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Abstract: This paper presents a novel framework to achieve 3D semantic labeling of objects (e.g.,
trees, buildings, and vehicles) from airborne laser-scanning point clouds. To this end, we propose
a framework which consists of hierarchical clustering and higher-order conditional random fields
(CREF) labeling. In the hierarchical clustering, the raw point clouds are over-segmented into a set of
fine-grained clusters by integrating the point density clustering and the classic K-means clustering
algorithm, followed by the proposed probability density clustering algorithm. Through this process,
we not only obtain a more uniform size and more homogeneous clusters with semantic consistency,
but the topological relationships of the cluster’s neighborhood are implicitly maintained by turning
the problem of topology maintenance into a clustering problem based on the proposed probability
density clustering algorithm. Subsequently, the fine-grained clusters and their topological context
are fed into the CRF labeling step, from which the fine-grained cluster’s semantic labels are learned
and determined by solving a multi-label energy minimization formulation, which simultaneously
considers the unary, pairwise, and higher-order potentials. Our experiments of classifying urban
and residential scenes demonstrate that the proposed approach reaches 88.5% and 86.1% of “mF;”
estimated by averaging all classes of the F;-scores. We prove that the proposed method outperforms
five other state-of-the-art methods. In addition, we demonstrate the effectiveness of the proposed
energy terms by using an “ablation study” strategy.

Keywords: airborne laser-scanning; segmentation; cluster classification; neighborhood topology;
higher-order potential, CRF optimization

1. Introduction

Outdoor scene labeling of airborne laser-scanning (ALS) point clouds is a key step in many
applications such as autonomous driving, urban scene understanding, surveying and mapping,
smart city and remote sensing, among others [1-6]. Several point cloud classification approaches
have been proposed in the last decade. Those classification methods can be generally divided into
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two categories, namely the single point-based method and the cluster-based method. Generally,
the single point-based method consists of neighborhood selection, feature extraction and selection,
and classification of each individual point cloud [7-10]. A series of publications on this topic have
demonstrated the effectiveness of the approach. For example, Li et al. [7] proposed an ALS point cloud
classification method based on multilevel features fusion and pyramid neighborhood optimization.
Weinmann et al. [9] established a point cloud classification framework based on individual point
clouds to obtain optimal features and achieve accurate classification results. The authors evaluated
7 types of domain definitions, 21 geometric feature definitions, 7 feature selection strategies, and 10
classifiers. Li et al. [11] proposed a single point-based point cloud classification method based on
multiscale voxels features fusion derived by the deep learning network. However, in single point-based
methods, the representation of the geometric structure and contextual information in individual point
clouds has not been fully used, resulting in lower accuracy of point labeling. To solve this problem,
cluster-based classification approaches [12,13] have been proposed by adding a segmentation step
prior to classification. In this case, the basic processing units are not individual point clouds but the
segmented clusters, from which the high-level discriminative features are derived and used for the
final classification. For example, Xu et al. [13] proposed a cluster-based ALS point cloud classification
method. This method constructs content-sensitive multilevel point clusters based on the density
distribution of ground objects. The multilevel features of point clusters are constructed by sparse
coding and latent Dirichlet allocation based on point-based features. These multilevel cluster’s features
are finally used for classification. The advantage of pre-segmentation in works [12,13] is that it is not
affected by discontinuities and the poor quality of the input point clouds because the contiguous point
clouds are grouped into larger entities that share similar properties or relationships. This results in
homogeneous regions that are easier to interpret. Subsequently, the user-defined features that are
derived from the segmented clusters are fed into machine learning or deep learning algorithms for
final labeling.

The segmentation is the basis of many higher-level applications such as point cloud classification
or object detection. The segmentation performance and quality can significantly influence the accuracy
of point cloud labeling. To generate an ideal cluster result, the following properties are generally
desirable: (D The point clouds within each cluster should be homogeneous and the created clusters
should adhere well to the different object boundaries. @) The clusters should be fast to calculate,
simple to use, and should improve the quality of point clouds labeling. 3) The clusters should have the
function of topological self-organization, which means that the neighborhood relationships between
the clusters should be known. However, it is difficult to choose effective measures to generate the
clusters to meet the above-mentioned criteria, especially when segmenting complex scenes using
scattered point clouds [14]. Currently, segmentation algorithms based on point clouds can be generally
categorized into region-growing method, model-based method, and clustering method.

Region-growing method: This method aggregates the adjacent points into the same region based
on similar attributes. More specifically, a seed point is selected from the point set and the surrounding
neighborhood points are evaluated according to the predefined data structure. If the difference in the
measure between the seed point and its neighbors satisfies the growth criterion, the neighborhood
point is merged into the current point set. The new accepted point then becomes a new seed point and
the neighboring points are searched again. This process is repeated until all points have been processed.
Generally, the breadth-first search (BFS) and depth-first search (DFS) are commonly used strategies
and common aggregation criteria include the angle, normal vector, curvature, Euclidean distance,
texture, and RGB Value. For instance, Tovari and Pfeifer [15] proposed a segmentation method in
which the K-nearest neighbor (KNN) of each point was first determined and then the normal vector
of each point was calculated and was used as a criterion for the segmentation. Papon et al. [16]
presented a voxel-based method for region-growing segmentation. This method first transforms the
point cloud into voxels and selects initial seed regions (voxels). In the neighborhood of the seed region,
RGB color information, simple geometric features, and the Euclidean distance are used as the criteria
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for region-growing. This method ensures that the differences between the points in each cluster are
smallest and that the differences between the clusters are maximized. Although this method is simple
and effective, it is greatly influenced by the seed point selection and is constrained by the boundary
conditions. Furthermore, since the growth criterion is based on the correlation between the points, the
selection of low-level features has a large impact on the segmentation results.

Model-based method: In this method, the point cloud is segmented according to predetermined
geometric models. Initial simple assumptions are made, followed by model verification. Subsequently,
the points belonging to the same model are assigned to the same class. Among numerous
hypothesis-based models, the Random Sample Consensus (RANSAC) algorithm [17] is most frequently
used because it is a simple and powerful tool well suited for outlier detection, shape recognition,
and registration. For example, Wang and Shi [18] first segmented a point cloud into subunits using a
spatial grid. Then a local RANSAC algorithm was used to fit different models in the subunits, e.g.,
planes, cylinders, and spheres. Finally, the best model was determined using statistical inference.
Ni et al. [19] assumed that the inliers were located close to each other and proposed the so-called
GroupSAC algorithm that divides the input data by selecting samples from clusters containing many
inliers. A detailed discussion regarding the standard RANSAC algorithm and its variants can be
found in [20,21]. Rather than using RANSAC, Awadallah et al. [22] projected a point cloud into a
two-dimensional grid and obtained a two-dimensional gray-level image based on the mesh density.
Then the point cloud was segmented according to the gray-level image segmentation results using
a Snake model. In summary, model-based methods are well suited for extracting objects that can be
fitted by linear and/or nonlinear parameter estimation but are infeasible for free-form surface because
of lack of corresponding nonlinear models. Moreover, the applications of these kinds of methods are
limited by the classes of the model.

Clustering method: This method is an unsupervised learning method, which heuristically
clusters points with similar attributes into the same class to meet the requirements of cost functions.
Representative methods include the classic K-means algorithm [23], Euclidean distance clustering
algorithm [24], mean shift clustering [25-27], hierarchical clustering [28-30], sample density-based
clustering [31,32], and mixed kernel density function clustering [33]. For example, Wu et al. [24]
introduced a smooth threshold constraint to the traditional Euclidean clustering algorithm to prevent
over- and/or under-segmentation problems. The enhanced algorithm was used to segment a Kinect
point cloud contaminated with abundant noise and many outliers. Yang et al. [4] used a K-means
algorithm to solve segmentation problems in model construction for a reverse engineering project.
More specifically, the curvature of each points was first calculated. The Euclidean metric among
points was redefined and recalculated in a local rather than a global coordinate system by considering
the curvatures and geometric coordinates of points. Based on this newly defined Euclidean metric,
the point clouds are segmented by K-means clustering algorithm. The overall performance of the
clustering method is satisfactory, but it is significantly affected by different types of distance metrics.
In some complex scenes, the proximity of different objects reduces the accuracy of the clustering results.
In addition, it is usually impossible to segment objects with different scales, which is a desirable goal
because information at different scales provides significant clues to object detection and recognition.

After segmentation, the discriminative features are usually determined by fusing multiple features.
Some commonly used features include the view feature histogram (VFH) [34], clustered view feature
histogram (CVFH) [35], the length and width of the point set [36], the covariance features and shape
features of the point set. These features are regarded as effective descriptors for cluster classification
and recognition. These cluster-based features are fed into the classifier to finalize the labeling. From a
technical point of view, the mainstream classifiers mainly include unsupervised classifiers, machine
learning classifiers, probability and optimization-based classifiers, ensemble learning classifiers,
and deep learning classifier [37]. Each kind of method has its own advantages and drawbacks.
Especially for processing relatively small-sized point clouds, the probability and optimization-based
classifiers, e.g., conditional random fields (CRF) and Markov random fields (MRF) tend to be more
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promising than other methods because they result in more homogeneous clusters, and they consider
the spatial correlation among multiple labels by incorporating contextual information and different
types of prior knowledge into the algorithm, thereby improving greater flexibility and degrees of
freedom for users. However, most existing MRF and/or CRF algorithms only consider the unary
potential that is defined over a specific clique and pairwise potential that is defined over two cliques
consisting of the two nearest clusters. In this case, the contextual information and prior knowledge
have not been fully explored, thus leading to wrong labels in some complex scenes. To solve this
problem, in this paper, we propose a higher-order CRF-based 3D semantic labeling framework. More
specifically, the segmented framework simultaneously combines the existing classic algorithmes, i.e.,
the K-means and the density-based spatial clustering of applications with noise (DBSCAN) [31]
algorithms with the proposed probability density clustering algorithm to divide the raw ALS point
clouds into a set of clusters. This preserves the clusters’” homogeneity and neighborhood topology
among clusters. It is to be noted that DBSCAN algorithm can be regarded as a kind of region-growing
algorithms. After implementation of DBSCAN algorithm, the coarse-grained clusters are obtained.
K-means and the proposed density clustering algorithms can be regarded as a kind of clustering
methods. A set of fine-grained clusters is generated after implementation of K-means algorithm
and the topological relationships between the fine-grained clusters are maintained by the proposed
probability density clustering algorithm, i.e., the proposed segmented framework simultaneously
combines the region-growing method with the clustering method, which commonly ensures the
creation of homogeneous clusters with explicit topology. Based on these clusters and neighborhood
topologies, we propose a higher-order CRF energy function that consists of unary, pairwise, and
higher-order potentials defined over cliques consisting of more than two clusters to improve the
accuracy of cluster labeling. The higher-order cliques are more useful for good perception of contextual
information, thus improving the object classification and recognition. Given that our work is based on
the conventional CRF framework, we explicitly state our original contributions as follows:

e  Hierarchical Point Cluster Generation: We propose a multilevel clustering point set construction
method. The first-level clustering uses a density clustering method to aggregate the points
belonging to the same kind of object into a coarse cluster set. The second-level clustering uses the
classic K-means algorithm to over-segment the coarse cluster set into a fine cluster set, from which
the point set of the minimum processing unit is constructed. The third-level clustering uses the
proposed probability density clustering method to construct a cluster set at a high-level scale, i.e.,
the third-level cluster set includes one-to-many relationships with the second-level cluster set.
The multilevel clusters commonly provide greater use of contextual information, thus improving
the accuracy of clustering labeling.

o  Cluster Topology Maintenance Strategy: We present a strategy of constructing a neighborhood
system among clusters by turning the problem of topology maintenance of clusters into a
clustering problem based on the proposed probability density clustering method.

o  Higher-Order Energy Function: We propose a higher-order CRF energy function that considers
the constraints of the unary potential, the pairwise potential, and the higher-order potential
defined over cliques consisting of more than two clusters.

This remainder of the paper is organized as follows. Section 2 describes the detailed
methodology including data set descriptions, coarse-grained clustering, fine-grained clustering,
topology maintenance, and CRF labeling optimization. In Section 3, the performance evaluation results
of the labeling accuracy and effectiveness of the CRF cost function terms are presented, analyzed, and
discussed. Finally, Section 4 concludes the paper along with a few suggestions for future research topics.

2. Methodology

To accurately assign semantic labels, e.g., trees, buildings, and vehicles to ALS point clouds,
we propose a methodology that consists of four steps, which are outlined in Figure 1. The input
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raw data (Figure 1a) are first segmented into a set of coarse-grained clusters using the classic
DBSCAN algorithm, followed by over-segmentation using the K-means algorithm, thereby generating
fine-grained clusters (Figure 1b,c). Subsequently, we finalize the topology maintenance of the
fine-grained clusters by transforming the problem of topology maintenance into a clustering problem
based on the proposed probability density clustering algorithm (Figure 1d,e). In the last step, three
types of potentials, including the unary, pairwise, and higher-order potentials are embedded into the
CRF model to finalize the classification. In the labeling framework, we use as input the ALS point
clouds of residential and urban scenes, and generate point clouds with explicit semantic labels, i.e.,
trees, buildings, and vehicles (Figure 1f). It should be noted that the ground points are first filtered
using a cloth simulation filtering algorithm [38] because we only focus on non-ground point clouds.
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Figure 1. The flowchart of the proposed method.

Iterative clustering of the fine-grained
clusters

2.1. Materials

To evaluate the performance of the proposed classification algorithm, we use scenes (Figure 2a,d)
representing residential and urban areas in Tianjin, China to verify the accuracy of the proposed
algorithm. The two scenes were acquired in August 2010 using a Leica ALS50 system with a mean
flying height of 500 m above ground and a 45° field of view. The point density is approximately
20-30 points/m?. Scene 1 contains large buildings that are adjacent to dense trees and some vehicles
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scattered in this scene. Scene 2 is dominated by small-sized vehicles, which presents a challenge for the
classification algorithm because of the unbalanced classes. Thus, these two scenes are appropriate for
assessing the proposed algorithm. Because the proposed method is a supervised learning algorithm,
we manually select the different classes in the point clouds as training data. To achieve this goal,
registered aerial images and the commercial Terrasolid software package (http://www.terrasolid.
com/home.php) are used to collect the training samples in two- and three-dimensional data space to
improve the reliability of training data selection. In practice, we first use a stratified sampling scheme
for the selection of the most representative point clouds. The stratified sampling guarantees that the
selected point clouds are uniformly distributed and derived from different objects. Once the typical
points are selected, visual inspection is conducted by combining the registered aerial images and
interactive operations in two- and three-dimensional data space using Terrasolid software package.
The remaining point clouds in the two scenes are regarded as testing points. The statistics of the
training and testing data sets of the different classes in the two scenes are listed in Table 1.

Table 1. The statistics of the training and testing datasets in Scenes 1 and 2.

Training Data Testing Data
Tree  Building Vehicle Tree Building Vehicle

Scenel 68,802 37,128 5380 213,990 200,549 7816
Scene2 39,743 64,952 4584 73,207 156,186 7409

s e Pt
& = el ol 34
\:ﬁ“&"
-
R I CAL I L N
)

gy eres ol -y
114 ; R

() Scene2 i : (e) Training data Reference data

Figure 2. Two scenes for assessing the proposed algorithm. (a,d) are the residential and urban scenes
in Tianjin. (b,e) are the selected points with semantic labels from (a,d) for training. The corresponding
references are shown in subfigures (c,f). Please note that the point clouds in (a,d) are rendered according
to point clouds’ elevation, and other colors represent the semantic information, i.e., blue = trees, green
= buildings and red = vehicles.

2.2. Coarse-Grained Clustering Using DBSCAN

Since the geometric shapes of scanned objects are complex, conventional clustering algorithms
that are based on a rigidly fixed-point set/cluster are not suitable for complex scenes. To obtain


http://www.terrasolid.com/home.php
http://www.terrasolid.com/home.php

Remote Sens. 2019, 11, 1248 7 of 22

different numbers of clusters and different sizes of clusters corresponding to different objects, an
adaptive clustering algorithm is needed. To this end, we implement the initial clustering based on
the local point density and the connectivity of point clouds by using the classic DBSCAN algorithm.
After being clustered, a complex scene can be simplified into a series of disposable clusters. This
provides a solid foundation for the subsequent generation of a set of fine-grained clusters. The reason
for choosing the DBSCAN algorithm is that it is resistant to noise and can find clusters with concave
and convex shapes. In addition, the DBSCAN algorithm does not require the number of clusters as
input. In fact, DBSCAN only requires two parameters: Eps and MinPts. The parameter Eps specifies
how close the points should be to each other to be considered to be a part of the cluster, while the
parameter MinPts specifies how many neighbors a point should have to be included into a cluster.
After being clustered, the raw point clouds are clustered into three categories:

o  Core Point: Any point p with several neighborhood points that is greater than or equal to MinPts
is regarded as a core point.

e  Border Point: For any point p, if the number of its neighbors is less than MinPts, it belongs to
the e-neighborhood of some core points.

e Noise Point: If a point is neither a core point nor a border point, then it is called a noise point or
an outlier.

Based on these definitions, the core points with “density reachability” are clustered together to
form one cluster. Here, “density reachability” is defined as follows: given a dataset P={p1,p2, ..., Pn},
where p = p; and g = p,,. If a point from p; (i =1,2,...,n—1) is within the e-neighborhood of a point
pi+1, and the p; 1 is a core point, the point p;1 (i =1,2,...,n—1) is defined as “density reachable”
from a point p;. If the set of connection points leading from p; to p;;1 consists of only core points and
is “density reachable”, the point q is defined as “density reachable” from point p. The border points
are merged with the current cluster’s core points to form a class. The noise points are classified as
another class.

As shown in the outdoor scene in Figure 3a, even though the point clouds are noisy and have
outliers, we can roughly classify the point clouds of the same object into one cluster, as it is evident
in Figure 3b. Please note that different colors represent different clusters after implementation of the
DBSCAN algorithm. Compared with the labeling reference in Figure 3c, we observed that some trees
are close to the house, resulting in under-segmented clusters. To solve this problem, the coarse-grained
clusters generated by the DBSCAN algorithm are further refined by dividing them into smaller and
fine-grained point sets to guarantee the homogeneity of points within each fine-grained cluster.

"= ®

Figure 3. Coarse-grained cluster generation using the DBSCAN algorithm. (a) The raw point clouds.
(b) The clustering results after using DBSCAN. (c) The reference data. Please note that in (a), the point
clouds are colored by elevation. Different colors in (b) represent different clusters. A few colors have
been reused, as a result, different disjoint clusters may share the same color. The semantic colors in (c)
comply with the color code, i.e., green = trees, brown = buildings, and red = vehicles.

2.3. Fine-Grained Clustering Using K-Means

After coarse-grained clustering, the size of the segmented clusters is relatively large, and the results
do not consider the trends of the point distribution. In addition, the coarse-grained clustering does not
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provide homogeneous clusters, resulting in objects of multiple categories coexisting in each cluster.
To ensure that the segmented clusters provide better discrimination, the clusters should be uniform
size, and should contain only one single object or part of an object. To this end, the K-means algorithm
is used to aggregate the points with uniform distribution into a series of subclusters. As previously
mentioned in Section 1, three criteria are used for ideal segmentation. Fortunately, K-means algorithm
meets the first criterion by tuning the number of clusters K. In addition, K-means algorithm is simple,
efficient coverage, and easy implementation, which makes it compliance with the second criterion.
However, the K-means algorithm do not comply with the third criterion, i.e., the generated clusters
using K-means do not maintain the adjacent topological relationships, which are expected to be
restored by the proposed probability density clustering algorithm (see Section 2.4). The direct use
of the conventional K-means algorithm to segment the non-ground raw points is computationally
inefficient and large-scale raw point clouds cannot be processed. In contrast, if we implement the
K-means algorithm after each coarse-grained cluster has been created, the computational efficiency
is improved significantly based on the concept of “divide and conquer”. Furthermore, by using the
coarse-grained clusters as inputs of the K-means algorithm, multiple clusters can be processed in
parallel, thereby further enhancing the computational efficiency. Therefore, the coarse-grained clusters
derived from the DBSCAN algorithm are fed into the K-means algorithm to over-segment them into
smaller cluster with relatively uniform size, which is below a predefined threshold 7. The detailed
algorithm is given below:

The K-means algorithm is defined as follows: given a coarse-grained cluster C with a set of point
clouds S; = {p; € R3,(i=1,2,...,n)}, the number of predefined K (K < n) fine-grained clusters is
obtained by minimizing the following energy function [23]:

2

K
argminz E ||pi—pc , (1)

c=1p;eSe

where S, represents the point set from cluster C and p. is the centroid set of S;. The detailed aggregation
process is as follows:

(1) Choose an arbitrary cluster S; from the coarse-grained cluster set as a processing unit and then
randomly choose K points as the beginning centroids, i.e., pgo) €S.,i=1,2,..., K.

(2) Assign the point clouds within S, to their associated centroids according to the criterion of the
minimum Euclidean metric from a point to its associated centroid. After ¢ iterations, we obtain:

pi es?
1 [ 2
{ Hp,»—p((;t)H :min(||pi—p£,f) ),Ye,m=1,2,...,K, @

where min(-) represents the minimum Euclidean metric between two points.
(3) Update the centroid of each class:

1 1
;+1:n72%pj|pjesc“+ ) Ye=1,2,...,K. ®3)
f

(4) Repeat steps (2) to (3) until the centroid locations remain stable, i.e., SC(tH) = S,S(t),Vc =
1,2,...,K.

After the four steps, each coarse-grained cluster has been segmented into X subclusters S, ¢ =
1,2,3...,K. The number of points |S,| of each subcluster S;,c=1,2,3..., K is calculated. If it is less
than or equal to the predefined threshold 7, the subcluster is remained, otherwise, we regard it as a
new input to the K-means algorithm, i.e., we repeat steps (1) to (4) until the sizes of the segmented
clusters are less than 7. This process is executed iteratively, until all coarse-grained clusters have been
segmented. After the fine-grained clustering has been performed using the K-means algorithm, the
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coarse-grained clusters shown in Figure 4a are segmented into the fine-grained clusters depicted in
Figure 4b. It is observed that the clusters are more uniformly sized and have more homogeneous
semantic consistency.

gL s
"4 r@’?ﬁ“ e
SRS Syt

o (®)

Figure 4. Fine-grained cluster generation using the K-means algorithm. (a) The coarse-grained
clusters generated by DBSCAN. (b) The fine-grained clusters obtained by the K-means algorithm.
Please note that different colors represent different clusters. A few colors have been reused, as a result,
different disjoint clusters may share the same color.

2.4. Neighborhood Relationship Maintenance between Fine-Grained Clusters

Most methods that use neighborhood relationships (contextual information) for point labeling
depend on information from the individual point clouds. This pointwise neighborhood relationship
only represents the objects” local rather than the global geometric shapes. In addition, although the
features extracted from the fine-grained clusters are more discriminative, the results as shown in
Figure 4b do not include neighborhood relationships between the clusters. Intuitively, the adjacent
topology between clusters is an important factor in object classification and recognition because it
describes the objects” geometric shapes at a relatively high level. Although the KNN algorithm can be
used to establish the neighborhood relationships between the fine-grained clusters, it only maintains a
fixed number of neighboring clusters. This simple and rigid neighborhood topology may be effective
for the description of relatively simple geometric shapes but not for complex scenes. To create a more
effective cluster-based neighborhood system that is suitable for the subsequent CRF optimization
described in Section 2.5, we propose a probability density clustering method that changes the problem
of topology maintenance into a clustering problem between the fine-grained clusters. Because the
proposed clustering algorithm requires initial coarse labels of the fine-grained clusters as constraints,
we derive the initial coarse labels and execute the proposed clustering to obtain a new cluster set, from
which the neighborhood relationship is obtained.

2.4.1. Initial Coarse Labeling of Fine-Grained Clusters

To obtain the initial coarse labels of the fine-grained clusters, we first create distinctive features
for these clusters and then use a support vector machine (SVM) supervised classifier to train and label
the clusters as trees, buildings, and vehicles. In [29,39], it was demonstrated that the point covariance
matrix is an effective measure to describe the object’s geometric shapes and point clouds’ distribution;
thus the covariance matrix and its derived high-level features are selected as feature descriptors. More
specifically, we first extract the centroid of each cluster and estimate its covariance matrix. We can
easily obtain the three eigenvalues, i.e., A > A; > Ag and their corresponding eigenvectors, namely
vy, v1, and vg. The features that are derived by linear or nonlinear combinations of these eigenvalues
are regarded as covariance-based feature descriptors denoted as F.,,. For the ALS point clouds, the
elevation is one of the discriminative features for object recognition, thus the high-based descriptor
F; is used. We use the feature F, [7] for cluster labeling because it has good discriminative ability.
Specifically, to calculate the feature Fi5;, we first select a point from a set of points as the center of a
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sphere, and derive a histogram of the neighborhood points in the latitudinal direction. This feature is
used to distinguish different classes of points according to the distribution of the neighborhood points
in the latitudinal direction. This feature has the advantages of anti-occlusion, no influence of the local
coordinate system, as well as high efficiency [7]. The features used in this study are listed in Table 2.

Table 2. The selected features for the initial coarse labeling of fine-grained clusters. Symbol “-”
represents the specific descriptor that needs to be defined in each application.

Features Description
Ao+A1+Ay Sum of feature values
(Ag-Aq- Az)% Full variance
— Y3 A In(A) The entropy of feature values
Fooo  (Ay — Ag) /A2 Anisotropy property
(A1 —2A0)/Ag Planarity property
Ay = A1)/ Ay Linear property
Ao/ Ay Scattered property
1— <ep-(0,0,1) > Horizontal property
F, - Elevation characteristics
Fsn - Latitudinal sampling histogram

For each cluster, we extract these features and concatenate them into high-dimensional feature
vectors. The feature vectors are normalized and used in the SVM classifier with a Gaussian kernel
to train the model. Once the model has been established, the probability of each class is obtained.
The label of the class with the highest probability is the label of the current cluster. Please note that
the initial labels are not required to be more precise, but they are needed as an approximate input
to the subsequent clustering described in Figure 5. In addition, the initial coarse labeling provides
the probability of fine-grained cluster of belonging to the different classes, which presents useful
information for the subsequent CRF optimization described in Section 2.5.

Figure 5. Neighborhood topology maintenance between the fine-grained clusters. (a) The initial
coarse labels. (b) The results of the proposed probability density clustering. (c) The inclusive
relationship between the clusters generated by the proposed probability density clustering and the
fine-grained clusters. The inclusive relationships are clearly shown in the enlarged view in subfigure
(c) by the overlap of the two kinds of clusters.

2.4.2. Creation of Neighborhood System

Once we assign the coarse labels to the fine-grained clusters, we use these labels as constraints
to create the neighborhood system of fine-grained clusters. To this end, we transform the problem
of developing a neighborhood system into a problem of clustering based on the fine-grained cluster
set. More specifically, inspired by the concept of “probability density clustering” that is used in the
classic mean shift algorithm, we use the initial coarse labels and centroids of the fine-grained clusters
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as inputs. We assume that we have a centroid set X = {x;,i=1,2,...,K} and we arbitrarily select x; as
the centroid of the first cluster. Then we update the probability density of the current cluster as follows:

M, (x) = Yores, K(F5=)o(l — 1)x; . @
Yres, K()6(Li—1)

st 8l —=1) d;f{ 1, if 1=1,

0, otherwise,

where K(-) is a Gaussian kernel, the symbols I and [; represent the corresponding initial coarse labels
of the centroids x and x;, and S;, represents the spherical areas with radius & and is defined by
Si={yl(y — )T (y — x) < 2},

The entire clustering algorithm consists of the following seven steps:

(1) Select an initial cluster center from the unlabeled set X, and set its class as the current
cluster’s label.

(2) Label the centroids of the cluster in Sy,. If they are consistent with the label of the current centroid,
we update the accumulator.

(8) Calculate the deviation vector using Equation (4) and update the center of the current cluster.

(4) Repeat steps (2) to (3) until the mean deviation is less than a threshold, i.e., || Mj,(x) H <E€.

(5) Determine whether the Euclidean metric from the current cluster’s center to the existing center
is less than ¢ If it is true, these two clusters need to be merged, otherwise the current cluster is
regarded as a new cluster.

(6) Execute the steps from (1) to (5) until all the centroids of the clusters have been assigned a specific
label.

(7) For each centroid of a cluster, we assign the label with the highest frequency of visits as an
associated label.

In summary, once the initial coarse labels are given (see Figure 5a), the proposed probability
density clustering algorithm generates a new cluster set (see Figure 5b), each of which includes one
or more fine-grained clusters, i.e., the neighborhood topology between the fine-grained clusters is
implicitly embedded in the newly generated clusters. The inclusive relationships are shown in the
enlarged view in Figure 5c¢ by the overlap portion of the fine-grained and the newly generated clusters.

2.5. CRF Classification with Higher-Order Potentials

As described in Section 2.4.1, the point classification based on the features of the individual clusters
is not stable and is subject to noise and outliers. In this section, we describe the establishment of the
higher-order CRF model by integrating the label of the fine-grained clusters and the neighborhood
topology between the fine-grained clusters to obtain the final class labels. The CRF model is a
type of discriminative probabilistic model based on an undirected graph (UG). It is a modeling
approach for determining the conditional probability of multiple variables given observation data [40].
This model not only considers the individual cluster’s label but also the neighborhood relationship
between the clusters. We use the initial labels of the clusters (Section 2.4.1) and the neighborhood
topology (Section 2.4.2) to construct the high-level CRF model to finalize the classification of the
fine-grained clusters.

The undirected graphical CRF model is a joint probability distribution model that satisfies the
global Markov property. In this model, each vertex denoted by variable v represents one or a group
of variables. The edge e connecting two vertices indicates the relational dependency between them.
All vertices are stored in a set V, and all edges are maintained in a set £, and the UG is denoted as
G = (V, ). If two vertices in the subset of the UG have a connected edge, this subset is called a clique.
If the clique does not exist exclusively within the vertex set of a larger clique, the subset of the vertex
set constitutes a maximal clique, i.e., a maximum clique is a clique of the largest possible size in a
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given UG. In our case, the vertices in the UG correspond to the fine-grained clusters and the edges
correspond to the neighborhood topology between the fine-grained clusters.

We assume that a set £ = {Iy,1,...,1,} represents the initial labeling results of the fine-grained
clusters and the set Y = {y1,¥2,...,yn} denotes the corresponding real labels of each cluster. The
objective of CRF is the creation of conditional probability model P()|L£), which is defined as [41-43]:

P())\ﬁ) = %ei Yeec ro(ljc), (5)

where Z is a normalization factor that is used to normalize P () |L) to a specific scale. ¢.(y.) represents
a potential function of a group ¢ belonging to a label y.. Therefore, our objective is to obtain the optimal
label configuration Y = {y1,y2,...,yx} that maximizes the probability P()|L). We use the logarithm
of the negative value of Equation (5) and transform the maximization problem into a minimization
problem [41-43]:

E(Y) = —logP(VIL) —10gZ = Y ¢c(yc)- (6)

ceC

The labeling optimization problem is transformed into [41-43]:

E(Y) = argmaxP(Y|L) = argmin E()). (7)
yey yey

More specifically, our complete model is represented by three types of potentials, including the
unary potential, pairwise potential, and higher-order potential:

EQ)=Y oivi)+ Y oii(viy) + Y ¢clye), 8)

ieV (ij)ee [e|>2

where the first two terms Yicy ¢;(yi) and Y(; e 9ij(vi, y;) are the unary and pairwise energies and
the last term Y|~ ¢c(yc) is the higher-order energy.

The unary term penalizes the discrepancy between the initial cluster and the solution labels and
is defined as:

@i(y;) = et P, )

where P (y;) represents the point i’s probability belonging to class y;. The unary potential is calculated
using the initial labels and the probability of each fine-grained cluster belonging to different classes
(see Section 2.4.1). Unlike with other feature descriptors, we directly use the initial probability of the
cluster to create more accurate results and simplify the calculation.

The pairwise term is used to constraint the discrepancy between the nearest neighborhood clusters
to ensure that the labels are identical. In other words, this interaction potential provides a definition
of smoothness and penalizes changes between the current cluster and their nearest neighbors. The
pairwise term is defined as follows:

_ ) A iy
901](%,]/]) - { 0, otherwise, (10)

where A, is a balanced parameter and dist represents the Euclidean distance between the centroids of
two clusters.

Studies have shown that the potentials defined by using higher-order cliques are highly
suitable [42,43]. Therefore, inspired by these works, in this study, we include the higher-order potential
in the CRF model to improve the classification accuracy. Here the higher-order potential means that
the potential defined over cliques consists of more than two vertices/nodes. The higher-order term
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better describes the spatial context of 3D point clouds and it incorporates prior knowledge in the CRF
model. In addition, it constrains the inconsistency among vertices and ensures that the labels are
similar for higher-order cliques. To ensure smooth change of the hider-order term, we use the robust
P, Potts [41] model to design this energy term; it is defined as follows:

@c(ye) ={ NEe) §rmar, if Niye) < Q, o

Ymax, otherwise,

where V! (y.) represents the number of vertices with label I in the cliques. Q is a truncation function
threshold. It is used to determine the energy function of the higher-order term by comparing the
number of clusters belonging to class ¢ within a higher-order clique; if this number is small, the
energy value of the higher-order term is high. 74y is used to smooth the effect of each cluster in the
higher-order clique.

To solve Equation (8), a primitive dual algorithm called SoSPD proposed in [44] is used to optimize
the objective function. The algorithm uses a so-called “supplementary relaxation” rather than the
conventional maximum flow to optimize the energy function. More precisely, this algorithm first
performs linear programming relaxation for Equation (8) and executes a supplementary relaxation.
During this process, these two steps must satisfy two conditions, i.e., low-order and higher-order
relaxations, i.e., the original and dual solutions are similar initially to satisfy the low-order relaxation
until it converges to simultaneously satisfy the low-order and higher-order relaxations.

3. Performance Evaluation and Discussion

In this section, we briefly introduce the hardware configurations and parameter settings of the
workflow. Subsequently, we qualitatively evaluate the classification results by conducting a visual
comparison with the reference data. In addition, we quantitatively evaluate the classification results
using the selected measures, i.e., precision, recall, accuracy, F;-score, and mF;. We also compare our
results with the results generated by the state-or-the-art methods and test the effectiveness of the
proposed CRF model by using an “ablation study” strategy.

3.1. Implementation

The experiment is conducted using a personal computer equipped with a 4.2 GHz Intel Core
i7-7700K CPU and 24-GB of main memory. The implementation of the proposed algorithm is performed
using the open source Point Cloud Library, i.e., PCL1.8.0 (http://pointclouds.org/) embedded in
the Microsoft Visual C++ integrated development environment. In addition, the relevant parameter
setting is based on the characteristics of the objects in these two scenes, e.g., the geometric shapes and
the ALS point density of the objects. To obtain the optimal input parameters, we use a trial and error
strategy to determine the appropriate values. More specifically, in the DBSCAN clustering, we obtain
good results when using the parameter Eps in the range [0.7,1.5] and the parameter MinPts in the
range [6, 10]. Similarly, in the over-segmented K-means algorithm and the procedure of topological
maintenance using the proposed probability density clustering algorithm, we use the thresholds 7 in
the range [200, 300] and the clustering radius & in the range [0.8, 1.5], i.e., our algorithm is insensitive to
changes in the parameter settings over a wide range of values. Based on the above-mentioned analysis,
in our scenario, the optimal values Eps =1 m, MinPts =8, T = 300, and & = 1 m are used as input to
the workflow.

3.2. Comparisons

To demonstrate the superiority of the proposed algorithm, we conduct a qualitative comparison of
our method with several state-of-the-art methods, namely Method 1 in [45], Method 2 in [46], Method
3 in [7], Method 4 in [47] and Method 5 in [48]. The characteristics of these methods are detailed in
Table 3.
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Table 3. Comparison with five methods in terms of “Basic Unit”, “Point Set Construction”, “Feature
Expression”, “Optimization”, and “Classifier”.

Methods Basic Unit Point Set . Feature Expression Optimization Classifier
Construction
Method 1 In(thldual None Geqmgtry, s’rreng’rhf apd Region JointBoost
point statistical characteristics growth
Method 2 In(thldual None Spin Image feature and None AdaBoost
point Feov
Individual Multiscale Multiscale
Method 3 point None F; + Foop + Fp[gng neighbor SVM
Method 4  Point set Graph cut apd linear ~ LDA model based on Spin None AdaBoost
transformation Image features and Fcov
Graph cut and DD-SCLDA model based Discriminatin
Method 5  Point set exponential on Spin Image feature . . &  AdaBoost
. inheritance
transformation and Feop
Our . . . High-order
Method Point set Multilevel clustering  F, + Feop + Frsy CRF SVM

The comparison results of Scene 1 and Scene 2 are shown in Figures 6 and 7. The results indicate
that the other five methods result in numerous omission and commission error. More specifically,
the building’s step edges and/or ridge edges are mistakenly classified as trees. Some parts of dense
vegetation areas are incorrectly classified as buildings. Many small-sized vehicles have not been
correctly and completely recognized. In contrast, thanks to the higher-order CRF optimization based
on clusters, the point labels of the proposed method are more homogeneous, which makes it suitable
for applications that require semantic class labels of point clouds. For example, the building points
can be used for 3D building contouring and the tree points can be used for tree modeling and tree
species identification. In Figure 7, we observe that this scene is dominated by small-sized vehicles
and it is a challenge to segment these small objects from the imbalanced classes. Fortunately, it is
evident that our proposed method is superior to the other methods, especially for recognizing the
small-sized vehicles. Most of the vehicles in Scene 2 have been correctly labeled and recognized,
except for some vehicles consisting of few points or being covered by dense vegetation. Although we
obtain a good classification performance in the urban and residential scenes, the buildings in some
areas denoted by the red rectangles are mistakenly classified as trees and some red ovals are falsely
labeled as buildings. These misclassification errors occur because the features presented in Table 2 are
straightforward and relatively simple, although we consider the labels of neighborhood clusters to
assist in classification. However, once many neighborhood clusters have been mislabeled, the cluster
itself suffers from misclassification errors.
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Figure 6. Comparison of the performance of six methods of classifying a residential scene.
Subfigures (a—e) are the results generated by the state-of-the-art Methods 1 to 5. Our results are
shown in (f). The color legend is defined in Figure 2.

@ @ ®

Figure 7. Comparison of the performance of six methods of classifying an urban scene. Subfigures
(a—e) are the results generated by the state-of-the-art Methods 1 to 5. Our results are shown in (f).
The color legend is defined in Figure 2.

We further use five measures, namely the precision, recall, accuracy, Fj-score, and mF; to
quantitatively evaluate the proposed method. Precision is the ratio of correctly predicted positive
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observations to the total predicted positive observations, i.e., precision = TP /(TP+FP) [49]. Recall is
the ratio of correctly predicted positive observations to all observations in the positive class i.e., recall
=TP/(TP + EN) [49]. Accuracy is the most intuitive performance measure and is the ratio of correctly
predicted observations to the total observations, i.e., accuracy = (TP + TN) /(TP + FP + TN + EN) [50].
Fy-score is the weighted average of the precision and recall and is defined as: F-score =2 x (recall x
precision)/(recall + precision) [13]. Therefore, this score takes both false positives and false negatives
into account. It is more useful than the other three measures, especially if the scene has an uneven
class distribution.

In Table 4, we provide the statistics of the four measures. Although our method does not have the
highest precision or recall for all classes, we achieve a good tradeoff between precision and recall and
the overall accuracies are 95.4% and 95.2% for Scene 1 and Scene 2, respectively. Since the percentage
of the training vehicle points is relatively low (see Table 1), the accurate labeling of vehicles has become
more challenging, i.e., we confront class imbalanced problem in Scene 1 and Scene 2. However, in this
case, we still obtain the highest F;-score values of 73.7% and 66.9% for vehicle labeling in Scene 1 and
Scene 2. This proves that our method has an advantage in terms of classification of small vehicles over
other state-of-the-art methods. The Fj-score values for trees and buildings in Scene 1 are 95.9% and
95.8% and are the highest values among Methods 1-5, thereby obtaining the highest mF; value. Please
note that the mF; measure is calculated by averaging all classes of the Fj-scores in the scene. It is a
comprehensive indicator to represent the overall performance of scene labeling. Similarly, we obtain
the highest mF; value of 86.1% for Scene 2 and the F;-scores for trees, buildings, and vehicles are 93.4%,
98.0%, and 66.9%. Although 93.4% for the F;-score for the tree class is not the highest value, we achieve
a good balance among all classes and the highest mF; value of 86.1% for Scene 2. It should be noted
that although numerous small-sized vehicles are scattered in Scene 2, we still obtain 95.2% accuracy,
which is slightly smaller than 95.5% of Method 5 because some building point clouds are falsely
classified as vegetation. Although our method for classifying buildings and vehicles outperforms
Method 5, the overall number of point clouds with corrected semantic labels is lower than that of
Method 5. In fact, the number of tree points in Scene 2 is ten times that of the number of vehicle points;
therefore, many misclassified tree points greatly affect the accuracy of the proposed method. This
also explains why the F;-score of 93.4% for the tree class is lower than that of Method 3 (95.6%) and
Method 4 (94.6%). However, it should be noted that a high accuracy does not mean that Method 5 has
a good classification performance, i.e., the classification algorithm should consider the performance of
all classes. Therefore, some measures such as Fj-score or mF; are recommended when evaluating the
overall performance of classification algorithms.
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Table 4. Quantitative comparison of six classification methods using measures of “precision/recall”,
“accuracy”, “Fj-score”, and “mF;”. The values from columns of tree, building, and vehicle correspond
to “precision/recall”. The measure of “accuracy” means the overall performance of three classes. The
values of “Fj-score” correspond to tree, building, and vehicle. The last column represents the value of
“mF;” measure, which is calculated by averaging the three classes.

Methods Tree (%)  Building (%) Vehicle (%) Accuracy (%) Fi-Score (%) mkF; (%)
Method 1 85.7/929 92.0/83.8 56.9/54.7 87.9 89.2/87.7/55.8 775
Method 2 89.7/98.1 97.9/89.1 65.2/46.6 929 93.7/93.3/544 805
Scenel  \fothod 3 99.2/849 86.8/99.3 99.9/42.7 919 91.5/92.7/59.8 81.3
Method 4 94.8/93.8 93.5/92.3 41.2/66.7 92.6 94.3/929/509 79.4
Method 5 93.1/96.0 95.2/92.6 73.3/62.2 93.7 94.5/939/67.3 852
Our Method 95.5/96.4 96.1/95.4 76.7/70.9 95.4 95.9/95.8/73.7 88.5
Methods Tree (%) Building (%) Vehicle (%) Accuracy (%) Fi-Score (%) mF; (%)
Method 1 73.9/91.2 93.6/88.2 29.5/25.4 87.2 81.6/90.8/27.3 66.6
Scene 2 Method 2 86.8/91.2 96.8/95.5 44.1/34.8 92.2 88.9/96.1/389 74.7
Method 3 83.2/929 98.5/92.8 62.6/65.7 92.0 95.6/87.8/64.1 82.5
Method 4 90.3/939 97.6/96.5 49.4/42.0 94.1 92.1/97.0/454 78.2
Method 5 94.7/94.5 98.1/97.7 53.9/60.5 95.5 94.6/979/57.0 83.2
Our Method 92.3/94.5 98.2/97.8 71.5/62.8 95.2 93.4/98.0/66.9 86.1

3.3. Effectiveness of CRF Model

To demonstrate the superiority of the higher-order CRF classification model, we use an “ablation
study” to compare three different configurations including classification without CRF optimization,
a low-level CRF model using only first- and second-order terms, and a high-level CRF model using
first- and second-order terms, as well as higher-order terms. In these three cases, we use the F;-score
and mF; measures to evaluate the classification accuracy of the two scenes. The results are shown in
Table 5. It is evident that without CRF optimization, we obtain the smallest F;-score and mF; score
for all classes in the two scenes, indicating the effectiveness of the CRF optimization. If we use the
low-level CRF model in the workflow, it is expected that the results are superior to the methods without
using CRF optimization, but the improvement is not large. For the high-level CRF model, we obtain
mF; score of 88.5% and 86.1% for Scene 1 and Scene 2, indicating that this method outperforms the
other two methods.

Table 5. Classification performance of methods (F;-score and mF;) with three configurations.

Configurations  Tree (%) Building (%) Vehicle (%) mF (%)

Scenel Without CRF 92.5 90.5 67.9 83.7
Low-level CRF  92.7 93.6 68.9 85.1
High-level CRF  95.9 95.8 73.7 88.5
Configurations  Tree (%) Building (%) Vehicle (%) mF (%)

Scene2 Without CRF 85.9 94.7 61.1 80.6
Low-level CRF  90.2 96.1 64.2 83.5
High-level CRF 93.4 98.0 66.9 86.1

3.4. Discussions

From the above-mentioned qualitative and quantitative analyses, we can conclude that the
cluster-based classification algorithms, i.e., Methods 4 and 5 and the proposed method are more
accurate than the point-based methods because the former methods include more contextual
information and the estimated features are more stable and robust. Our results in Figures 6 and 7
are more homogeneous than those of the other methods and there are few scattered points of other
classes within the boundary of a specific class. The class boundaries are better defined. Although
Method 3 resulted in relatively high precision and/or recall, the completeness of a specific object
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cannot be guaranteed. Although the cluster-based Method 5 provides good point labeling, it includes
some obvious error and the results are not as homogeneous as the proposed method. In contrast,
our method results in more accurate point labels and complete geometry, which is important for
detailed applications of semantic point clouds, such as vectorization of buildings and reconstruction
of buildings.

The good performance of the proposed method is attributed to the following three reasons:

(a) Self-adaptive Segmentation: In outdoor scenes, the objects have various shapes and sizes.
The simple segmentation according to rigid number and the size of the clusters cannot adapt
to various objects. In this case, the self-adaptive segmentation algorithm is required. The
proposed workflow is adaptation-aware and is shown in two aspects: (D The coarse-grained
clustering using the DBSCAN can identify any shapes of clusters according to the distribution
of point clouds. The implementation cannot require the number of clusters and can easily
find the noise and outliers. 2) We propose probability density clustering algorithm to ensure
topological maintenance between adjacent fined-grained clusters. The adaptive characteristics
is represented by aggregating different number of fine-grained clusters into a high-level cluster,
from which one-to-many relationships are included. That is the number of fine-grained clusters
in a generated cluster is not fixed and is determined by the shapes and local properties of the
objects. Self-adaptive segmentation ensures reasonableness of generated clusters at different
levels.

(b) Multilevel Clustering: The feature of cluster is more robust and stable compared to individual
point clouds. Therefore, we propose three-level cluster generation strategy: the first level creates
coarse-level clusters using DBSCAN algorithm. The second level clustering uses conventional
k-means algorithm to over-segment the coarse-level clusters into a set of fine-grained clusters.
The proposed probability density clustering algorithm works at the third level; it aggregates the
fine-grained cluster set into a high-level scale, i.e., the third-level cluster set includes one-to-many
relationships with the second-level clusters. Multilevel clustering can better explore the contextual
information between the objects in outdoor scenes. Although there exists a multilevel cluster
construction algorithm in [13], the size of generated clusters is linearly increased, causing no
apparent feature discrepancy of the objects.

(c) Higher-Order CRF Optimization: To optimize the point labeling using the proposed
higher-order CRF model, we not only consider the adjacent clusters but a wider local area
based on the neighborhood relationship between the clusters. More precisely, we design the
higher-order potential and embed it into the CRF optimization. The higher-order potential can
fully perceive the prior knowledge and contextual clues, thereby improving the accuracy of
classification and recognition.

Through the above analysis, we believe that the three strategies, namely self-adaptive segmentation,
multilevel clustering, and higher-order CRF optimization guarantee that the proposed method can
theoretically result in a better outcome compared to other point-based and/or cluster-based methods
listed in Table 3.

4. Conclusions

In this paper, we have presented a novel CRF-based 3D semantic labeling algorithm for assigning
semantic information in ALS point clouds. Instead of using point-based semantic labeling, this
algorithm is based on higher-level clusters that are created by integrating the DBSCAN and the classic
K-means algorithms, followed by the proposed probability density clustering algorithm. Using the
over-segmented clusters as the basic processing units has two advantages: (D The computational
efficiency is significantly improved during the CRF optimization. ) All individual points and clusters
have explicit contextual information, which facilitates the detection of the object by the classifiers.
To determine the neighborhood topology between the generated clusters, we transform the problem of
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topological maintenance into a clustering problem using the proposed probability density clustering
algorithm. This algorithm maintains a flexible neighborhood system in a natural intuitive manner
and does not require the rigid and fixed numbers of a neighborhood system used in conventional
methods. Finally, these cluster entities and their contextual information are used for labeling the points
by incorporating unary, pairwise, and higher-order potentials established on different levels of cliques,
thereby achieving better point cloud labeling. Compared with five other state-of-the-art methods,
the classification of urban and residential scenes with the proposed method has better classification
accuracy and there is a good tradeoff between precision and recall; the mF; measures are 88.5% and
86.1% for Scene 1 and Scene 2, respectively. In addition, it is found that the CRF optimization with
higher-level potentials defined over cliques consisting of more than two clusters is effective and the
highest labeling performance is obtained in terms of the Fj-score and mF;.

Although our algorithm achieves promising classification accuracy for the Tianjin data set, there
are some drawbacks and interesting ideas which can be further explored to extend the research
reported in this paper. We use the initial labels to design the CRF’ unary term. These initial labels
are obtained by using the cluster features defined in Table 2. In some cases, the low-level features
of the clusters are not stable. In future works, we plan to use a deep learning method to extract
the high-level cluster features for better discrimination of the cluster’s properties. In addition, if we
use higher-order potential terms in the CRF optimization, a large number of iterations is required,
and the computational cost will increase along with an increase in the cluster number; this makes
the processing of large-scale ALS point clouds impossible. For this problem, we plan to explore the
in-depth properties and topologies of different levels of clusters to control the number of participating
cluster entities.
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