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Abstract: In this paper, an improved PSO (Particle Swarm Optimization) algorithm is proposed
and applied to the infrared image enhancement. The contrast of infrared image is enhanced while
the image details are preserved. A new exponential center symmetry inertia weight function is
constructed and the local optimal solution jumping mechanism is introduced to make the algorithm
consider both global search and local search. A new image enhancement method is proposed based
on the advantages of bi-histogram equalization algorithm and dual-domain image decomposition
algorithm. The fitness function is constructed by using five kinds of image quality evaluation
factors, and the parameters are optimized by the proposed PSO algorithm, so that the parameters are
determined to enhance the image. Experiments showed that the proposed PSO algorithm has good
performance, and the proposed image enhancement method can not only improve the contrast of the
image, but also preserve the details of the image, which has a good visual effect.

Keywords: particle swarm optimization algorithm; infrared image enhancement; bi-histogram
equalization; dual-domain image decomposition

1. Introduction

The work of this paper mainly includes two parts. First, we propose an exponential central
symmetric inertia weight function and a local optimal solution jump mechanism to optimize the
PSO algorithm, and then we put forward a new infrared image enhancement method based on
the combination of bi-histogram equalization and dual-domain image decomposition algorithm.
The proposed improved PSO algorithm is used for parameters optimization and then to obtain the
enhanced image. The contrast of images are improved while preserving image details.

Meta-heuristic algorithms have strong flexibility, are simple and easy to implement, do not rely
on gradient information, and avoid local optimal solutions. Therefore, they are widely used in various
fields of engineering problems. Meta-heuristic algorithms can be divided into evolutionary-based,
physics-based, and swarm-based algorithms.

Evolutionary-based algorithms are inspired by the principles of biological evolution in nature,
the most typical being the genetic algorithm [1]. Each new individual is a combination of the best from
the previous generation; individuals formed by the combination of excellent individuals are likely to
be better than the previous generation, thus the algorithm is optimized with the process of evolution.

Physics-based algorithms simulate rules of physical change, such as simulated annealing
algorithm [2] and gravity search algorithm [3]. This kind of algorithms simulates some basic physical
laws, such as the laws of gravity, ray, electromagnetic force, etc.
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Swarm-based algorithms mainly simulate the social behavior of natural populations and swarms.
One of the most popular algorithms is PSO [4]. The idea is to mimic the social behavior of birds gathering,
ant colonies [5], etc. Table 1 shows some of the swarm intelligence-based algorithms proposed in the
last decade.

Table 1. Swarm intelligence-based algorithms of recent years.

Author Algorithm Abbreviation Year Inspiration

Askarzadeh et al. [6] Bird Mating Optimizer BMO 2012 Bird mating
Gandomi et al. [7] Krill Herd KH 2012 Krill herd
Pan et al. [8] Fruit fly Optimization Algorithm FOA 2012 Fruit fly
Kaveh et al. [9] Dolphin Echolocation DE 2013 Dolphin
Mirjalili et al. [10] Grey Wolf Optimizer GWO 2014 Grey wcolf
Rosenberg [11] Artificial Swarm Intelligence ASI 2014 Human
Mirjalili [12] Ant Lion Optimization algorithm ALO 2015 Ant lion
Mirjalili et al. [13] Whale Optimization Algorithm WOA 2016 Whale
Askarzadeh [14] Crow Search Algorithm GSA 2016 Crow
Mirjalili [15] Dragonfly Algorithm DA 2016 Dragonfly
Biyanto et al. [16] Killer Whale Optimization KWO 2017 Whale
Mirjalili et al. [17] Salp Swarm Algorithm SSA 2017 Salp
Alatas [18] Sports Inspired Optimization SIO 2019 Sports

Among them, PSO algorithm is often considered. Although it has some defects, such as premature
convergence and can easily to fall into local optimal solution, many scholars have improved PSO.
Although meta-heuristic algorithms differ in principle, they have a common feature that they are
composed of exploration and exploitation phases [13]. The exploration phase wants to traverse as
many possible search areas as possible. Finding a balance between the two, i.e., global search and local
search, is a challenging task. Ma [19] proposed a chaotic PSO algorithm with arctangent acceleration
coefficient to seek a balance between global search and local search. Wang [20] proposed a hybrid
quantum PSO algorithm, which uses flight and jump operations to improve the accuracy of QPSO
(Quantum Particle Swarm Optimization) and enhance the search ability. Zhang [21] introduced scalar
operators and learning operators into PSO and proposed a vector cooperative PSO algorithm. Zhou [22]
introduced two mechanisms, namely competitive group optimization and reverse learning, choosing
different learning mechanisms according to fitness value, and proposed a reverse learning competitive
PSO algorithm. Engelbrecht [23] proposed a dynamic PSO algorithm based on arithmetic crossover.
Chen [24] used two different crossover operations to disseminate promising samples through the
crossover of the optimal position of each particle’s personal history to establish an effective guiding
paradigm and maintain good diversity. Tawhid [25] combined the PSO algorithm with the crossover
operator of genetic algorithm to solve the global optimization problem, avoiding the problems of
population stagnation and premature convergence.

With the continuous development and progress of infrared technology, the infrared imaging
system has been widely used in target detection [26], precise guidance [27], optical remote sensing [28],
night navigation [29], and other fields. However, the low contrast of infrared image limits its
application. Therefore, it is of great significance to search for effective methods to improve the
quality of infrared images.

Image enhancement algorithms can be roughly divided into spatial-domain based algorithms,
transform-domain algorithms, and learning based algorithms. Spatial-domain based algorithms
enhances the image at the gray level; typical algorithms include histogram equalization [30].
Transform-domain algorithms transform the spatial domain image into the frequency domain [31],
such as wavelet [32]. In recent years, deep learning technology has been developed rapidly and
applied to image enhancement, such as deep bilateral learning [33], deep photo enhancer [34],
and scale-recurrent network [35]. Traditional algorithms based on spatial-domain and transform
domain are usually based on a priori knowledge or experience, setting some parameters for image
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enhancement. Learning based algorithms establish the model and enhance the images through a lot of
learning and training. The enhancement result has a great relationship with the accuracy of the model
and the number of samples.

Histogram equalization algorithm, as the basis of image enhancement algorithm, has the advantages
of simple implementation and remarkable effect, thus it has been widely used. However, the traditional
histogram equalization algorithm has the defect of reducing contrast, thus many scholars have
improved it accordingly. Kim [30] proposed a BBHE (Brightness preserving Bi-Histogram Equalization)
algorithm, which takes the average brightness of the image as the threshold. The image is decomposed
into two sub-graphs, which are processed with histogram equalization, respectively. After that,
the image is merged to maintain the brightness characteristics of the original image to a certain
extent. Shajy [36] used RMSHE (Recursive Mean-Separate Histogram Equalization) to enhance
medical images and obtain good results. The [37] used the minimum mean variance constraint
before and after bi-histogram equalization to determine the gray scale threshold, making the contrast
enhancement effect visually appear natural. Tang [38] proposed a bi-histogram equalization using
modified histogram bins method to segment images according to their median brightness to achieve
the retention of average brightness. Ashiba [39] proposed adaptive histogram equalization with
contrast limitation to enhance the infrared image. However, the histogram equalization algorithm still
has the following defects: (1) the number of gray levels decrease, the image information entropy decreases,
and local details are missing; (2) the edge is not enhanced; and (3) the average gray value is fixed.

In this paper, an improved PSO algorithm is proposed and applied to infrared image enhancement.
Firstly, a new exponential center symmetry inertia weight function is constructed to make the inertia
weight coefficient change with the number of iterations and the current position of particles. The global
search ability is increased in the early stage of the search, and the local search ability is strengthened
in the late stage of the search, so as to achieve the balance between local search and global search.
Then, a local optimal solution jumping strategy is introduced into the PSO algorithm. We call the new
PSO algorithm EXPSO. A new infrared image enhancement method combining the advantages of
bi-histogram equalization algorithm and dual-domain image decomposition algorithm is proposed.
The fitness function is constructed by using five image evaluation indexes to search for the optimal
parameters, and the EXPSO algorithm is used to optimize the parameters to obtain a better image
enhancement effect.

The main contributions of this paper are as follows:

1. A new inertia weight function of PSO algorithm is constructed to make the weight coefficient
change with the number of iterations and the current position of particles. Global search ability is
increased in the early stage of search, and local search ability is strengthened in the late stage of
search, so as to achieve the balance between local search and global search.

2. The mechanism of jumping out of the local optimal solution is introduced into the PSO to avoid
the algorithm falling into a local optimal solution.

3. A new infrared image enhancement technology is proposed, which combines the advantages of
bi-histogram algorithm and dual-domain image decomposition to increase the contrast of the
enhanced image without losing the image details.

The rest of the paper is structured as follows. Section 2 introduces the improved PSO algorithm.
An infrared image enhancement algorithm based on bi-histogram equalization and dual-domain image
decomposition is proposed in Section 3. Experiments are presented in Section 4, including verifying
the performance of the PSO algorithm and the effect of the proposed image enhancement algorithm.
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2. Particle Swarm Optimization

PSO was proposed by Kennedy [4] and is widely used. In the PSO algorithm, the current position
of the particle is a candidate solution to the corresponding optimization problem, and the particle has
two properties: position and velocity. Let the position of the ith particle of the population be

xh
i =

[
xh

i1, xh
i2, · · · , xh

iD

]T
(1)

After h iterations, the optimal position of the individual is

pk
i =

(
pk

i1, pk
i2, · · · , pk

iD

)
(2)

The optimal position of the group is

pk
gb =

(
pk

gb1, pk
gb2, · · · , pk

gbD

)
(3)

The update formula of position and velocity can be expressed as follows:

vh+1
i = wvh

i + c1r1

(
Ph

i − xh
i

)
+ c2r2

(
Ph

g − xh
i

)
xh+1

i = xh
i + vh+1

i

(4)

where c1 and c2 are learning factors, while r1 and r2 are random numbers between 0 and 1.

2.1. Exponential Center Symmetry Inertia Weight Function

The inertia weight factor was proposed by Shi [40]. The inertia weight factor of traditional PSO
algorithm is fixed. If its value is too large, the convergence speed will slow down; if its value is too
small, it easily falls into a local optimal solution. The way we think about it is that, in the early stage of
the search, by setting a large weight, the algorithm has strong global search ability and guarantees
the particle traverses the entire space, while, in the late stage of the search, using a small inertia
weight factor strengthens the local search ability and increases the speed of convergence, which can
significantly improve the performance of the algorithm. Therefore, this paper uses the current iteration
depth and fitness value to construct the function of inertia coefficient to optimize the PSO algorithm.

First, the function based on iteration depth is constructed as follows:

s1 (h) = 1− 2h
hmax

(5)

where hmax denotes the maximum number of iterations set. It can be seen that the function is a
monotone decreasing function of [−1, 1].

Then, the function based on the fitness is constructed as follows:

s2 ( f it) =
2 ( f it− f itmin)

f itmax − f itmin
− 1 (6)

where f itmax and f itmin stand for the maximum and minimum of the current calculated fitness,
respectively. Their values are constantly updating as the particle search proceeds and their initial
values are f itmax = f it and f itmin = 0; when h > 2, f itmax and f itmin are updated.

Then, the weight coefficient function is constructed based on s1 (•) and s2 (•) as follows:

w (h, f it) =
1
2

(
1

1 + e−s1(h)/σ1
+

1
1 + e−s2( f it)/σ2

)
(7)
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where σ1 and σ2 are constants that control the change rate of w. At the beginning of iteration,
the weight coefficient is larger to enhance the global search ability of the algorithm; at the end
of iteration, the weight coefficient is smaller to enhance the local search ability of the algorithm, so as
to accelerate the convergence speed of the algorithm and avoid falling into the local optimal solution.
The relationship between weight coefficient and iteration depth transformation is shown in Figure 1.
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Figure 1. Function relation curve of iteration depth and weight.

2.2. Local Optimal Solution Jumping Strategy

We introduce a mutation factor to construct the optimal solution jumping strategy. If the particle
state is the same for m consecutive iterations, the mutation factor is introduced and tested to see
whether the mutation factor makes the fitness function better. If the mutation is better, the mutation is
retained; otherwise, the mutation is deleted. The mutation factor is expressed as:

Xhk
i = Xhk

g + ξ (8)

where hkis the depth of iteration when immersed in a local optimal solution. ξ is the step length and it
is defined as follows:

ξ =
u

|v|
1
β

(9)

where u ∼ N
(
0, σ2

u
)
, v ∼ N (0, 1) and σu is defined as follows: σu =

(
Γ (1 + β) sin (βπ/2)

/
Γ ((1 + β) /2) 2

β−1
2 β

) 1
β

Γ (z) =
∫ ∞

0 tz−1e−tdt
(10)

The particle jumping process is shown in Figure 2. The figure shows that the small step
and large step occur alternately during the process, which can help the particle jump out of local
optimal solutions.
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Figure 2. 3D figure of the particle jumping process.

2.3. EXPSO Algorithm Flow

The flow of EXPSO algorithm is shown in Algorithm 1.

Algorithm 1 Pseudo code of EXPSO.

Initialize the parameters(Xmax, Xmin, D, m, vmin, vmax, c1, c2, N)
Initialize the particle swarm positions
Calculate the fitness of each particle
while Iter<Itermax do

Updata the Inertia weight factor use Equation (7)
Calculate the fitness of each new particle
Get pbset and xbest
if pbset stays the same for m consecutive generations then

Update x use Equation (8)
Calculate the fitness of each new particle
if pbsetnew > pbset then

Replace x and pbset
end if

end if
Updata pbset and xbest
Iter = Iter + 1

end while

3. Image Enhancement Method

The idea of image enhancement in this paper is to improve the image contrast by using the
method of bi-histogram enhancement and improve the image edge details by using a dual-domain
image decomposition method. The fitness function is constructed by combining the advantages of the
two, and EXPSO is used to optimize the parameters to find the optimal parameters and obtain a better
visual effect. The flow chart of the method is shown in Figure 3.
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Figure 3. Flow chart of infrared image enhancement method.

3.1. Contrast Enhancement Based on Bi-Histogram Equalization

The average brightness of the original image I is set as Im ∈ {Io, I1, · · · , IL−1}. Setting it as a
threshold, the image is decomposed into two sub-images IL and IU . Histogram equalization is carried
out for the two sub-images, respectively, and then the processed sub-images are merged to get the
output image. The process can be expressed as follows:

fbihist (I) = fL (IL) ∪ fU (IU) (11)

where {
fL (x) = I0 + (Im − I0) pL (x) x 6 Im

fU (x) = Im+1 + (IL−1 − Im+1) pU (x) x > Im
(12)

where pL (x) and pU (x) are cumulative probability functions of the two sub-images whose gray value
is x, respectively.

The traditional bi-histogram equalization algorithm uses the average brightness to segment the
image. For the infrared image, the image is usually dark, which can easily cause obvious errors.
Therefore, the proposed EXPSO algorithm is adopted in this paper to optimize the threshold XT .
Section 3.3 details the specific optimization process.

3.2. Detail Enhancement Based on Dual-Domain Image Decomposition

In this paper, by referring to the ideas in the literature [41], the original image is decomposed into
high and low frequency components by dual-domain image decomposition. This algorithm not only
considers the spatial distance of the pixels in the neighborhood, but also considers the difference in the
gray value of the pixels.

For pixel x, Nx is defined as a window centered on x with radius r, and the bilateral kernel
function inside is defined as follows:

kx,y = e
− |x−y|2

2σ2
s e
− | fx− fy |2

γσ2 (13)

where σs and γ are the spatial parameters of the kernel function and the pixel related parameters. σ2 is
the noise variance. The expression of dual-domain filter is:

Iout =
∑x,y∈Nx ,y kx,y Ix,y

∑x,y∈Nx ,y kx,y
(14)
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where I is the original image. The image is decomposed into low and high frequency components
by dual-domain image decomposition. Texture features and details are distributed in the high
frequency component. {

IoutL = fBi f ilter (I)
IoutH = I − IL

(15)

Therefore, the detail texture can be highlighted by enhancing the high-frequency image. In this
paper, a simple and effective method of linear amplification is used to enhance the detail, and its
expression is as follows:

fbiout (I) = IoutL + βIoutH (16)

where β is the enhancement factor.
After bi-histogram equalization and dual-domain image decomposition enhancement, combined

with the advantages of both, the final output enhanced image can be expressed as:

X = α fbihist
XT

(I) + (1− α) fbiout
r,γ,σs ,β

(I) (17)

where α is an adjustment factor, which was used to control the contribution proportion of bi-histogram
equalization and dual-domain image decomposition. X is the output image. It can be seen from
Equation (17) that there are six parameters to be determined. We next construct the fitness function
and use EXPSO algorithm to optimize these parameters to obtain the final image.

3.3. Fitness Function

In this study, five commonly used image evaluation indexes were used to construct the fitness
function: entropy, average gradient, contrast, Niqe, and Brisque.

(1) Information entropy

Information entropy is used to measure the information contained in the image. The higher
the information entropy is, the richer the information contained in the image is and, to some extent,
the better the image quality is. The calculation formula is as follows:

H (X) = − ∑
x∈X

P (x) log P (x) (18)

where P (x) is the probability of the occurrence of gray value x.

(2) Average gradient

The average gradient reflects the change of gray value in the edge region of the image, which
can reflect the sharpness of the image and the retention ability of the detail texture. The calculation
formula is as follows:

A =

M−1
∑

i=1

N−1
∑

j=1

√
(x(i+1,j)−x(i,j))2+(x(i,j+1)−x(i,j))2

2

(M− 1) (N − 1)
(19)

(3) Contrast

Contrast can reflect the strength of enhancement effect. Wu [42] put forward the definition of
contrast in 2011, considering the histogram of image I has N nonzero entries. The calculation formula
of contrast is:

C (p) = p0 (x1 − x0) + ∑
k∈[1,N]

pk (xk − xk−1) (20)

where xk is the gray level and pk is the probability of gray level xk.
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(4) Niqe

Niqe is an unreferenced image quality evaluation algorithm proposed by Mittal et al. [43] in
2013. It evaluates the image quality according to the distance between the feature model parameters
of the image to be evaluated and the pre-established model parameters. The evaluation value of
Niqe algorithm is consistent with the result of human eye perception. The smaller is the Niqe value,
the better is the image quality. In this article, N (X) represents the Niqe value of image X.

(5) Brisque

Brisque is a kind of natural scene statistics based on general reference image quality assessment
model, using the local scene statistical model for the coefficient of normalized luminance quantization
image quality. Various types of distortion samples are used to train the SVM model parameters
and multiple corresponding hyperplanes, and not distortion types combined with different kinds of
distortion . The corresponding probability quality score is finally calculated [44]. In this paper, B (X)

represents the Brisque value of the image X.
Among them, the higher the information entropy is, the higher the contrast is, the higher

the average gradient is, and the lower Niqe and Brisque are, the better the results is. Therefore,
a multi-objective optimization model is constructed in this paper as follows:

F (XT , r, σs, γ, β, α) = {max H (X) , max A (X) , max C (X) , min N (X) , min B (X)} (21)

where H (X), A (X), C (X), N (X), and B (X) represent information entropy, average gradient, contrast,
Niqe, and Brisque, respectively.

The model is a multi-objective optimization problem. To simplify it, we normalize it into a
single-objective optimization problem as follows:

min F (XT , r, σs, γ, β, α) = ε1
H (I)
H (X)

+ ε2
A (I)
A (X)

+ ε3
C (I)
C (X)

+ ε4
N (X)

N (I)
+ ε5

B (X)

B (I)

s.t.



X = α fbihist
XT

(I) + (1− α) fbiout
r,γ,σs ,β

(I)

0 6 XT 6 255
{XT , r} ∈ Z
{σs, γ, β, α} ∈ [lower, upper]
ε1 + ε2 + ε3 + ε4 + ε5 = 1

(22)

where I is the input image, εi are the weight factors, and X is the output image. This model has only
boundary constraints. The proposed EXPSO algorithm is used to minimize the function F, and each
parameter is solved and substituted into Equation (17) to obtain the final enhanced image.

4. Experiment

4.1. EXPSO Algorithm Performance Experiment

Six function optimization problems were used to test the performance of the proposed EXPSO
algorithm. The functions are shown in Table 2. The dimension of the function is 30. The proposed
algorithm was compared with PSO [4], HFPSO [45], GQPSO [46], and HCQPSO [47]. The results are
shown in Figure 4. It can be seen that the EXPSO algorithm in this paper has certain advantages in
convergence accuracy and convergence speed.
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Table 2. Benchmark functions.

Name Function Range fmin

Ackley
f (x) = 20 + e− 20 exp

(
−0.2

√
1
n

n
∑

i=1
x2

i

)

− exp

(√
1
n

n
∑

i=1
cos (2πxi)

) [−32, 32] 0

Rastrigin f (x) = −
n
∑

i=1

(
x2

i − 10 cos (2πxi) + 10
)2

[−5.12, 5.12] 0

DeJongF4 f (x) =
n
∑

i=1
ix4

i [−100, 100] 0

alpin f (x) =
n
∑

i=1
|xi sin xi + 0.1i| [−50, 50] 0

Rosenbrock f (x) =
n−1
∑

i=1

(
100
(

xi+1 − x2
i
)2

+ (1− xi)
2
)

[−5, 5] 0

Sphere f (x) =
n
∑

i=1
x2

i [−100, 100] 0
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Figure 4. Function relation curve of iteration depth and weight.

4.2. Infrared Image Enhancement Experiment

To verify the effectiveness of the proposed algorithm, state-of-the-art methods were selected,
namely SRRM [48], BBHE [30], CLAHE [39], DPE [34], EFF [49], CRM [50], and JED [51], and publicly
available datasets were used, namely OTCBVS Benchmark Dataset [52] and FIR Sequence Pedestrian
Dataset [53]. Information entropy, Average gradient, Constrast, Niqe, and Brisque index were used as
the objective evaluation factors. The experimental results are shown in Figure 5. It can be seen in the
figure that the contrast of the original image is relatively weak. The image contrast is not significantly
improved after processing by the algorithms show in Figure 5b,f–h. Figure 5d is the processing result
of CLAHE algorithm, with good contrast, but details are lost. For example, the upper left corner
of Img1 is too bright, resulting in details being lost, and the ground is too bright and the grass is
too dark in Img2. Figure 5c,i presents good visual effects. It can be seen from Img1 and Img2 that
the overall brightness of the algorithm in this paper is higher than that of the algorithm shown in
Figure 5c. The algorithm in this paper can enhance the contrast while preserving the details and texture
of the image.
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The performance of each algorithm can be further seen from the objective evaluation factors.
The results under the information entropy index are shown in Table 3. Under the information entropy
index, our proposed algorithm achieved the best results. The results show that the algorithm in this
paper did not lose the image information entropy, but increased the image information entropy, while
the traditional BBHE algorithm reduced the image information entropy. Average gradient index results
are shown in Table 4. In terms of average gradient, the algorithm proposed in this paper obtained the
best results except Img1. Contrast index results are shown in Table 5. In contrast index, the algorithm
in this paper greatly improved the contrast of the images. Our algorithm obtained the highest contrast.
Niqe results are shown in Table 6. In terms of Niqe, the proposed algorithm worked best on all three
images. Brisque results are shown in Table 7. In terms of Brisque, the proposed algorithm worked
best on all three images. The objective evaluation factor also shows that the algorithm in this paper
increases the contrast of the image while preserving the image information.

(a) Input (b) SRRM (c)BBHE (i)Ours(d) CLAHE

Img1

Img2

Img4

Img5

Img3

(e) DPE (h) JED(f) EFF (g) CRM

Figure 5. Comparisons of results using different methods.

Table 3. Entropy result.

Algorithms Img1 Img2 Img3 Img4 Img5 Mean

Input 6.32 6.62 6.96 6.40 6.86 6.63
SRRM 6.24 6.05 7.05 5.87 6.29 6.30
BBHE 7.13 7.41 7.10 7.19 7.17 7.20

CLAHE 5.55 5.85 5.90 5.55 5.94 5.76
DPH 6.96 7.47 7.54 6.93 7.08 7.20
EFF 6.38 6.48 7.05 6.26 6.69 6.57

CRM 6.24 6.30 7.00 6.07 6.37 6.40
JED 6.25 6.05 7.02 5.88 6.30 6.30
Ours 7.20 7.55 7.57 7.26 7.18 7.35

Table 4. Average gradient result.

Algorithms Img1 Img2 Img3 Img4 Img5 Mean

Input 5.95 4.11 5.47 5.26 4.01 4.96
SRRM 6.62 13.16 7.36 4.59 3.10 6.97
BBHE 12.80 9.80 11.00 12.35 9.89 11.17

CLAHE 13.50 12.58 12.20 16.34 10.13 12.95
DPH 17.89 10.85 10.41 16.77 10.22 13.23
EFF 7.34 4.39 6.28 5.69 4.31 5.60

CRM 8.57 4.73 7.35 6.19 4.69 6.31
JED 6.06 2.87 5.70 4.21 2.81 4.33
Ours 16.60 13.25 15.33 17.09 12.64 14.98
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Table 5. Contrast result.

Algorithms Img1 Img2 Img3 Img4 Img5 Mean

Input 33.22 16.42 46.64 24.69 13.22 26.84
SRRM 56.05 13.56 104.74 29.35 10.32 42.80
BBHE 139.70 79.62 141.98 120.85 71.09 110.65

CLAHE 133.38 131.20 205.04 181.97 87.57 147.83
DPH 174.06 74.06 70.73 103.37 66.60 97.76
EFF 46.83 17.76 59.68 29.08 14.93 33.66

CRM 61.99 19.71 78.51 35.33 17.48 42.60
JED 49.12 11.79 87.60 26.95 9.07 36.91
Ours 221.21 131.52 271.25 216.29 111.99 190.45

Table 6. NIQE result.

Algorithms Img1 Img2 Img3 Img4 Img5 Mean

Input 3.94 6.35 4.19 7.70 6.33 5.70
SRRM 4.14 6.06 3.74 6.57 6.02 5.31
BBHE 3.87 6.02 3.02 6.34 5.79 5.01

CLAHE 3.79 6.78 2.44 7.15 5.96 5.22
DPH 4.05 6.06 3.79 6.51 6.31 5.34
EFF 3.97 5.42 3.05 5.75 5.78 4.79

CRM 3.95 5.57 2.88 5.73 5.45 4.72
JED 3.84 5.64 4.00 4.74 5.78 4.80
Ours 3.78 5.53 3.44 4.34 5.71 4.56

Table 7. Brisque result.

Algorithms Img1 Img2 Img3 Img4 Img5 Mean

Input 19.74 28.35 27.81 30.10 17.40 24.68
SRRM 20.47 23.20 22.13 26.96 19.30 22.41
BBHE 29.69 30.64 14.06 34.00 19.39 25.56

CLAHE 29.52 31.07 12.53 36.12 16.41 25.13
DPH 30.63 23.34 21.46 23.53 23.06 24.40
EFF 15.96 28.35 24.32 31.14 17.60 23.47

CRM 21.73 28.42 19.11 32.06 18.62 23.99
JED 20.21 23.23 29.09 30.02 29.86 26.48
Ours 26.83 23.18 22.14 21.30 16.21 21.93

5. Conclusions

In this paper, an improved PSO algorithm called EXPSO is proposed and applied to the infrared
image enhancement. The new exponential center symmetry inertia weight function is constructed
and the local optimal solution jumping mechanism is introduced to make the algorithm consider
both global search and local search. A new image enhancement method is proposed based on the
advantages of bi-histogram equalization algorithm and dual-domain image decomposition algorithm.
The fitness function is constructed by using five kinds of image quality evaluation factors (information
entropy, average gradient, contrast, Niqe, and Brisque), and the parameters are optimized by the
EXPSO algorithm, so that the parameters are determined to enhance the image. Experiments were
carried out to verify the effectiveness of the proposed EXPSO algorithm and the effect of the image
enhancement method. Experimental results show that the EXPSO algorithm converges more quickly
than the other four algorithms. In the image enhancement experiment, the proposed algorithm has
good effect under five objective evaluation factors. The experimental results show that the proposed
image enhancement method can not only improve the contrast of the image, but also preserve the
details of the image.
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Abbreviations

The following abbreviations are used in this manuscript:

PSO Particle Swarm Optimization
EXPSO Proposed improved (EXponential) PSO algorithm is this paper
QPSO Quantum Particle Swarm Optimization
HFPSO A Hybrid Firefly and Particle Swarm Optimization algorithm
GQPSO Gaussian Quantum behaved PSO algorithm
HCQPSO Hybrid Chaotic Quantum behaved PSO algorithm
SRRM Structure revealing Robust Retinex model
BBHE Brightness preserving Bi-Histogram equalization
CLAHE Contrast Limited Adaptive Histogram Equalization
DPE Deep Photo Enhancer
EFF Exposure Fusion Framework
CRM Camera Response Model
JED Joint Enhancement and Denoising Method via Sequential Decomposition
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