Cognos BI and IBM Mashup Centre

5. Product enhancement and novel use cases of Mashup Enabler tools (Cognos Mashup

Service)

10 | P a g e

1.5 Structure of the Thesis

The thesis is organized as follows: in chapter 1 we have presented an introduction, context and

the scope of our research. Chapter 2 provides background information of general concepts

related to this thesis. In chapter 3 we discuss the methodology we followed to perform our

research work. In chapter 4 we present the results and finding of our research. The following

chapter consists of the mashup implementations that we have done and their evaluation process.

The final chapter provides a conclusion of our work as well the limitation and the planned future

work of this research.

11 | P a g e

Chapter 2: Background & Literature
Review

2.1 The Mashup Concept

Mashups are one of the hallmarks of second generation web applications or Web 2.0. This

exciting breed of interactive web applications sprouting all across internet is generated by

combining content, presentation or application functionality from disparate sources. Their

popularity stems from the emphasis on interactive user participation in which they aggregate and

stitch together third party data (Merrill, 2009). Drawing upon content and functionality from

within and outside the organizational boundaries, mashups spread their roots across the web.

The etymology of the term mashup leads us back to the pop music scene where it was borrowed

from; where mashup is a new song mixed from two different source songs of different genres.

And at their best these mashups strive for musical epiphanies that add up to considerably more

than the sum of their parts (cited in Makki & Sangtani, 2008). Mashups in Web 2.0 similarly

enhance the independent and isolated nature of standalone web applications by deriving relevant

data and parameters from various sources - fusing the properties and thus forming the mashed up

application. But many popular definitions of mashup would indicate that they are limited to only

web based artifacts e.g.: published APIs, RSS/Atom feeds or HTML “screen scraping”. But

mashups are not just composite applications created from these sources, they can also be used to

mine and manipulate data, migrate content or even present data in a different way making

themselves open to a much broader world of data including databases, binary formats (Excel and

12 | P a g e

PDFs), XML, delimited text files and so on. Mashups effectively simplify the discovery and

presentation of complex information through making connections between pieces of information.

But mashups do not confine themselves in providing simplicity only, through leveraging creative

composition of existing functionalities, data and interfaces to achieve a more complex goal

(Bozzon, Brambilla, Facca, & Carughu, 2009). The goal of creating mashups is to solve

problems and create new opportunities through the process of finding and using data,

functionality and services.

Mashups are regarded as a product of the Web 2.0 (Liu, Liang, Xu, Staples, & Zhu, 2011) and

subsequently adopted in the Enterprise 2.0 arena due to the user demands of Web 2.0

technologies within the existing corporate infrastructure (Mcafee, 2006).In the following sections

we will discuss about Web 2.0 & Enterprise 2.0.

2.1.1 Web 2.0
The advent of Web 2.0 came with the shift from transaction based Web pages to interaction-

based ones. Tim O’Reilly, credited with popularizing the term, defined it as “the business

revolution in the computer industry caused by the move to the internet as platform, and an

attempt to understand the rules for success on that new platform” (O’Reilly, 2006). Users can

easily share their opinion and resources with the set of services the Web 2.0 provides. The

power of individual web users is mashed, mixed and multiplied to create value. The components

that make Web 2.0 possible consists of social networking sites and image sharing services /sites,

folksonomies (collaborative tagging, social bookmarking), wikis, blogs , RSS, podcasts and of

course mashups (Ogrinz, 2009; Yakovlev, 2007). But the one trait of Web 2.0 technologies

which stands out and makes them unintentionally malleable is their flexibility, which is also the

underlying driver of Web 2.0. Components of Web 2.0 have the capability to accept and adjust to

13 | P a g e

new uses undertaken by the users, when they are used outside the scope of their original

intention, rather than breaking down (Ogrinz, 2009). The core of Web 2.0 principles are defined

as “simple, low barrier and fast” and “every user himself is the center on internet” (Mohammadi

et al., 2009).

2.1.2 Enterprise 2.0
Enterprise 2.0 breaks down the traditional divisional barriers within organizations and

encourages building bridges. With the notion of “bring your own device (BYOD)” we have seen

employees opting for bringing their own devices to their workplaces to make it easier to manage

the applications they use. This comes from the inevitability of people discovering useful tools

and personalizing them outside the workplace and then wanting to use it at their offices too. In

the same manner in which the propagation of personal devices at workplace is accelerating, the

demand for self-service application development available in the consumer internet space for

non-technical users is growing in the more tightly governed enterprise scenario. As we have

mentioned before user demand for Web 2.0 technologies within corporate walls is the driver for

Enterprise 2.0. To take the advantage of “economies of collaboration” the challenge for

organizations is to integrate peer-based collaborations models of Web 2.0 with legacy

technologies and the mindsets. In the traditional organizational hierarchies, the established

control mechanisms of how solutions are being delivered are typically isolated.

14 | P a g e

Figure 2:Typcial Organizational Hierarchy (Ogrinz, 2009)

Figure 2 depicts the traditional divisional barriers in organizations. Each particular tier, rather

than having a collaborative work process, address different data security and information

protection concerns. IT department’s actions on security are purely mechanical, done through the

use of secure protocols, authentication, encryption, and so on. While the business users actions

depend on training and education on how to maintain standards while utilizing the services

provided to them. And from the top tier where the management lies, attention is given to whether

the organization as a whole conforms to the regulatory or industry specific tools. In the

Enterprise 2.0 concept these rigid structures are removed through collaborative solution delivery.

Equal access to technology and flexible yet powerful tools enable every segment of the

organization to build its own solutions. Especially business or non-technical users are

empowered to create their own application solutions without management or IT’s engagement.

The power of crowdsourcing and folksonomies is leveraged to create an open interaction model

through which teams can discover how other lines of business operate and this in turn leads to

changes in strengthening relationships across departments.

15 | P a g e

2.1.3 The Birth of Mashups

The concept of reuse in software engineering plays an important role towards delivering a quick,

easy and affordable application development process. Instead of starting from scratch, reusing

something that has already been built, tested and paid for through the use of external libraries,

web services, subroutines, object orientation, templates etc aids in achieving this goal. But these

milestones were created by software development professionals with the purpose of sole use by

other developers. But an Enterprise 2.0 environment necessitates business users participating

more directly in the development processes, either by themselves or in partnership with IT

department. But a certain level of knowledge about development best practices is a prerequisite

for a successful involvement of the business team. On the other hand, it is imperative for the IT

department and personnel to learn more about the business users’ work processes & goals and

creating an environment which facilitates rapid service delivery and product construction which

the users require (Ogrinz, 2009).

In addition to that, the ability to utilize the reuse concept in the Web 2.0 could pave the way to

having a “semantic web” that Tim Berners-Lee envisioned of (Berners-lee, Hendler, & Lassila,

2002). Mashups, using the web as a platform, are making this vision a reality. This empowering

technology provides the opportunity to reuse resources which are not designed to be re-used. The

traditional approach of creating APIs, compiling packages and writing documentation has left

applications developers who reused resources at the mercy of the original designers. Mashups

liberate the reusers in that sense. With mashups we are not confined to only using the existing

APIs; or we even can impose our own if none exists. Mashup’s ability to provide programmatic

access to unlimited data together with the fact that the tools for constructing mashups are

reaching a usability level where the line of business users can utilize them to build their own

16 | P a g e

solutions, provides immense opportunity to bridge the existing gap between IT and business

(Ogrinz, 2009)

2.2 Mashup Categories:

Before delving in to discussing mashup types, we will look into a classification model of

mashups which will help us better understand mashup categorization. Mashups have been

subject to different specifications in terms of their classification. The classification model that we

have chosen is based on Bitzer and Schumann (2009) and Pahlke et al. (2009). Table 2

summarizes the classification and characteristics model.

Type Classification
Characteristics

Functional Range

Presentation Level Mashups

Provide layout and

information in various ways as

Web services

Data Level Mashups

Concentrate on the extraction

and combination of data from

different sources and integrate

them into the user’s own

internet site

Functionality

Combine and integrate

information and application

functionality services proved

by different sources

Process

Integrate and orchestrate

information services, business

functionality services

according to a business/work

processes sequence

17 | P a g e

Target/User Groups

Consumer Mashups

Mainly used for private

applications intended for the

general masses

Enterprise Mashups
Individualization of software

within organizations

Table 2: Bitzer and Schumann (2009) classification model

2.2.1 Mashup Categories based on Functional Range

Presentation level mashups provide layout and information in various ways as web services

resembling customized portals comparable to iGoogle. A presentation mashup’s focus is on

retrieving information and layout from different sources without integrating data and

functionality (Daniel & Matera, n.d.). The users have the ability to simply drag and drop pre-

built components into a common user interface and subsequently re-use and share the results.

Data level mashups provide the capability of extracting and combining data from different

sources and integrate them in the user’s own site. One of their well-known examples is

Healthmap.org where relevant data is combined with online maps (Bitzer & Schumann, 2009).

Data mashup meanwhile do integrate data and information services from different sources and

presents the results in a unified view. They are mostly intended for adhoc business analysis from

combining internal data with publicly available information. IBM Mashup Center and Jackbe

Presto are commercial examples of this type of enterprise mashup tools. Different kinds of

components like information and business service applications can be combined and integrated

in via generic interfaces in Functionality oriented enterprise mashups. Lastly Process oriented

mashups focus on facilitating the orchestration of information and business application services

according to a process sequence for complex enterprise mashups (Pahlke et al., 2010). They

18 | P a g e

enable user interface integration (Daniel & Matera, n.d.) by combining process orientation with

elements from end user driven application development as well as end user participation. The

next categorization of mashups is based on user or target groups. This is by far the most

commonly associated categorization type of mashups. These user or target groups are

differentiated into consumer and enterprise mashups. We will discuss about these two

categorizations in details in the following section.

2.2.2 Mashup Categories based on Target/User Groups:

1. Consumer Mashups

Consumer mashups, generally associated with Web 2.0, are usually created for personal use for

situational problem solving, but could be shared among peers (Zhao, Bhattarai, Liu, & Crespi,

2011). They require a lesser amount of programming expertise. One of the classic examples is

showing Craiglist listings on a Goggle Map (Ogrinz, 2009).

Consumer mashups only rely on public web sites that expose well-defined APIs and feeds. The

limitation factor here is that the resources used in constructing consumer mashups have to be

“mashup ready”. However, most of the consumer mashups tend to be built around a small

number of sites with public API. Most consumer mashups tend to be built using the popular

Google Maps API. Yu and Woodard (2009) noted that the task of characterizing the mashup

ecosystem is made more complicated by how the web of relationships among mashups and APIs

has evolved along with the populations of each. The dynamics of these relationships depend

upon the process of choosing certain APIs to build on by mashups creators. This in turn depends

on decisions of API providers and the expectation of mashups creators’ target audiences. The

19 | P a g e

interlinked decisions put mashups and APIs as a single evolving network rather than as

independent populations of discrete entities (S. Yu & Woodard, 2009).

2. Enterprise Mashups :

Enterprise mashups have a more complex structure than consumer mashups. Hoyer and Fischer’s

(2008) definition of mashups is based on 16 definitions from literature of different perspectives:

technical, business, application, consulting, software vendor and community. According to them:

“An enterprise Mashup is a Web-based resource that combines existing resources, be it

content, data or application functionality, from more than one resource in enterprise

environments by empowering the actual end-users to create and adapt individual

information centric and situational applications”

In addition to the traditional API and RSS feed integration, enterprise mashups’ data sources are

much more extended in terms of variety, treating the whole World Wide Web as first class data

source. While consumer mashup builders depend upon content providers to expose their API,

enterprise mashups on the other hand use web harvesting (section 2.3.1) to grab whatever data

they want (Ogrinz, 2009). Figure 3 depicts the different types of data sources that enterprise

mashups can utilize.

20 | P a g e

Figure 3: Enterprise Mashups data sources (Ogrinz, 2009)

2.2.3 Mashup Genres

We end our review of mashup classification by listing different mashup genres both in the

consumer and enterprise space. The following genre of mashups mostly applies to the consumer

mashups category, but none the less also applies to the enterprise space:

Mapping/Geocoded Mashups: The prodigious amount of data annotated with location

information can be graphically presented through mapping or geocoded mashups. The advent of

Google Maps and other mapping APIs have enabled the developers and even the hobbyists and

tinkerers to mash all sort of data on to maps.

Video and Photo Mashups: The emergence of video & photo hosting sites like YouTube and

Flickr API that expose video and photo sharing led to the creating of interesting mashups. With

the images and videos having metadata associated with them mashup designers can easily mash

these contents with other relevant data.

Search and Shopping Mashups: Search and shopping mashups existed long before the term

mashup was coined when they utilized business-to-business technologies or screen-scraping to

21 | P a g e

aggregate price comparison data. Currently with the popularity of mashups growing, consumer

marketplaces such as eBay and Amazon have released APIs to programmatically access their

content.

News Mashups: News sources have used syndication technologies like RSS and Atom to

disseminate news feeds related to various topics. These feed mashups can be utilized to create

personalized newspaper that caters to the reader’s particular interests by aggregating a user’s

feeds and presenting them over the web (Merrill, 2009).

The following genre of mashups is more suited towards the enterprise usage:

Client Presentation Mashups: Client presentation mashups are simple syndication of content

from various internal and external providers. Targeted towards non-technical users, these

mashups aid in building portals by allowing users to compose individual portlets.

Client Service Mashups: These genre of mashups require “build from scratch” as opposed to

using packaged widgets and adding them to pages. Through client service mashups end-users or

developers can fetch, process, display, and dynamically modify information in a manner the

targeted desires.

Web Services based Mashups: Based on service-oriented architecture, web service based

mashups are built utilizing web service APIs allowing developers to create applications catering

to the needs of end-users.

22 | P a g e

2.3 Benefits of Enterprise Mashups

Enterprise mashups have the potential to utilize the creative energy of a large number of people

to react in a flexible manner on continuous dynamic changes of the business environment. This

technology has the potential to empower knowledge workers engaged in information sensitive

applications through the process of transforming individual working environments according to

situational needs in an intuitive manner. Through enterprise mashups, knowledge workers have

the liberty to enjoy increased flexibility and can react on the ever changing business environment

without soliciting help from the IT department (V Hoyer, Stanoevska-Slabeva, Kramer, &

Giessmann, 2011). Hoyer et al. (2011) have developed an enterprise mashup benefit model in

alignment with the generic four balanced scorecard perspectives. The framework is based on four

perspectives: user orientation, operational excellence, future orientation, and financials.

At the core of the enterprise mashup paradigm, which is also the lowest level, is user orientation

and the user value proposition. This layer is the starting point for the identification of cause-and-

effect relationships driving and supporting the upper perspectives. Increased user flexibility

through enterprise mashups enhances user satisfaction and also leads to a faster and better

decision making. This benefit then improves competitiveness of the organization in the future

orientation perspective, which in turn improves productivity in the financial perspective (V

Hoyer et al., 2011). This benefit model indicates that enterprise mashup technology is a key, if

not the most important enabler of self-service in organizations. The overarching benefits based

on this model are discussed in the following section:

23 | P a g e

Figure 4: Benefit Model for Enterprise Mashups(V Hoyer et al., 2011)

Increased Satisfaction:

Through a couple of value propositions enterprise mashups can increase the satisfaction level of

knowledge workers. Increased flexibility means the users’ ability to design their own working

environment by efficiently accessing available internal and external data sources and by creating

ad hoc applications with the aid of a flexible mashup platform. The flexibility dimensions

provided through this perspective are: information search, process integration and user

customizability. Increased involvement refers to the core concept of mashup paradigm relating to

the empowerment and involvement of actual end-users as they can create situational applications

with little or no programming skills. Users are actively involved in typical community and

collaboration features providing valuable feedback to the mashup creator and directly

contributing to mashups adoption and improvement (V Hoyer et al., 2011). Two aspects of

increased involvement are: networking and communicating personal experiences (Carrier,

Deutsch, Gruber, Heid, & Jarrett, 2008). Increased satisfaction is the result of both increased

24 | P a g e

flexibility and involvement. In addition to these benefit items increased satisfaction also refers to

the reliability of information and ease of use.

Improved Decision Making:

In competitive markets where the window of opportunity is small, the capability to rapidly

respond to changing market needs through the operational excellence that mashup platforms

provide, accelerates the provision of actionable knowledge and allows immediate

implementation. Through support of unstructured processes the seamless integration of different

data sources according to the requirements of ad-hoc decision processes reduces the processing

time and improves decision making of knowledge workers. Improved decision making refers to

the fact that enterprise mashups can also improve the quality of undertaken decisions.

Addressing the ‘Long – Tail’ of Situational Applications:

The deployment of enterprise mashup platforms seems to adequately fulfill business users’

individual and heterogeneous needs. Based on lightweight composition and orchestration

principles as well as easy UI integration, enterprise mashups are the answer to required new

development approaches. They incorporate the group of non-technical business users into the

development process. The enterprise mashups paradigm represent a promising solution to

adequately fulfill address the “long-tail” of requirements. In particular their benefits are listed as:

 Increased business agility, flexibility,and innovation to meet changing business demands

 Problem mitigation between the IT department and business units with regard to poor

quality of support, low reaction time, and high cost of adequate IT governance

 Cost reduction by means of higher resource utilization and reusability, as well as lower

IT operating and development costs (Pahlke et al., 2010).

25 | P a g e

Rapid Response to Changing Market Needs:

Organizations can achieve their visions by sustaining innovation and change through enterprise

mashups, as they enable continuous improvement and preparation for future challenges. In

competitive markets where the window of opportunity is small, the capability to rapidly respond

to changing market needs through the operational excellence perspective accelerates the

provision of actionable knowledge and allows immediate implementation. Enterprise mashups

also provide improved competitiveness and thus enables faster and better decision making. By

rapidly creating mashup applications in order to meet immediate goal or requirement, enterprise

mashups delivers are able to respond to these dynamic needs. While increased innovation rate

means the enterprises can take advantage of the creativity of a large number of users (V Hoyer et

al., 2011). And thus “an ubiquitous laboratory for innovation throughout an organization” is

created and competitive advantage is gained (Hinchcliffe, 2007).

Reusability:

One significant benefit of enterprise mashups that enable rapid response to changing market

needs is their reusability. Mashups offer three different aspects to this reusability concept:

With the aid of mashups, reuse is no longer an ivory tower concept limited to only application

architects as end users hand in hand with developers will be creating solutions and thus being

practiced by everyone.

Mashups impose reusability in a “after the fact” manner where the creators build their own

APIs with minimum functionality rather than the traditional method of undertaking additional

planning and coding together with front-loads development efforts to create open APIs and extra

documentation which may never be used.

26 | P a g e

Mashups are implicitly reusable, which creates a never-ending cycle of potential associations and

recombination, thus eliminating the “dead ends” dilemma resulting from the traditional practices

not requiring a system that leverages existing code or libraries itself be reusable (Ogrinz, 2009).

Improved Productivity:

The benefits experienced through increased satisfaction, collaboration, improved decision

making and competitiveness provided by enterprise mashups can have a positive impact on the

productivity of an organization and its knowledge workers. As the business users are the best

shepherd of the business requirements that are traditionally passed on to IT for development,

enterprise mashups can increase the end-results of these applications by empowering the

business users to cater to their own needs. This is complemented with the fact that having a

mashup platform cuts processing lead time to get any information requests fulfilled by the IT.

While enterprise mashups helps in preserving the IT investments on Service Oriented

Architecture of an organization which are built on modular components enabling reuse and

integration with new systems. Enterprise mashups put a face on SOA leveraging the existing

capabilities. Thus this reusability concept stemming from SOA coupled with transferring the

long-tail user-requests to the users themselves enables an organization to utilize its valuable IT

resources in long term and more complex projects. This can potentially increase the productivity

level of both the IT users and knowledge workers. The increased productivity eventually has an

impact on the financial perspectives of an organization in a positive manner.

2.4 Mashup Patterns:

A pattern, more specifically a design pattern, attempts to incorporate best practices to achieve a

resolution to a commonly occurring problem in software design. Once a problem and its general

27 | P a g e

reusable solution has been paired and named, it becomes a way of identifying other problems and

providing template of how it should be handled. Mashup patterns provide templates for solving

different problems and challenges while constructing mashups. These patterns possess the

characteristics to be applied outside the context for which they were initially meant to be applied.

Mashup patterns, unlike traditional patterns, do not come with an accompanying implementation

or sample code which has the tendency to unintentionally sabotage a good solution(Ogrinz,

2009). Mashup patterns typically use one or more of the following core activities as described by

Ogrinz (2009), which describe the general capabilities that underline most enterprise mashups:

2.4.1 Activities Related to Mashup Patterns:

Data Extraction: Data extraction refers to a mashup platforms ability to obtain information from

closed sources where content is not exposed for programmatic access.

Data Entry: Data entry provides the key capability for chaining multiple sites together often

going hand in hand with data extraction operation. This activity supplies data to mimic the steps

that a user would do in order to navigate to a desirable point while using a web application.

Data visualization: Data visualization encompasses the ability to create user-friendly results

based on the data collected by a mashup.

Scheduling and Surveillance: Scheduling, through automation, determines when a specific task

occurs in addition to identifying which resources are engaged for a mashup. While surveillance

is referred to the data extraction operation that executes a periodic schedule which records

baseline statistics regarding changes in a web resource.

28 | P a g e

Clipping: Clipping refers to the practice of grabbing a “chunk” of a website as opposed to mining

discrete sections of a web resource in the data extraction activity. Clipping allows repurposing of

web content without requiring any changes to the underlying code base.

Transformation: Transformation is an essential part of turning extracted data into a useful format,

e.g. explicit data casting, changing to uppercase/lowercase, database and table lookups,

formatting masks, applying mathematical operations, transforming HTML and binary data.

Action: Action refers to the activity of assigning a specific event to trigger a mashup. This

activity is provides an alternative where typical data extraction, scheduling, and surveillance

tasks are inefficient.

 Publication: Publication enables the mashup developers to leverage the economies of

collaboration across an organization, by making mashups easily available for usage while

ensuring they don’t proliferate to an unmanageable level.

Assembly Canvas: Closely related to data visualization and clipping activities, an assembly

canvas provides an environment that supports intercommunication among mashups providing

more effectiveness than manually combining mashups.

Ogrinze (2009) has categorized mashup design pattern into five types, which utilize these above

mentioned core activities. These patterns are also interconnected to each other. The patterns are

further elaborated in the following sections. The sub-patterns of each overarching pattern are

described in terms of the problem they address, their solution approach, core activities used in

the solving the problem, the related patterns and fragility. Each sub-pattern is given a fragility

score ranging from 0 to 5. Any mashup, however thoroughly tested has some degree of fragility,

so no pattern is given a score of 0.

29 | P a g e

2.4.2 Pattern Descriptions:

2.4.2.1 Harvest Patterns

The main goal of harvest patterns is to mine existing assets for unique data. They describe the

method for extracting information previously viewed as closed. Harvest patterns can circumvent

specific requirements of a particular product or interface and can circumvent these layers by

superimposing a consistent method for access on top of the underlying implementation. The

most important characteristic of harvesting is its ability to retrieve data both from structured and

unstructured source in addition to harvest the outcome of certain requests and interactions.

Following is a summarization of some harvest patterns:

Table 3: Summarization of Harvest Patterns (Ogrinz, 2009)

Pattern Addressed

Problem

Solution Core Activities Related

Patterns

Fragility

Alerter Range of data

to be

monitored is

typically

enormous

 Intelligent Agents are configured

to automatically monitor various

conditions and trigger alerts.

Monitored resources: Web Pages

(HTML), email (IMAP,POP3),

binary formats (XLS,PDF,DOC),

XML, RSS,ATOM, CSV/Text

and Databases

Data

Extraction,

Surveillance

API

Enabler,

Time Series

 1

30 | P a g e

API Enabler

Valuable

content is

locked away

in closed or

proprietary

formats.

Create a custom API for static

resources (e.g. web pages) so that

they can be utilized as a dynamic

data source. Data Sources

include: Web Pages (HTML),

email (IMAP,POP3), binary

formats (XLS, PDF, DOC),

XML, RSS,ATOM, CSV/Text

Data Entry,

Data

extraction,

Transformation

Infinite

Monkeys,

Feed

Factory

2

Competitive

Analysis

Finding out a

competitor’s

product and

price

offerings

Extracts pricing and product

information or advertising trends

from competing firms to compare

against your own offerings

Data

Visualization,

Surveillance

API

Enabler,

Sentiment

Analysis,

Leading

Indicator,

Timer

Series

2

Infinite

Monkeys

Finding the

right

information

consists of a

series of dull,

recurring

tasks that

yield value

only in a

small fraction

of cases

Automates a repetitive task to a

scale unachievable by normal

human agents

Data entry,

Data extraction

API

Enabler

2

Leading

Indicator

Detecting

how different

series affect

one another as

leading or

coincident

indicators

Enables mashups to regularly

monitor information that may

indirectly serve as a leading

indicator

Data

Extraction,

Data Entry,

Transformation

Infinite

Monkeys,

Time Series

3

31 | P a g e

Reality

Mining

Identifying

the

undercurrent

of activity that

forms the

patterns of an

organization’s

workforce’s

daily work-

routine

Incorporate environmental and

behavioral data to better

understand human interaction

Data

Extraction,

Data Entry,

Transformation

, Surveillance

Time Series 2

Reputation

Management/

Sentiment

Analysis

Identify how a

company is

perceived in

the web

Use mashups along with

Sentiment Analysis techniques to

be scan for words that connote

emotion and then rank how a

document “feels”

Data

Extraction,

Data Entry,

Transformation

Infinite

Monkeys,

Time Series

2

Time Series Tracking

internal and

external data

to improving

an

organization’s

decision

making

process

Use a mashup to extract and store

information at regular intervals in

hopes of observing trends in the

data

Data

Extraction,

Data Entry,

Transformation

Infinite

Monkeys,

Leading

Indicator

2

2.4.2.2 Enhance Patterns:

Enhance patterns provide a template to extend the capabilities of existing resources to get the

most value. The goal of enhance patterns is to enable mashups with the capability of making the

process simpler and less expensive as opposed to the traditional way of enhancing existing

software systems (Ogrinz, 2009). The objectives of enhance patterns listed by Ogrinz (2009) also

include

1. Extending applications to a wider audience

32 | P a g e

2. Fixing bugs without touching the underlying code

3. Making software more user-friendly

4. Improving the “findability” of data

5. Incorporating changing business rules

The following table summarizes the typical enhance patterns:

Table 4: Summarization of Enhance Patterns (Ogrinz, 2009)

Pattern Addressed

Problem

Solution Core Activities Related

Patterns

Fragility

Accessibility Maintaining unique

interface environments

for multiple users and

devices to ensure

existing resources

remain compatible with

advances in other fields

Construct an alternative

application interface with

no impact on the original

code base

Data Extraction,

Data Entry

Field Medic,

Usability

Enhancer,

Widget

Enabler

3

Feed Factory

/ RSS

Enabler

Legacy systems and

even current may not

support RSS

Create an RSS/Atom Feed

for a site that doesn’t

expose a feed, and create

new feeds by remixing

existing ones

Data Extraction,

Data Entry,

Transformation

Filter, API

Enabler,

Widget

Enabler

3

Field Medic When a critical bug is

discovered in an

essential system, a patch

might not be possible to

be implemented due to

reasons which are out

the developers control

Provide a temporary patch

to a system when you are

unable to correct the

problem directly

Data Extraction,

Data Entry,

Clipping, Data

Transformation,

Action

Accessibility

,Usability

enhancer

5

Folksonomy

Enabler

Most enterprise class

applications are not

designed with social

tagging concepts

Add community-driven

tagging or rating features

to existing applications

Clipping Field Medic,

Usability

Enhancer

5

33 | P a g e

Fragility

Reducer/

Load

Balancer

Mashups are at risk of

breaking down when

unanticipated changes

are made to the systems

they connect

Add redundancy to

mashups by leveraging

multiple sources

Data Entry,

Data Extraction,

Transformation

 2

Smart

Suggestions

Most applications rely

on training and

documentation to aid the

user and overburden

them numerous required

actions to accomplish a

single goal

Enhance productivity by

using mashups to suggest

material relevant to users’

tasks

Data Entry,

Data Extraction,

Data

Visualization,

Transformation,

Action

Usability

Enhancer

2

Super Search Adding search

capabilities to an that

doesn’t have any,

enhance search

applications to increase

the input parameters and

output results

Apply business specific

knowledge to enhance

user search activity so that

results are obtained from

multiple sites relevant to

the problem domain

Data Entry,

Data Extraction,

Transformation

API Enabler,

Infinite

Monkeys,

Smart

Suggestions

4

Translation /

Language

Converter

Receiving information

only from biased local

sources can lead to

unintentional undesired

consequences

Pass content through a

service to add

clarifications or convert it

to a different language

Data Extraction,

Data

Visualization,

Transformation

Accessibility,

Field Medic,

Usability

Enhancer

5

Usability

Enhancer

Usability is less

prioritized compared to

delivery of a working

solution

Construct a mashup

“wrapper” (or façade) which

exposes only the

functionality necessary to

use the system

Data Entry,

Data Extraction,

Transformation

Accessibility,

Field Medic

4

Workflow Adding workflow

capabilities to an

application that is not

originally built to

support workflow

requirements

Add workflow capabilities

to a system or chain of

systems

Data Extraction,

Data Entry,

Action

API Enabler,

Usability,

Enhancer,

Field Medic

5

34 | P a g e

2.4.2.3 Assemble Patterns

Assemble patterns provides a template for best practices for remixing data and interfaces to serve

new purposes and thus create something entirely new. Assembly mashups can be delivered ‘right

now’ rather than the traditional way of going through formal design and specification phases of

application development. Assembly mashups empowers users – both technical & non-techincal

and thus the organization to quickly create ad hoc systems and data streams that can be used in

new solutions to existing problems (Ogrinz, 2009). Below is a summarized table of assemble

patterns:

Table 5: Summarization of Assemble Patterns (Ogrinz, 2009)

Pattern Addressed

Problem

Solution Core Activities Related

Patterns

Fragility

Communication

and

Collaboration

The communication

channels that link

people together have

little or no way to

discern the intrinsic

value of the

information they

broadcast creating an

interruption overload

for the workforce

Combine internal

communication products

to solve problems related

to Interruption Overload

Clipping, Data

Entry, Data

Extraction

Super Search 3

Content

Aggregation

Creating a “single

task” from disjointed

operations to make

up for inefficiency in

multitasking

Multiple resources are

combined to remove

inefficiencies caused by

frequent task-switching

between applications

Action,

Clipping, Data

Extraction, Data

Entry

Dashboard,

Emergency

Response,

Usability

Enhancer

1

35 | P a g e

Content

integration

Managing transparent

flow of data to and

from applications

Extend a system that

accepts an incoming feed

by mashing together

multiple sources into a

new feed that conforms to

the original standard.

(Provides data exchange

techniques for relational

databases, web services,

XML, RSS,JSON)

Data Extraction,

Data Entry,

Transformation

Portal

Enabler

2

Distributed

Drill Down

Drill-down

operations typically

occur within the same

application

Provide Master/Detail

functionality across

multiple systems

Clipping, Data

Extraction, Data

Integration

Content

Aggregation,

Usability

Enhancer

1

Emergency

Response

Rapid application

development in

emergencies of

drastic nature –

where the system and

resources of first

responders are not

designed to

interoperate

Create an ad hoc solution

in situations where

response time is crucial

Clipping, Data

Extraction, Data

Integration

Smart

Suggestions,

Super

Search,

Quick Proof-

of-concept

2

Filter Increased

connectivity and

complexity of

communication has

created information

overload

Remove unnecessary or

unneeded data from a

system or data feed

Data Entry,

Data Extraction,

Transformation,

Action

Smart

Suggestions,

Super Search

2

Location

Mapping

Verify accuracy of

location data

Geocode data for location

mapping or address

verification

Data Entry,

Data Extraction,

Data

Visualization,

Transformation

Emergency

Response,

Reality

Mining,

Super

Search,

Widget

1

36 | P a g e

Enabler

Splinter Efficiently

distributing

aggregated data

Separate a unified data

source into smaller,

specialized streams of

focused information

Data Extraction,

Transformation

Content

Integration,

Filter

3

2.4.2.4 Manage Patterns

Manage patterns deals with the challenges of data management and its relations to mashups by

leveraging the investment in existing assets more effectively. More specifically, this pattern

category tackles with issues regarding transmission and storage of IT and thus inclined more

towards usage by the IT department focusing on tasks like: transitioning between systems,

condensing data or processes to align with specific goals, securing access to valuable knowledge

(Ogrinz, 2009). The following table summarized the mange patterns:

Pattern Addressed

Problem

Solution Core Activities Related

Patterns

Fragility

Content

Migration /

Broadcast /

Propagation

Difficulties in moving to

alternative platform due

switching costs

Migrate information

from one or more

applications to a new

environment

Data Extraction,

Data Entry,

Transformation

Infinite

Monkeys

2

Dashboard Exposing summaries of

internal data (of

applications which were

not designed to do so) for

inclusion within a unified

real-time monitoring

console

Acquire and display

summary status

information from

multiple systems on a

single-page

Clipping, Data

Extraction, Data

Entry, Data

Visualization

Alerter,

Content

Aggregation,

Infinite

Monkeys,

Time Series,

Portal

Enabler,

Widget

Enabler

2

37 | P a g e

Portal Enabler Creating compliant

portlets can splinter

development resources

and require continuous

maintenance of multiple

code bases

Move existing

content onto

enterprise Portals

without requiring

custom coding

Clipping, Data

Entry, Data

Extraction,

Transformation

Content

Aggregation,

Widget

Enabler

2

Quick Proof-of-

Concept /

Prototype

Maximizing available

resources to determine

which solutions are

worthy of initial

exploration and

subsequent funding.

Use mashups to

validate a business or

product idea that will

entail a significant

investment

Data Entry, Data

Extraction, Data

Visualization,

Scheduling,

Clipping,

Transformation

Content

Aggregation,

Content

Integration,

Emergency

Response

2

Single Sign-on Absence of integration an

internal “password vault”

with SSO solutions will

create gaps for the

security to breached

Allow a user to

supply credentials

one time for

authentication across

multiple internal and

external systems

Clipping, Data

Entry, Data

Extraction,

Scheduling

Field Medic,

Usability

Enhancer

2

Widget Enabler Portal platforms have

limited ability to adapt to

the diverse needs of the

users and requires

maintaining a huge

infrastructure

Repackage existing

systems for viral

distribution via

popular Widget

platforms

Data Entry, Data

Extraction,

Transformation

Portal

Enabler

2

Table 6: Summarization of Manage Patterns(Ogrinz, 2009)

2.4.2.5 Testing Patterns

Testing patterns enables us to see how mashups can be used to perform basic testing functions

across a wide range of platforms and technologies otherwise limited to products costing

enormous sums of money.

38 | P a g e

Pattern Addressed

Problem

Solution Core Activities Related

Patterns

Fragility

Audit / Aspect

Oriented

Mashup (AOP)

Lack of existing

multisystem audit

capabilities can result in

misuse of application

Use mashups to create

an aspect-oriented view

of application usage

Data Entry, Data

Extraction,

Transformation

Field Medic,

Usability

Enhancer

2

Load Testing Mashups can create

applications or services

outside the capabilities

of test products

contained within an

enterprise

Multiple mashups run

simultaneously can

simulate the activity of

hundreds of users and

assist in load and

stress-testing

Data Entry, Data

Extraction

Audit,

Infinite

Monkeys

2

Regression

Testing

Changes to a third-party

product can

detrimentally affect a

mashup application

By employing a

predefined collection of

data, ensure that

input/output results

across versions are as

expected

Data Entry, Data

Extraction

Content

Migration,

Infinite

Monkeys

1

Table 7: Summarization of Testing Patterns(Ogrinz, 2009)

Overall these patterns can be adapted to an organization’s needs and implemented with the

products they use within their boundaries.

2.4.3 Mashup Design and Architecture:
There are several mashup architectures mentioned in the literature, but a lack of a single,

commonly accepted conceptualization of mashup architecture is evident. For our purpose we

chose the design and architectural model of Pahlke et al. (2010). The architectural elements upon

which are their model was based one are described below:

1. Resource: Content, data, and functionality resources which are accessible through

established but specific APIs. Resources are also termed as assets.

39 | P a g e

2. Component: Also referred to as Mashlet, Widgets or Gadgets, these are virtualized

components that can be easily “mashed” through generic APIs or UIs

3. EM (Enterprise Mashup) Application: A lightweight application combining components

from different sources.

4. EM Platform: Also referred to as EM system, this is overall technology that provides

functionality to create, deploy, modify, and share EM applications.

5. EM environment: Consists of technical platform as well as the organizational structures

and actors.

Based on these elements, figure 5 summarizes the conceptualization with regard to the involved

actors and their roles in the development and allocation process.

Figure 5: Enterprise Mashup Environment (Pahlke et al., 2010)

Internal and external resources are located in the lowest layer and are abstracted by standardized

interfaces to facilitate loose coupling. On the immediate upper level, the mediator through APIs

40 | P a g e

or UIs virtualizes the resources and integrates different resources into usable and shareable

components. The goal here is to provide additional graphical and simple user interaction

mechanism abstracting from underlying resources and the corresponding technical interfaces.

Built upon these two layers, the highest level of abstraction enables knowledge workers to create,

adopt, use, and share EM applications. To further illustrate the integration of different

component models we have identified the J. Yu, Benatallah, Casati, & Daniel(2008) mashup

characterization approach. Here the mashup paradigm is categorized from two perspectives 1)

Components, objects of integration and 2) Composition, how objects are glued together. Table

11 summarized these models:

Model Category Properties

Component Model

Type Can be Data, Application

Logic, User Interface

Interface Exposes: CRUD interface,

APIs or GUI elements

Extensibility Ability to create or extend

new components

Composition Model

Output type Data, Application Logic, User

Interface

Orchestration

Flow Based

Event Based

Layout Based

Data-passing style Dataflow and Blackboard

Approach

41 | P a g e

Others

Instance Based or Continuous

Exceptions and Transactions

Table 8: Mashup component and composition model summary (J. Yu et al., 2008)

2.4.4 Mashup Development Classifications:

Mashup development has been classified into different models in the literature. We have chosen

two models which are described in the following sections.

2.4.4.1 Manual and Tool-Assisted Mashup Development

J. Yu et al. (2008) had classified the mashup development process into manual and tool-assisted

development approaches.

Manual mashup development requires programming skills and intimate knowledge about the

schemes and semantics of data sources or the business protocol conventions for integrating data

and applications into a coherent and value-adding application. Even though new technologies

have simplified mashup development, manual mashup development is still a prerogative of

skilled developers (J. Yu et al., 2008).

Various mashup-specific development tools and frameworks have recently emerged in order to

accelerate the mashup development process and to enable business and inexperienced users to

mash up their own applications. The basic functionality of these tools can be further explicated

with the Volker Hoyer & Fischer (2008) classification model:

42 | P a g e

Catalogue

Adapter

Repository

Editor

Transformation/Aggregation

Presentation Layer

Table 9: Functionality classification of mashup tools(Volker Hoyer & Fischer, 2008)

A catalogue consists of libraries of existing resources and widgets. The adapter within the

catalogue integrates existing resources types both on syntactic and semantic level, while a

repository organizes number of resources and widgets in the internet of services. The editor

meanwhile allows creating and modifying and aggregating of individual software applications by

connecting resources retrievable from the catalogue. The transformation and aggregation

capability of the editor allows the users to combine data and content according to lightweight

resource composition style by reusing building blocks in different contexts; meanwhile the

presentation layer presents content from disparate sources together in a unified view and runs the

composition.

2.4.4.2 Mashup Builders and Enablers:

Liu et al. (2011) categorized mashup development resources into two groups: mashup builders

and mashup enablers. Mashup builders are tools that produce user interface for Mashups. They

enable non-developers to compose Mashups by connecting widgets to create composite

applications. Mashup enablers serve functionalities to Mashup builders by accessing

unstructured data and making internal and external resources available. They have also noted that

some tools capable of playing both roles.

43 | P a g e

1. Mashup Builders:

Mashup builders are tools that facilitate and enable mashup creation providing user interfaces,

widgets and other building blocks. These tools enable non-developers to compose Mashups by

connecting the provided widgets to create composite applications. According to Liu, Liang, Xu,

Staples, & Zhu (2009) mashup builders define the workflow to connect data and create

composite applications. For our study purpose we have chosen two mashup builders: IBM

Mashup Centre and JackBe Presto. These two products are mashup building platforms aimed at

non-technical users as well as users with programming skills. In general they both provide

mashup building capabilities using web information. But they are not specifically targeted for

using in a BI context, but rather for situational application development as whole. Below we

have given a brief overview of the products.

a) IBM Mashup Centre:

IBM Mashup Center is a product of the information management category of the IBM product

family. It provides quick application building capabilities by utilizing, remixing, and

transforming various information feeds. Through rapid assembly and sharing of mashups,

without the requirement of coding, this mashup tool enables situational application development.

Mashup Center is composed mainly of two loosely coupled components through a common

catalog : 1) InfoSphere MashupHub and 2) Lotus Mashups (Kasman & Roder, 2011a).

i. InfoSphere MashupHub:

44 | P a g e

The InfoSphere MashupHub component is used for creating the feeds and feed mashups cof

consumption by the Lotus Mashups. Through a common catalog which is used by both the

components, the created feeds, feed mashups, and other resources stored, published and shared.

In terms of technical infrastructure the InfoSphere MashupHub is a browser based application

development tool. It is built using Ajax and uses web services, specifically the REST protocol, to

communicate with the application server. The different components of the InfoShpere

MashupHub client are targeted towards users with different expertise level. It consists of three

main sub-components : 1) Feed Creator 2) Mashup Builder 3) Catalog (Singh, 2008a).

ii. Lotus Mashups:

The Lotus Mashups is the mashup presentation builder tool which uses the mashups that are

created in the MashupHub. It is used to create web pages to display the data feeds using pre-built

widgets. The pages can also consist of external information sources. The presentation

composition is done through a graphical user interface which doesn’t require any programming

tasks. The interaction of different widgets within a mashup page is done through wiring which

allows the passing of different events to different widgets (Kasman & Roder, 2011b; Singh,

2008a).

b) JackBe Presto:

The Presto mashup tool is a product of the enterprise application vendor – Jackbe. The Presto

mashup tool allows a different array of users to combine data from various sources. Through this

mashup tool both historical and real-time can be utilized to create the mashups. The overarching

functionalities of Presto are very similar to the IBM Mashup Center. Having said that, Presto

provides extra features to create mashups targeted for various devices and takes up “app

development” approach. Being a vendor which focuses on creating mashup tools, JackBe’s

45 | P a g e

Presto mashup platform enables mashup creation for enterprise users in a Web 2.0 style. Below

is a brief overview of the core components of Jackbe Presto (Jackbe, 2012).

i. Presto Hub:

Presto Hub is the collaborative workplace for undertaking the tasks for mashup development.

The workplace consists of features that enable power users, developers, and administrators to

create mashables and mashups, create and publish apps, and manage all the created artifacts. The

Presto Hub is constructed using the following sub-components (Jackbe, 2012).

a) Mashboard: A visual drag and drop development environment allowing users to

assimilate or integrate multiple apps or views in a dashboard in order to solve challenging

business problems or to cater to na ad-hoc need.

b) Wires: By providing easy access to all the mashables and mashups available within

Presto, the Presto Wires tool provides a graphical interface embedded with drag and rop

features for creating mashups. This interface is targeted for business users allowing them

to create mashups without the need for coding.

c) Mashup Editor: Mashup Editor is a web-based authoring tool for developers for

constructing the mashups through the Enterprise Mashup Markup Language (EMML).

This tool is aimed at users with programming knowledge.

d) App Maker: Through App Maker in Presto Hub, users can create basic apps utilizing the

information sources or created mashups with the help of visual wizard.

ii. Presto Repository & AppDepot:

Presto has two main resource catalogs which are used for different purposes. The Presto

Repository is used for meta-data for all mashables, mashups, views and apps, while the

46 | P a g e

AppDepot stores all the created apps which makes it easier for users to find the app which will

suit their need (Jackbe, 2012).

2. Mashup enablers:

Mashup enablers are defined as mechanisms by which mashup builders access required data

sources, functionalities making both internal and external resources available. Mashup enablers

can be specific tools just like mashup builders or could be specific technologies which enable

builders to perform their intended tasks. Two examples of mashup enabler technologies are Web

Services and SOA which are discussed in the following sections:

1. Web Services

According to W3C “A Web service is a software system designed to support interoperable

machine-to-machine interaction over a network. It has an interface described in a machine-

processable format”. Web services are based on two opposing types of standards SOAP and

REST (zur Muehlen, Nickerson, & Swenson, 2005). Both utilize the transport layer for creating

communication between client and servers (Hildebrand, Shankland, & Baya, 2012). The

standards differ in terms of the construction mechanism. SOAP is more formal, bureaucratic, and

rigid in nature and is able to create complex and proprietary mechanisms to connect to

components. While REST is more simple, language & platform agnostic, and requires less

complex skill set to play around with.

i. SOAP

The SOAP based web services framework is divided into three areas – communication protocol:

SOAP, service description: WSDL, and service discovery: UDDI. A SOAP message has a very

47 | P a g e

simple structure: an XML element with two child elements, one of which contains the header and

the other the body. A WSDL or a Web Service Description Language Document describes a web

service’s interface and provides users with a point of contact (Curbera, Duftler, Khalaf, & Nagy,

2002). The Universal Description, Discovery, and Integration (UDDI) specifications offer users a

unified and systematic way to find service providers through a centralized registry of services

that is roughly equivalent to an automated online “phone directory” of Web services (Curbera et

al., 2002).

ii. RESTful Web Services

Representational State Transfer protocol or RESTful web services enables the permeable

enterprise, in which capabilities and assets inside the enterprise are easily combined with assets

and capabilities outside the enterprise. In this standard a client communicates with a server—not

directly with the source of information on that server. REST uses simple HTTP and therefore

standard commands—such as GET, PUT, POST, and DELETE—to coordinate communication

between clients and servers. In RESTful designs, the client does not need to know about the

implementation on the server. The server is free to store data as it likes, and the client can store

the same information differently. This loose coupling means that as long as the interface is

stable, the implementation on the client or the server can independently change. This

independence creates flexibility in distributed software systems (Hildebrand et al., 2012).

Hildebrand et al. (2012) also listed six constraints which are required to be met in the REST

architectural style:

1. Client/server loose coupling: A clean separation of duty exists between client and server.

The type of data storage does not matter to the client, and the client interface or client

48 | P a g e

state does not matter to the server. With a stable interface, the client and server may be

developed and replaced independently of each other.

2. Stateless: The interface that dictates how the client and server interact does not allow

client states to be stored on the server. Information about client states is embedded in the

messages the clients send to servers.

3. Cacheable: Clients can have the ability (and must let the server know whether they do or

not) to temporarily store data received from the server.\

4. Layering: Servers do not know whether there are layers of abstraction between

themselves and the end client; for example, whether they are passed through multiple

security policies, APIs, and so forth.

5. Code on demand: Servers are able to temporarily send custom functions as

executable code to clients for them to execute.

6. Uniforms interface: Servers and clients can interact, change, and be modified

independently as long as the interface that binds them remains the same (Hildebrand et

al., 2012).

For this project we will be using the RESTful web services. In the IBM CMS section (2.9.1.2)

we will delve into more details of the RESTful API of Cognos Mashup Service with specific

examples.

2. Service-Oriented Architecture

In the Service-Oriented Architecture paradigm, data and logic functionality are encapsulated

with only their input and output being exposed to others for usage (Hirschheim, Welke, &

Schwarz, 2010). The “service” in SOA is referred to a business task rather than a specific

technology. Loose coupling with other services facilitates the implementation of these tasks. This

49 | P a g e

in turn, fosters an atmosphere where developers have the capability to create new applications

that can reuse and recombine existing functionality. Their underlying open standards enable

them to be equally consumed across independent development platforms (Ogrinz, 2009).

SOA, in essence is more than just an IT architecture as it caters to the services being defined by

IT in response to ongoing operational needs and business functional requirements. The need for a

broader business architecture from which higher level applications, be it coarse-grained or

composite, can be readily applied to the development of lower level services is driven by SOA.

Web service interoperability standards provide a consistent and interoperable basis for building

SOA-conforming capabilities (Hirschheim et al., 2010). The SOAP based web services have

become the industry preferred method for implementing SOA (Ogrinz, 2009). Having said that,

the RESTful web services are also utilized in the SOA paradigm(Hirschheim et al., 2010)

The desired vision of SOA is that of a strategic initiative that involves both business and IT.

Hirschheim et al. (2010) mentioned the following benefits associated with the above viewpoint:

1. Increased flexibility and agility

2. Inter-organizational relationship and value-stream improvement

3. Common view on key entity information and

4. Improved business processes and customer touch points

Mashups and Service-Oriented Architecture

Mashups are both a precursor and a beneficiary of the SOA paradigm. With both SOA and “web

services” being used interchangeably, implementing a successful SOA will require the service-

enablement of their existing applications. Enterprise mashups are a means of accomplishing this

requirement as we have seen from the API enabler pattern (section 2.3.1). Enterprise mashups

50 | P a g e

are capable of both producing services as well as consuming them with the same level of agility

and thus leverage the SOA centric organizations’ web service resources (Ogrinz, 2009).

However the desired outcome of enabling easy access to the functionalities of services is still to

reach a level for paving the way towards a vision of “internet of services” and “web service

ecosystem”. Mashups have the potential to fill this gap through their user-centric and lightweight

approach of creating simple services or tools from any web resource. The adoption of mashups at

the enterprise level, in the context of SOA, can be used to empower the consumers of pre-defined

SOA solutions to become producers of their own applications which suit their actual

requirements and specific needs. The creativity and productivity of an individual user, who is a

expert in his or her own domain, can be leveraged to improve service-to-user interaction.

Moreover, easy access to services is not only beneficial for large organizations, but also helpful

in increasing the SOA acceptance among new target groups in small and medium sized

enterprises both in non-profit and private sector. An enterprise mashup platform supporting

simplified service integration, composition and application design concepts can be a crucial point

in a user-centric SOA (Nestler, 2008). The following table shows that, as mentioned by Bitzer

and Schumann (2009),that the different intentions of SOA and mashup clearly show that both

architectures are not mutually exclusive, but complement one another.

51 | P a g e

Figure 6:Comparison summarization of SOA and Mashups (Bitzer & Schumann, 2009)

Having said that, while SOA generally focuses on server-side architecture and internal corporate

resources, mashups have a certain “gung-ho” approach. Mashup design patterns and standards

are still at a nascent stage while SOA’s maturity has reached greater clarity in terms of its

capabilities, protocols, implementation and use. So mashups should focus on practical examples

which would drive broader adoption leading to consolidation and standardization similar to what

SOA has achieved (Ogrinz, 2009).

52 | P a g e

2.5 Business Intelligence

Business Intelligence (BI) is an IT framework that helps organizations in managing, developing

and communicating their intangible assets such as information and knowledge. BI architectures

include data warehousing, business analytics, business performance management and data

mining and mostly deal with structured data. BI is an umbrella term that combines architectures,

tools data bases, applications, practices and methodologies. Wiess et al. (2003) defined BI as the

the combination of data mining, data warehousing, knowledge management, and traditional

decision support systems. A more structured definition was given by Alnoukari et al. (2012) :

“Business intelligence is the use of all the organization’s resources: data, applications,

people, and processes in order to increase its knowledge, implement and achieve its

strategy, and adapt to the environment’s dynamism”

Business Intelligence vs Business Analytics:

When it comes to differentiating between business intelligence and business analytics (BA),

there is no established common academic or industry standard. Within the industry they are both

defined separately and used interchangeably in some cases. When comes to drawing a line

between these two terms, BI as mentioned above, deals with taking the information sources and

converting them into knowledge aiding the decision making process. Based on the existing

business data that an organization has, BI systems use a consistent, repeating set of metrics to

steer future business strategy and setting benchmarks for the future; while BA focuses on using

data to set new insights through statistical or predictive analytics. Dealing with static and

historical data, traditional BI systems often fail to make predictive decisions and predict the

future market. Some vendors thus use BA as an umbrella term which includes data warehousing,

53 | P a g e

BI, enterprise information and performance management, analytic applications along with

governance, risk and compliance (DellaPorta, 2012; Elliott, 2011).

Having said that, the goal of BI solutions is to turn data into information and subsequently to

knowledge after accessing it from multiple sources and transforming it. These processes work

towards improving the organization’s decision making capabilities. The measure of any business

intelligence solution is its ability to derive knowledge from data. The challenge is to meet the

ability of identifying patterns , trends, rules, and relationships form large amount of information

which is too large to be processed by human analysis alone (Alnoukari, Alhawasli, Alnafea, &

Zamreek, 2012).

Business intelligence applications can be divided into the following three layers:

1. Data layer: Responsible for storing structured and unstructured data for decision support

purposes. Data are extracted from various data sources, i.e. structured data from

operational data stores (ODS), data warehouses, and data marts while unstructured data

from SCM, ERP, CRM or from external data sources. Once extracted, data is transformed

and loaded into data warehouse by ETL tools

2. Analyze layer: Provides analyzing functionality of data and rendering as knowledge. This

consists of OLAP, data mining, aggregations etc.

3. Visualization layer: realized by some sort of BI application interface or portals

(Alnoukari et al., 2012).

BI success of an organization is related to the positive value an organization obtains from its BI

investment. Implementation of BI is targeted towards achieving a variety of organizational

benefits such as improved profitability and efficiency, reduced costs etc. But specific BI success

54 | P a g e

measures vary across organizations and even across particular BI implementations within an

organization. A lack of fit between an organization’s BI implementation and it goals &

characteristics is one reason for a lack of BI success (Işık, Jones, & Sidorova, 2013).

The extent through which an organization can leverage business intelligence is related to the

capabilities of its BI system. Işık, Jones, & Sidorova (2013) have identified 5 capabilites from

an orgazniational BI perspective:

1. Data Quality: Traditionally, BI has largely relied on structured and/or numerical data,

which can be measured on a numerical scale and analyzed with statistical methods and

computing equipment. However, in an increasing number of BI application areas, the

collection and analysis of qualitative and/or unstructured data especially from external

sources are critical. As companies incorporate data from a wider variety of sources, they

will continue to face new and ever-increasing issues surrounding the quality of the data

on which they rely.

2. Integrating with other applications: The integration between BI and other systems in an

organization is another critical factor for BI success. For organizations that use data from

multiple sources and feed the data into multiple information systems, the quality of the

communication between these systems directly affects the overall performance. The

growing number and variety of data sources for BI in many organizations place

increasing pressure on the integration between the systems from which the data are

sourced. The higher the quality of integration of BI with other systems in an organization,

the greater the BI success.

55 | P a g e

3. User Access: One single BI implementation does not cater to the need of every user.

Building, supporting, and managing multiple vehicles for a variety of user access

methods and to support a variety of analyses is a critical BI capability. It is critical that

organizations achieve the necessary balance to allow the way BI users access information

to fit the types of decisions they make using BI. The higher the quality of user access to

BI in an organization, the greater its BI success.

4. Flexibility: Flexibility is the organizational capability of BI to provide decision support

when variations exist in business processes, technology or the business environment in

general. To achieve the competitive advantages provided by BI, organizations must select

the underlying technology to support the BI operations carefully; flexibility is one of the

most important factors to consider. Ideally, the system must be compatible with the

existing tools and applications to minimize cost and complexity. The level of BI

flexibility positively influences BI success.

5. Risk management support: Risk management support refers to the organizational BI

ability to support decisions under conditions of uncertainty when not all the facts are

known. For example, innovative organizations, which are typically considered risk-

tolerant, rely on BI to make entrepreneurial decisions motivated by the exploration and

discovery of new opportunities and new risks. BI may be more successful if it has the

ability to address risk in the decision making environment (Işık et al., 2013).

56 | P a g e

 2.5.1 Business Intelligence Tool: IBM Cognos BI:

IBM Cognos Business Intelligence tool (Browne et al., 2010) is one of the popular tools in the

marketplace in the field of BI. This BI tool has a three-tier architecture. Each tier is comprised of

several components which communicate with each other using web-services.

1. Presentation Tier:

The presentation provides a web user interface for accepting user commands. This layers also is

the outlet for rendering report and layouts.

2. Middleware Tier:

The middleware tier is responsible for routing each request to the proper service as well as for

querying and outputting the data requested by the web client.

3. Data Tier:

The data storage and maintenance of different data stores within the Cognos content store the

responsible tier is the data store. The content store is the internal data store used by the

Cognos server and stores information on all the artifacts related to business intelligence such as

folders, reports and report specifications (Browne et al., 2010).

For our research purpose we have used a couple of the services of the middleware tier: 1)Cognos

Software Development Kit (SDK) 2) Cognos Mashup Service (CMS). These two services are

further elaborated in the BI Mashup Development Tools section.

2.5.2 Situational Business Intelligence

As we have mentioned in the previous sections business critical systems and applications

requiring high availability, scalability which are typically requested by a large number of users.

But besides these critical applications, the “long tail” of situational applications exists because of

57 | P a g e

the growing amount of unstructured data on the web and conventional BI tools do not address

them. However situational BI applications tackle this problem as they tap into this wealth of

unstructured information in order to determine new trends and give enterprises the competitive

edge(Löser et al., 2009).

Increasing release of government & enterprise data and emerging web services in the context of

Web 2.0 developments, which offer valuable opportunities for computer-assisted-decision

support processes, are driving the development of situational BI (Thiele & Lehner, 2012).

End-user requirements and Traditional Approaches in Delivering Situational BI services

Situational BI needs of an organization have been traditionally catered to by interaction between

the IT unit and other departments. On a technical level, “spreadmart” solutions are used. The

successful operation of underlying infrastructures upon which BI systems are built requires the

integration of expert knowledge. When it comes to formulating their contextual operational

requirements for IT to implement, there is no better entity than the department themselves.

However co-operation between IT and other departments often creates complications in practical

scenarios due to demand for situational needs.

1. Delivering Situational BI services: Organizational Approach

From an organizational point of view through interacting with the IT, the service delivery of

situational BI applications can be categorized in to a three step process Information provision,

Resource Requirements and Distribution of Competencies (Thiele & Lehner, 2012).

Step 1: Information Provision Process:

58 | P a g e

Distinguished departments state their requirements to the IT unit in the form of projects to be

implemented within a certain timeframe. The information provision process is illustrated in

figure 7. It is evident from the process description that the information provision process may

occasionally be subject to significant complications and resulting delays. If the data acquisition

processes or development cycles are too slow, solo-development activities are initiated by

individual departments. Such initiatives create data silos within an organization introducing

unnecessary redundancy regarding the data storage and the loading or extraction processes

(Thiele & Lehner, 2012).

Figure 7:Information Provision Process (Thiele & Lehner, 2012)

Step 2: Gathering Resource Requirements:

Most requirements of an individual department are driven by an extensive specification of the

departmental logics to be implemented. This is a prerequisite for the functional solutions that

will be provided by IT. Additional iteration steps causing more overhead appear when the

59 | P a g e

specification is incomplete or inconsistent. Guaranteeing the technical accuracy of the services

by IT and frequent changes to the departments’ requirement in these situational analysis

scenarios would increase the overall cost of development. Furthermore, rigid SLAs act as

obstacles in delivering situational requests. This means any changes to the requests have to

follow systematic and standardized procedural model and prohibits the change the existing data.

Data production processes already in place must not be delayed beyond the period specified in

the SLAs. In addition, as the IT unit aims to maintain their resources in a cost efficient manner,

there are a lot of automated processes employed which conflict with situational data analyses

(Thiele & Lehner, 2012).

Step 3: Distribution of Competence:

 Once the requirements are gathered, the responsibilities are assigned to the subunits within IT

and even to the departments in some cases.

2.6.4.2 Enhancing the Organizational Approach through Competence Centers

BI Competence centers act as link between the IT unit and all the departments formulating the BI

enterprise strategy and consist of members from all across the organization. The information

retrieval process is accelerated hrough the creation of a competence center as communication

structures are improved and the information requirements can be planned in a strategic and

predictive fashion. A competence center is the first point of contact for the departments when

retrieving information from IT(Thiele & Lehner, 2012).

60 | P a g e

However, the concept of competence center is meant for improving the communication between

the IT unit and other departments when it comes to service provision. IT is still in charge of

developing and providing solutions to the situational needs of their clients, following the

traditional development methods, the business users are still dependent on the IT unit for getting

them what they need. The absence of self-service would still hinder the effective usage and

adoption of BI systems.

2. Technical Solution: Spreadmarts

If the information provision process is too tedious or too expensive when it comes to support

situational application development, manual individual solutions termed “spreadmarts” come in

place. According to Eckerson & Shermann (2008):

“A spreadmart is a reporting or analysis system running on a desktop database (e.g. spreadsheet,

Access database, or dashboard) that is created and maintained by an individual or group that

performs all the tasks normally done by a data mart or data warehouse, such as extracting,

transforming and formatting data as well as defining metrics, submitting queries, and formatting

and publishing reports to others.”

However, the use of spreadmart comes with high risks. The spreadmart’s lack of compliance

with IT means that the data generated with them is less reliable in terms of quality and

consistency. Different departments user their own calendar definitions, naming conventions, and

practices for analyses. Furthermore, increased costs are resulted due to the data integration and

refinement process in this method not being a part of business analysis unit’s tasks. Despite the

mentioned risks, 90% of all organizations use spreadmarts and devote 40% of their time in

61 | P a g e

creating them (Eckerson & Shermann, 2008). The drivers for organizations still using them are

the delay in service delivery, higher degree in autonomy, the desire to protect interests, lower

costs, and the absence of situational applications in the first place. In addition to the availability

of spreadmart solutions in widely used tools such as Microsoft Excel, Powerpoint and Access

plays their part in the alarming number of these type of solutions being used (Eckerson &

Shermann, 2008).

2.5.3 Business Intelligence & Self-Service
With the wide adoption of Web 2.0 in enterprise application architectures, the demand for self-

service and do it yourself approach is also increasing. In terms of an IT perspective Oliver,

Livermore, & Farag (2009) have described self-service as a process in which “aspects of

customer service experience that used to be provided by the company’s employees are now

provided by through the interaction of customers with the company’s website ”. In essence this

process turns customers or service consumers of IT services into employees. From an

organizational perspective, web-based self-service is seen as a cost-effective way of managing

client interactions and inquiries than are channels that require especially IT assistance (Oliver et

al., 2009). In the world of business intelligence, the notion of self-service for the clients of BI

tools is an important one. In fact it is at the heart of new age BI. Requirements of BI are

changing faster than what the typical IT centric support models are designed to keep up with and

will carry on challenging even the most up-to-date BI deployments. The never-ending stream of

requests for access to new sources, data, models, reports, dashboard, queries and applications,

added with the unpredictable possibilities of organizational change in terms of sudden mergers

and acquisitions, new competitive threats, new management structure or even changes in the

regulatory reporting requirements can make BI applications out-dated rapidly. The business users

62 | P a g e

desire and necessity to address the requirements to serve their customer better comes in conflict

here with IT’s effort to maintain law and order BI application development by sticking to

standard BI tools and following approved software development and project methodologies.

Evelson (2010) has suggested that in an ideal BI environment 80% of all the requirements should

be carried out only by the business users. IT resource constraints within an organization mean

the BI service request backlogs remaining stubbornly long and increasing. The characteristics of

self-service requirements in BI can be summarized by the following table:

What Users Want Delivery Method

Speedy answers

Fast access, loading, mediation, and

virtualization of canonical views and

information objects

Shorten time to answer business questions

Single view of

everything

Structured and unstructured, internal and

external

Unified access, delivery, and presentation

Single version of truth

Authoritative reference information

conforming to standard dimensions

and hierarchies

Matched, merged, cleansed, transformed, and

enriched

Self-service information

exploration

User-defined mashup of reusable, personalized,

context-rich, role-tailored view of information

Collaborative sharing of reusable user mashups

63 | P a g e

Interactive, deeply dimensional drilldown

Table 10: Information Workers’ Decision Support Nirvana (Kobielus, 2009)

The growing user demands which the IT staff is finding harder day by day to meet, is driving

companies towards a leaner self-service BI environment. Through self-service users can quickly

assemble a single view of their required reference data in addition to manipulating and exploring

it in order to support their decision making task at hand. The major benefits of self-service BI

listed below.

Eliminate BI bottleneck: By reducing the required assistance from IT for service provisioning

in terms of ad-hoc queries, reports, dashboards, consolidated view of data, situational application

and other typical user requests, self-service BI minimizes the time to deliver these functionalities

to users and alleviate IT backlogs associated with designing, deploying and maintaining these

services. Thus application developers and data modelers can focus on higher-value, more

complex and long-term BI projects.

Reduce BI costs: One of the important if not the main goal of self-service notion is to provide

cost-effective mechanisms in service provisioning for organizations. By transferring

development and provision of typical BI requests to the users themselves, organizations can

introduce cost-effective BI implementations by reducing the need for expensive BI application

developers and data modelers. Subsequently organizations can evolve and expand their BI

implementations without the need of adding more specialized BI professionals.

Enhance BI decision support: As businesses move faster than even the most agile IT

departments, it is imperative for the business users to have the required BI resources to and make

sense of their data right away, right now. By enabling the business users with the capability

64 | P a g e

retrieve the data they require and create their own personalized views, manipulations, and

calculations on the fly, self-service BI contributes to superior decision support (Kobielus, 2009).

Having said that, in order for the self-service notion to be widely adopted Evelson (2011) has

described the presence of following features and capabilities as an essential for self-service :

1. Data virtualization: The capability to virtually link multiple data sources.

2. Exploration and Discovery: Analyzing information based on a new hierarchy not already

built into a data model.

3. Collaboration: User-to-user and user-t-developer collaboration functionality.

4. Search-like GUI: Similar GUIs that the users are used to using when it comes to

consumer applications.

With the advancement of Web 2.0, rich internet applications integrated with point-and-click and

drag-and-drop graphical user interface (GUI) are the current face of the internet for service

consumers giving the users an array of mashing capability to create their personalized

application views. In the BI domain, mashups have the potential to take self-service to the next

level of sophistication and flexibility. BI mashups can enable both the IT professionals and

business users with capabilities that will create a successful BI implementation across the

organization.

2.6 Enterprise BI Mashups and their current landscape:
In the web 2.0 paradigm the principal approach for self-service has necessitated the need for

mashups to be incorporated with the BI environment. While data analysis applications has been

developed and operated by IT so far, BI mashups take this development approach to the next

level of sophistication and flexibility instilling self-service. The infrastructure components within

65 | P a g e

an Enterprise BI Mashup platform isolate users from the complexity of heterogeneous data

models in a federated data environment (Kobielus, 2009).

Users are able to access reusable views and compose their own mashups leveraging maintenance

features of their browser oriented BI environment along with visual, code-free, application

development capabilities. It enables them to personalize reports, dashboards, and other BI views

and mashed-up application. All together a mashup platform enables the users to visually

compose analytics from reusable components and data. Figure 8 shows processes and different

components of mashup development within a BI environment:

Figure 8: How BI Mashups Work (Kobielus, 2009)

Thiele & Lehner (2012) took a broader approach to show a mashup platform can be integrated

within a data warehouse (DWH) architecture, where the IT unit’s responsibility is provisioned

around the full infrastructure of the DWH and mashup platform. The application specific

departmental data marts are defined by a competence center consisting of the IT unit and

66 | P a g e

departmental staff. The IT unit still provides the departments with their regular BI needs. In case

of a required need of situational data analyses, the mashup development platform comes in place.

As the operator of the mashup platform, the IT unit may transfer the frequently requested

mashups to the regular data production process. There concept is depicted in figure 9.

Figure 9: Integration of the mashup platform into a DWH architecture(Thiele & Lehner, 2012)

In general, mashup capabilities are offered within an enterprise as an extension or supplement to

their current BI and enterprise data warehousing environment. And the typical use cases can be

categorized into four types: intranet BI mashups, internet BI mashups, deep-dive BI mashups,

and quick-start BI mashups. Intranet mashups deal with data manipulation tasks within the

organization resources providing consolidated views of information. Internet mashups, as the

name suggests, combine data within the enterprise from the outside world. Deep-dive BI

67 | P a g e

mashups are intended for power users for interactively building and visually exploring complex

data models. On the other hand, quick-start BI mashups are targeted towards organizations with

no prior BI platform or related support staff, providing rapid construction capabilities with no

upfront data modeling or ongoing maintenance(Kobielus, 2009). In Figure 10 provides a

maturity model for Enterprise BI Mashups categorizing them in four different levels stretching

from lightweight presentation to a full collaborative governance.

Figure 10: BI mashup maturity model(Kobielus, 2009)

However, there is an evident lack of a proper BI mashup framework that would enhance the

understanding of specifically which mashup features and capabilities can cater to BI specific

needs (Kobielus, 2009). The current work focuses on either on how mashup can provide the

rapid and simple application development in general, not specific to any field. In BI, Pahlke,

68 | P a g e

Beck, & Wolf (2010) and Kobielus (2009) have shown what would an enterprise mashup

platform looks like in BI environment, but don’t illustrate how these platform relates to actual BI

needs that clients develop day –to –day. A framework for Enterprise BI Mashups consisting of

essential mashup utilities for BI use cases is required to provide the proper utilization guidelines

of mashups in BI.

2.6.1 BI Mashup Development Tools:

 2.6.1.1 IBM Cognos Software Development Kit (SDK)

Today’s major software service providers are enabling their clients to customize or integrate

their service that that they are purchasing through providing them with Application Programming

Interfaces on APIs. The Cognos BI tool provides a set of API that allows user to create

customized applications which integrates their Cognos BI resources. In addition to that, these

APIs can help users automate certain tasks that are usually done manually. This assimilation of

APIs is termed as the Software Development Kit or SDK of Cognos BI application (Popescu,

2011). For our research purpose we have analyzed the applications that are created using the

Cognos SDK. These applications are requested by the clients. For our implementation purpose

we have taken advantage of web service technologies used by the SDK for the following

capabilities:

1. Report generation: a specification is generated that describes the data to be returned as

well as the layout information.

2. Report storage: a method to store the specification created as above in the Cognos

server’s internal database.

69 | P a g e

2.6.1.2 IBM Cognos Mashup Service (CMS)

The IBM Cognos Mashup Service (CMS) is a relatively new API introduced by the Cognos

Development team. With help of web services, the CMS facilitates data retrieval from reports.

The retrieved reports contain information such as layout information, meta-model and report

data. In the modern day enterprise architecture, where the need for data integration and sharing

has become more complex, CMS provides some flexibility through BI resource integration in a

specific context. Enterprises use various products concurrently since each product satisfies part

of their requirements. Users may want to access all the information and tools they need for their

daily activities in one place and avoid login to different systems for each task. CMS provides

capabilities which let users to mashup Cognos reports with other applications. The two different

interfaces that are used in this technology are the Representational State Transfer (REST) and

Simple Object Access Protocol (SOAP). In CMS the report are generally accessed as LDX or

layout data format which is a XML document rendering the Cognos content. LDX provides a

consistent format that can be used in all other applications.

70 | P a g e

Chapter 3 Research Methodology

3.1 Design Science Research methodology for Information Systems

In the context of information systems (IS), design science research (DSR) is set of analytical

techniques and perspectives for performing research (Vaishnavi & Kuechler, 2004). DSR

focuses on identifying organizational problems and subsequently designing, implementing &

evaluating IT artifacts and communicating results to appropriate audiences and thus improving

the performance of business organizations or creating new opportunity for businesses (March &

Storey, 2008; Vaishnavi & Kuechler, 2004). Construction and evaluation of IT artifacts enables

1) the identification & description of desired information processing capabilities and their

relationship to the present & desired situations and 2) the development of action and

infrastructure specifications that facilitate implementation of information processing. Thus it can

be construed that DSR is a problem centric approach and its either an initial research in a new

problem area that focuses on constructing sufficient actions toward the ultimate goals and often

involves prototype artifacts demonstrating feasibility of addressing the problem; or a subsequent

research, that aims at improving effectiveness and efficiency of attaining goals or demonstrating

the necessity of certain actions. A typical research undertaken in the DSR methodology has a

five step lifecycle starting with the awareness of the problem through a new development of

reference in the specific field of interest and resulting in an initial research proposal. Based on

the information acquired in the first step, a possible solution is suggested in the next step with

tentative design as output. The third step focuses on developing the solution and creating

artifacts, while on the fourth step the evaluation process is undertaken against initial problem &

criteria extracted from previous steps (March & Storey, 2008).

71 | P a g e

The types and levels of knowledge that can be derived from DSR can be explicated through four

outputs (Vaishnavi & Kuechler, 2004) :

Constructs: Constructs are the conceptual vocabulary of a problem/solution domain. Constructs

arise during the conceptualization of the problem and are refined throughout the design cycle.

Model: A model is “a set of propositions or statements expressing relationships among

constructs.” March and Smith identify models with problem and solution statements

Method: A method is a set of steps (an algorithm or guideline) used to perform a task. "Methods

are goal directed plans for manipulating constructs so that the solution statement model is

realized."

Instantiation: The final output from a design science research effort is an instantiation which

operationalizes constructs, models and methods.” It is the realization of the artifact in an

environment.

The planned methodology for this thesis comprises an applied investigation through

design science research techniques. Based on the outputs of DSR, the research activities are

aligned accordingly which are further elaborated in figure 11. The research will start by studying

traditional BI offerings and related business objectives which will be focused towards identifying

the problem definition. The strengths and weaknesses of traditional BI offerings will be

highlighted and used to frame and further explore the set of BI problems and business needs that

may not be fully addressed by traditional BI offerings (e.g. situational analytics applications and

real-time business intelligence requirements) and thus forming the constructs and model for the

thesis. In addition to that, various mashup design patterns will be explored for their applicability

in addressing the gaps in BI requirements. In the development and evaluation stage, BI Mashup

72 | P a g e

use cases will be mapped to software design patterns through consultation with the IBM software

development team and exploration of various IBM tools and products mentioned previously

creating the required methods for the research. Finally, in light of the fit between various mashup

design patterns and BI use cases, functional requirements for successful BI Mashup offerings

will be explicated through the utility framework resulting in the instantiation of the research

work. The different stages of our research framework involve iterative processes. For instance,

while mapping Enterprise BI Mashup use cases to specific software design patterns, we might

require going back to the previous stage and fine tune our domain vocabulary and relationships

as well iterate our literature review and requirements study phase. This iteration is also integrated

while creating our utility framework and mashup prototypes.

Figure 11: Research Framework

73 | P a g e

3.2 Research Methods and Steps

In alignment with the DSR methodology the detailed description of the research activities

undertaken are described below:

The first phase of the project comprises a literature review of the current landscape of BI

and an industry survey of market & vendor offerings, their weaknesses & the challenges faced in

the end user adoption. The literature review will also consist of an in-depth review of enterprise

mashups, their design and development patterns, current trends and available toolkits. The

knowledge gathered in the first phase will be utilized toward formulating a preliminary

taxonomy of Enterprise BI Mashups. This taxonomy will be enhanced further through

interactions with staff members at the partner organization (IBM Cognos) and their experiences

with developing mashup based solutions in the business intelligence and analytics domains. The

overall thrust of the investigation will be tailored to situate the researcher in a knowledge sharing

capacity with key members of the software development kit team at IBM Cognos. This will

enable the researcher to better understand the challenges surrounding the development,

implementation and adoption of enterprise mashups within a company’s overall BI process and

technology base.

During the second phase of the project, the taxonomy from the previous phase will be

utilized to identify and offer specific solution statements for Enterprise BI Mashups. With an aim

to identify a fit between BI mashup use-cases, organizational requirements and various available

technologies, the researcher will undertake an extensive exploration of various tools and

applications offered by the partner organization. These tools and applications may include

products and solution offerings such as Cognos BI, Cognos SDK, Cognos Mashup Service and

74 | P a g e

Cognos Mashup Center. The findings from this phase of research are expected to yield a

substantive foundation for actionable knowledge to facilitate the development of Enterprise BI

Mashups to support a variety of business contexts including real-time business intelligence,

situational analytics, and self-service BI.

The third phase of the research project will draw upon the findings from the applied

investigation and use these as inputs to formulate a utility framework for Enterprise BI Mashups.

By mapping use cases to specific mashup design patterns, the researcher aims to offer a utility

framework that identifies and describes the requirements for suitable component and

composition models for Enterprise BI Mashups. Subsequently, the efficacy of the utility

framework will be illustrated through a prototype toolkit that demonstrates some commonly

requested BI mashups. The fourth phase will consist of knowledge dissemination of the project

findings in relevant conferences and to project stakeholders. The master’s thesis of the researcher

will be written based on the procedures and results of the project.

 3.3 Methodology of Taxonomy Construction:

In information systems, taxonomies are part of the foundation upon which an information

architecture stands. Being a core component of the whole architecture, taxonomy interrelates

with all other components of the information architecture. Taxonomy guides visual design of

information navigation and management keeping in line with the standards. At a basic level,

taxonomy is derived from analysis of usage patterns and information flow. Originally borrowed

from the field of life sciences, taxonomy is essentially a conceptual framework providing a rigid

listing of structures in a cascading fashion for a specific topic in question. If applied in the

context of the internet, it associates with the effective structuring of content within a defined

75 | P a g e

scope for facilitating easy and accurate access. Depending on the audience, a definition of

taxonomy might be adjusted. In our context, the taxonomy that we are intending to build would

provide a classification of concepts for a domain where there is none. Taxonomy consists of

three fundamentally different parts : 1) Representation 2) Ordering 3) Nomenclature (de Hoog,

1981; TechRepublic, 2003).

An important part of any taxonomy construction procedure is the description of objects under

study. In order to be reproducible, the elements of a description should be maximally simple

(Griffiths, 1973). These elements of description are the representation of characters observed.

Not only that, these representations maybe interconnected and can also be converted to other

ones. In terms of the ordering, dendrograms and nonlinear maps can serve as a basis for

taxonomy classification giving it reproducible nature. In this context systems can be postulated

as theories by intuition. The researchers are free to choose any criterion that is suitable for his

cause backed by consistent logical reasoning. It is also worth mentioning that taxonomies claim

to result in representation of relations between objective entities and that taxonomic ordering is

an experimental procedure rather than a descriptive science. Lastly nomenclature enables the

taxonomists to establish natural laws before the conclusions are deemed to be scientifically

justified. Nomenclature is required for converting a system into usable and accessible one.

Having said that, without practical quest for manageability of the system, the scientific

soundness of the taxonomy can be harmed (de Hoog, 1981).

76 | P a g e

3.4. Taxonomy Construction for Our Research:

Taxonomies for information systems aims at making explicit the knowledge contained within

software applications, and within enterprises and business procedures for a particular domain. In

information systems, taxonomies aid in the construction of user interface and application

program components among others (Guarino, 1998). As a part of our taxonomy construction

process, we have undertaken the task of creating a preliminary functional one which would guide

the development of Enterprise BI Mashup tools. Our taxonomy would consist of concepts related

to user interface, application program and functionalities as well as BI mashup enablers and

drivers. In order to visualize the taxonomy components, we have used mind-mapping techniques.

A well-formed representation of the taxonomy can help in better understanding the vocabulary of

IS systems. Visualization of domain concepts also aid in explicitly representing knowledge

which is implicitly stored in application as well as mapping of conceptual heterogeneous

information sources related to data warehousing concepts. This helps by providing ease-of-

maintenance, extensibility, and flexibility of the application program, in addition to turning the

program into a knowledge base. This eventually helps in increasing the transparency of the

application software (Guarino, 1998). We have used the Freemind mind-mapping software

which is based on Java technology.

3.5 Research Evaluation and Validation:

For research validation and evaluation purposes we mainly relied on demonstrating our created

mashup prototypes and improving them based on the feedback of the Cognos SDK team. We

asked the team to rate our mashups on certain criteria. The Cognos SDK team creates the

77 | P a g e

situational applications that their Cognos BI clients request. By demoing our created mashups to

them, we validated the usefulness of our created mashups comparing against their traditionally

built solutions. In addition to the criteria set by the Cognos SDK team we also evaluated our

mashups on mashup evaluation criteria found in relevant literature. Based on our literature

review (Minhas, Sampaio, & Mehandjiev, 2012; Pahlke et al., 2010; Zhao et al., 2011) we have

identified four overarching criteria to evaluate a mashup platform. They are further illustrated

below:

I. Usefulness: Mashups are designed to benefit both business users and IT professionals in their

daily activities. To provide the desired service required by both types of employees

mentioned, a mashup platform has to be useful in terms of mashup design and technical

features.

a. Mashup Design Features: The design features of a platform for actual mashup creation can

be subdivided in to the following categories:

i. Supported Mashup Activities:

1. Data Mediation: Involves converting, transforming, and combining data elements

from multiple data feeds or API

2. Process Creation: Creates a new process by the choreography for different APIs

by presenting the necessary interaction point for the user.

3. Collaboration: Ability to collaborate the created mashups between users.

ii. Mashup Techniques:

1. Wiring: Facilitated mashup development by supporting connectors between

modules, blocks, components

2. Spreadsheet: Ability to load data in a table and process it to a desired format

78 | P a g e

3. Programming by Demonstration: Applying operations from templates instead of

programming the operation themselves.

4. Script/Language based: Supports the creation of mashup at code level

5. Webpage Customization: Evaluation of presentation mashups based on the ability

to browse, edit and combine different webpages within them

b. Technical Features: While evaluating mashup platforms based on their technical features we

look at whether it supports the latest technologies related to web 2.0.

i. Protocols supported for communication with Web services: Ability to support both

SOAP and RESTful web services.

ii. Data Retrieval Strategy: Access to data through the platform that is intended to be

mashed up

iii. Syndication formats supported: Support of RSS and ATOM

iv. Lightweight process modeling: Visualization of the process oriented view of the

services required or being composed for the mashup application.

II. Ease-of-use: The level of ease in terms of using the features of a mashup platform would

give us a picture of the overall mashup platform state. The following elements would aid in

evaluating whether a mashup platform user, especially a business user, would be consciously

be able to operate the platform and make unassisted changes on the spot during the event:

i. Advanced UI Generation: Ability to extract technical descriptions from the derived

inference of generated UI from participating APIs’ service description.

ii. Assistance during incompatibility: A component that monitors the users actions and

offers suggestions for changes.

79 | P a g e

iii. Tutorial Element: An embedded tutorial element to assist the user in the learning

process.

iv. Learning Curve: How easy it is to learn the usage of the tool

v. User orientation: The ability to rate, recommend embedded tools with the platform

based on end-user requirements of the tool and the task at hand.

vi. User goals: Explicit or implicit support of user goal achievement or task completion,

e.g. simultaneous collaboration

vii. User requirements: Whether the tool specifies the user requirements beyond listing

the API operation with technical jargon.

III. Intuitiveness: The intuitiveness of a mashup system can be improved using the light-weight

applications or components of user interface in the form of gadgets, widgets etc (Zhao et al.,

2011).

IV. Cost Reduction: Higher resource utilization through self-service and collaboration,

reusability, as well as lowering IT operating and development costs (Thiele & Lehner, 2012).

80 | P a g e

Chapter 4 Results & Findings

In this chapter we present our results and finding of our research work. In defining lexical

knowledge for enterprise business intelligence mashups we have proposed two frameworks

which are the direct result of our research work. The two main outcomes of our research work

are a taxonomy and a utility framework for Enterprise BI Mashups. The formulated taxonomy

provides a basic framework for understanding the domain of BI mashups and is aimed to aid

application development initiatives for creating BI mashups toolkits. Based on our taxonomy

framework we have constructed a utility framework. The utility framework draws upon real-

world use cases for BI Mashups as well as pertinent software design patterns that can facilitate

the development of BI mashup tools and services.

4.1 Proposed Functional Taxonomy for Entperise BI Mashups

The taxonomy framework presented in this paper is an outcome of the first phase of our applied

research investigation that aims to create a utility framework for Enterprise BI Mashups. The

taxonomy identifies the high-level components for BI mashups. The undertaken ontological

engineering process, mentioned in chapter 3, of this research was geared towards formulating a

taxonomy framework for Enterprise BI Mashups where identified concepts were arranged in a

hierarchical and easy-to-understand format. . The taxonomy framework is formulated by

identifying key enablers and drivers of Enterprise BI Mashups in addition to the business trends

that drive user requirements in situational BI uses-cases. The functional range of proposed in the

taxonomy consists of the typical user required functionalities to enable self-service development.

The taxonomy provides a categorization of the targeted enterprise BI users of mashup toolkits

81 | P a g e

and the associated development methods which can be undertaken by these users. In the

framework we also classify the data source requirements for end-users and how they play their

part in the functional capabilities of mashup platforms. The discussion of our taxonomy

framework is divided into two sections: The construction of the taxonomy framework, taxonomy

component and component-relationship analysis.

4.1.1 Taxonomy Construction:

The concept and their relationship identification for our taxonomy framework were done through

two processes: 1) Literature Review & 2) User Requirements Investigation. The combination of

these two processes helped us to associate actual current situational BI needs of clients with

literature that is available on mashups.

Through our literature review, which was further elaborated in chapter 2, we gathered our initial

data related to Enterprise BI Mashups.

In an attempt to identify the underlying concepts of BI mashups, our literature review process

consisted of papers related to enablers and drivers of mashups both at enterprise and consumer

level. This included literary work consisting of mashups in the context of SOA, situational data

needs of organizations, self-service etc. Once we have identified the fundamental concepts we

moved to papers related to enterprise mashup objectives and motivations, target groups as well

as mashup design & architecture in order narrow down the intended users of Enterprise BI

Mashups and their task characteristics. This included looking into what kind of features and

functionalities are offered in traditional mashup products. In order to identify the situational BI

requirements our focus was on papers which discussed the ad-hoc BI needs of clients as well as

82 | P a g e

inefficiencies of current BI applications. Reviewing of publications related to the enterprise data

usage helped in identifying the data type, format and data source requirements of enterprise

users. We also looked extensively into mashup design patterns for creating solution statements to

solve specific situational BI problems. In gathering the data to construct our taxonomy

framework our literature review was geared towards what potential benefits an enterprise

mashups platform can offer users in order to complement the existing offerings and fill the gaps

left by the traditional full-scale BI applications.

While working with the partner organization of this research project, IBM Canada Ltd, we

analyzed their undertaken projects in delivering solutions that were requested by their clients in

order enhance their BI capabilities. We also investigated sample applications that the

organizations had developed for client demonstration purposes. These applications included:

1) Sample Cognos SDK and CMS applications for which clients use a guideline to create

their own applications

2) Customized applications which integrated the Cognos BI setup of clients with the clients’

own applications.

3) Requested applications which being built at the moment or are in the backlog

In analyzing the projects we specifically tried to answer the following questions in order to

identify most commonly requested features of the clients. By narrowing down our use cases we

were able to ascertain which capabilities, features and functionalities should be embedded in a

mashup platform in order to create these applications through self-service. By answering these

questions we identified the use cases to move forward with. Once the identification process was

83 | P a g e

done, the requirements analysis performed on these projects and applications where mapped to

the mashup design patterns. The questions that we tried to answer are as:

1) What are the technical requirements of the project/application?

2) Can the technical requirements be delivered through a self-service platform?

3) Who are the targeted users of the project/application?

4) What is allocated timeline in delivering the project/application?

In addition to the above questions, our requirement analysis process also involved understanding

what the clients wanted through the requested applications, stakeholder identification,

measurable goals, and software requirement specification

The mapping process of use cases to mashup design patterns involved identifying the specific

patterns which will be a best for creating certain feature which the users wanted in their

application. We also mapped the requirements of the clients to relevant solution mechanisms

found in the literature related to mashup development for both consumer and enterprise level. As

there is a lack of literature specifically aimed towards Enterprise BI Mashups, this mapping was

done to a whole array of relevant topics related to BI intelligence and mashups. This helped us in

pinpointing the components required for the taxonomy framework for Enterprise BI Mashups.

84 | P a g e

Figure 12: Preliminary Taxonomy Framework for Enterprise BI Mashups

4.1.2 Taxonomy Analysis:

The construction of our taxonomy framework is based on five relevant categories identified

through our research methodology. These five categories are further classification trees as

highlighted in their sub-taxonomies. Figure 12 shows a visualization of the taxonomy framework

as a mindmap. The five high level categories of this framework are: Enablers, Enterprise Users,

Development Method, Functional Range, and Data Sources. In following sections we have

discussed about our taxonomy framework in detail.

85 | P a g e

4.1.2.1 Enterprise BI Mashup Enablers

In constructing a taxonomy framework for Enterprise BI Mashups we have to first take into

account the enablers for these technologies. Mashups have earned their fair share of popularity in

the consumer space. In the enterprise domain, mashups are yet to make their mark because of

their collaborative and end-user centric development approach as opposed to the traditional

siloed solution delivery approach where different departments have different levels of access to

available technologies (Ogrinz, 2009). In the BI domain, the underlying drivers of BI systems

would enable the creation of an enterprise mashup platform. The enablers are SOA & web

services, BI systems & tools, Web 2.0 & Enterprise 2.0. These enablers drive the development of

functional capabilities of Enterprise BI Mashup tools.

i. Service Oriented Architecture (SOA)

BI system implementation in modern day organizations is greatly driven by Service Oriented

Architecture because of the need for integrating business processes with business intelligence.

Better decision making requires better interoperability and sharing of resources across the

enterprise. SOA’s style of loosely coupling services and providing reusability allows BI systems

to be extended to other services and minimize their shortcomings. Mashups by their very nature

are both a precursor and a beneficiary of the SOA paradigm (Ogrinz, 2009). Their similarities

with SOA make them a perfect fit for empowering BI end-users with diverse functionalities to

meet their situational requirements.

ii. Web Services

Regardless of the new trend of using the terms SOA and web services interchangeably, web

services by themselves would act as an enabler of BI mashups because of the need of integrating

external in addition to internal services. In the API driven development approach, BI applications

86 | P a g e

are also introducing their own APIs for consumers to integrate or create application using their

underlying resources. In a SOA context, web services have become a major method of

integrating BI content with external applications (Cappiello et al., n.d.). Mashups can consume

web services that SOA-centric applications utilize as well as creating and publishing them as

web services for further reusability. The sub-taxonomy of web services consists of the

standardized protocols REST & SOAP, REST being the more widely used mechanism because

of its simplified integration methods.

iii. BI Systems & Tools

At the center of the Enterprise BI Mashups would be BI tools and applications themselves.

The outputs of a BI system would act as the main source of inputs to be used in a mashup

platform. The introduction of Software Development Kits (SDK) of widely used BI solutions has

made the integration process with mashups possible by making BI content extensible to other

platforms.

iv. Web 2.0 and Enterprise 2.0

Web 2.0 technologies enable users to remix/reuse data, web services and micro-applications

to create hybrid applications which transforms the mashup creation process from being

technically challenging to nearly mainstream (Yee, 2008). While Web 2.0 deals with the

consumer internet space, enterprise users’ demand for Web 2.0 technologies within corporate

walls has given birth to the notion of Enterprise 2.0. In the Enterprise 2.0 concept the rigid

structures are removed through collaborative solution delivery. Equal access to technology and

flexible yet powerful tools enable every segment of the organization to build their own solutions.

In the same manner in which Web 2.0 enables and facilitates mashup creation through self-

service, Enterprise 2.0 does it for organizations.

87 | P a g e

4.1.2.2 Enterprise Users

Development of BI applications is driven by the needs of end users. Based on Imhoff &

White’s (Imhoff & White, 2011) information worker classification we have identified four types

of Enterprise BI Mashups users

i. Information Producers:

Information producers create the BI related information to be consumed by information

consumers. Information producers or power users engage in interactively building and visually

exploring complex data models. Their usage of BI mashups will be in a manner which will

improve the value of existing solutions. A further classification of information producers would

include, but not limited to, business analysts & senior/middle managers.

ii. Information Consumers:

These are users who support day-to-day business operations utilizing the information

delivered by the information producers through BI applications. Through a mashup platform’s

simplified drag and drop development method information consumers can cater to their own

needs when it comes to situational requirements. A sub taxonomy of information consumers

consists of executives/managers, field & operation staff, sales-person, and customers &

suppliers.

iii. Information Collaborators:

Information collaborators contribute into the whole BI ecosystem through their activities

utilizing collaborative applications to which the notion of enterprise mashups conforms to. Sub

categorization of this type of enterprise users consists of motivated information workers,

researchers, & subject matter experts.

88 | P a g e

iv. BI/DW Builders:

The final category of Enterprise BI Mashups users are BI/DW builders who are responsible

for developing and deploying a BI solutions which consists BI application development and DW

construction and maintenance. BI/DW builders can be developers, DB administrators, data

modelers or other IT professionals who are not directly related to application or DW

development (e.g. network administrators).

4.1.2.3 Development Method:

Mashup Development in the context of BI can be categorized depending on the types of users

using the platform. The development sub-taxonomy consists of two classifications:

i. Manual Development

Manual mashup development requires programming skills and intimate knowledge about the

schemes and semantics of data sources or the business protocol conventions for integrating data

and applications into a coherent and value-adding application (Liu et al., 2011).

ii. Tool Assisted Development

Mashup-specific development tools and frameworks accelerate the mashup development

process and enable business and inexperienced users to mash up their own applications and thus

are the enabler of self – service for end-users. Powered with visual drag and drop features and

widgets, requiring little or no programming, enterprise mashup tools in a BI context are mostly

89 | P a g e

targeted for the information workers consisting of information producers, consumers, &

collaborators (Liu et al., 2011).

Based on the user type and their platform usage criteria and skill level, the development

method of Enterprise BI Mashups depends on these user types. The BI/DW builders and some

portion of the information producers will undertake a manual developing process of mashups

using traditional software development process which is done by using software programming

languages. In this process a mashup application will generally built from scratch rather by coding

it all the way, while in the tool-assisted development feature is suitable for information

consumers, information collaborators as well as information producers. Using the self-service

features already embedded in mashup development tools, users with can create mashup

applications without having any or minimum programming skills.

4.1.2.4 Functional Range:

The functional range of a mashup platform for BI should consist of features enabling users to

utilize in a manner which would be of best-fit for them. The functional range of Enterprise BI

Mashups can be classified into four categories:

90 | P a g e

i. Mashup Presentation:

The situational BI applications demanded by the users require simple yet diverse user interfaces.

Mashup presentation deals with the layout and interfaces of the created mashups. Presentation

mashups required by different array of users can be categorized into four classifications (Pahlke

et al., 2010).

1) Interface Composition: The process of designing the layout of the mashup. Different

mashup tools tend to have different ways to construct the interface.

2) Visualization Type: Data visualization is a very important aspect of modern day BI

(Negash, 2004). Mahsup tools have to have the ability for the users to create or integrate

the visualization types they want - be it charts, graphs, diagrams, tree, heat maps etc

which traditional BI applications usually do not offer.

3) Consolidated View: A BI mashup tool can also be classified in terms of its consolidated

view construction mechanism. When creating an overall picture of how their business is

performing and then taking decisions promptly, business users need to have a

consolidated view consisting of all the related internal and external data presented in their

mashup interface (Anna, 2011; Kasman & Roder, 2011b).

4) Mapping Mashups: Overlays integrated data in geographical locations on maps (Sleigh &

Johari, 2010).

ii. Data Utilization

Through the self-service capabilities provided by BI mashups, BI professionals of all categories

can manipulate data in a manner that they want. Typical use cases of data utilization (Simmen et

al., 2008) through Enterprise BI Mashups can be classified into 5 categories:

91 | P a g e

1) Data Integration: Integrating organizational internal data with externally available data.

2) Data Retrieval: Getting hold of data sources or data points which usually exist in a

different system or unsupported format in BI tools.

3) Data Extractions: Filtering or extracting the data needed from huge volume of data.

4) Utilization of External Data: Users should be able to utilize external data in the same

manner they use internal data.

5) Data Output Format: BI mashup end users should be able to create or transform data in

to their desirable format for meeting their situational needs.

iii. Design Features

The actual usefulness of created mashups in a BI context by combining data sources and various

other components depends on the mashup functionalities available within the BI mashup tool. In

terms of mashup functionality sub-category, we have identified seven generic patterns. They are:

1) Data Viewer/Feed Reader/Portals: The first type is components for exposing the

transformed data for mashing up. These components or widgets can have the

functionality of data viewers, feed readers or portals.

2) Data Manipulation/Transformation: Data manipulation and transformation components

usually provide lightweight manipulation and transformation features for end users at the

mashup builder side.

3) Event Triggering/Exploring/Transforming Event triggering, exploring and transforming

widgets enable the inter-communication of events between various widgets in a mashup

space.

92 | P a g e

4) Wiring/Piping: Wiring and piping functionalities determine the data passing style

between different components.

5) Drill Down/Slice-Dice: For data drill down and slicing/dicing purposes mashup tools

consist of nested data viewer widgets or even more customized components exposing

more specific drill-down functionality.

6) API Integration: Custom built API integration widgets enable users to utilize external

functionalities.

7) Customization Features: Customization features allow users to manipulate and modify

various resources according to their preference e.g. URLs and strings (Kasman & Roder,

2011b; Simmen et al., 2008; Singh, 2008b; Sleigh & Johari, 2010)

iv. Process

In order to eliminate processes involving repetitive tasks for business users, BI mashup

platforms provide the capability of creating process mashups. Process mashups can be further

classified in to two categories – process patterns and templates. Process patterns define the

nature of workflow which will be automated or created through mashups. Process templates are

pre-existing process mashups in the form of templates which can be used to create new process

mashups (Vrieze, Xu, Bouguettaya, Yang, & Chen, 2009).

In terms of the relationship between the functional range and other components, the provision

and development of the functional range in a mashup tool is driven by the enablers of BI

mashups. Building a mashup platform based on SOA will instill sharing and reusing of resources

enabling interoperability between different systems within an organization. This would lead to

implementing the desired data utilization functionalities; while the usage of web services would

93 | P a g e

enable the integration of both internal and external APIs. BI systems and tools would allow the

development of mashup functionalities in a BI context thus making them the most important

drivers of BI mashups. Finally, the concepts of Web 2.0 and Enterprise 2.0 would drive the

innovation of features which would bring collaboration in situational BI application

development.

4.1.2.5 Data Sources

In BI context, the extent to which a mashup tool can facilitate the usage of various data

sources indicates the usefulness of the tool. Information workers need the capability to utilize a

large pool of data sources and formats to meet their situational needs at any given time (V Hoyer

et al., 2011). The sub-taxonomy of data sources for BI consists of two elements:

i. Internal Data Sources:

Mashup tools utilize the data, which is directly supplied to them by the users. The categorization

of internal data can be done in two types: enterprise and departmental. Enterprise data usually

consists of a large volume of data stored within multiple databases. The types of this data can be

core BI application data in enterprise databases, access directory data or application system data

e.g CRM or ERP systems. On the other hand, departmental data usually consists of binary files

e.g. excel, access, csv etc or even in standardized web exchange format e.g. XML.

ii. External Data Sources

The most common source of external information for BI mashup tools would be RSS and

ATOM. In addition to that, external data can also be of similar sources like internal data. For

example data exposed through Web Services in XML or JSON format. It can also be directly

accessed through plugging in external databases of collaborating organizations.

94 | P a g e

The fifth high level component of our framework – data sources impact the development of

functional capabilities of a mashup platform. What features and functionalities a mashup tool

will have will be highly dependent on what data sources need to be accommodated. As the whole

concept of BI is centered on data, the functional range of mashup platforms are embedded in a

manner which would allow working with the desired external and internal data sources and

formats of the enterprise users.

Thus we can see that the relationship between the high level components of an Enterprise BI

Mashup taxonomy framework is either dependent or driven by other components.

This proposed functional taxonomy framework aims at filling the current gap in the domain of

Enterprise BI Mashups. Regardless of the potential benefits of Enterprise BI Mashups, there is an

evident lack of concrete knowledge base or formal BI mashup frameworks for understanding

mashup features and capabilities in a BI context. In addition to that, even though are multiple

mashup products available in the consumer space for usage in the Web 2.0 arena and only a few

are geared towards enterprise usage, there is an evident lack of mashup products targeted for

usage in a BI context. As mentioned in the chapter 2, this results from IT department’s focus on

high profile BI initiatives and system implementations which leaves many situational BI

requirements of clients unaddressed. While in the consumer internet space the notion of self-

service has been accepted and put to practice, in the enterprise BI arena self-service is yet to be

realized. This leaves the development of BI mashup tools still in the experimental stages. A

taxonomy framework such as the one discussed in this thesis, aims to fill this gap in the extant

literature and also to potentially serve as a basis for future development of BI mashup platforms.

95 | P a g e

The created taxonomy uses the already established concepts in the field of software engineering

and information management. Thus it can be easily integrated in any development scenario. The

association of mashup drivers, which were identified in the enablers categorization, with

conventional software development technologies is expected to keep the BI mashup development

cycles up-to-date with the advancement of these technologies. The classification of enterprise

users provides a varied target audience for the development initiatives for mashup tools. The

functional range and the data sources are expected to the fill the gap existing mashup tools in the

context of BI.

4.1.3 Mashup Pattern Mapping :

In this section we will discuss which specific mashup patterns can enable the implementation and

fulfillment of the functional range as well as supporting data sources and formats required by the

enterprise users. Figure 13 illustrates the mapped patterns with the associated taxonomy

elements. The objective of the mapping process here is to relate a pattern to specific enterprise

mashup concepts. Associating mashup design patterns with the situational BI requirements will

enhance the understanding of why mashups are useful in certain contexts and the overall solution

elements at a general level. Identifying specific patterns will also help in fine tuning the

functional requirements which are being translated from business use cases to the technical

vocabulary. This mapping process would provide a general language that enterprise users,

technically skilled users specifically, can use to construct a solution statement while creating a

mashup. Specific patterns related to the functional range and the data requirements would bridge

96 | P a g e

the gap between the enterprise users by providing a language to create specific solution

statements for creating mashups in a BI context.

Figure 13: Mashup Pattern Mapping with Taxonomy Elements

i. Patterns for Mashup Presentation:

The Mashup presentation component in our taxonomy framework consists of concepts required

to compose the presentation interface of mashup. In terms of mashup patterns – accessibility,

usability enhancer, fragility reducer, location-mapping , emergency response, and quick proof-

of-concept or prototypes would provide means to create effective presentations. The quick proof-

of-concepts or prototype patterns allow us to validate a BI situational application solution by

creating a rapid presentation utilizing the available resources. The dashboard pattern helps us to

97 | P a g e

create summaries of the data acquired from multiple sources, while emergency response patterns

provides mechanisms to create mashup presentations where the available time is minimum.

Accessibility patterns provide means of creating alternative application interfaces where there is

a need for different presentation views for different types of users. If the need for implementing a

working solution is a bigger priority than making the interface usable, the usability enhancer

patterns would provide means to create a wrapping presentation exposing the required

functionalities only. And finally the fragility reducer pattern provides solutions in terms of

making the mashup presentation less vulnerable to breaking down by utilizing multiple sources

(Ogrinz, 2009).

ii. Patterns for Data Utilization:

The data utilization component of our taxonomy framework can be mapped to several mashup

patterns i.e. content integration, API enabler, silter, splinter, and time series. The content

integration pattern provides means to extend a system that accepts various data sources and

combines them in to a single feed which conforms to the systems own standards. The API

enabler pattern enables access to data sources locked away in closed or proprietary formats by

transforming them to dynamic data sources. The feed factory or RSS enabler pattern allows the

creation of RSS or ATOM feeds for websites that don’t have one in addition to remixing the new

feeds with existing ones. Data sources which are regularly updated, can be tracked using the time

series patterns which provides mechanisms to extract and store information at regular intervals.

The splinter and filter patterns allows us to transform the data in to a structure that is suitable for

a given use case. The splinter pattern is about separating unified data into smaller specialized

streams of focused information. Lastly the filter patterns helps us to remove unnecessary data

from a feed (Ogrinz, 2009).

98 | P a g e

iii. Patterns for mashup functionality:

The mashup functionality component of the taxonomy framework is one of the most important

aspects of Enterprise BI Mashups. In the case of various functional requirements of situational

applications, mashup patterns provide ideas for integration mechanism for various

functionalities. In a BI context we have identified the following patterns for enabling mashup

functionalities: distributed drill-down, widget, portal, and API enabler enabler, content

aggregation and integration, filter, splinter, alterter and time series. The widget enabler pattern

provides means to integrate mini-applications or specific functionalities of larger applications.

While portal enabler patterns enable data functionalities by allowing content migration without

custom coding (Ruhi & Choi, 2013). Distributed drill-down pattern enables the highly drilling

down, slicing and dicing functionalities. For accessing external application functionalities, the

API enabler pattern allows us to utilize the external SDKs and libraries. Content aggregation

pattern is useful where the situational need consists of frequent task switching activities. The

content integration, filter, splinter, alerter patterns provides mechanism for integrating various

data functionalities as discussed in the previous section.

iv. Patterns for Processes:

For automating repetitive processes mashup patterns like infinite monkey, reality mining, and

workflow can aid in effective BI mashup creation. Processes that require a high number of

manual monotonous tasks, can be automated through using the infinite monkeys pattern. While

99 | P a g e

the reality mining and workflow patterns provide mechanisms to understand human interaction

with applications and implement them by creating associated workflows (Ogrinz, 2009).

v. Patterns for Supporting required Data Sources:

In a BI context, it is imperative to support various data sources and formats in order to meet the

requirement of the users. Mashup patterns that aid in this process are API enabler, alerter, and

time series patterns among others. These patterns enable access locked away data which

generally reside in siloed databases. By deploying intelligent agents - the aleter pattern

specifically monitors web resources as well as other data of various formats for updates. And the

time series pattern in addition to the aforementioned tasks stores the extracted data from the

mentioned resources in a mashup specific repository (Ogrinz, 2009).

4.2 Proposed Utility Framework for Enterprise BI Mashups:

The development of web-based enterprise application is driven by frameworks which define the

overarching infrastructure, functional components as well as the workflow and relationship of

the components of the application. A utility framework provides a comprehensive visual model

of utility functions of an application which developers use regularly when building web

applications (Oracle, 2013). In order to adopt a feature based development (Tun et al., n.d.) of a

mashup platform, a utility framework will guide the development process in a manner which

would provide the proper functionalities. In addition to that, in a BI context the features and

functions have to be tailored to suit the needs of the enterprise mashup platform which would

complement their already implemented BI systems. In this regard, there has to be a fine balance

100 | P a g e

between the functionalities the BI applications already provide and the ones the BI mashup tools

are going to provide. Based on the concepts identified through our taxonomy framework, in our

utility framework we have provided an overview of functionalities required to create situational

BI applications which are associated with different tasks undertaken by different types of

enterprise users. This process also consisted of the reviewing the current mashup platforms

available. These mashup tools were not targeted towards any specific field, rather for general

application development by business users. By understanding the product features, workflows

and their enablers, we identified the components required for Enterprise BI Mashup application.

Our reviewed products were IBM Mashup Centre and Jackbe Presto.

The utilized features and functionalities in the framework will enable self-service as well as

programming based application development by different types of users. The features reflect the

functional range components of the taxonomy framework that we he have discussed in the

previous section. The framework takes into account the underlying infrastructure required to

create a BI mashup platform. The infrastructure components take in to account the required

technologies and resources for web based enterprise software development. The BI application

and tools as well as BI mashup enablers included in the infrastructure model enables application

development specifically for entperise BI mashups tools. Figure 14 provides a visual model of

our proposed utility framework. The model provides an overview of the necessary components

and features as well associated user types and their tasks in sequential manner.

101 | P a g e

Figure 14: Proposed Utility Framework

4.2.1 Underlying Infrastructure:

The underlying infrastructure of for an Enterprise BI Mashup platform consists of two

overarching components: i) Content Sources and ii) BI Mashup and BI Enablers. These two

components are the assimilation of a number of software development building blocks which

create the whole mashup platform. Figure 15 provides an infrastructure framework which

consists of the aforementioned software development building blocks. For the underlying

infrastructure we have taken a general approach rather than any vendor specific proprietary

applications.

i. Content Sources:

In terms of the content sources, as we have discussed in our taxonomy framework, there are

internal and external data sources. Organizational internal data mainly lies within enterprise

102 | P a g e

databases. There can be different types of databases in terms of technical implementation and

storage of data type i.e CRM, ERP systems or even from server logs. For the mashup platform

usage, there can be other enterprise data sources originating from different parts of the same

organization or multiple collaborating organizations which can be enabled by web services. In

terms of departmental data, they are mostly files lying in desktop machines of employees. They

can be excel, access, csv or xml files. External enterprise data also lie within databases. But they

are typically accessed via webs-services provided through APIs. External data sources can also

be provided through RSS and ATOM feeds. This data sources are accessed by the mashup

application server for further usage as we see in figure 15. The mashup platform’s own database

consists of all the created feeds, metadata, mashups, applications, user-data, snapshots of

resources which are utilized for creating mashups etc.

Figure 15: Underlying infrastructure for a Enterprise BI Mashup Platform

103 | P a g e

As for the BI components of the infrastructure setup which we are going discuss in the next

section, the data sources tend to ROLAP or Relational databases. The data lying in these

databases are further modeled in order to ensure that metadata is presented in a manner that

business users understand. An example of tools which does this processing is IBM’s Framework

Manager.

ii. BI Mashup and BI Enabler Components:

The BI mashup enablers section consists of all the components which allow the usage of mashup

and BI tools for our purpose. In terms of the mashup tool, it consists of the mashup application

server and the clients of the platform. The application server supports the design, discovery and

governance of all the client platform components. In addition to that, the server supports a wide

range of data sources. The communication method for mashup server with its clients is through a

secure HTTPS connection through the exposure of REST API. The clients of the mashup

platform supported by the application server consist of three main components: mashup editor,

mashup presentation builder, mashup resource catalogue. All these three components are web

based tools providing both easy to use features for non-technical users as well as well skilled

users. The components are integrated visual drag and drop enabling enterprise users to create and

modify mashups. Through the mashup editor users can perform custom and real-time data

utilization tasks. The different sets of features within the mashup editor allow different types of

uses to perform task consisting of different expertise levels. The presentation builder

component is used to compose the view of the mashup through a collection of widgets. The

resources required for composing this view generally come from within the other components of

the mashup platform i.e. the result sets of the mashup editor or from external sources as well.

The general features of the mashup builders are exposed through pre-built widgets which we will

104 | P a g e

further elaborate in the ‘required functionalities’ section. The mashup resource catalog enables

the enterprise users to search, rate, share existing feeds and mashups. It also acts as a launching

point for creating and editing new mashups and feeds. In addition to these client components, a

mashup platform can include a widget creator for coding new widgets by BI/DW builders.

The BI tool implementation for our purpose is similar to any standard implementation. The

implementation consists of four main components. The data sources components is where the

data is stored and from where it is provided to the other components for usage. The data

modeling tool converts the data in a BI usable format by ensuring metadata is presented in a

manner understandable by business users. The next level components are the web servers and BI

application servers for the BI implementation. The BI application server takes care of running

and supporting the requests related to all the tasks that users undertake. The web server on the

other hand transfers the BI web application requests to the BI application server. This is typically

done through gateways residing in the web server. The component which is directly exposed to

the BI user is the BI application user interface. Through this interface the enterprise users

perform their tasks. Now in order to enable the extension of the BI resources to another external

application, an API of the implemented BI system is required. This is generally done through a

SDK (software development kit), discussed in chapter 2, of the system. The extension of BI

resources to other application is enabled through the usage of Web Services between the

application servers of different systems. In our case this is done between the BI application

server and the mashup application server through a secure protocol as shown in the figure 15.

Through the usage of the BI application API, we can integrate the data from the BI intelligence

application to the mashup platform and use it to build the situational applications.

105 | P a g e

4.2.2. User Types:

As we have discussed in section 4.1.2.2, the enterprise users can be of four types : 1) Information

Producers 2) Information Consumers 3) Information Collaborators 4) BI/DW Builders. The

utility framework takes into consideration these user types and provides the functionalities

required by them.

4.2.3 User Tasks:

The tasks undertaken by the enterprise users can be mapped to three overarching categories.

These tasks can be overlapping between the user types, meaning each user type can undertake

any of these tasks. Having said that, a user group will be focusing on any one or two of the task-

categories. The categories are as follows:

a) Creation and Modeling Tasks:

The goal of creation and modeling tasks within a mashup platform is to create actual mashups,

the artifacts and components required for mashup creation and to model the data according to the

needs of the users. These tasks are generally undertaken by information consumers and

producers, but are not limited to them only. The self-service features enabled by the functional

range of the mashup platform allow information consumers and producers to create and model

data according to their needs. The creation process involves creating data feeds from various

data sources (see section X). These feeds can be created directly from the plugged in data

sources as well as through web services. In addition to that feeds can be created by the enterprise

users using RSS and ATOM feeds. Once the feeds are created, they can be modeled according to

the needs of the users. The modeling of data is done through the data utilization as well as

106 | P a g e

through data transformation and manipulation features. Once transformed into the desired

structure, these artifacts or building blocks for mashup creation can be stored and accessed for

future usage. The mashup creation process is done through utilizing the modeled data as well as

utilizing external resources, i.e. external APIs and external data. The created artifacts can be a

data mashups created from integrating separate data feeds. It can also be the more recognizable

mashup view or mashup presentation which enterprise users create by utilizing the widgets

available. In terms of complementing the BI systems, both data level mashups and presentation

level mashups play important roles. The widgets which are utilized for the creation for mashup

presentations are generally built in. But in addition to that a mashup platform might have

separate components within the client environment for creating widgets. Users with

programming knowledge can utilize this component for creating widgets which would be used

by the business users. In addition to that a mashup platform may contain specific application

building features for creating applications targeted for usage in mobile devices.

b) Collaborative Tasks:

Collaboration being at the heart of Web and Enterprise 2.0, all the enterprise users undertake

some sort of collaborative tasks. One of the important characteristics of a mashup tool is that the

created artifacts such as data feeds and data mashups are reusable. These components are stored

in the mashup repository and can be accessed through the mashup catalogue. Once a data feed or

a data mashup is created they can be published in order to be accessed by a certain user group

according to the enterprise governance policies. Users who have permission to access these

components can further validate their usability by rating them. In addition to that, they can

update these artifacts and share them as well. Another collaborative task is adding relevant

metadata or tagging feeds and data mashups. This process would make the mashup building

107 | P a g e

blocks more usable and increase their searchability. By tagging them with relevant keywords the

data feeds and data level mashups can organized in categories.

c) Administrative Tasks:

Administrative tasks consist of the activities relating to maintaining the mashup platform. These

tasks are undertaken by the BI/DW builders or the IT department of the organization. A web

based mashup tool would be used by of vast number of users. The mashup tool, as a web

application, has to be reliable in terms of service provision, delivering of requested upgrades and

customizations, reliability, performance, compliance with standards and organization policies,

and being up to date in terms of features and functionalities covering both the mashup

application client and application server. Most of these tasks are routine based tasks which need

to be performed in order to make sure the platform is running smoothly. The upgrading and

maintenance tasks are more technical activities, while governance of the platform is to make sure

that users are complying to the agreed standards. The governance is done setting various access

control measurements and auditing of user tasks. The responsibilities are down to the

application owners and system administrators. Performing these tasks requires mechanisms i.e.

administrative functionalities within the mashup platform. In addition to the administrative

functionalities of the mashup platform, the maintenance of the underlying infrastructure is also

an integral part of administrative tasks. Since the implementation of the mashup platform

depends on the underlying infrastructure i.e. the data sources, external APIs, BI system – the

administrative tasks are also extended to these components. Typically the IT department is

responsible for maintaining the underlying infrastructure as a whole.

108 | P a g e

4.2.4 Mashup Platform Client Composition:

The mashup platform client can be composed of several modules. From our exploration of

current mashup tools available for consumer usage (Jackbe, 2012; Kasman & Roder, 2011b;

Singh, 2008a), we have identified ten client components.

1. Feed Generator

A feed in a mashup platform is XML data which is used for creating mashups. Any data that is

provided to the mashup tool is converted to XML format and then utilized for the required

purposes. A feed generator is the component which actually generates the XML document from

the data provided. Once the feed is generated, it is registered in the catalogue.

2. Catalogue:

The catalogue facilitates sharing and discovery of mashup building blocks, i.e. data feeds, data

level and presentation level mashups. It is a repository of all the mashup objects.

3. Data Mashup Builder/Editor:

The data mashup builder and editor is a graphical interface embedded with self –service features

for the enterprise users to rapidly create data mashups.

4. Mashup Presentation Builder:

The mashup presentation builder is an interface which enables mashup presentation creation by

creating, assembling, configuring and designing mashup pieces. The working mechanism of the

presentation builder is based on widgets.

5. Widget Creator:

Widget creator allows building custom widgets by skilled users through programming initiatives.

Widget creator also allows to export or import widgets to and from external files.

109 | P a g e

6. Pages:

A particular mashup presentation is created in a page. After creating a mashup presentation, that

page can published for access by other users.

7. Spaces:

Spaces are hierarchies of pages which contain pages with mashups of similar nature. Spaces

allow the organization of mashups in a fruitful manner.

8. Mashup Apps:

Mashup Apps allow the created mashup presentations to be accessed in different external

destinations and devices. The different destinations can be enterprise or consumer web

applications i.e. Microsoft Sharepoint.

4.2.5 Required Functionalities:

In alignment with the user tasks mentioned in the previous section and based on our reviewing of

IBM Mashup Center and Jackbe presto (Jackbe, 2012; Kasman & Roder, 2011b; Singh, 2008a),

we have identified the required functionalities to perform them. The functionalities are provided

through various features in a mashup tool. The features are exposed through various blocks. For

creation and modeling data tasks we have identified the following features:

1. Create/Register Feeds: For creating data feeds from the desired data sources and

registering them in the platform catalogue

2. Invoke: For adding data sources from the internet or through URLS

3. Extract: For fetching the desired items from a data feed

4. Filter: For selecting a specific item from a result set based on some conditions

5. Group: For identifying repeating items based on the unique values for one or more fields.

6. Input: For providing dynamic input fields and to be used by other components

110 | P a g e

7. Join: For combining repeating items of multiple block based on a condition

8. For Each: For replacing values in a specific feed with repeat values from another feed

based on a condtion

9. Loop: For adding blocks in a loop

10. Merge: For combining several similar results sets

11. Select: For select only specific items from a group

12. Sort: For sorting repeating items in a feed based on field

13. Transform: For changing the structure, organization or data result sets to a desired format

14. Aggregate: For performing simple calculations on a set of repeating items. The

calculations type include:

a) Average

b) Count

c) Maximum

d) Minimum

e) Sum

f) Variance

15. Date Functions: For performing various functions to format the date as desired

16. Numeric Functions: For performing a complex range of mathematical operations on a

result set

17. String Functions: For building or modifying strings

18. Boolean Functions: For performing Boolean operation on a value

19. Widgets: Widgets are miniature applications embedded in a web page. Types of most

popular widgets in a BI context are:

111 | P a g e

a) Map: For displaying content which includes fields of geographic information

b) Visualization: For displaying numeric content in a desired visualization

c) Feed Reader: For displaying text based RSS or ATOM feeds

d) Data Viewer: For displaying data from a binary file in a grid view

e) Google Gadgets: For wrapping and displaying Google Gadgets in a widget

f) Java Applet: For displaying Java based content typically deployed in an external web

resource

g) Flash Content: For displaying external Adobe Flash or Shockwave content

h) Media Content: For displaying pictures or videos

i) Action Timer: For setting up a timer to control the frequency of an event passing

from in between widgets

j) Nested Data Viewer: For organizing data in table and drilling down

k) Event Explorer: For publishing event data from a different widget

l) HTML Markup: For displaying a webpage based on the provided HTML code

m) Portal : For displaying specific portal pages

n) User Input: For providing simple control inputs to be taken as parameters

o) Website Displayer : For displaying websites

20. API Integrator: For integrating external web functionalities exposed through APIs. In our

case the resources provided by BI system, i.e. reports, are accessed by the mashup platform

by using the API of BI system.

21. OpenSocial Gadget Integrator: For integrating similar social gadget tools to Google Gadgets.

For collaborative tasks we have identified the following features:

112 | P a g e

1. Add Feedback: For providing comments for data feeds, data mashups, and presentation

mashups

2. Rate: For rating data feeds, data mashups, and presentation mashups

3. Add / Update Meta data: For adding and modifying the description, category, provider &

tags.

4. Add /Update Properties: For adding/updating attributes of blocks and artifacts

5. Review Dependencies: For reviewing the artifacts depending one on artifact before

deleting it.

6. Publish: For publishing data feeds, data & presentation level mashups as well other

artifacts like widgets for usage by an assigned user group

7. Share: For sharing resources via email or other mechanisms.

Administrative tasks can be done with the following features:

1. User Administration: For configuring user repository , integrating access directories,

managing user and users groups etc

2. Security Administration: For ensuring the conformance of policies and access control for

users

3. Server Administration and Configuration: For tasks related to configuring and managing

the application server

4. Performance Administration: For ensuring the application is reliable in terms of

performance.

5. Repository Administration: For overlooking all the databases connected, connection

pools etc

113 | P a g e

In the following chapter, we are going to present the implementation of two mashups which

we have done using IBM Mashup Center.

114 | P a g e

Chapter 5 Prototypes & Evaluation

This chapter presents two prototype mashup created through created through IBM Mashup

Centre. The implemented use cases were selected from the projects undertaken by the IBM

Cognos SDK team as well as solutions already requested but not yet delivered to the clients.

These projects consisted of specific situational applications that clients requested to be developed

for them. The need for these applications resulted from changing business requirements of the

clients. In order to make the best usage of their available BI data at a given time, the business

users experienced the need for certain application services. Out of these two client projects, one

of them has been already delivered as separate applications, while the other was in the

requirement analysis phase. The unavailability of these requested services in the clients’ BI tool

resulted in the clients requesting these applications. For our purpose we analyzed the

requirements of these applications and created them with IBM’s own mashup platform – IBM

Mashup Centre.

5.1 Prototype 1: Airplane Seat Information

5.1.1 Overview:

The purpose of this application is to extend the usage of airplane seat information by overlaying

it on an airplane seat map. In general, through the Cognos BI application the clients can generate

the reports selecting a specific seat with the application. The report consists of data regarding

seat arrangement of airplane. But through the reports the users are only able to see a specific seat

data and make their decisions on that. In order to be able to have a bigger picture, the reports

115 | P a g e

need to complemented with an airplane seat image where a user can select a specific seat from

the picture and get the associated data. This is a situational requirement of the users which

Cognos BI doesn’t provide. The solution has to be custom built in order to provide this service.

5.1.2 Application Requirements:

The requirements of this situational application are as:

1. Provide a visual outlay of an airplane seat arrangement where user can select specific

seats according to their needs

2. Output the associated seat information from the Cognos BI in the same visual pane.

5.1.3 Prototype Mashup Implementation:

The mashup creation process for the above mentioned airplane seat information application

consists of two main steps:

5.1.3.1 Cognos Report Creation and Access to the Report:

The first step of the mashup creation process is the report generation and fetching the report from

Cognos BI. The data of the airplane seats resides in the BI data base and is already modeled. In

the Cognos BI application, the user has to select the specific report and input the seat number in

order to create a report containing the information of that specific seat. Figure 16 illustrates the

process.

116 | P a g e

Figure 16: Report Prompt Selection and Report Generation

In order generate this report from IBM Mashup Center, we have to access the report through the

default URL. This default URL is provided in the report -properties section in Cognos BI. Figure

17 shows the access mechanism of this report provided through its properties.

5.1.3.2 Mashup Composition :

The composition of the mashup through IBM Mashup Center requires working in the mashup

presentation builder as there is no data modeling need for this specific situational application.

For composing this mashup we need four widgets: user Input, URL customizer, and two website

URL to be Used
used

Figure 17: Report URL for Mashup Center Usage

117 | P a g e

displayers. Once we have added these widgets in the mashup page, we start our composition

process by configuring the URL customized widget. In the settings mode of the widget we load

the URL of the report. But before doing that we have to trim out the special characters from the

URL and add the prompt parameter with a default value which is p_seat=A1. In figure 18 we can

see the loaded reformatted URL and the other parameters required. The reformatted URL is:

http://localhost:80/ibmcognos/cgi-

bin/cognosisapi.dll?b_action=cognosViewer&ui.action=run&ui.object=/content/package[@na

me='airplaneSeats']/report[@name='Seat

Prompt']&ui.action=run&run.prompt=false&p_seat=A1

Figure 18: Configuring the URL customizer widget

Once we have configured the widget, we need to setup an input mechanism to feed into the URL

customizer widget. For that purpose we have setup the user input widget with ‘Seat No.’ field.

The next step is to wire the widgets. In figure 19 we can see that user input sends the submitted

seat number as any data to the url customizer. The URL customizer on the other hand sends its

customized URL to the website displayer as a URL.

118 | P a g e

Figure 19: Wiring congfiguration of the widgets

The final step is to add the airplane seat image from which the user will select the desired seat.

After configuring all the widgets, the mashup composition is completed. In figure 20 we see the

created airplane seat information mashup. Here the users can select a seat from the image and

input the number of the seat which will fetch the relevant data from Cognos BI application

Figure 20: Airplane Seat Information Mashup

119 | P a g e

5.2 Prototype 2: Organizational Hierarchy Mashup

5.2.1 Overview

Cognos BI consists of numerous built in chart functions, which the users can utilize to generate

charts in their reports. But with the advancement of data visualization techniques, the need for

new representations of data becomes more frequent. In this mashup prototype, we have created

an organization hierarchical chart which can be drilled down to see the element inside. The chart

consists of hierarchical positions of an organization. It is arranged in such manner that clicking a

certain position would show the positions underneath it. Simultaneously the selection of the

elements from the chart would show the related information i.e. position name and salary

information from Cognos BI. This situational requirement of a specific visualization type was

requested by the client to be developed for them, which is in process now. In the meantime, we

have created a mashup prototype of the application according to the client requirements and

successfully demoed it to the Cognos SDK team.

5.2.2 Application Requirements:

The requirements of the situational application in question are as follows:

1. Overlay the Cognos BI organizational report data in hierarchical chart.

2. Embedded drill down feature in order navigate into the elements of the chart.

3. Generate reports from Cognos BI based on the elements selected from the chart.

5.2.3 Prototype Mashup Implementation:

The organization hierarchy mashup creation process consists of the following steps:

120 | P a g e

5.2.3.1 Cognos Report Access through CMS and Direct URL:

Two reports are utilized for creating the organizational hierarchy mashup. One is report which

contains the hierarchical information of the organization and the other one consists of the related

pay-scale information. The hierarchy report is to generate the chart in Mashup Centre and is

accessed through CMS using Restful Web Services. Figure 21 shows the report. The data of this

Figure 21: Organization Hierarchy Report

report is accessed via web services in the Mashup Center in order to be modeled. For this

purpose we are using the Report ID, which is a mechanism to integrate the report to other

external applications. Using this Report ID we can construct a URL which will access the data in

a Layout Data XML format (Sleigh & Johari, 2010). Accessing via the LDX format allows us to

model the data in the mashup center in order to a transform the structure so that it can be used to

generate a hierarchical chart. By using the CMS we can construct the URL using the following

parameters:

121 | P a g e

Resource type: reportData

Source type: report

Resource_id: report store id: i6BDE06D78C8A422CACA74771CEEE0553

The constructed URL:

http://localhost/ibmcognos/cgi-

bin/cognosisapi.dll/rds/reportData/report/i6BDE06D78C8A422CACA74771CEEE0553

Figure 22: Accessing the Report data through Web Service

As for the report containing the information position pay-scale, the process is similar to the

report accessing process mentioned in the first prototype. The report will be URL access directly

from the mashup server. Figure 23 shows the generated report. It should be noted here, that

because of inconsistent data in the database, the paid hourly column value is 0.

Figure 23: Employee Position and Pay-Scale Information Report

122 | P a g e

The search path for accessing the report can be found from the report settings. As before the

special characters have to be trimmed out. The url for directly accessing the report is:

http://localhost:80/ibmcognos/cgi-

bin/cognosisapi.dll?b_action=cognosViewer&ui.action=run&ui.object=/content/folder[@name

='Samples']/folder[@name='Models']/folder[@name='test reports']/report[@name='Prompt

report for poistion info']&run.prompt=false&p_pos=Human Resources Clerk

5.2.3.2 Data Modeling and Transformation

To create an organizational chart through the ‘Nested Data Viewer’ widget, we have to model

the data and transform it into a structure that can be read by the widget. For that purpose we will

first create a data mashup in the data mashup builder module of IBM mashup center. Once we

are in the create mode in the data mashup editor, we will require three operators: source,

transform, and publish. Figure 24 shows constructed data level mashup which will used in the

mashup presentation.

Figure 24: Organization Hierarchical Data Level Mashup

In the source operator we have defined the source of the data which will be modeled. Here we

inputted the web service URL of the organization hierarchy report. Figure 25 shows the

123 | P a g e

configuration of the source operator. Once the LDX document has been fetched it is ready to be

modeled which is done by the transform operator. In the transform operator edit mode we can

Figure 25: Source Operator Configuration

see the LDX document. This LDX document will act as the input as we see in figure 25. As for

the output, we have created a new XML tree. The LDX document accessed via CMS web service

has a lot of overhead in its DTD as well as in other elements which embedded in the Cognos

report. But these components are not required for our purpose. In the output structure we can

only choose the values that we need from the LDX document. Since the organization hierarchy

has four levels (figure 21), we have to create four elements as well in the output structure. Once

the placeholders are created, we manually input the first value as “CEO”. For inserting the rest

of values we can drag and drop the values from the input structure in those placeholders or under

each ‘values’ in the output structure. Figure 26 elaborates the process of the output structure

creation. In transferring the values from the input to the output structure we have to create only

one instance as the transform operator will automatically generate the other similar elements

from the iterating values of the input document. Our required values, which we have dragged

and dropped in the output structure, reside in the following locations in the input tree :

124 | P a g e

Figure 26: Data Modeling and Transformation

Level 2: document>pages>page>body>item>row>name>item>txt>fmtval

Level2: document>pages>page>body>item>row>nestedDimension>

name>item>txt>fmtval

Level3: document>pages>page>body>item>row>nestedDimension>nestedDimension>

name>item>txt>fmtval

The last step in the data mashup creation process is publishing it through the publish operator as

an XML document. Once published the XML document looks like as:

125 | P a g e

Figure 27: Organizational Hierarchy Data Mashup in XML format

5.2.3.3 Mashup Presentation Composition:

In order to compose the organization hierarchical mashup we require three widgets: Nested Data

Viewer, URL customizer, and Webiste displayer. In the nested data viewer widget we have used

the created data level mashup described in the previous section as source. Since the data is

already modeled in accordance to the nested data viewer widget requirements, no configuration

is required here. As for the showing the employee position pay-scale information, the

configuration of the URL customizer widget is showed in figure 28

Figure 28: URL Customizer Widget Configuration

126 | P a g e

The URL to be load here is :

http://localhost:80/ibmcognos/cgi-

bin/cognosisapi.dll?b_action=cognosViewer&ui.action=run&ui.object=/content/folder[@name

='Samples']/folder[@name='Models']/folder[@name='test reports']/report[@name='Prompt

report for poistion info']&run.prompt=false&p_pos=Human Resources Clerk

Once the URL is loaded it can be wired to website displayer where it sends the URL as URL.

Figure 29 shows the completed organizational mashup where the users can drill down into a

specific position or dept. Once an element has been selected the associated pay-scale information

is fetched as a Cognos report from the BI application.

Figure 29: Organization Hierarchical Mashup Presentation

127 | P a g e

5.3 Evaluation of the Prototype Mashup Applications

In order to evaluate the mashups we have created, we demonstrated our mashups to the Cognos

SDK team, specialized in delivering mashup products to their BI clients. This team consisted of

13 members, specializing in different areas of software development. We asked them to rate our

mashups based on four criteria which had further sub-criteria, which were discussed in our

literature review chapter. We also compared them against the current available solutions or the

solutions that are being built. Below is the detailed description based on their feedback:

i. Usefulness:

When it comes to satisfying the needs of both business users and IT professionals, the feedback

that we have gathered indicated that mashups will be useful for both user groups. In terms of the

mashup design features, our mashups support data mediation. In the airplane mashup we have

used data conversion and for the organizational hierarchy mashup both data conversion and

transformation have been used. In addition to that both process creation and collaboration

activities are supported. In terms of mashup techniques used, we have utilized wiring as well as

loading the data from spreadsheet. While enquiring about the usage of programming by

demonstration technique and webpage customization capability, the Cognos SDK software

developers supported the validity of these techniques in our mashups. But as for the supporting

mashup creation at code level our mashups were not deemed to be script/language based.

In terms of the technical features the mashups supported, both SOAP and REST protocols can be

used. The data retrieval strategies include web services or direct url access. Both RSS and

ATOM syndication formats can be used to access an external feed. At the data mashup

128 | P a g e

construction level we also demonstrated the involvement of light weight process modeling

features.

ii. Ease-of-Use:

While ensuring whether the mashup creation process can be carried out by a business user, we

asked the experts whether the mashup creation process conformed to the criteria in order to make

it easily usable. The interfaces of both the mashups are descriptive enough to comprehend

minimum technical requirement and features of integrated APIs. The team was also satisfied

with the tutorial element embedded in the mashup tools we used and agreed that the error finding

components can provide a satisfactory level of assistance during incompatibility. In addition to

that, the availability of tools that specifies the user requirements without the usage of technical

jargon and the ability to rate those tools would make the learning curve relatively easy. However

there were no mechanism available to support user goal achievement or task completion

iii. Intuitiveness and Cost Reduction:

The usage of pre-built widgets has made the process of creating mashup presentation very

intuitive. We have also shown the ability to utilize social gadgets i.e. Google gadgets, which

enable users to use popular consumer internet space tools into their enterprise level applications.

As for reducing the situational application development costs, the Cognos SDK agreed that the

usage of mashup tools would decrease the costs for their clients. We have further elaborated the

cost reductions in the next section where we have compared our mashups against that of the

Cognos SDK team’s

129 | P a g e

Comparison with current available solutions:

Based on the feedback from the Cognos SDK team and analysis of their solutions we have

compared our created mashups with theirs. Table 12 summarized the comparison points.

 Prototype 1: Airplane Seat Mashup Prototype 2: Organization

Hierarchical Mashup

Evaluation

Criteria

Solution

Developed by the

Service Provider

Mashup

Application

Solution

Developed by the

Service Provider

Mashup

Application

Meeting the

Requirements

Meets the client

requirements

Meets the client

requirements

Development in

Process

Meets the client

requirements

Application

Feature

Richness

Feature Rich Not feature Rich Development in

Process

Not feature Rich

BI Resource

Integration

Yes Yes Yes Yes

Application

Development

Time

1 Week 1 Hour 2 Weeks 1 Day

Effort and

Skills first

application

Programming and

Database

administration

skills required

Business Users

(without

programming

and Database

administration

skills) can build

the application

Programming and

Database

administration

skills required

Business Users

(without

programming and

Database

administration

skills) can build

the application

Evaluation

Criteria

Solution

Developed by the

Service Provider

Mashup

Application

Solution

Developed by the

Service Provider

Mashup

Application

Application

Development

Cost

Cognos BI

License cost +

Customized

Solution

Development +

Application

Support Cost

Cognos BI

License cost +

IBM Mashup

Center License

Cost

Cognos BI

License cost +

Customized

Solution

Development +

Application

Support Cost

Cognos BI

License cost +

IBM Mashup

Center License

Cost

Modification

through Self-

Service

No Yes No Yes

Table 11:Comparison of mashup prototype implementations with avaiable IT developed
solutions

130 | P a g e

As we can see, the mashup prototypes meet the requirements that the clients put forward to the

service provider. To be relevant in a BI context, they successfully integrate the BI contents. The

significant advantage of these mashup prototypes over IT built solutions is the required

development time. In addition to that, programming and database administration skills are not

required for developing these situational applications and once they have been developed users

can also modify them. Table 1 summarized the comparison between solutions developed or

being developed with our mashup prototype applications. One other advantage is the cost factor.

Traditionally client organizations purchase their BI systems from a specific vendor. On top of

that, for their situational demands they have to purchase the services of a vendor regardless of

having a dedicated IT team, the reason being the need to access and understand the APIs of the

BI system which has to be done through the vendor. In addition to that, the long term support for

these applications would cost extra. On the other hand, for using a mashup plartform, the clients

have to purchase the product license only in addition to their current BI costs. This significantly

reduces the cost of developing situational BI services for the clients.

131 | P a g e

Chapter 6 Conclusions

6.1 Summary of the Research

Today’s data driven organizations, even though comprehending the need for better utilization of

their data and BI resources, are faced with tight IT budgets. Mashup driven self-service BI

liberates the under-resourced IT department of organizations from having to respond to an

unrelenting backlog of user-requests. Through an enterprise BI mashup platform users can take

charge of solving those situational problems and needs themselves without having to change the

complex data models and structures. Regardless of these obvious benefits there has not been any

significant development undertaken to provide organizations with the right mashup toolkits

which would aid in removing the bottlenecks in providing situational BI services. The current

literature has not addressed the development of BI mashup tools in much detail. In addition to

that there is a lack of formal knowledge base in the domain of Enterprise BI Mashups.

In this research, we attempt to provide a basic utility framework as the preliminary steps in

defining lexical knowledge in the domain of Enterprise Business Intelligence Mashups. In

constructing the utility framework we first formulated a taxonomy model of BI Mashups by

identifying key business trends and common end-user requirements in situational BI use-cases.

Utilizing this taxonomy framework we formalized the components of BI mashups by

constructing a utility framework for enterprise BI mashup toolkits. In order to prove the efficacy

of a mashup platform, we also implemented the traditionally built mashups with through

enterprise level mashup tools available. The validation of our created BI mashups was done

132 | P a g e

through demonstrating them to the Cognos SDK team IBM who built mashups for their BI

clients through programming initiatives.

6.2 Contributions of the Thesis:

In our effort to create a utility framework and advance the understanding of Enterprise BI

Mashups domain, the resulted benefits of our research work are as follows:

Pattern Identification of Situational BI requests of Clients: Through reviewing relevant

literature and analyzing various projects undertaken by the IBM Cognos SDK team, we were

able to identify the generic trend of client requests in terms of their situational BI need. This

process helped us to identify the business drivers of BI mashups. The assembled patterns acted as

the concepts and constructs for the creation of a taxonomy framework of enterprise BI mashups

Taxonomy Framework: Our taxonomy model aims to fill the gap in current literature in the

domain of BI mashups by providing a basic framework for understanding the enablers, drivers,

user characteristics & requirements as well as situational data requirements of organizations. The

formulated taxonomy framework provides a classification of targeted BI mashup users, the

development methods, functional range and associated data needs. The framework also identifies

the enablers and drivers of Enterprise BI Mashups.

133 | P a g e

Utility framework: Utilizing the taxonomy framework, our constructed utility framework offers

Enterprise BI Mashup application development guidelines for vendors. This framework provides

a detailed description for composition of Enterprise BI Mashup tools in terms of underlying

infrastructure, user types & tasks, and features & functionalities required to perform those tasks.

The goal of the framework is to the application development process of BI mashup toolkits

which will empower different types of users with self-capabilities, thus increasing the adoption

and usage of BI applications as well removing the bottlenecks associated with delivering

situational BI services to the end-users.

While implementing the situational BI use cases with available mashup tools some other benefits

of our research works are:

Integration of BI and Mashup products: We have integrated the Cognos BI application with

IBM Mashup Center, which are both products of the partner organization. This integration of the

two different products which are aimed towards providing different services to the clients will

enable process efficiency across the organization and improved visibility of offered services in a

large organization like IBM. The integration also offers potential IT time and cost savings. The

biggest benefit this integration process has to offer is the enablement of user driven innovation

by empowering users with self service capabilities when it comes to their situational BI needs.

The integration was done using the Cognos Mashup Service (CMS).

Product enhancement and novel use cases: Through the implementation of situational

applications in a mashup platform utilizing the BI resources, we have introduced new use cases

134 | P a g e

of BI mashup development tools such as Cognos Mashup Service (CMS) and Cognos Software

Development Kit (SDK). More specifically we have utilized the CMS of IBM Cognos to enable

the usage of BI data in a mashup platform for self-service application development. In terms of

CMS, the new use cases would be beneficial for attracting more clients and accelerate the growth

of the product. We have also demonstrated rapid prototype creation of situational BI applications

for purposes like client demonstration. Through a mashup platform, as the one we have used in

our research, business users are able to apply their functional expertise to tailor processes and

applications in the realm of situational BI in a way that improves performance.

6.3 Limitations

In terms of the limitation of our work, the lack of available mashup tools at enterprise level has

restricted the implementation of use cases to a limited amount. For the implementation purpose

we have used only one mashup tool – IBM Mashup Centre. We had limited access to Jackbe

Presto because of licensing issues. For our implementation, we chose the use cases which where

the most popular requests of the clients. There is a need to implement more use cases which are

varied in nature in order to validate a mashup platform’s efficacy for delivering situational BI

services. In addition to that, we need to implement the use cases with more mashup tools. This is

necessary in order to find out what the current products in the market offer in terms of meeting

the data needs of clients. As for the BI application used in this research, we have opted for

Cognos which is a very popular application among the BI clients. But we have to increase the

scope to other leading vendors as well. Moreover, open source BI tools are also making their

way among the BI application user base. This research doesn’t take into account these other BI

applications.

135 | P a g e

Another limitation of this research is related to testing. The lack of a prototype toolkit didn’t

allow us to test our frameworks. As these frameworks were intended to create a preliminary

knowledge base in the domain of Enterprise BI Mashups, which the current literature lacks,

testing the frameworks extensively was out of the scope of this research at its current stage.

Having said that, not thoroughly testing both the frameworks and the prototype implementations

is a major limitation of this research. In terms of test categories, we only performed acceptance

tests for our prototypes. These prototypes were created as a proof-of-concept and aren’t ready to

be used at a production level. The underlying infrastructure of our setup was a very simple one to

support the initial proof-of-concept implementations and does not focus on scalability of the

applications. As we mentioned previously, because of the unavailability of enterprise level

mashup tools, we couldn’t use any high performance mashup platform. The IBM Mashup

Centre was intended for experimental application development by less tech savvy users, thus

making it untested for application development in a BI context. Typically any medium or large

organization using BI tools has large number users. So the performance and the reliability of a BI

Mashup tool are of high importance.

As for the validation and testing of our frameworks, we depended on the feedback of Cognos

SDK team. The taxonomy framework lacks formal ontology validation. Even though our

constructed taxonomy framework was tested and improved according to the feedback of the

software development experts in the mashup domain, formal ontology validation is necessary.

Moving on to the utility framework, the absence of a prototype toolkit didn’t allow us to test the

framework in an end-user environment from a technical setup pint of view. Our frameworks

also do not emphasis on the governance structure of mashup tools which is very important in an

136 | P a g e

enterprise environment. Our focus was creating a preliminary knowledge base which would

validate the efficacy of Enterprise BI Mashup tools.

6.4 Future Work and Research Directions

As part of our future work, we plan to guide our research in a manner which will address the

aforementioned limitations. This will include developing a prototype toolkit and testing it with a

client setup. Thus we can test our utility framework. For the taxonomy we plan to undertake both

accuracy and completeness validation of the framework. We also plan to expand our currently

used products by reaching out to other vendors in terms of BI and mashup tools. This will allow

us to apply our frameworks in a different setting. In addition to different technical settings and

products, we also plan to focus on specific clients types in terms of their functionalities and

apply our frameworks on them. Our future plans also include publishing the full results in a

relevant journal. We have already published the first part of our work, the taxonomy framework,

in the 2
nd

 International Conference on Informatics and Application in Lodz – Poland.

Other research that can be fruitful in the domain of Enterprise BI Mashups is studying the self-

service application development with the advancement of web technologies. Self-service being

one of major offerings of mashup tools will be continue to evolve with the advancement of

technology as well as end-user needs. Studying the evolution of self-service application

development would allow us to improve the efficacy of mashup platforms. In terms of Business

Intelligence, the proliferation of data within organizations as well as in the internet means BI

tools have to evolve rapidly to cater to the enterprise client needs. This will make analytic

137 | P a g e

service delivery more complex and make BI implementations more prone to failure. Studying the

usage patterns of current and future BI applications would help us in understanding the user

expectations from these tools and thus come up with better solution delivery mechanism through

mashup platforms.

138 | P a g e

References

Alnoukari, M., Alhawasli, H. A., Alnafea, H. A., & Zamreek, A. J. (2012). Business Intelligence:

Body of Knowledge, 1–13.

Anna, O. (2011). Tutorial: Introduction to creating mashups using IBM Mashup Center 3.0.

Retrieved from http://www-

10.lotus.com/ldd/mashupswiki.nsf/dx/Tutorial_Introduction_to_creating_mashups_using_I

BM_Mashup_Center_3.0

Berners-lee, T. I. M., Hendler, J., & Lassila, O. R. A. (2002). THE WEB. Scientific American,

(April).

Bitzer, S., & Schumann, M. (2009). Mashups : An Approach to Overcoming the Business / IT

Gap in Service-Oriented Architectures, 284–295.

Bozzon, A., Brambilla, M., Facca, F. M., & Carughu, G. T. (2009). A Conceptual Modeling

Approach to Business Service Mashup Development. 2009 IEEE International Conference

on Web Services, 751–758. doi:10.1109/ICWS.2009.24

Browne, D., Desmeijter, B., Dumont, R. F., Kamal, A., Leahy, J., Masson, S., … Keen, M.

(2010). IBM Cognos Business Intelligence V10.1 Handbook. Retrieved from

https://www.redbooks.ibm.com/redbooks/pdfs/sg247912.pdf

Cappiello, C., Daniel, F., Matera, M., Picozzi, M., Weiss, M., & Milano, P. (n.d.). Enabling End

User Development through Mashups : Requirements , Abstractions and Innovation Toolkits,

9–24.

Carney, M. (2012). Traditional Business Intelligence Training Models Must Adapt to Support

End-User Adoption. BeyeNETWORK,. Retrieved from http://www.b-eye-

network.com/view/16151

Carrier, N., Deutsch, T., Gruber, C., Heid, M., & Jarrett, L. L. (2008). The business case for

enterprise, (August).

Curbera, F., Duftler, M., Khalaf, R., & Nagy, W. (2002). Unraveling the Communication :

SOAP, (April).

Daniel, F., & Matera, M. (n.d.). Turning Web Applications into Mashup Components : Issues ,

Models , and Solutions.

De Hoog, G. S. (1981). Methodology of Taxonomy. International Association for Plant

Taxonomy (IAPT), 30(4), 779–783.

139 | P a g e

DellaPorta, L. (2012). Business Intelligence vs. Business Analytics. RJMetrics Blog. Retrieved

March 07, 2013, from http://blog.rjmetrics.com/business-intelligence-vs-business-analytics/

Eckerson, W., & Shermann, R. (2008). Strategies for managing spreadmarts. TDWI Research

Report, 13.

Elliott, T. (2011). Business Analytics vs Business Intelligence? Business Analytics. Retrieved

from http://timoelliott.com/blog/2011/03/business-analytics-vs-business-intelligence.html

Evelson, B. (2010). Agile BI Out Of The Box. Retrieved from

https://www.wherescape.com/getattachment/resource-library/white-papers/agile-bi-out-of-

the-box/Agile-BI-out-of-the-box.pdf/

Evelson, B. (2011). Trends 2011 And Beyond : Business Intelligence. Retrieved from

http://www.mxisoft.com/Portals/53068/docs/Forrester

trends_2011_and_beyond_business_intelligence%5B1%5D.pdf

Gartner. (2009). Gartner Reveals Five Business Intelligence Predictions for 2009 and Beyond.

Gartner Business Intelligence Summit. Retrieved from

http://www.gartner.com/newsroom/id/856714

Griffiths, G. C. D. (1973). Some fundamental problems in biological classification. Syst. Zool.,

22, 338–343.

Grimes, S. (2010). Nimble Intelligence : Enterprise BI Mashup Best Practices BI mashups unite

diverse data and (pp. 1–3). Retrieved from

http://mdc.jackbe.com/downloads/nimblebi_grimes.pdf

Guarino, N. (1998). Formal Ontology and Information Systems, (June), 3–15.

Hassanzadeh, O., Duan, S., Fokoue, A., Kementsietsidis, A., Srinivas, K., & Ward, M. J. (2011).

Helix : Online Enterprise Data Analytics. Information Storage and Retrieval, 225–228.

Hildebrand, C., Shankland, P., & Baya, V. (2012). Consumerization of APIs: Scaling

integrations. http://www.pwc.com/. Retrieved from http://www.pwc.com/us/en/technology-

forecast/2012/issue2/features/feature-consumerization-apis.jhtml

Hinchcliffe, D. (2007). The 10 top challenges facing enterprise mashups. http://www.zdnet.com/.

Retrieved from http://www.zdnet.com/blog/hinchcliffe/the-10-top-challenges-facing-

enterprise-mashups/141

Hirschheim, R., Welke, R., & Schwarz, A. (2010). Service-Oriented Architecture:

Myths,Realities, and a Maturity Model. MIS Quarterly Executive, 9(1).

140 | P a g e

Hoyer, V, Stanoevska-Slabeva, K., Kramer, S., & Giessmann, a. (2011). What Are the Business

Benefits of Enterprise Mashups? 2011 44th Hawaii International Conference on System

Sciences, 1–10. doi:10.1109/HICSS.2011.490

Hoyer, Volker, & Fischer, M. (2008). Market Overview of Enterprise Mashup Tools, 708–721.

Hoyer, Volker, Stanoesvka-Slabeva, K., Janner, T., & Schroth, C. (2008). Enterprise Mashups:

Design Principles towards the Long Tail of User Needs. 2008 IEEE International

Conference on Services Computing, 601–602. doi:10.1109/SCC.2008.88

Imhoff, C., & White, C. (2011). SELF-SERVICE Empowering Users to Generate Insights.

Işık, Ö., Jones, M. C., & Sidorova, A. (2013). Business intelligence success: The roles of BI

capabilities and decision environments. Information & Management, 50(1), 13–23.

doi:10.1016/j.im.2012.12.001

Jackbe. (2012). Presto Library. Retrieved from

http://mdc.jackbe.com/prestodocs/v3.6/index.html

Kasman, A., & Roder, K. (2011a). IBM Mashup Center Need-to-know tips and tricks , Part 1 :

Work with feeds and build data mashups (pp. 1–29).

Kasman, A., & Roder, K. (2011b). IBM Mashup Center Need-to-know tips and tricks , Part 2 :

Building mashups and leveraging widgets.

Kobielus, J. (2009). Mighty mashups : Do-it-yourself business intelligence for the new economy.

Retrieved from http://www.corda.com/pdfs/mighty-mashups-article.pdf

Liu, Y., Liang, X., Xu, L., Staples, M., & Zhu, L. (2009). Using architecture integration patterns

to compose enterprise mashups. 2009 Joint Working IEEE/IFIP Conference on Software

Architecture & European Conference on Software Architecture, 111–120.

doi:10.1109/WICSA.2009.5290797

Liu, Y., Liang, X., Xu, L., Staples, M., & Zhu, L. (2011). Composing enterprise mashup

components and services using architecture integration patterns. Journal of Systems and

Software, 84(9), 1436–1446. doi:10.1016/j.jss.2011.01.030

Löser, A., Hueske, F., & Markl, V. (2009). Situational Business Intelligence. Lecture Notes in

Business Information Processing, 27, 1–11.

Luo, X., Xu, H., Song, M., & Song, J. (2008). Research on SOA-based platform to enable mobile

mashups. 2008 11th IEEE International Conference on Communication Technology, 607–

610. doi:10.1109/ICCT.2008.4716146

Makki, S. K., & Sangtani, J. (2008). Data Mashups & Their Applications in Enterprises. In 2008

Third International Conference on Internet and Web Applications and Services (pp. 445–

141 | P a g e

450). IEEE. Retrieved from

http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4545653

March, B. S. T., & Storey, V. C. (2008). DESIGN SCIENCE IN THE INFORMATION

SYSTEMS DISCIPLINE : AN INTRODUCTION TO THE SPECIAL ISSUE ON DESIGN

SCIENCE RESEARCH, 32(4), 725–730.

Mcafee, A. P. (2006). Enterprise 2 . 0 : The Dawn of Emergent Collaboration, 47(3).

Merrill, D. (2009). Mashups : The new breed of Web app An introduction to mashups Mashup

genres, 1–13.

Minhas, S. S., Sampaio, P., & Mehandjiev, N. (2012). A Framework for the Evaluation of

Mashup Tools. 2012 IEEE Ninth International Conference on Services Computing, 431–

438. doi:10.1109/SCC.2012.19

Mohammadi, S., Khalili, A., & Ashoori, S. (2009). Using an Enterprise Mashup Infrastructure

for Just-in-Time Management of Situational Projects. 2009 IEEE International Conference

on e-Business Engineering, 3–10. doi:10.1109/ICEBE.2009.11

Negash, S. (2004). Business Intelligence, 13, 177–195.

Nelson, G. S., Edia, M., & Ntertainment, E. (2010). Business Intelligence 2 . 0 : Are we there

yet ? SAS Global Forum 2010 Business Intelligence / Analytics, 1–10.

Nestler, T. (2008). Towards a mashup-driven end-user programming of SOA-based applications.

Proceedings of the 10th International Conference on Information Integration and Web-

based Applications & Services - iiWAS ’08, 551. doi:10.1145/1497308.1497408

O’Reilly, T. (2006). Web 2.0 Compact Definition: Trying Again. http://radar.oreilly.com/.

Retrieved from http://radar.oreilly.com/2006/12/web-20-compact-definition-tryi.html

Ogrinz, M. (2009). Mashup Patterns - Design and Examples for the Modern Enterprise (1st ed.).

Crawfordsville, Indiana: Pearson Education, Inc.

Oliver, D., Livermore, C. R., & Farag, N. A. (2009). Self-Service in the Internet Age. In F.

Sudweeks, C. Romm Livermore, & D. Oliver (Eds.), Self-service in the Internet age:

expectations and experiences (pp. 257–274). London: Springer London. doi:10.1007/978-1-

84800-207-4

Oracle. (2013). Oracle Utilities Application Framework Software Development Kit Developer ’ s

Guide.

Pahlke, I., Beck, R., & Wolf, M. (2010). Enterprise Mashup Systems as Platform for Situational

Applications. Business & Information Systems Engineering, 2(5), 305–315.

doi:10.1007/s12599-010-0121-9

142 | P a g e

Popescu, C. (2011). IBM Cognos Proven Practices : Hands-on IBM Cognos Software

Development Kit Programming (pp. 1–14). Retrieved from

https://www.ibm.com/developerworks/data/library/cognos/development/how_to/page565-

pdf.pdf

Popovic, A., Coelho, P. ., & Jaklič, J. (2009). The impact of business intelligence system

maturity on information quality. IR Information Research, 14(4). Retrieved from

http://informationr.net/ir/14-4/paper417.html

Ruhi, U., & Choi, D. (2013). Enterprise Mashups for Knowledge Management.

Scientifique, C. (2003). Using Users ’ Expectations to Adapt Business Intelligence.

Simmen, D. E., Altinel, M., Markl, V., Padmanabhan, S., Singh, A., & Jose, S. (2008). Damia :

Data Mashups for Intranet Applications, 1171–1182.

Singh, H. (2008a). IBM Mashup Center and the InfoSphere MashupHub , Part 1 : Get started

with InfoSphere MashupHub (pp. 1–20).

Singh, H. (2008b). IBM Mashup Center and the InfoSphere MashupHub , Part 2 : In-depth look

at Feed Mashup Editor within IBM Mashup Center ’ s InfoSphere MashupHub Feed

mashups, 1–34.

Sleigh, C., & Johari, I. (2010). Get started with the IBM Cognos Mashup Service (pp. 1–11).

Retrieved from https://www.ibm.com/developerworks/data/library/techarticle/dm-

1001cognosmashup/dm-1001cognosmashup-pdf.pdf

TechRepublic. (2003). Understanding information taxonomy helps build better apps. Retrieved

from http://www.techrepublic.com/article/understanding-information-taxonomy-helps-

build-better-apps/

Thiele, M., & Lehner, W. (2012). Real-Time BI and Situational Analysis. Business Science

Reference, 285–287. doi:10.4018/978-1-61350-038-5.ch013

Tun, T. T., Chapman, R., Haley, C., Laney, R., Hall, W., & Keynes, M. (n.d.). A framework for

developing feature-rich software systems ∗.

Vaishnavi, V., & Kuechler, B. (2004). Design Science Research in Information Systems.

Association for Information Systems. Retrieved from http://desrist.org/design-research-in-

information-systems/

Vrieze, P. De, Xu, L., Bouguettaya, A., Yang, J., & Chen, J. (2009). Process-Oriented Enterprise

Mashups. 2009 Workshops at the Grid and Pervasive Computing Conference, 64–71.

doi:10.1109/GPC.2009.20

143 | P a g e

Watt, S. (2007). Mashups -- The evolution of the SOA, Part 2: Situational applications and the

mashup ecosystem. IBM Developer Works. Retrieved from

http://www.ibm.com/developerworks/webservices/library/ws-soa-mashups2/

Wu, L., Barash, G., & Bartolini, C. (2007). A Service-oriented Architecture for Business

Intelligence for assessing IT service management per-.

Xie, L., Xu, L., & de Vrieze, P. (2010). Process modelling in process-oriented enterprise

mashups. 2010 2nd IEEE International Conference on Information Management and

Engineering, 650–654. doi:10.1109/ICIME.2010.5477893

Yakovlev, I. V. (2007). Web 2 . 0 : Is It Evolutionary or Revolutionary ?, (December), 43–45.

Yee, R. (2008). Pro Web 2.0 Mashups - Rmixing Data and Web Services.

Young, G. O., Gualtieri, M., Daley, D., Shey, H., & Ashour, M. (2008). The Mashup

Opportunity – A Social Computing Report.

Yu, J., Benatallah, B., Casati, F., & Daniel, F. (2008). Understanding Mashup Development.

IEEE Internet Computing, 12(5), 44–52. doi:10.1109/MIC.2008.114

Yu, S., & Woodard, C. J. (2009). Innovation in the Programmable Web : Characterizing the

Mashup Ecosystem, 136–147.

Yu, T., Chen, Q., Li, Q., Liu, R., Wang, W., & Liu, W. (2009). A System for Web-Based

Interactive Real-Time Data Visualization and Analysis. In 2009 IEEE Conference on

Commerce and Enterprise Computing (pp. 453–459). IEEE. Retrieved from

http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5210759

Zhao, Z., Bhattarai, S., Liu, J., & Crespi, N. (2011). Mashup Services to Daily Activities – End-

user Perspective in Designing a Consumer Mashups, 5–7.

Zou, J., & Pavlovski, C. J. (2007). Towards accountable enterprise mashup services. IEEE

International Conference on e-Business Engineering (ICEBE’07), 205–212.

doi:10.1109/ICEBE.2007.12

Zur Muehlen, M., Nickerson, J. V., & Swenson, K. D. (2005). Developing web services

choreography standards—the case of REST vs. SOAP. Decision Support Systems, 40(1), 9–

29. doi:10.1016/j.dss.2004.04.008

