ERRATUM

to Akinori HIRASHIMA, Canping PAN, Yumiko KATAFUCHI, Eiji TANIGUCHI and Morifusa ETO: Synthesis and Octopaminergic-Agonist Activity of 2-(Arylimino)oxazolidines and 2-(Substituted Benzylamino)-2-oxazolines, *J. Pesticide Sci.* 21, 419-424 (1996)

In Table 1 "Structure, analytical data and octopaminergic-agonist activity of AIOs on adenylate cyclase from homogenates of American cockroach nerve cords," structure of AIOs should be inserted. The corrected Table 1 is in the following;

Table 1 Structure, analytical data and octopaminergic-agonist activity of AIOs on adenylate cyclase from homogenates of American cockroach nerve cords.

Compound	ĸ	Molecular formula	mp (°C)	Yield ^{a)} _(%)	Found (calcd.) %			Adenylate-cyclase activity ^{b)}
no.					C	Н	N	(pmol cAMP/min/mg of protein)
1	2-Et	$C_{11}H_{14}N_2O$	60-61	45	69.21 (69.45)	7.47 (7.42)	14.49 (14.72)	$84.1 \pm 0.9 (-5.0 \pm 0.2)$
2	3-C1	$C_9H_9N_2OC1$	115-116	35	54.78 (54.97)	4.50 (4.61)	14.00 (14.25)	$111.3 \pm 7.8 \ (\ +0.2 \pm 1.5)$
3	4-CF ₃	$C_{10}H_9N_2OF_3$	133-134	43	51.73 (52.18)	4.04 (3.94)	12.19 (12.17)	$144.8 \pm 3.5 \ (+6.6 \pm 0.7)^{c}$
4	4-Et	$C_{11}H_{14}N_2O$	120-121	57	69.24 (69.45)	7.40 (7.42)	14.66 (14.72)	$170.1 \pm 21.2 \ (+11.5 \pm 4.1)^{c}$
5	2, 3-Cl ₂	$C_9H_8N_2OCl_2$	132-133	43	46.77 (46.78)	3.48 (3.49)	12.10 (12.12)	$120.9 \pm 3.7 (+2.0 \pm 0.7)$
6	2-Cl, 4-Br	C ₉ H ₈ N ₂ OBrCl	135-136	47	38.69 (39.23)	2.90 (2.93)	9.99 (10.17)	$66.4\pm0.2 (-8.4\pm0)$
7	2-Me, 4-Br	$C_{10}H_{11}N_2OBr$	110-111	37	46.83 (47.08)	4.46 (4.35)	11.08 (11.00)	$213.8 \pm 9.7 \ (\pm 19.9 \pm 1.9)^{c}$
8	2-Me, 4-Cl	$C_{10}H_{11}N_2OCl$	102-103	67	56.48 (57.02)	5.22 (5.26)	13.10 (13.30)	$203.5 \pm 14.5 \ (+17.9 \pm 2.8)^{c}$
9	$2, 5-F_2$	$C_9H_8N_2OF_2$	133-134	47	54.06 (54.55)	4.06 (4.07)	14.03 (14.14)	$70.3\pm0.2 (-7.7\pm0)$
10	$2, 5-(CF_3)_2$	$C_{11}H_8N_2OF_6$	170-171	46	44.37 (44.31)	2.72 (2.70)	9.45 (9.40)	$88.3\pm5.5 \ (\ -4.2\pm1.1)$
11	$2, 6-F_2$	$C_9H_8N_2OF_2$	147-148	37	54.45 (54.55)	4.10 (4.07)	14.12 (14.14)	$109.0 \pm 3.2 (-0.3 \pm 0.6)$
12	2, 6-Et ₂	$C_{13}H_{18}N_2O$	55-57	46	71.25 (71.53)	8.22 (8.31)	12.74 (12.83)	$364.7 \pm 11.3 (+49.0 \pm 2.2)^{c}$
13	2, 3, 4-Cl ₃	$C_9H_7N_2OCl_3$	163-165	61	40.42 (40.71)	2.62 (2.66)	10.47 (10.55)	$189.0 \pm 1.4 \ (+15.1 \pm 0.3)^{c}$
14	2, 4, 6-Br ₃	$C_9H_7N_2OBr_3$	172-173	43	27.03 (27.10)	1.86 (1.77)	6.91 (7.02)	$87.4\pm6.9 (-4.4\pm1.2)$
15	$2, 4, 6-F_3$	$C_9H_7N_2OF_3$	162-163	45	50.02 (50.01)	3.27 (3.26)	12.86 (13.00)	$123.2 \pm 4.6 \ (+2.5 \pm 0.9)$
16	$3, 4, 5-(MeO)_3$	$C_{12}H_{16}N_2O_4$	150-151	59	56.62 (57.13)	6.47 (6.39)	10.92 (11.10)	$61.2 \pm 4.8 (-9.4 \pm 0.9)$

a) Compounds were obtained from commercial isothiocyanates and yield was calculated as total yield from the isothiocyanates.

b) The adenylate-cyclase activity of *Periplaneta americana* was measured according to Nathanson's procedure, and the cAMP levels were measured by RIA. The stimulatory rate was calculated relative to OA (%) and is shown in parentheses. The data are the average \pm S.E. of duplicates of a test compound at $100 \, \mu$ M. The basal (control) and OA-stimulated adenylate-cyclase activity values were 110.3 ± 6.9 and 629.9 ± 4.6 pmol cAMP/min/mg of protein, respectively. The K_a values for 4, 7, 8 and 12 were 36, 0.19, 0.18 and 0.44 μ M, respectively.

c) Significant increase compared to the control at p=0.05 according to Duncan's multiple-range test.²⁰⁾