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A new method is suggested here for topology prediction of helical trans-
membrane proteins. The method is based on the hypothesis that the
localizations of the transmembrane segments and the topology are deter-
mined by the difference in the amino acid distributions in various struc-
tural parts of these proteins rather than by speci®c amino acid
compositions of these parts. A hidden Markov model with special archi-
tecture was developed to search transmembrane topology corresponding
to the maximum likelihood among all the possible topologies of a given
protein. The prediction accuracy was tested on 158 proteins and was
found to be higher than that found using prediction methods already
available. The method successfully predicted all the transmembrane seg-
ments in 143 proteins out of the 158, and for 135 of these proteins both
the membrane spanning regions and the topologies were predicted cor-
rectly. The observed level of accuracy is a strong argument in favor of
our hypothesis.
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Introduction

Integral membrane proteins play important and
functionally diverse roles in living cells. So far, two
basic classes are known, according to the structure
of the membrane spanning segments. In the ®rst
class, all the transmembrane segments form an
a-helical structure with lengths of 17 to 25 amino
acid residues (von Heijne, 1994). Members of the
second class are only known in the bacterial outer
porins that have a 16-stranded b-barrel structure
(Weiss & Schulz, 1992). While experimental struc-
ture determinations of globular proteins by means
of X-ray crystallography are becoming more rou-
tine (Lattman, 1994), we cannot nurse such hopes
for integral membrane proteins, due to the dif®cul-
ties in crystallization of these proteins, though
there are some new encouraging methods in sight
(Gouaux, 1998).

However, it is commonly accepted that topology
prediction of membrane proteins is easier, and

results in higher accuracy than the prediction of
the secondary structure of globular proteins. The
number of known sequences is increasing rapidly,
resulting in a large gap between that and the num-
ber of known structures. Since prediction methods
are the most convenient and least expensive ways
of determining proteins structures, there is a great
demand for developing ef®cient prediction
methods. In addition, comparison of prediction
methods based on different ideas can help to reveal
the principles governing the structure formation of
proteins.

The development of prediction of transmem-
brane helices in integral membrane proteins pro-
ceeded via several steps. The ®rst approaches
were based on hydrophobicity analyses (Kyte &
Doolittle, 1982; Eisenberg et al., 1984; Engelman
et al., 1986; Cornette et al., 1987; Esposti et al.,
1990; Ponnuswamy & Gromiha, 1993; Gromiha &
Ponnuswamy, 1995), i.e. they used information
only about the amino acids that contributed to
the formation of transmembrane helices. Their
accuracy could be increased by exploiting infor-
mation not only from transmembrane segments:
namely, by considering the different charge distri-
bution between the inside and outside loops
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(Boyd et al., 1987; Hartmann et al., 1989; von
Heijne, 1992; Sipos & von Heijne, 1993). As the
number of experiments dealing with topology
increased in the last few years, resulting in more
reliable data, several statistical procedures were
developed by applying whole amino acid distri-
butions in various structural parts of proteins for
the predictions (Jones et al., 1994). Using the
advantages of neural network-based algorithms
and combining prediction methods with multiple
alignments (Persson & Argos, 1994, 1996;
Lohmann et al., 1994; Rost et al., 1995, 1996;
Casadio et al., 1996), the accuracy of the topology
prediction reached the 70 to 80% level, while the
accuracy of the prediction of the transmembrane
helices reached the 90 to 95% level.

In a previous paper from our group a new meth-
od was used for sequence alignment of transmem-
brane proteins having a very low level of sequence
similarities (CserzoÂÂ et al., 1994). By this method we
were able to locate the corresponding transmem-
brane segments and the method also give a high
score for all pairs of transmembrane helices, indi-
cating that certain transmembrane characteristics
(namely the amino acid composition of these seg-
ments) are more relevant than the actual sequence
similarity in the alignment. A prediction method
based on this observation works well on a set of
prokaryotic integral membrane proteins (CserzoÂÂ

et al., 1997). The application of the amino acid
composition in distinguishing between the extra-
cellular and intracellular proteins (Nakashima &
Nishikawa, 1994) or in de®ning the folding class
of proteins (Chou, 1995) shows that the amino
acid composition of proteins contains enough
information to predict their structure in ``large
resolution''.

Studying amino acid similarity in a large data-
base by means of independence divergence calcu-
lation indicates that from the viewpoint of
structure formation amino acids may be classi®ed
into slightly different groups than one would
expect on the basis of their physico-chemical par-
ameters (TusnaÂdy et al., 1995). Since there is a
big difference between the physical environments
of the membrane-spanning segments and the
cytoplasmic or extracytoplasmic sides of the
membrane proteins, it is not suprising that the
amino acid compositions of these parts are differ-
ent. Therefore, it seems reasonable to expect that
a more accurate prediction can be developed
when the amino acid compositions of these seg-
ments are considered instead of using physico-
chemical parameters like the hydrophobicity of
the amino acids. Since integral membrane pro-
teins have functionally diverse roles in cells and
they are in different environments, these facts
must be re¯ected in their amino acid compo-
sitions. Thus, enforcing some predetermined or
common amino acid compositions of the struc-
tural parts of these proteins in topology predic-
tion may produce false results.

Our method is based on the hypothesis that
the differences between the amino acid distri-
butions in the various structural parts are the
main driving force in the folding of the mem-
brane proteins, i.e. the topology of transmem-
brane proteins may be determined by the simple
fact that the amino acid compositions of the var-
ious structural parts do show maximum differ-
ences rather than by enforcing speci®c
compositions in these parts. The difference
between two distributions can be characterized
by the divergence function (Kullback, 1959;
Gokhale & Kullback, 1978). Divergence calcu-
lation was demonstrated to be a useful tool in
sequence database analyses in our earlier work
(TusnaÂdy et al., 1995). Here we use the sum of
divergence values between the distribution of
amino acids of the structural parts and the distri-
bution of residues in the whole protein to
measure differences in the amino acid distri-
butions of the structural parts. This sum differs
only in a constant from the log-likelihood, there-
fore the topology of membrane proteins can be
determined if their amino acid sequences can be
segmented to some part (e.g. inside, outside and
membrane) in such a way that the product of the
relative frequencies of the amino acids of these
segments along the amino acid sequence should
be maximal. Using more types of structural parts
or enabling some controls on the length of the
various segments may enhance the power of the
method. We can solve this task with use of hid-
den Markov model (HMM).

HMM is widely used in bioinformatics. The
most widespread use of this method is in aligning
sequences and generating pro®les for protein
families (Baldi et al., 1994; Krogh et al., 1994a;
Hughey & Krogh, 1996). The pro®le shows the
common sequence motifs of biopolymers
(Lawrence & Reilly, 1990) or can be used for data-
base searching for ®nding new sequence homologs
for a given family (White et al., 1993; Krogh et al.,
1994b; Borodovsky et al., 1995). A special appli-
cation of this alignment procedure is in protein
topology prediction using secondary structure
sequences (Francesco et al., 1997). Secondary struc-
ture predictions not based on alignment were also
developed (Asai et al., 1993; Stultz et al., 1993;
White et al., 1993), though their accuracies were
modest.

In contrast with other prediction methods HMM
can be suited to particular problems. Any actual
structural knowledge may be incorporated into the
model's architecture in order to increase its predic-
tion power and to learn more about these proteins.
Here, a special HMM is described showing that the
maxima of the likelihood function on the space of
all possible topologies of a given amino acid
sequence correlate with the experimentally estab-
lished topology. The accuracy of this method was
tested in three different data sets. Prediction
methods published earlier were compared with
our method, to uncover the principles governing
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the structure formation of integral membrane
proteins.

Results and discussion

The hidden Markov model

Investigations of the transmembrane topology of
proteins give the impression that transmembrane
segments are not located randomly in the
sequences. These segments tend to group. To test
this hypothesis the length distribution of the seg-
ments between transmembrane helices or at the
ends of polypeptide chains was checked. In a
purely random case the distribution of these seg-
ments would be close to geometric distribution as
shown in Figure 1, but segments of transmembrane
proteins show a different distribution. Short loops
with lengths between around ®ve and 30 amino
acid residues were observed signi®cantly more
often than would be expected, when transmem-
brane segments were placed into the sequences
randomly. Building this distribution into a predic-
tion method may increase its accuracy.

This particular loop length distribution may be
the consequence of the structure of the membrane
and its environment. The asymmetry of lipid com-
position between the two halves of the lipid bilayer
in most membranes has been well known for a
long time (Bergelson & Barsukov, 1977; Rothman
& Lenard, 1977). While phospholipids are more
abundant in the cytoplasmic part of membranes,
glycolipids are found mostly in the extra-cyto-
plasmic part. It was shown that the orientation of
membrane depends on the anionic phospholipid
content of the membrane, which suggests that

interactions between the negatively charged head
of phospholipids and positively charged amino
acid side-chains affect the orientation of membrane
proteins (van Klompenburg et al., 1997). Keeping
in mind this feature of membranes, one would
expect characteristic length and amino acid distri-
bution in short loops between transmembrane
helices and in the polypeptide chains close to the
helices.

The architecture of HMM developed for top-
ology was designed to exploit these particular
properties of integral membrane proteins as well
as the generally considered features. The model
consists of ®ve structural states, as shown in
Figure 2. The ®ve states are as follows: inside loop,
inside helix tail, membrane helix, outside helix tail
and outside loop. The helix parts are embedded in
the membrane. The term loop means the longer
part of a sequence outside the membrane, which
can form a domain or a simpler structure. The tail
is the elongation of the membrane helix, and it can
be followed by a loop or another tail, forming a
short loop interacting with the outside or inside
part of the membrane. Note that this model is simi-
lar to that used by Jones et al. (1994); the differ-
ences are in the localizations and in the
interpretation of helix tails, which were called helix
ends in that study. While helix tails are not in the
membrane, helix ends are the very ends of helices
located in the membrane.

The power of the model lies in the architecture
of possible transitions between states. According to
the observations that the length distribution of the
long loops (lengths above 30 residues) is close to
geometric distribution, but the length of the short
loops (about 5 to 30 residues) between helices fol-
lows a special distribution, two types of states
were de®ned. These two types are the non-®xed
length (NFL) and the ®xed length (FL) states. From
an NFL state there are only two possible tran-
sitions: one to the same state, which increases the
length of this state and the other to the next state.
This simple architecture of the NFL type transition
matrix ensures that the length of this state can be
arbitrary and the distribution of the lengths is geo-
metric. The structure of the FL state is more com-
plex. This state is split into MAXL substates in
order to limit its length to between a minimum
and a maximum (MINL and MAXL, respectively).
There is only one possible transition from each of
the ®rst MINL substates and it is to the next sub-
state. In each substate between MINL and MAXL
there is another possible transition, which is to
jump from the current state to the next state. The
observation-symbol probabilities of substates in an
FL state are the same, while transition probabilities
are different between substates MINL and MAXL.
The type of loops is de®ned as NFL, while tail and
helix states are de®ned as FL. The next states are
determined by the natural structure of the mem-
brane proteins; for example, after an inside loop,
the next state is the inside helix tail, then the helix,
then the outside tail etc. The tail state on both sides

Figure 1. Distribution of loop lengths. The continuous
line shows the length distribution of the non-membra-
neous part of the polypeptide chains in the reference
data set. The broken line shows this distribution in the
random sample in which transmembrane segments were
shuf¯ed for each protein in the reference data set; thus
the number of membrane spanning segments remained
the same, but their places were altered.
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of the membrane, coming after the helix state, can
be followed by another tail or by a loop; that is,
the state sequence between two helix states can be
a tail-tail forming a short loop or a tail-loop-tail
resulting in a long loop (see Figure 2). Short loops
are thought to be associated with the heads of
phospholipids, while long loops form a well-
de®ned structure in the cytosol or in the other side
of the membrane, but their very ends interact with
the membrane. The architecture of the possible
transitions is shown in Figure 3.

The prediction method based on this model has
three steps. First, the initial estimates of HMM par-
ameters (the initial state, the observation symbol
and the state transition probabilities) have to be
set. The parameters can be chosen by random
values, or by predetermined values. The next step
is the optimization of these parameters for the
amino acid sequence studied or for homolog
sequences. The third step is to ®nd the best state
sequence by the so-called Viterbi algorithm, given
the model and the parameters. Elements of the
state sequence show the localization of each amino
acid in the query sequence. The mathematical
details of these procedures are given in Materials
and Methods. An excellent tutorial for using
HMMs was written by Rabiner (1989). By applying
random values in parameter settings optimization

produced various results, since the likelihood func-
tion over the sequence has many local optima. To
avoid this problem iteration was started from a
predetermined parameter set and the pseudocount
method was used during the iteration process.
Values of the parameters and the pseudocount
array were derived from the amino acid sequences
of transmembrane proteins whose topologies are
experimentally well de®ned (see Materials and
Methods). Since optimization of the parameters
can work for multiple sequences (multiple obser-
vations), prediction can be made using multiple
sequence information. One of the advantages of
HMM is that related proteins do not have to be
aligned before the prediction.

Prediction efficiency on various data sets

The prediction power of the newly developed
HMM was tested on three different data sets, col-
lected earlier for transmembrane prediction
methods: 83TMP (Jones et al., 1994), 48TMP (Rost
et al., 1996) and prokTMP (CserzoÂÂ et al., 1997),
respectively (see Materials and Methods). The
results on multiple sequences shown in Table 1
demonstrate the accuracy of the proposed predic-
tion method for recognizing transmembrane top-
ology. For the three data sets the transmembrane

Figure 2. Structural states de®ned for a typical helical transmembrane protein. The ®ve states are: inside loop (I),
inside tail (i), membrane helix (h), outside tail (o) and outside loop (O). Tails (thick lines) are thought to interact with
the inside or outside parts of the membrane, while loops (thin lines) do not. Two tails between helices can form a
short loop, but longer loops are formed by tail-loop-tail sequences.
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helix prediction accuracy is over 98% in each case
(altogether, for the 698 transmembrane segments
709 were predicted, of which 694 were predicted
correctly), all transmembrane segments were pre-
dicted correctly in 74 out of 83 proteins on the
83TMP set (89%), 45/47 (96%) on the 48TMP set
and 38/44 (86%) on the prokTMP set. The number
of proteins with correctly predicted orientation and
transmembrane segments reached a high level as
well: 72/83 (87%), 43/47 (91%) and 32/44 (73%)
on the three data sets, overall 135 out of 158 pro-
teins (85%). The published and predicted trans-
membrane segments and topologies can be found
in the Appendix or see TusnaÂdy (1998).

Prediction based on single sequence information
was naturally less accurate. Nevertheless, compar-
ing these results with previously published
methods (see the next section) using single
sequence information, the prediction power of this
method is astonishing. From the three data sets,
714 helices were predicted, of which 689 were cor-
rect. This value is less by only ®ve transmembrane
helices than the value in the case of multiple
sequences. The number of proteins with correctly
predicted membrane spanning segments was 131,
while the topology and the transmembrane seg-
ments were predicted correctly in 124 cases (78%).
This is much higher than the accuracy of predic-
tions based on hydrophobicity plot analysis, the

Figure 3. Architecture of HMM
used for topology prediction. States
with the same transition matrices
are colored in the same way: white,
helix states; light gray, tail states;
dark gray, loop states. Rectangular
areas FL type states; hexagonal
ones, NFL type states. The obser-
vation-symbol probabilities used by
states are marked in each state. The
structure of substates in the case of
the FL type is drawn within states.
Lines and arrows show the possible
transition between states or sub-
states.

Table 1. Results on various data sets using HMM for topology prediction

No. of transmembrane helices No. of correct proteins
Data set Nobs Nprd Ncor QP (%) Q2 NTOT NTM NTT QT (%)

83TMP 346 353 344 98.4 94.9 83 74 72 87
48TMP 194 197 194 99.2 94.6 47 45 43 91
prokTMP 262 264 259 98.5 89.8 44 38 32 73

Total 698 709 694 98.7 94.2 158 143 135 85

Nobs, Nprd and Ncor are the number of observed, predicted and correctly predicted transmembrane helices, respectively;
QP � 100 � ���������������������������������������������������Ncor=Nobs� � �Ncor=Nprd�

p �NTOT, NTM and NTT are the number of proteins in the data sets, the number of proteins for
which all transmembrane segments were predicted correctly, and the number of proteins for which both the topology and the trans-
membrane segments were predicted correctly, respectively. Q2 is the per residue accuracy.
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accuracies of which are about 60% on these data
sets.

The prediction accuracy on the prokTMP set is
not as good as the other two. In this data set,
however, there are a few proteins without exper-
imentally well-de®ned topology. In the case of
cytochrome d terminal oxidase subunits I and II
(CYDA_ECOLI and CYDB_ECOLI, respectively),
according to the original article (Georgiou et al.,
1988), an independent experimental approach is
required to determine the actual topology, and
from other experiments (Dueweke & Gennis,
1990, 1991) it is only acceptable that the loop
between residues 239 and 393 in subunit I is
located in the periplasma. Since there is no evi-
dence that this protein contains seven transmem-
brane segments, the prediction made using HMM
does not contradict the results of the experiments.
The experimental results obtained on subunit II
of this protein do not distinguish between the
former prediction based on hydrophobicity anal-
ysis and the recent prediction made by HMM.
The cytochrome o terminal complex is the other
component of the aerobic respiratory chain of
Escherichia coli. This complex consists of ®ve sub-
units, whose topologies were determined by
Chepuri & Gennis (1990). According to their
work there is no evidence that the last putative
transmembrane segment of the subunit I (CYO-
B_ECOLI) really crosses the membrane. In case of
the E subunit of this complex (CYOE_ECOLI),
the results of experiments do not exclude the
possibility that the polypeptide chain crosses the
membrane twice between the fourth and ®fth
putative transmembrane segments in the original
work, as the HMM predicted.

Comparison with other methods

To disclose the principles governing the struc-
ture formation of membrane proteins, it is interest-
ing to compare the results of prediction methods
based on different ideas. Three other prediction
methods were taken into consideration. TOPPRED
(von Heijne, 1992) uses the hydrophobic pro®le of
transmembrane proteins and the observation that
positively charged residues are more abundant in
cytoplasmic regions (``positive-inside'' rule). MEM-
SAT (Jones et al., 1994) employs the amino acid log
likelihood ratios in ®ve structural classes of mem-
brane proteins (inside loop, outside loop, inside
helix end, helix middle and outside helix end) and
uses a dynamic programming algorithm to maxi-
mize the sum of these log likelihoods over the
sequences. In fact this method is one step of
the HMM, i.e. ®nding the best state sequence for
the amino acid sequence if the parameters and the
model are given. The third method, PHDhtm_ref
(Rost et al., 1996), introduced a re®ned neural net-
work system to predict localization of transmem-
brane helices combined with the positive-inside
rule.

The accuracies of these three prediction methods
on the three data sets are listed in Table 2. Note
that segment prediction accuracies (Qp) are high
for all of these methods (above 94%), thus to dis-
tinguish among them the number of proteins for
which all the transmembrane segments and the
topology are correctly predicted (NTT or QT should
be considered. TOPPRED, elaborated ®rst, is the
least accurate. The overprediction of this algorithm
is remarkable, which may be the result of marking
the apolar cores of the non-transmembrane

Table 2. Prediction accuracy of various algorithms on various data sets

No. of transmembrane helices No. of correct proteins
Data set Method Nobs Nprd Ncor QP (%) NTOT NTM NTT QT (%)

83TMP TOPPRED 346 381 336 92.5 83 54 54 65
MEMSAT 351 336 96.4 69 65 78
HMM1 358 342 97.2 68 66 80
PHDhtm_ref 351 342 98.1 75 73 88
HMMmulti 353 344 98.4 74 72 87

48TMP MEMSAT 194 174 165 89.8 47 26 23 49
TOPPRED 200 193 98.0 40 25 53
HMM1 198 192 98.0 40 39 83
HMMmulti 197 194 99.2 45 43 91
PHDhtm_ref 192 192 99.5 45 42 89

prokTMP PHDhtm_ref 262 259 254 97.5 44 31 28 64
MEMSAT 255 250 96.7 33 29 66
TOPPRED 264 255 97.0 32 30 68
HMM1 264 258 98.1 36 30 68
HMMmulti 264 259 98.5 38 32 73

Total TOPPRED 698 740 681 94.8 158 112 95 60
MEMSAT 673 647 94.4 114 103 65
HMM1 714 689 97.6 131 124 78
PHDhtm_ref 699 685 98.1 136 128 81
HMMmulti 709 694 98.7 143 135 85

References for methods are as follows: TOPPRED (von Heijne, 1992), MEMSAT (Jones et al., 1994), PHDhtm_ref (Rost et al., 1996),
HMM1 hidden Markov model used on single sequence information in this article, HMMmulti hidden Markov model used on multiple
sequence information in this article. The meanings of the columns are the same as in Table 1.
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domains as transmembrane regions. The positive-
inside rule improves the accuracy, but the
inclusion of only the positive to the charged resi-
dues in the prediction is not as ef®cient as taking
into account the distribution of all amino acids in
the structural units of membrane proteins. This
observation explains why MEMSAT works better
than TOPPRED, since in this procedure the distri-
bution of all amino acids of ®ve structural classes
are built into the prediction. The difference in accu-
racy between MEMSAT and our method might
re¯ect the fact that the various membrane proteins
have different amino acid frequencies in their
structural units, so that forcing the same distri-
bution for each protein may result in underpredic-
tion of transmembrane regions. If the amino acid
composition of transmembrane segments differs
from the general composition, then these segments
will not be predicted using the model recognition
approach, but will be accepted as transmembrane
segments if changes in the composition are con-
sidered. To understand this, a spectacular example
is shown. Multiple polar residues were gradually
introduced into helix D of bacteriorhodopsin, from
one glutamine to as many as ®ve hydrophilic resi-
dues (four glutamine and one aspartic acid) (Chen
& Gouaux, 1997). All of the mutants refold and
show properties similar to wild-type protein,
demonstrating that micelle-solubilized bacteriorho-
dopsin can tolerate multiple non-conservative sub-
stitution of amino acids. Application of the
MEMSAT method to these mutants yielded correct
results in the case of mutants containing one and
two glutamine residues but failed for mutants con-
taining more hydrophilic residues. On the contrary,
the method presented here failed only for mutants
containing ®ve additional hydrophilic residues.

The lower accuracy of the MEMSAT and
TOPPRED methods on the 48TMP set may be due
to the homolog proteins in this set (e.g. GABA-
receptor subunits or members of TM4 super-
family). One should also note that MEMSAT uses
another de®nition of structural units. Though the
distributions of apolar amino acids are different in
helix middle and ends, as ®rst shown by Sipos &
von Heijne (1993), this observation provides simi-
lar information about localization and orientation
of transmembrane helices. Choosing the par-
ameters in HMM used in MEMSAT resulted in a
prediction accuracy similar to theirs. In the total
data set, using only a single sequence for predic-
tion, setting the helix's minimum and maximum
lengths to 9 and 17, respectively, and the tail's
minimum and maximum length to 4, as used in
MEMSAT, the method predicted 658 helices, of
which 644 were correct (673 and 647 were the
values predicted by MEMSAT, respectively;
Table 2). The number of perfectly predicted pro-
teins decreased from 124 to 100, which is in good
agreement with the prediction accuracy reached by
MEMSAT (103). This result suggests that amino
acids locate near the membrane have special roles
in determining the protein topology, so application

of their distribution increases the ef®ciency of the
prediction methods.

As it is known the prediction accuracy reaches a
higher level when using more sequences,
PHDhtm_ref reached the highest ef®ciency com-
pared to the previous methods, since if includes
sequence alignments. However, aligning the trans-
membrane segments can lead to wrong prediction,
since the sequence identity is very low on these
segments. For this reason, the way the HMM
handles multiple observations can be a great
advantage and may result in better prediction.
Naturally, the neural network algorithm by which
the markings of transmembrane segments was
learned also increases the ef®ciency. However, we
do not gain more knowledge about proteins, for
the neural network algorithm is a black box. This
algorithm cannot handle the length of the trans-
membrane segments properly and does not
employ the charge bias between inside and outside
loops, so the authors had to include them in the
method as an inside ®lter.

Validation of the hypothesis

Here we suggest that the topology depends on
the maximum divergence of the amino acid distri-
butions of the various structural parts rather than
on the absolute frequencies of amino acids in these
parts. First, it is algebraic evidence that the maxi-
mum divergence (the sum of divergences between
the amino acid distributions of these parts and the
distribution of the whole proteins) can be obtained
as the sum of the logarithm of the relative frequen-
cies of residues in these parts along the given
sequence (log likelihood), or without using a logar-
ithm, the product of these frequencies (likelihood).
When searching for the correct topology as the
maximum of the likelihood function, the biological
constraints have to be considered; for example, the
length of a transmembrane helix cannot be arbi-
trary, or a helix after an inside loop can only be fol-
lowed by an outside loop. However, even if the
amino acid distributions in the ®ve structural parts
were known, the most likely topology could not be
searched for by a direct searching method due to a
combinatorical problem (Jones et al., 1994). In
addition, according to our hypothesis, amino acid
distributions in these parts have also to be
searched for, thus ®nding the most likely topology
becomes even harder by ``brute-force searching''.
Fortunately, this optimization problem can be
solved by using HMM associated with the Baum-
Welch algorithm. Thus HMM in this study is only
a tool for searching for the topology corresponding
to the maximum divergence, and therefore a high
level of prediction accuracy, i.e. the observation
that the most likely topology correlates with the
natural topology of the proteins is a strong argu-
ment in favor of our hypothesis.

Starting the optimization from the amino acid
distributions corresponding to the natural topology
of proteins results in the same topology with only
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a small alteration in the ends of transmembrane
segments (data not shown). This observation
shows that the likelihood functions have local opti-
ma at these distributions, which also supports our
hypothesis. Using the pseudocount vector in the
optimization process can be interpreted as a search
for the topology of the query protein in a restricted
space of the amino acid distributions. However,
optimizations without pseudocount vector result in
only a little lower accuracy (number of proteins in
which all transmembrane segments are correctly
predicted is 132, with correct topology is 123
(79%)), showing the high level of validity of the
hypothesis.

Conclusion

The accuracy of the prediction method described
here indicates that the topology is determined by
the maximum divergences of the amino acid distri-
bution of the different structural parts in the mem-
brane proteins rather than by the absolute
composition of these parts.

This work is a wide generalization of the work
of Jones et al. (1994). Improvements proposed by
them are included in HMM automatically; for
example, usage of multiple sequence information.
The other advantage of HMM is that there is no
need to make alignments before prediction. Since
the actual topology is determined by the principles
mentioned above, the effect of the parameters orig-
inating from the experimental results is much
weaker. Thus the experimental errors do not affect
the prediction accuracy. Moreover, the proposed
method can work without any external parameters,
with very high success.

It is worth mentioning that the various segment
distributions of the membrane proteins can be
stimulated in HMM by its special architecture. This
architecture ensures the distinction between the
short and long loops connecting helices.

Naturally, there are several weak points in this
model originating from the methodology of
HMM. One of them is that, using multiple
sequences, the same predicted topology for each
sequence is not guaranteed. The next point is
related to the multiple optima problem in the
optimization process. Since the Baum-Welch
algorithm cannot ®nd the global optimum of the
likelihood function, the correct way to handle
this problem may be by an exhaustive search for
the optimum. Because of the huge computational
demand for searching, each iteration was started
from the same point.

Materials and Methods

The hidden Markov model

To apply the hidden Markov model, the model archi-
tecture has ®rst to be de®ned; namely, the number of
states, the possible transitions between states and the
observation symbols of each state. The model described

here consists of ®ve states: loops (inside and outside, I
and O, respectively), tails (inside and outside, i and o,
respectively) and helices (h). The model is presented in
Figure 2; our notation is given in Table 3. For de®ning
the possible transitions between these states: ®rst, two
types were de®ned. In the ®rst one, called non-®xed
length (NFL) type state, there are only two possible
transitions: from current state to current state with
J Curr,Curr probability and from current state to the
next one with J Curr,Next probability. By de®nition:
J Curr,Curr � J Curr,Next � 1 (for de®nition of the term
``Next'' state, see below). In the second case, called ®xed
length (FL) type state, the minimum and maximum
lengths of the state are ®xed (MINL and MAXL, respect-
ively; they are different for various FL type states). This
can be ensured by introducing maximum length
number substates. The values of the transition prob-
abilities in this case are as follows: for the ®rst MINL
substates transition probabilities are unity to the
next substate, and zero to any other substates and states
(J Curr( j ),Curr( j � 1): � 1, j � 1 . . . MINLCurr ÿ 1). Between
MINL and MAXL transition probabilities are
J Curr( j ),Curr( j � 1) to the next substate, J Curr( j ),Next

(j �MINLCurr . . . MAXLCurr ÿ 1) to the ®rst element of
the nest state and zero to any other substates or to other
states. Naturally, from the last substrate of the current
state transition is only possible to the next state. When a
state is followed by two other states (see below) the tran-
sition probabilities are split into two parts J Curr( j ),Next

and J Curr( j ),Other (see Figure 3). Tail and helix states are
de®ned as FL type states, while loop states are NFL type
states.

The sequence of states and the corresponding tran-
sition matrix follows the natural structure of transmem-
brane proteins, i.e. inside loop is followed by helix,
helix is followed by outside loop and outside loop is
followed again by helix. More exactly, a tail, which
comes after a helix, can be followed by another tail or
by a loop, thus a linker region between two helices
can be formed by two tail states or by a tail-loop-tail
state sequence.

The observation-symbol probabilities of substates
were the same. So were the two kind of tails, which are
on the same side of the membrane before and after
helices. In this way the observation-symbol probability
matrix (P) contains ®ve rows corresponding to ®ve
structural parts of the membrane proteins; each contains
20 observation-symbol probabilities for the 20 kinds of
amino acids. For HMM the initial state probabilities (I )
have to be de®ned as well. They are zero for helix state
and tail state, which are located after a helix. For the

Table 3. Notation

A Amino acids (A � a1 . . . a20)
B States (B � b1 . . . b5)
O,o,h,i,I States (outside loop, outside tail, membrane

helix, inside tail and inside loop)
N Length of sequence
S Sequence of amino acids (S � s1 . . . sN)
Q Sequence of states (Q � q1 . . . qN)
a Pseudocount vector (a � a1,1 . . .a5,20)
I Initial state distribution

I j � P(q1 � bj),j � 1 . . . 5

P Emission probability distribution
Pij � P(aijbj), i � 1 . . . 20, j � 1 . . . 5

J Transition probability distribution
J ij � P(qk � bjjqkÿ1 � bi) i � 1 . . . 5, j � 1 . . . 5,
k � 2 . . . N
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other states they can be any value. This model corre-
sponds to the natural structure of transmembrane pro-
teins, containing a shorter or longer sequence before the
®rst membrane spanning segment.

A prediction (i.e. sequence of states) for a given amino
acid sequence can be generated by a ``random walk''
through the model. The ®rst element of the state
sequence (q1) is chosen randomly according to the initial
probability matrix (I ). The second one (q2) is selected
randomly according to the transition probabilities
J (xjq1), where x indicates any possible next state. The ith
element of the state sequence is generated from tran-
sition probabilities J (xjqi). The probability of this predic-
tion (q1, q2 . . . qN) for a given amino acid sequence
(s1,s2 . . . sN), if the model (I , P, J ) is given is:

P�q1 � � � qN; s1 � � � sNjmodel� �I�q1� � P�s1jq1�

�
YN
i�2

J �qijqiÿ1� � P�sijqi� �1�

The probability of an amino acid sequence associated
with a given model can be calculated by summing these
probabilities over all possible state sequences:

P�s1 � � � sNjmodel� �
X

All q1 ���qN

P�q1 � � � qN; s1 � � � sNjmodel� �2�

Given a set of homolog proteins (S(1), S(2) . . . S(M)
derived from the same model, the probability of the
model is simply the product of the probabilities calcu-
lated for each sequence:

P�sequencesjmodel� �
YM
j�1

P�S� j �jmodel� �3�

where M is the number of sequences, and each term
P(S( j )jmodel) is calculated by substituting s1 . . . sN � S(j)
in equation (2). In this way a probability distribution on
the space of sequences is de®ned. The goal is to ®nd a
model (i.e. values of the observation-symbol and tran-
sition probabilities) that accurately describes the top-
ology of a given protein (or proteins) by assigning a
maximal probability to the sequence(s).

The original Baum-Welch (or forward-backward)
algorithm was used to ®nd this best model. The detailed
description of the HMM and the Baum-Welch algorithm
can be found in Rabiner's excellent tutorial (Rabiner,
1989). To ensure the correct sequence of states and avoid
the incorrect ones (i! h! i or o! h! o, we used a
special matrix in the forward-backward algorithm,
where the two types of transmembrane helices
(i! h! o and o! h! i) were distinguished but the
same transition and observation symbol probabilities
were used for them.

Many authors pointed out the weakness of the Baum-
Welch algorithm, i.e. it ®nds only a local optimum, not a
global one. There are two suggested solutions to this
problem in the literature, the ``noise injection'' heuristic
procedure used by Krogh et al. (1994b) and a simulated
annealing variant proposed by Eddy (1995). We have
found the latter one to be unsatisfactory, due to the
changing of the optimum place during the temperature
change (data not shown). Obviously, using more
sequences and doing many optimizations from various
probability distributions, proposed by Krogh et al.
(1994a), can help to solve this problem. We found that
introducing the Dirichlet mixture to the HMM (Brown
et al., 1995; SjoÈ lander et al., 1996), or its simpler variant,

the pseudocount method, the number of the local opti-
mum places decreased drastically. We used the pseudo-
count method, where the prior distribution (a) was given
by the relative frequencies of the amino acids in the
reference data set (see below). In the likelihood function
the count vector has to be considered in the following
way:

Prob�sequences; modelja� �Prob�sequencesjmodel�

�
Y5

j�1

Y20

i�1

P�aijbj�aij �4�

where the probability of sequences for a given model
Prob (sequencesjmodel) was calculated as in equation (3).

Rabiner (1989) emphasized the importance of the
initial estimates of HMM parameters. If a good esti-
mation is given as a starting point to the Baum-Welch
algorithm, the multiple optima problem can be avoided.
For this reason, besides using the pseudocount method
each iteration was started from the same point located
by the count arrays.

Data sets, measure the prediction accuracy

Three data sets, collected earlier for transmembrane
prediction methods, were used to measure the prediction
accuracy. The ®rst data set was originally collected by
Jones et al. (1994), and was also used by Rost et al. (1996)
(83TMP set). The second one is an extension of it by Rost
et al. (1996) (48TMP set). The third data set contains pro-
kariotic transmembrane proteins collected by CserzoÂÂ et al.
(1997) (prokTMP set). These data sets contain transmem-
brane proteins whose topologies are established by two
kinds of approaches. Indirect experiments, providing
information about certain parts of a protein (for example,
an amino acid in a given position is inside or outside),
were combined with hydrophobicity plot analyses result-
ing in the most probable topology. Thus the uncertainty
of the termini of transmembrane segments has to be kept
in mind in measuring the accuracy of the method (see
below) and in the interpretation of the results. Appar-
ently, the following entries were missing from the Swis-
sprot database release 34.0 (Bairoch & Boeckmann, 1991):
EGFR_DROME, GP1B_HUMAN, PT2M_ECOLI and
IGGB_STRSP in the 83TMP set. These entries were
replaced by the corresponding ®les in the current Swis-
sprot release, i.e. TOP_DROME, GPBB_HUMAN,
PTMA_ECOLI and IG1B_STRSP, respectively. In the
48TMP set there were also some missing ®les, AD1_RAT
and COX1_PARDE. AD1_RAT was eliminated because it
is the same as CD63_RAT, which originally belonged to
the 48TMP set. COX1_PARDE was replaced by
CX1B_PARDE.

We have found some data in the data sets studied
which were in contradiction with the original article or
with other experimental results. According to van Beilen
et al. (1992), the transmembrane segments of
ALKB_PSEOL are as follows: 22-40, 41-69, 88-110, 114-
137, 227-247 and 250-270. In COX2_PARDE the lengths
of the two transmembrane segments were too long, so
we shortened them according to the results of Iwata et al.
(1995) to 66-88 and 108-128 instead of 56-88 and 103-134,
respectively. The annotations of transmembrane seg-
ments were missing for UHPT_ECOLI and were added
according to the results of Yan & Maloney (1993). Where
the annotation of the topology, i.e. the localization of the
®rst loop, was missing it was taken from Jones et al.
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(1994) or Rost et al. (1996). Finally, annotation errors
mentioned by CserzoÂÂ et al. (1997) were corrected as well.

After these corrections 83TMP, 48TMP and prokTMP
contain 83, 47 and 44 proteins, with 346, 194 and 262
transmembrane segments, respectively. Because of the
overlapping proteins, the three data sets contain,
altogether, 158 proteins and 698 transmembrane helices.

To measure the prediction accuracy we followed the
method described by CserzoÂÂ et al. (1997), with the fol-
lowing slight modi®cation. The overlapping predicted
and observed transmembrane segments were counted
(Ncor). The total numbers of predicted (Nprd) and
observed (Nobs) segments were also counted. If Ncor was
higher than Nprd (which can happen if the observed helix
overlaps two predicted helices), then it was reduced to
Nprd. The ef®ciency of the transmembrane helix predic-
tion was measured in terms of the following ratios:
M � Ncor/Nobs and C � Ncor/Nprd. The overall prediction
power can be measured as the geometric mean of these
ratios (QP � 100 � ������������

M � Cp
). As this value is very high for

many prediction methods (above 90%), two other values
were used to measure the prediction accuracy proposed
by Rost et al., (1996): the number of proteins for which
all the transmembrane segments were predicted correctly
(NTM), and the number of proteins for which both the
transmembrane segments and the topology were pre-
dicted correctly (NTT).

For using multiple observation sequences in the pre-
diction method, homolog sequences of the query protein
were searched by the BLAST automatic server (Altschul
et al., 1990). Sequences above 25% identity with the
query protein were applied. Because of the limiting fac-
tor of the computer hardware, a maximum of 50 related
proteins was used in the prediction.

The sequence processing before prediction was the
same as found by Jones et al (1994), i.e. if the localization
of the signal peptide was given in the databank then it
was removed. If the precursor protein was marked in
the database then only the precursor sequence was
applied in the prediction.

Parameters

The control parameters of the algorithm described
here are MINLs and MAXLs, the minimum and maxi-
mum lengths of the FL type state s, respectively. They
are 1 and 15 for tails (inside and outside), 17 and 25 for
helix states.

As described above, the pseudocount method was
used to eliminate the local optima problems. Proteins
containing one transmembrane segment and sequences
longer than 500 residues were eliminated from the
83TMP data set. Proteins that have no well-con®rmed
topology, by experimental results, were omitted from the
83TMP set as well. After this ®ltration 63 proteins
remained (marked by asterisks in the Appendix, and see
TusnaÂdy, 1998), which were used to create the initial
estimate of parameters and also the pseudocount array.
From this set, proteins which have a higher sequence
identity than 25% to proteins under prediction were also
omitted (jack-knife method). The amino acid frequencies
after elimination from the ®ve states were counted. The
initial observation-symbol probabilities were their nor-
malized arrays for each state. The pseudocount array (a)
was calculated as follows: the amino acid frequencies
from the selected proteins were counted in each state
and were normalized to a given size (T � j �aj, ai,j � T �aij/
�b, where bi,j is the frequency of the jth amino acid in the

ith state and �b��5
i � 1�

20
j � 1bij). The highest prediction

accuracy was reached at T � 10,000.
The initial transition probabilities of the FL type

states were also derived for the 63 selected proteins.
Tail regions in this case were de®ned as follows: let l
be the length of a linker region between two helices. If
l 5 2 �MAXLt (i.e. 30 residues), then two MAXLt length
(15 residues) tail regions were marked else two
symmetrical l/2 length ones. The frequencies of the
various lengths of loops and membrane helices were
counted. The initial transition probabilities were set in
a manner by which they could generate these distri-
butions of length: let lij be the frequency of the
segments of j length in the ith state. The let
�ij � lij=�

MAXLi

k�j lik and tij0 � 1 ÿ �ij (the initial prob-
ability of the elongation of the j length segment in the
ith state), tij1 � �ij (the initial probability of the termin-
ation of the j length segment in the ith state), which is
the transition to the next state if the ith state is fol-
lowed by only one state (loops, tails before membrane
helix and membrane helices). If the ith state may be
followed by two states (tails coming after membrane
helices, see Figure 2 and Figure 3), �ij is split into two
parts according to the relative frequencies of the two
states after the j length segments in the ith state (oij

and 1 ÿ oij), so tij1 � oij ��ij and tij2 � (1 ÿ oij) ��ij.
The initial parameter set of the model was determined

using the 83TMP data set and for each protein the
sequences which have higher sequence identity than 25%
to proteins under investigation were omitted (jack-knife
method).

Programs

The hidden Markov model described here has been
implemented in ANSI C language on a Unix workstation
(Silicon Graphics, Indigo2). The prediction method is
available via an automatic server on the World-Wide
Web site http://www.enzim.hu/hmmtop.

Methods for comparison with our method were used
via an Internet site or the source codes were purchased.
TOPPRED predictions (von Heijne, 1992) for the three
data sets were generated using its automatic prediction
server (http://www.biokemi.su.se/~server/toppred2)
with default parameters (upper cutoff, 1.0; lower cutoff,
0.6; window size; top, 11; bottom, 21). The source code
of MEMSAT program (Jones et al., 1994) was obtained
from the authors, and was implemented on our work-
station. The method developed by Rost et al. (1996)
was used via their automatic server (http://
www.embl-heidelberg.de/predictprotein). In case of
dubious prediction results we consulted Dr Rost. The
results obtained with these programs on data sets were
different from the original ones, due to the annotation
errors mentioned above.
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Appendix

Predicted and observed topologies and
transmembrane segments

Swissprot ID Topology and TM Helices
Predicted Observed

4f2_human IN IN
83 104 82 104

5h1a_human* OUT OUT
37 61 37 62
74 95 74 98

108 132 110 132
153 174 153 178
195 214 192 217
347 371 346 367
384 403 379 403

5h2a_crigr* OUT OUT
77 101 76 99

112 136 111 132
147 171 148 171
192 213 192 215
234 258 234 254
324 348 325 346
359 383 363 384

5ht3_mouse* OUT OUT
224 247 223 248
259 281 255 273
285 307 283 301
438 460 442 461

a15_human IN IN
13 34 12 35
55 76 52 70
85 107 82 107

210 232 209 229
a1aa_human* OUT OUT

99 120 96 121
135 156 134 159
171 192 170 192
213 234 214 238
255 274 252 275
350 371 349 373
386 405 381 405

a2aa_human* OUT OUT
34 55 34 59
71 92 71 96

108 129 107 129
152 172 150 173
195 214 193 217
373 394 375 399
410 429 407 430

a4_human OUT OUT
685 706 683 706

aa1r_canfa* OUT OUT
10 34 11 33
45 69 47 69
79 103 81 102

126 146 124 146
180 200 177 201
235 259 236 259
269 289 268 292

aa2a_canfa* OUT OUT
10 34 8 30
43 67 44 66
77 101 78 100

123 143 121 143
176 196 174 198
235 259 235 258
269 289 267 290

adt_ricpr* IN IN
28 48 34 54
61 81 68 88
94 112 92 113

147 170 148 168
183 206 185 205
219 237 219 239
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274 297 280 300
317 337 321 341
350 370 349 369
383 401 380 400
442 461 439 459
467 485 466 486

alkb_pseol IN IN
20 39 21 39
46 66 42 67
89 109 88 110

119 137 114 137
232 256 227 247
329 348 250 270

atpl_ecoli OUT OUT
8 32 11 31

53 77 53 73
bac1_hals1* OUT OUT

16 40 17 38
48 72 50 75
81 105 90 170

114 133 114 133
141 162 144 164
173 197 180 199
205 229 207 230

bach_halss* OUT OUT
33 56 33 56
66 89 68 91

115 134 109 127
139 158 138 161
163 186 165 189
207 226 198 221
231 254 233 256

bacr_halha* OUT OUT
10 34 10 29
42 66 44 63
77 101 82 101

108 127 108 127
135 156 135 154
177 198 178 197
206 224 204 223

c561_bovin* IN IN
35 56 38 60
76 94 75 97

107 128 107 129
148 169 145 167
183 201 185 207
221 242 219 241

cb12_pea IN IN
67 88 62 81

114 133 114 134
182 201 182 199

cd37_human IN IN
14 38 13 36
56 80 60 77
85 109 86 111

242 266 242 266
cd53_human IN IN

12 36 11 36
51 75 55 72
81 105 81 106

182 206 182 206
cd63_human IN IN

11 34 11 34
51 74 51 69
81 105 81 106

203 227 203 223
cd63_rat IN IN

11 34 11 34
51 74 51 69
81 105 81 106

202 226 203 223
cd81_human IN IN

12 35 12 35
60 83 58 78

Swissprot ID Topology and TM Helices
Predicted Observed

89 113 90 115
202 226 202 226

cd82_human IN IN
12 36 11 34
54 78 54 72
83 107 84 109

228 252 229 250
cd9_cerae IN IN

12 34 11 34
59 81 55 75
87 111 87 110

194 218 195 220
cd9_felca IN IN

12 34 11 34
56 78 53 73
84 108 85 108

194 218 193 218
cd9_human IN IN

12 34 11 34
59 81 55 75
87 111 87 110

194 218 195 220
cek2_chick OUT OUT

350 370 346 370
516 534

co02_human IN IN
11 33 10 33
54 78 58 75
84 108 84 109

206 230 206 230
cox2_parde OUT OUT

38 58 37 59
79 103 79 99

cox3_parde IN IN
14 33 15 35
51 70 48 73
88 107 79 104

139 158 139 164
171 190 168 193
208 232 203 228
250 271 244 269

cx1b_parde IN IN
31 50 29 54
95 119 84 109

133 154 130 151
181 205 178 203
219 243 218 243
270 294 263 288
302 326 304 322
340 364 334 359
372 394 370 395
408 432 404 429
443 467 441 466
488 512 483 508

cxb1_human* IN IN
16 40 20 40
71 95 76 96

133 157 143 163
188 212 189 209

cxb1_rat* IN IN
16 40 20 40
71 95 76 96

133 157 143 163
188 212 189 209

cxb1_xenla* IN IN
16 40 20 40
71 95 76 96

133 157 143 163
189 213 189 209

cyda_ecoli OUT IN
12 36 23 42
54 73 95 114
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91 115 130 149
127 151 188 207
182 206 220 239
219 237 393 412
388 412 471 490
425 444
471 494

cydb_ecoli OUT IN
9 28 9 28

50 74
80 99 80 99

118 142 123 142
164 188 165 184
207 231 206 225
264 283 263 282
289 313 293 312
335 359 337 356

cyoa_ecoli* OUT OUT
16 40 27 45
66 84 69 87

cyob_ecoli* OUT OUT
15 39 17 35
57 79 58 76

105 129 102 121
139 163 144 162
189 213 195 213
231 255 232 250
273 297 277 296
312 336 320 339
346 370 348 366
380 404 382 401
414 438 410 429
456 480 457 476
490 514 494 513
602 626 588 607

613 633
cyoc_ecoli* IN IN

26 50 32 50
68 88 67 85
98 118 102 120

136 160 143 161
178 202 185 203

cyod_ecoli* OUT IN
15 39 18 36
45 66 46 64
78 102 81 99

cyoe_ecoli IN IN
21 30 10 28
38 56 38 56
84 102 79 97

110 128 108 126
132 150
162 180
208 226 198 216
234 252 229 247
164 283 269 287

dhg_ecoli IN IN
11 31 11 36
36 57 41 58
63 81 63 81
87 108 96 113

113 131 119 141
dmsc_ecoli OUT OUT

10 31 10 32
44 64 44 66
79 103 88 107

116 136 113 134
149 173 153 176
178 201 183 203
216 240 223 243
253 277 255 280

dsbb_ecoli IN IN
13 32 15 32

Swissprot ID Topology and TM Helices
Predicted Observed

42 61 50 67
71 89 72 89

145 163 145 162
edg1_human* OUT OUT

47 71 47 71
80 104 79 104

122 140 122 140
160 184 160 185
203 221 202 222
252 276 256 277
295 313 294 314

egfr_chick OUT OUT
625 647 625 642

egfr_human OUT OUT
622 644 622 644

envz_ecoli IN IN
16 40 16 35

160 179 162 182
exbb_ecoli OUT OUT

21 42 25 42
133 157 132 150
174 195 178 195

exbd_ecoli IN IN
15 36 26 43

fce2_human* IN IN
24 44 22 47

ftsh_ecoli IN IN
5 23 5 24

102 120 96 120
ftsl_ecoli OUT IN

38 57 38 57
fucp_ecoli IN IN

23 41 24 44
65 84 65 85
93 112 92 112

121 145 115 134
161 179 161 181
211 229 214 234
262 282 262 282
292 311 291 311
327 346 327 347
354 373 350 369
382 401 385 405
411 429 408 428

gaa1_chick OUT OUT
224 245 225 246
256 277 252 273
288 311 286 307
397 415 394 414

gaa1_human OUT OUT
224 245 225 246
256 277 252 273
288 311 286 307
398 416 395 416

gaa2_human OUT OUT
223 244 224 245
255 276 251 272
287 310 285 306
395 413 392 417

gaa3_human OUT OUT
250 271 249 270
276 297 276 297
313 331 310 331
433 451 430 451

gaa4_bovin OUT OUT
224 245 224 245
255 276 250 270
287 306 284 306
491 509 491 510

gaa5_human OUT OUT
227 248 229 250
259 280 255 276
291 314 288 310
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400 418 397 418
gaa6_mouse OUT OUT

212 233 214 235
244 265 240 261
276 299 272 295
394 412 391 412

gab1_human OUT OUT
219 240 221 242
251 272 246 268
283 306 280 302
430 448 427 448

gab2_human OUT OUT
219 240 221 242
251 272 246 268
283 306 280 302
431 449 428 449

gab3_human OUT OUT
219 240 221 242
251 272 246 268
283 306 280 302
429 447 426 447

gab4_chick OUT OUT
218 239 220 241
250 271 246 267
282 305 279 301
444 462 441 462

gab_lymst OUT OUT
227 248 229 250
259 280 255 276
291 314 288 310
456 474 453 476

gac1_rat OUT OUT
236 257 238 259
268 289 264 285
300 323 297 319
406 429 410 430

gac3_mouse OUT OUT
237 258 238 260
269 290 264 286
301 324 298 320
426 449 427 450

gca4_chick OUT OUT
235 256 236 258
267 288 262 284
299 322 296 318
412 435 413 436

gad_mouse OUT OUT
232 253 233 255
264 285 259 281
296 314 293 315
414 432 411 433

gar1_human OUT OUT
261 282 261 284
293 314 288 310
325 349 322 344
439 457 437 458

gar2_human OUT OUT
242 263 242 265
274 295 269 291
306 330 303 325
426 444 424 445

glp_pig* OUT OUT
63 85 63 85

glpa_human* OUT OUT
73 95 73 95

glpc_human* OUT OUT
55 79 58 81

glpt_ecoli IN IN
31 55 28 45
65 86 65 87
94 112 98 115

120 139 120 138
155 179 167 184

Swissprot ID Topology and TM Helices
Predicted Observed

188 207 187 208
254 278 254 273
294 312 293 310
322 341 322 341
351 375 351 373
384 408 382 406
417 436 415 437

glr1_rat OUT OUT
470 488 521 540
519 539 567 585
569 587 596 614
596 620 788 808
788 812

gmcr_human* OUT OUT
305 324 299 324

gpbb_human* OUT OUT
123 147 122 146

gpt_crilo* OUT OUT
11 29 7 32
59 83 58 79
95 114 95 114

126 145 126 145
157 181 165 184
189 208 195 212
222 241 222 240
249 268 253 270
276 294 275 294
327 345
379 397 379 397

gra1_human OUT OUT
221 242 220 245
253 274 253 270
285 308 285 308
392 410 393 410

gra2_human OUT OUT
228 249 227 252
260 281 260 277
292 315 292 315
393 411 397 414

gra3_rat OUT OUT
221 242 220 245
253 274 253 270
285 308 282 307
397 415 401 418

grb_rat OUT OUT
245 266 244 268
277 298 277 294
309 332 309 332
453 472 456 473

hema_cdvo IN IN
37 58 35 55

hema_measi IN IN
22 43 35 58

hema_pi4ha IN IN
24 45 28 47

hg2a_human* IN IN
47 71 46 71

hism_salty OUT OUT
23 47 27 47
61 85 59 79

104 125 105 125
158 182 158 178
202 221 200 220

hisq_salty OUT OUT
13 37 13 33
55 79 59 79
93 117 88 108

149 173 153 173
191 215 195 215

hoxn_alceu IN IN
18 42 20 40
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48 72 52 72
88 112 95 115

128 149 129 149
198 222 200 220
238 262 244 264
278 302 270 290
318 339 317 337

ig1r_human OUT OUT
904 928 906 929

il2a_human* OUT OUT
220 239 220 238

il2b_human* OUT OUT
221 239 215 239

im23_schja IN IN
13 36 13 36
53 76 56 73
83 107 83 108

184 208 184 205
im23_schma IN IN

13 36 13 36
53 76 56 73
83 107 83 108

184 208 184 205
imm1_ecoli* IN IN

5 24 9 26
39 62 39 57
86 110 84 104

imma_citfr* IN IN
16 37 14 37
69 89 69 89

103 123 107 124
145 166 143 165

ita5_mouse OUT OUT
957 981 956 981

kdpd_ecoli IN OUT
403 421 403 422
426 444 425 444
449 473 447 466
478 498 478 498

kgtp_ecoli IN IN
25 49 26 51
59 83 62 80
95 115 96 116

125 149 120 137
159 183 163 185
195 213 196 214
245 266 244 261
278 302 275 300
311 330 312 330
339 360 337 360
372 396 369 392
405 423 403 423

lacy_ecoli* IN IN
9 27 11 33

47 66 47 67
75 94 75 99

103 125 103 125
145 164 145 163
168 186 168 187
222 240 212 234
260 283 260 281
292 311 291 310
315 334 315 334
347 369 347 366
380 398 380 399

lech_human* IN IN
40 58 40 60

leci_mouse* IN IN
59 77 59 79

lep_ecoli* OUT OUT
4 28 4 22

58 76 58 76
lha4_rhoac IN IN

14 35 15 35

Swissprot ID Topology and TM Helices
Predicted Observed

lhb5_rhoac IN IN
21 40 14 36

lspa_ecoli IN IN
12 36 12 29
70 88 70 88
99 117 96 113

134 157 139 156
magl_mouse IN OUT

3 21
490 514 498 517

malf_ecoli* IN IN
15 36 17 35
40 58 40 58
71 92 73 91

285 306 277 295
319 340 319 337
371 392 371 389
426 447 418 436
485 506 486 504

malg_ecoli IN IN
13 37 19 39
91 111 82 102

124 144 124 144
153 177 151 171
207 227 205 225
258 280 260 280

melb_ecoli* IN IN
9 30 8 28

40 64 33 53
74 96 76 96

106 130 103 123
140 163 146 166
173 194 172 192
229 253 231 251
263 283 263 283
293 312 293 313
322 346 320 340
374 393 370 390
403 426 408 428

mota_ecoli IN IN
4 28 4 21

34 54 34 51
165 189 171 191
195 219 201 222

motb_ecoli* OUT IN
28 49 28 49

mprd_human* OUT OUT
160 184 160 184

mtr_ecoli IN OUT
10 30 16 36
34 56 42 62
89 109 89 109

129 148 129 149
152 171 152 172
190 209 191 211
228 251 229 249

256 276
284 305 286 306
325 344 326 345
348 367 348 367
387 410 386 406

myp0_human* OUT OUT
126 150 125 150

nep_human IN IN
28 47 28 50

ngfr_human* OUT OUT
223 244 223 244

oppb_salty* IN IN
9 27 10 30

100 121 100 121
135 156 138 158
169 190 173 190
229 250 227 250
275 296 272 293
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oppc_salty* IN IN
40 59 38 59

104 128 103 122
136 160 140 160
164 183 164 181
218 236 216 236
271 290 268 290

ops1_calvi* OUT OUT
50 74 48 72
85 109 85 110

119 142 125 144
163 187 164 187
218 239 212 237
275 299 275 298
310 330 306 330

ops2_drome* OUT OUT
59 83 57 81
94 118 94 119

129 153 134 153
173 197 173 196
228 249 221 246
284 308 384 307
318 339 315 339

ops3_drome* OUT OUT
60 84 58 82
95 119 95 119

130 154 134 153
165 189 172 196
220 241 221 246
285 309 285 308
319 340 317 341

ops4_drome* OUT OUT
56 80 54 78
90 114 91 113

125 149 130 149
162 186 168 192
217 238 217 242
281 305 281 304
315 336 313 337

opsb_human* OUT OUT
39 60 34 58
69 93 71 96

106 130 111 130
150 171 150 173
200 221 200 225
250 274 250 273
284 306 282 306

opsd_bovin* OUT OUT
37 61 37 61
71 95 74 99

115 133 114 133
153 174 153 176
203 224 203 228
253 277 253 276
286 308 285 309

opsg_human* OUT OUT
55 79 53 77
88 112 90 115

125 149 130 149
169 190 169 192
219 240 219 244
269 293 269 292
302 325 301 325

opsr_human* OUT OUT
55 79 53 77
88 112 90 115

125 149 130 149
169 190 169 192
219 240 219 244
269 293 269 292
302 325 301 325

phor_ecoli IN IN
14 38 14 34

38 58

Swissprot ID Topology and TM Helices
Predicted Observed

pigr_human OUT OUT
621 642 621 643

ptma_ecoli IN IN
15 38 25 44
48 69 51 69
79 103

134 158 135 154
168 189 166 184
213 234
258 282 274 291
313 334 314 333

rech_rhovi* OUT OUT
12 31 12 32

rcel_rhovi* IN IN
22 46 32 55
78 102 84 109

118 142 115 140
174 198 170 195
232 256 225 250

rcem_rhovi* IN IN
48 71 52 77

111 129 110 135
144 167 142 167
202 225 197 222
266 289 259 284

rfbp_salty IN OUT
15 39 15 32
56 74 56 73
90 108 90 107

116 134 115 132
160 179
240 258
284 303 285 302

rhat_ecoli OUT OUT
4 24 4 24

36 57 38 58
74 93 74 94
97 117 101 121

136 157 137 157
175 195 175 195
214 234 214 234
253 274 259 279
290 310 290 310
322 343 323 343

rib1_rat IN OUT
88 107 416 433

416 435
secd_ecoli IN OUT

10 29 10 30
454 472 452 472
476 497 476 497
502 524 504 524
549 573 564 584
578 597 587 605

sece_ecoli* IN IN
13 32 19 36
39 63 45 63
95 119 93 111

secy_bascu* IN IN
18 36 18 39
68 87 59 80

119 140 115 132
148 166 148 167
174 192 174 192
214 233 217 234
266 284 268 291
310 329 310 329
368 386 367 386
394 413 392 410

secy_ecoli IN IN
24 43 23 42
75 96 75 95
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(Received 27 April 1998; received in revised form 9 July 1998; accepted 21 July 1998)

Swissprot ID Topology and TM Helices
Predicted Observed

122 140 122 139
154 175 154 174
183 204 183 203
218 237 217 237
271 292 274 294
318 337 316 335
369 387 376 395
407 426 399 416

spg1_strsp* IN OUT
± ± 389 409

ssrg_rat IN OUT
30 51 38 48
59 77 55 76

135 156 136 157
164 182 164 184

suis_human IN IN
11 32 13 32

tal6_human OUT IN
10 30 10 30
46 70 46 70
91 115 89 114

165 189 162 187

tcbl_rabit* OUT OUT
289 313 292 313

tcr1_ecoli* IN IN
7 31 8 28

41 65 44 64
75 99 76 96

104 123 104 124
133 157 133 153
162 180 161 181
212 236 216 236
245 269 246 267
279 297 279 298
302 325 301 320
334 358 338 358
367 385 365 385

Swissprot ID Topology and TM Helices
Predicted Observed

tolq_ecoli OUT IN
13 36 23 43

127 150 127 152
167 191 162 187

tolr_ecoli IN IN
16 40 16 40

top_drome OUT OUT
838 861 838 858
973 994

trbm_human OUT OUT
496 516 495 518

trsr_human IN IN
62 83 63 88

uhpt_ecoli* IN IN
27 45 26 46
62 80 70 90
97 115 99 120

124 148 124 144
158 182 159 179
191 210 190 210
260 278 258 279
295 319 295 315
327 345 327 348
354 378 356 376
394 418 382 402
427 446 409 430

upkb_bovin IN IN
12 36 12 37
56 80 60 80
86 109 86 111

229 253 230 253
vmt2_iaann* OUT OUT

25 43 25 42
vnb_inbbe* OUT OUT

16 40 19 40

*Entries which are included in the initial parameter and
pseudocount settings from the 83TMP set.
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