
The following paper was originally published in the
Proceedings of the Sixth USENIX UNIX Security Symposium

San Jose, California, July 1996.

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org

Public Key Distribution with Secure DNS

James M. Galvin
CommerceNet, Glenwood, MD

Public Key Distribution with Secure DNS
James M. Galvin <galvin@commerce.net>

CommerceNet, PO Box 220, Glenwood, MD 21738

Abstract
Recently, many protocols in the Internet are

proposing the use of public key cryptography in
support of integrity and authentication security services.
However, each of these protocols lacks a globally
available public key distribution and management
system. A secure version of the Domain Name System
(DNS) is being developed which, conveniently, provides
an infrastructure ideally suited for the distribution and
management of public keys. We propose how this
infrastructure of the secure DNS could be exploited by
today's users of the Internet to distribute and manage
their personal public keys.

1. Introduction
The use of public key cryptography in the

Internet was first proposed by Privacy Enhanced Mail
(PEM) [1,2,3,4]. PEM acknowledged the lack of a
global key distribution and management system and,
therefore, included an ad hoc mechanism for the
distribution of public keys (embedded in X.509
certificates). Ideally, the X.500 Directory would have
been become a technology of choice in the Internet,
which would have provided a solution to the key
(certificate) distribution and management problem.
However, global deployment of the X.500 Directory has
been problematic.

Recently, other protocols in the Internet are
proposing the use of public key cryptography in
support of integrity and authentication security services.
However, similar to PEM, each of these protocols is in
need of a globally available public key distribution and
management system. In order to avoid the proliferation
of ad hoc solutions it is essential that a single,
unifying, integrated solution be proposed and deployed.

Fortunately, a recent protocol includes the
specification of a global infrastructure that could be used
to distribute and manage public keys for other
protocols: the secure Domain Name System (DNS) [9].
As of this writing, it has been submitted for
consideration as a Proposed Internet Standard. It is an
enhancement of the DNS [5,6,7,8], an existing global
infrastructure.

A global infrastructure for public key
distribution and management must include a solution
for the following objectives.

global availability - This is self-evident since a global
infrastructure is not useful unless it is globally
available. However, a critical aspect of global
availability is scaleability; it must be possible to
globally deploy a solution.

globally unique and unambiguous names - Since users
prefer to be known by their name as opposed to
their public key (a value that appears to be little
more than a random sequence of bytes when
displayed), each name must be globally unique and
unambiguous. If the names are not unique and
unambiguous, then the two users who share the
same name would be indistinguishable by other
users.

real-time access to public keys - Although other access
methods are useful in some contexts, the real-time
availability of public keys ensures that the global
infrastructure is available to the broadest possible
community.

cryptographically verifiable bindings between names and
public keys - The introduction of names requires a
mechanism for binding the names to public keys.
The binding must be both unforgeable and
verifiable by any other user. If the binding was
forgeable it would be possible for an adversary to
masquerade as the owner of the public key;
similarly true for unverifiable bindings. In
addition, it must be possible to revoke the binding.

We believe these four objectives represent a
minimum set of criteria against which all global
infrastructures should be evaluated. The DNS meets 3
of the 4 objectives, all but cryptographically verifiable
bindings for its data. The proposed security
enhancements add the functions and services necessary
to meet the last objective. A global infrastructure based
on the secure DNS is proposed that provides a solution
to these objectives and can be used to distribute and
manage the public keys of Internet users.

The Domain Name System (DNS) as deployed
today is described first, followed by a description of the
proposed secure DNS. The proposal is described last.

2. Domain Name System
The Domain Name System (DNS) is a

distributed system for storing and retrieving resource
records, a basic component that associates domain
names with resources. Its most common use in the
Internet today is to associate host names and IP
addresses permitting the retrieval of one given
knowledge of the other. Other uses include mapping
old host names to new host names, identifying email
gateways for hosts not directly connected to the Internet,
and specifying other ancillary information necessary to
the correct operation of the DNS.

The fundamentals below emphasize elements
of the DNS that are relevant to the included proposal.
An example is provided that can be easily contrasted
with the example in the secure DNS section. This
section ends with a discussion of trust issues,
revocation, and how the DNS meets or does not meet
the criteria stated above.

2. 1 Fundamentals
Host names and IP addresses are two examples

of resources of the DNS. Resources are accessed by a
user or user application interacting with a resolver. The
interaction includes the indication of a domain name and
a resource associated with the name that is desired. The
resolver interacts with one or more servers to obtain the
requested resource. The interactions between a user and a
resolver are a local implementation issue and will not
be discussed further. The DNS specifications define the
protocol used between the remaining elements.

Resource records are comprised of a domain
name, a type field indicating what resource is contained
within it, the data that is the resource, and other
ancillary information. A domain name is comprised of
an ordered sequence of labels which when displayed are
usually separated by a dot (.). The type field implicitly
indicates the syntax of the resource record and permits
many kinds of resources to be associated with a domain
name. The data is interpreted according to the type
field. Some ancillary information will be considered
later.

Domain names are chosen from a tree-
structured name space. A domain name is either a leaf
or an interior node of the tree space. Each leaf node
holds a set of resource records. An interior node also
holds a set of resource records, some of which will
provide information about other nodes in the tree.
Servers hold information about the tree structure and
resource records.

The tree begins with a root designated by a
single dot (.). Labels are added to the left, separated by

dots, adding depth (a new level) to the tree and
indicating nodes further away from the root. All labels
at the same level in the same branch of the tree are
required to be unique. Each node in the tree is named by
concatenating the labels of the nodes in the tree along
the path to the root. This is depicted below.

.

com. net.

eit.com.

www.eit.com.

pop.eit.com.

commerce.net.

www.commerce.net.

pop.commerce.net.

tis.com.

www.tis.com.

pop.tis.com.

Some servers know that they hold all the
resource records for a part of the tree; these servers are
designated authoritative for that set of resource records.
Although any server may respond to any query it
receives for which it has the requested resource record,
only authoritative servers may return authoritative
resource records in response to a query.

Authoritative data is organized into zones.
Zones are managed by servers. A primary server is
always pre-configured with its zones. There is always
at least one and may be several secondary servers that
will automatically download the zone from the primary.

2. 2 Example
By way of example, suppose a user application

needs the IP address of the host “www.commerce.net”.
The user application would invoke a local resolver that
accepts responsibility for obtaining the IP address.

The local resolver would have been pre-
configured with the IP address of the root-server. It
would begin by asking the root-server for the IP address
of “www.commerce.net”. Since the root-server is
authoritative for the root, it knows that it does not have
an authoritative response for resources in the net-
domain. It returns the hint telling the local resolver to
ask net-server. It includes glue in the form of the IP
address of net-server so that it can be contacted directly.

The local resolver then asks net-server for the
IP address of “www.commerce.net”. Since net-server is
authoritative for net, it knows that it does not have an
authoritative response for resources in the commerce-
domain. It returns the hint telling the local resolver to

ask commerce-server. As was done by the root, it
includes glue in the form of the IP address of commerce-
server so that it can be contacted directly.

Finally, the local resolver asks commerce-
server for the IP address of “www.commerce.net”.
Since commerce-server is authoritative for the
commerce-domain it knows the IP address of domain
names in its domain. It returns the requested IP address.

The basic algorithm is depicted below.1

User www.commerce.net, get IP address Resolver

Resolver
www.commerce.net, IP address

ask net-server, net-server-addr
root-server

Resolver
www.commerce.net, IP address

ask comm-server, comm-server-addr
net-server

Resolver
www.commerce.net, IP address

IP address
commerce-server

User www.commerce.net, IP address Resolver

2. 3 Trust
The DNS functions today principally because

all parties to the system cooperate and agree to function
according to the specifications. In particular, this
means that all servers respond truthfully to all queries
and do not return any misleading information. As a
result the DNS can be exploited in several
ways [12,13], although the example above
demonstrates one of particular interest that, in fact, is
required by the DNS specification.

An authoritative server may delegate branches
of the part of the tree it owns, however it is not
authoritative for any of the data in the delegated branch.
In particular, a server will know it does not have the
answer to a query but it can only provide a hint as to
where the correct answer may be found. The hint it
provides is the name of one or more servers that are
more likely to have the authoritative data requested.
Interestingly, the complete set of authoritative servers
for the requested data is only available from the server
that has the authoritative data. Although the set in the
authoritative server and its parent server are supposed to
be equal, there is no enforcement mechanism and no
existing implementation checks or cares.

1 This example is for expository purposes only and does

not represent a recommended implementation strategy.

The issue is compounded by the fact that
knowing the name of a server more likely to have an
answer is insufficient information to proceed. A
resolver needs to know the address of the server in order
to contact. However, if the server is within the domain
to be contact, a typical configuration, the authoritative
address exists only within the server itself and thus is
unattainable. As a result, servers returning hints are
required to provide the glue necessary to facilitate
contact by the resolver, with which the servers must
have been pre-configured.

The issue is the elements of the DNS
architecture are not tightly-coupled. There is no explicit
or enforced relationship between a branch in the tree and
its parent.

2. 4 Revocation
Consistent with the DNS trust model, a

revocation mechanism exists that works if all
participants cooperate and function according to the
specifications. In principle, a resource record binds a
domain name to the data contained within it. This
binding is defined to be valid until the time-to-
live (TTL) field specified within the resource record
expires.

When an authoritative server returns data, it
specifies a TTL value in the resource record. The value
is the number of seconds the recipient of the data may
cache the data and use it to respond to future queries it
may receive. When the TTL expires the receiver is
required to destroy its local copy and re-query the
authoritative server for it.

An authoritative server does not expire the data
for which it is authoritative. When responding to
queries it always responds with the TTL set to its initial
value. To remove data from an authoritative server it
must be removed from its configuration files.

2. 5 Criteria Evaluation
The DNS as deployed in the Internet today

meets three of the previously stated criteria.

global availability - Sites on the Internet must have a
DNS server on the Internet binding their host's
names to their IP addresses in order to effectively
use the services available to them. The DNS is an
infrastructure protocol that most, if not all, sites
connected to the Internet support. As a result, the
DNS is both globally available and scaleable.

globally unique and unambiguous names - By
definition, the DNS defines tree structured name
spaces, each with a unique root, therefore each
guaranteeing that a name within it is globally

unique and unambiguous. If DNS names can be
mapped onto the names users prefer to associate
with their public keys, the requirement for globally
unique and unambiguous names would be met.

real-time access to public keys - The DNS provides real-
time access to the resources it manages for the IP-
connected Internet. Although the DNS is not
currently used to distribute and manage public keys,
it is independent of the resources that it manages.
Therefore, by defining a resource record for storing
public keys, it could be used for distributing and
managing public keys.

However, the binding of names and objects in
the DNS is based on cooperating peers. All peers are
assumed to be honest and to respond to all queries with
the correct answer. Thus, although the DNS is ideally
suited to the needs of a public key distribution and
management infrastructure, it does not meet the
requirement of providing a cryptographically verifiable
binding between names and objects.

3. Secure Domain Name System
Security enhancements for the DNS [9] have

been drafted and submitted for consideration as a
Proposed Standard in the Internet. The enhancements
include the security services of data integrity and data
origin authentication, noting that a digital signature
mechanism could support both services. The objective
of the enhancements is to cryptographically bind
domain names to their resources, i.e., digitally sign the
resource records managed by the DNS. Of course,
backward compatibility with the existing, deployed
DNS is supported.

The fundamentals below emphasize elements
of the secure DNS specification that are relevant to the
included proposal and assume familiarity with basic
DNS terminology as defined in [5]. The example from
the DNS section is enhanced to show how the addition
of security affects the operation of the DNS. This
section ends with a discussion of trust issues,
revocation, and how the secure DNS meets or does not
meet the criteria stated above.

3. 1 Fundamentals
The specification defines two additional

resource records that are relevant to this discussion:
signature (SIG) and key (KEY).

The SIG resource record stores the signature
calculated over a set of other resource records and other
ancillary information, including the domain name of the
signatory who created the signature and a footprint of

which of potentially many signatory keys was used to
create the signature.

The KEY resource record is used for storing
public keys, which initially will be used by the secure
DNS itself to distribute and manage the public keys it
needs in support of its security services. The ancillary
information stored with the public key includes an
indication of the purpose for which it may be used, e.g.,
in support of a specific application.

A zone supported by a DNS server that creates,
verifies, distributes, and manages SIG and KEY resource
records is called a secure zone. All other zones are
insecure. There is ancillary information in the KEY
resource record that permits a server to authoritatively
and securely indicate that a zone is insecure.

In a secure zone, a SIG resource record is
created for each type of resource record in each domain.
In addition, a SIG resource record is created for all the
resource records in a domain, to be used when
responding to an ANY query so that a resolver can
check that all records are present, and a SIG resource
record is created for all the resource records in a zone, to
be used to validate zone transfers.

The authority for the public key corresponding
to the private key for a secure zone is the super zone,
i.e., a secure zone is not authoritative for its own key,
although it may be authoritative for the public keys of
domains within it.

All the security enhancements to the DNS are
algorithm independent. However, to enhance
interoperability among deployed systems, the
specification has chosen an initial set of algorithms that
must be supported by all implementations: RSA and
MD5.

The proposed security enhancements will
function automatically if the public key(s) of the root
zone is ubiquitously known and manually configured.
The specification also allows servers to decide locally
which sub-trees they believe are security conscientious
as opposed to believing the entire name space.

An overview of each of the basic operations of
secure DNS is described below.

3.1.1 Secure DNS Signature Creation
The basic signature creation operation is as

follows.

All the resource records within a domain name within a
secure zone are grouped according to their type,
e.g., all the IP addresses of a given host are grouped
together.

Each group of resource records is canonicalized. The
canonicalization involves at least expanding any
compressed names in the resource record and sorting
the records. The objective of the canonicalization
step is to ensure a unique and unambiguous
representation of the data to be signed.

The MD5 hash of each group of canonicalized records is
computed.

The private key of the secure zone in which the domain
name appears is used to create a digital signature for
each group by signing its computed hash value.
This signature is stored in a SIG record for the type
over which it applies, along with the name of the
signatory.

Conceptually, if the resource record being
signed is a KEY record, the KEY and SIG record
combination represent a certificate that
cryptographically binds the domain name of the KEY
resource record to its public key. Retrieval of the
certificate requires retrieving both the KEY resource
record and its corresponding SIG resource record

3.1.2 Secure DNS Signature Validation
The basic signature validation operation is a

two step process. First the resources records of interest
are verified as follows.

All the resource records of a given type for a given
domain name are retrieved, along with the relevant
signature record. Normal operation of the DNS
would always return all records of a given type
when queried for a type. Normal operation of a
secure DNS server will also return the signature
resource record.

The public key of the signatory indicated in the
signature (SIG) record is retrieved and used to verify
the signature of the resource records.

The resource record is considered valid if the signature
can be verified using a valid public key.

Second, the public key of the signatory used in
the second step above must itself be validated. The
KEY resource record is a distinct record type and
therefore has its own corresponding signature record.
Consequently, validating the public key of the signatory
is accomplished by invoking the signature validation
process on the KEY resource record in which it is
stored. This process is repeated recursively until the
public key of a trusted point is used to verify a
signature, as described in Sections 3.2 and 4.2.

A detailed discussion of various
implementation optimizations and issues associated
with validating signatures can be found in [10].

3.1.3 Secure DNS Server Operation
The behavior of security aware servers is

enhanced as follows.

When responding to a query for data in a secure zone, by
default only data for which the signature has been
verified by the server is returned. Security aware
clients may request that unverified data be included
in a response, which servers must honor.

When responding to a query for data in a secure zone,
both the resource record and its corresponding
signature record must be returned.

The default behavior requirement that security
aware servers may only respond with data for which
they have verified the signature supports a very
important service for non-security aware clients. It is
likely that there are many (orders of magnitude) more
DNS clients than there are DNS servers and that the
transition to security aware servers will progress more
quickly than the transition to security aware clients. If
this is true, non-security aware clients will be used for
quite some time after the initial deployment of security
aware servers. Having security aware servers return
only records for which they have verified the signature
allows local2 non-security aware clients to take
advantage of the security services without any changes.

3. 2 Example
The same example from the previous section is

expanded here to include the additional security
functionality.3 To simplify identification of the
signatory, in this example the secure zone is served by a
server named within the zone itself.

Recall, suppose a user application needs the IP
address of the host “www.commerce.net”. The user
application would invoke a local resolver that accepts
responsibility for obtaining the IP address.

The local resolver would have been pre-
configured with the IP address and public key of the
root-server. It would begin by asking the root-server for
the IP address of “www.commerce.net”. Since the root-
server is authoritative for the root (.), it knows that it
does not have an authoritative response for resources in
the net-domain. It returns the hint telling the local
resolver to ask net-server. It includes glue in the form
of the IP address of net-server so that it can be contacted

2 Use of the word local is intended to remind the reader

that the client may be vulnerable over its link to the server.
Presumably, a client believes its local environment is not vulnerable
to adversaries and therefore it can believe responses received from
local servers without verifying them.

3 As before, this example is for expository purposes only
and does not represent a recommended implementation strategy.

directly. In addition, the public key for net-domain and
its corresponding signature resource record is included in
the response.

Resolver

root-server

net-server

User

Resolver

Resolver

Resolver

Resolver

www.commerce.net, get IP address

www.commerce.net, IP address

ask net-server, net-server-addr,
net-domain-pk, net-domain-sig

net, IP address

IP address, SIG

validate IP address

validate net-domain-pk

The local resolver must first validate the public
key for net-domain using its pre-configured copy of the
root’s public key. If the public key is valid it must
then proceed to validate the glue provided by the root-
server. To do this it must first ask net-server for its
address records. Net-server will return the complete set
of address records for itself and the corresponding
signature record. The local resolver must use its copy
of net-domain’s public key to validate the signature on
the address records.

The local resolver then asks net-server for the
IP address of “www.commerce.net”. Since net-server is
authoritative for net-domain, it knows that it does not
have an authoritative response for resources in
commerce-domain. It returns the hint telling the local
resolver to ask commerce-server. As was done by the
root, it includes glue in the form of the IP address of
commerce-server so that it can be contacted directly, as
well as the public key of commerce-domain and its
corresponding signature record.

net-server

commerce-server

Resolver

Resolver

Resolver

Resolver

www.commerce.net, IP address

ask commerce-server, commerce-server-addr,
commerce-domain-pk, commerce-domain-sig

commerce.net, IP address

IP address, SIG

validate IP address

validate commerce-domain-pk

Again, the local resolver must first validate the
public key for commerce-domain using its copy of net-
domain’s public key. If the public key is valid it must
then proceed to validate the glue provided by net-server.
To do this it must first ask commerce-server for its
address records. Commerce-server will return the
complete set of address records for itself and the
corresponding signature record. The local resolver must
use its copy of commerce-domain’s public key to
validate the signature on the address records.

Finally, the local resolver asks commerce-
server for the IP address of “www.commerce.net”.
Since commerce-server is authoritative for the
commerce-domain it knows the IP address of domain
names in its domain. It returns the requested IP address
and its corresponding signature record. The local
resolver must validate this one last signature by using
its copy of commerce-domain’s public key.

commerce-server

Resolver

Resolver

User

Resolver

www.commerce.net, IP address

IP address, ip-address-sig

www.commerce.net, IP address

validate ip-address-sig

3. 3 Trust
Whereas the currently deployed DNS functions

principally because all parties agree to be truthful at all
times, when following authoritative data with secure
DNS it is only possible to lie about the data for which
a server is authoritative. Therefore, although a server
can mislead clients attempting to contact it or any of its
sub-zones, it is not possible to mislead a client about
any other zone.

The DNS manages tree structured, hierarchical
databases with single, globally unique roots. Just as
the delegation of authority in the DNS passes down the
tree from the root, so does the trust in the secure DNS.
In the secure DNS, the trust begins at the root zone and
is passed down to each sub-zone when its parent signs
the sub-zone’s KEY resource record. The delegation
absolves the parent of all responsibility for the sub-zone
except to indicate its existence and where to find it. The
digital signature provides undeniable proof of the

parent’s intent to delegate, although it says nothing
about the sub-zone’s acceptance of the delegation.

A feature of having a secure zone be
authoritative for the KEY records of its sub-zones is
that the secure DNS architecture is tightly-coupled.
From the root in the secure DNS, it is always possible
to move securely to any other zone. Of course, a zone
could respond with false information about itself and its
sub-zones, but doing so only prevents legitimate access
to itself. However, the trust relationship is not the
same when moving up the DNS tree.

According to the secure DNS specification, a
secure zone is required to have a KEY record with the
public key of its superzone in its zone signed by itself.
The purpose of this record is to make it possible to
securely move up the DNS tree. This permits sites to
pre-configure the public keys of arbitrary secure zones
instead of the root, presumably on servers “close” to
them, and still be able to move securely to any other
zone.

Unfortunately, authority in the DNS, in
particular the delegation of zones, passes down the tree
not up the tree. Although it may be possible to trust
the “close” servers of the pre-configured zones to be
truthful about the public key of their parent zones,
prudence suggests that the transitivity of that trust be
limited. Whereas moving down the tree limits the
damage a malicious server can inflict to data for which
it is authoritative, a server that lies about its parent
could mislead a client about a far greater portion of the
tree. In the extreme, it could masquerade as a root to
clients moving up the tree and subvert the entire name
space.

Another feature of being able to pre-configure
the public keys of arbitrary secure zones is to permit
full use of the security features between disjoint
fragments of the tree. Until secure DNS supplants the
currently deployed DNS, there will be portions of the
tree that implement security but whose parents do not.
These portions of the tree could advertise their public
keys, via several different mechanisms to enhance
validation, thus permitting other secure portions of the
tree to pre-configure the public keys and be guaranteed
of obtaining correct information.

3. 4 Revocation
The secure DNS specification does not include

an explicit mechanism for revoking the bindings created
by digitally signing resource records. Instead the DNS
revocation mechanism was enhanced by having the
digital signature of a set of resource records cover the
initial value of the TTL field. Only the initial value is

protected because protecting the values decremented by
servers who have cached the resource record for a while
would require those servers to keep a private key on-line
at all times to be able to sign resource records in real-
time.

The normal operation of the DNS requires
clients to re-query for data for which the TTL field has
expired. Protecting the initial TTL value guarantees
that a client will re-query for data at least that
frequently. This is functionally equivalent to an
explicit revocation mechanism.

When using an explicit revocation mechanism,
validation of a binding requires that a list of revoked
bindings be retrieved and inspected to see if the binding
of interest is listed on it. The revocation list is updated
on a regular basis, at a minimum frequency usually
indicated in the list and commensurate with the
perceived significance of the binding. To leverage the
DNS TTL field as a revocation mechanism, its value
should be set to the minimum frequency an explicit
revocation list would be updated if it were used.

During normal operation, a server would check
to make sure the TTL on a resource record had not
expired prior to using it in a response. Checking the
TTL is analogous to checking for membership on an
explicit revocation list.

In order for a secure zone to revoke a binding it
either removes the invalid resource records from its
configuration or it replaces them with valid records. All
other servers will acquire the new bindings no later than
the value of the TTL from time the valid records are
inserted.

Since the security of the entire system is
dependent on the use and management of valid public
keys, the key bindings are more significant than other
bindings. As a result, the TTL for KEY resource
records should probably be substantially less than that
used for other records, e.g., if 30 days is used for most
records, 7 days would be a good choice for KEY records.

It is important to remember that the expiration
of the signature is distinct from the TTL. The secure
DNS specification includes a maximum lifetime for
each signed resource record. During normal operation a
signature could be valid for 1 or more years in contrast
to the 1 or more months of the TTL.

3. 5 Criteria Evaluation
Since secure DNS enhances or adds to the

existing DNS, as opposed to changing or removing
from the existing DNS, it inherits the meeting of the
same criteria as the existing DNS. In particular, global

availability, globally unique and unambiguous names,
and real-time access to public keys.

One potential issue with respect to global
availability is whether or not secure DNS will scale for
global use. The DNS database (actually each of several)
is predicated on the existence of a single global root
domain. On the one hand, PEM may epitomize the
likelihood that the Internet community will embrace an
infrastructure structured in this way, i.e., it will fail.

On the other hand, there are at least two, more
positive outcomes. The first is that the DNS has been
functionally exceptionally well with a single global
root. The space is managed by the Internet Assigned
Numbers Authority and, setting aside the various
trademark, copyright, and other related legal issues,
there is acceptance and support for the process. It is
entirely possible that secure DNS may succeed with a
single global root in spite of the failure of PEM.

The second possibility is that secure DNS
could be deployed with multiple “roots”. Instead of a
single root domain, setup each top-level domain name
to be the root of its hierarchy. This would require the
maintenance of multiple root public keys, which would
require the establishment of a distribution mechanism.
However, given that the DNS handles the problem of
multiple servers for the root domain, it is likely that a
similar kind of solution will suffice for the management
of multiple root keys.

In any case, this issue will be resolved as soon
as we begin to see global usage of secure DNS. As of
this writing, at least one reference implementation is
being developed and it is currently in beta test. In fact,
there are two significant implementation issues that are
relevant to the scaleability of the secure DNS.

First, the addition of public keys and their
signatures to the DNS will stress the robustness and
reliability of current DNS implementations. For
example, the most popular DNS implementation
maintains its entire database cache in memory. For
1024-bit RSA keys, 500 user keys will require at least
1-megabits of memory just to store the public keys and
their signatures in the cache, which does not include the
memory needed to store the 500 domain names and
header information of each of the key and signature
records. While it is true that hardware and memory are
getting cheaper all the time, will it be cheap enough
that the “com” domain, for example, can be managed by
one server?

Second, as is always the case with public key
cryptography, the protection of the private key is the

cornerstone of the security provided by the entire
system. The secure DNS specification recommends that
the signing of resource records (the creation of the SIG
resource records) be completed off-line, and that the
database file with the original resource records and their
signatures be transferred manually to the on-line
primary server. Although this process may appear
cumbersome, in principle, it should not be a frequent
occurrence. Alternatively, other technologies could be
explored for protecting the private key of the zone, e.g.,
a trusted system, which provides guaranteed access
control, and PCMCIA cards, which keep the private key
in a physically secure location.

Finally, secure DNS meets the last criteria that
was not met by the existing DNS: cryptographically
verifiable bindings between names and public keys. By
definition, secure DNS cryptographically binds domain
names to the remaining data in the resource record.
Since there is a resource record expressly for the purpose
of managing public keys, the secure DNS meets this
requirement.

4. User Public Keys and Secure DNS
The secure DNS uses public key cryptography

in support of its security services. It provides for itself
a global key distribution and management system,
which is exactly what users and user applications need
to support their security services.

If each user was assigned a domain name, then
each users' public key could be stored as a KEY resource
record in their domain. From the point of view of the
secure DNS, retrieving and verifying these KEY
resource records is no different than retrieving and
verifying the KEY resource records it uses during its
normal operation. User applications could be modified
to query the secure DNS with the user’s domain name
whenever the user's public key is needed.

4. 1 User Domain Names
In the Internet, we already have a well-

understood, globally deployed, tree-structured name
infrastructure for users: RFC822 [11] email addresses.
Many users are already commonly known by their email
addresses. Internet-connected users include their email
address on their business cards. Many companies are
known by their domain name and some provide a
variety of well-known email addresses through which
they may be contacted.

To use email addresses there must exist rules
for mapping them to DNS names. For a large fraction
of Internet users this will be a straightforward process.
RFC822 email address all have the syntax “local-

part@domain-part”. By definition, domain-part is a
domain name so it is easily appended to the result of
mapping local-part to a legal sequence of one or more
domain name labels.

In the simplest case, the local-part conforms to
the syntax of a domain name label, i.e., it contains only
the letters A-Z and a-z, the digits 0-9, and the hyphen,
e.g., galvin@commerce.net. The at-sign (@) character
could be replaced with a dot (.) resulting in an email
address that becomes the user’s domain name.

It is incrementally more complicated to permit
dots and other punctuation characters to appear in the
local-part. Other punctuation marks could be replaced
with dots, collapsing multiple adjacent dots to a single
dot. This will require the creation of additional branches
in the DNS tree, but that is a one time administrative
exercise for each user, easily completed as part of
creating a new user account.

It is incrementally more complicated again to
provide mapping rules for other printable yet illegal
characters, e.g., parenthesis and quotation marks. An
approach that works is to replace illegal characters with
strings of legal characters, similar to the approach taken
in [14].

This simple set of rules will serve to provide
automatic processing for a large fraction of the email
user community. For more complicated local-parts, for
example X.400 addresses, more complex mapping rules
would have to be developed.

4. 2 Validation Issues
Believing cryptographically verifiable bindings

requires that a trusted path exist from the binding of
interest to a trusted point. By default, the most trusted
point in the secure DNS is the root. Conceptually, the
root signs the public key for each of its delegated zones,
and makes each key and its respective signature resource
record available via the DNS. Similarly, delegations at
other points in the tree would have their key records
signed by their super zone at the point of delegation.

Validating a signed resource record constructs a
sequence of KEY resource records, the first of which
contains the public key of a trusted point. This public
key is known a priori to be valid and trusted. It is used
to verify the signature in the SIG record of the next
KEY record in the sequence. Similarly, this next key is
used to verify the signature in the SIG record of the next
KEY record in the sequence, until the sequence
terminates with the KEY record containing the public
key needed to verify the signature of the signed resource
record. Consider the example detailed in Section 3.2.

Since the secure DNS is a homogeneous
system, all of the public keys created exist for a single
reason and are implicitly signed according to a uniform
policy. However, when keys for other purposes are
added to the DNS, there is no implicit policy. In the
absence of an explicit policy, it is not possible for an
application to automatically evaluate whether a retrieved
key is suitable for its intended use, irrespective of the
existence of a trusted path. The only evidence a trusted
path provides is that the name associated with public
key is correct.

As a result, the DNS provides a mechanism
suitable for assisting in the management of globally
deployed public keys, but it is insufficient to support in
and of itself the knowledge of whether a public key is
suitable for a particular use. Additional ancillary
information is necessary, e.g., a policy that defines the
valid uses of the public key.

However, where human interaction is possible
and likely, e.g., with secure email applications, a user
could evaluate in real-time whether or not a public key
was appropriate for use. In such an application, the
secure DNS is a necessary and ideal enabling technology
to the global deployment of the application.

5. Conclusions
The continued standardization of the use of

public key technology in the Internet demands a
globally available public key distribution and
management system. The Domain Name System
(DNS) is an infrastructure protocol which provides an
ideal base on which to build such a system. The secure
DNS specification being designed and implemented
includes a public key distribution and management
system that could be used to manage users’ public keys
if users were assigned domain names.

With a domain name users could store their
own public keys as resource records where they would
be quickly and easily accessible by others. This is
straightforward to do for the vast majority of Internet
users by taking their email addresses and changing the
at-sign (@) to a dot (.). Additional suggestions were
proposed for incrementally more complicated email
addresses.

The use of the secure DNS as a public key
distribution and management system for users will
require changes to application programs. However, this
transition can not proceed until there exists a reference
implementation. As of this writing, one is being
developed and is currently in beta test. However, as
indicated above, the scaleability of existing
implementations is uncertain.

Finally, using the DNS to validate public keys
for users begs the question of under which policy was
the public keys are signed. This is an issue being
addressed in the context of X.509 certificates by many
different organizations, but no attention to date has been
given to resolving the issue in the secure DNS.

6. References
[1] John Linn. Privacy Enhancement for Internet

Electronic Mail: Part I: Message Encryption and
Authentication Procedures. RFC1421, February
1993. Obsoletes RFC1113.

[2] Steve Kent. Privacy Enhancement for Internet
Electronic Mail: Part II: Certificate-Based Key
Management. RFC1422, BBN Communications
February 1993. Obsoletes RFC1114.

[3] David M. Balenson. Privacy Enhancement for
Internet Electronic Mail: Part III: Algorithms,
Modes, and Identifiers. RFC1423, Trusted
Information Systems, February 1993. Obsoletes
RFC1115.

[4] Burton S. Kaliski. Privacy Enhancement for
Internet Electronic Mail: Part IV: Key
Certification and Related Services. RFC1424,
RSA Laboratories, February 1993.

[5] Paul Mockapetris. Domain Names - Concepts and
Facilities. RFC1034, ISI, November 1987.
Obsoletes RFC973.

[6] Paul Mockapetris. Domain Names -
Implementation and Specification. RFC1035, ISI,
November 1987. Obsoletes RFC973.

[7] Paul Mockapetris. DNS Encoding of Network
Names and Other Types. RFC1101, ISI, April
1989. Updates RFCs 1034, 1035.

[8] Bill Manning and Richard Colella. DNS NSAP
Resource Records. RFC1706, ISI and NIST,
October 1994. Obsoletes RFC1637.

[9] Donald E. Eastlake and Charles W. Kaufman.
Domain Name System Security Extensions. Work
in Progress.

[10] James M. Galvin and Sandra L. Murphy. Using
Public Key Technology - Issues of Binding and
Protection. INET'95, Internet Society, June 27-30,
1995.

[11] David H. Crocker. Standard for the Format of
ARPA Internet Text Messages. RFC822,
University of Delaware, August 1982.

[12] Steven M. Bellovin. Using the Domain Name
System for System Break-ins. The Fifth USENIX
UNIX Security Symposium, Salt Lake City, June
5-7, 1995.

[13] Paul Vixie. DNS and BIND Security Issues. The
Fifth USENIX UNIX Security Symposium, Salt
Lake City, June 5-7, 1995.

[14] S. Hardcastle-Kille. Mapping between
X.400(1988) / ISO 10021 and RFC 822.
RFC1327, ISODE Consortium, May 1992.
Obsoletes RFC987, RFC1026, RFC1138,
RFC1148. Updates RFC822.

