

Principles Governing Amino Acid Composition of Integral Membrane Proteins: Application to Topology Prediction

Gábor E. Tusnády and István Simon*

Institute of Enzymology Biological Research Center Hungarian Academy of Sciences, H-1518 Budapest P.O. Box 7, Hungary A new method is suggested here for topology prediction of helical transmembrane proteins. The method is based on the hypothesis that the localizations of the transmembrane segments and the topology are determined by the difference in the amino acid distributions in various structural parts of these proteins rather than by specific amino acid compositions of these parts. A hidden Markov model with special architecture was developed to search transmembrane topology corresponding to the maximum likelihood among all the possible topologies of a given protein. The prediction accuracy was tested on 158 proteins and was found to be higher than that found using prediction methods already available. The method successfully predicted all the transmembrane segments in 143 proteins out of the 158, and for 135 of these proteins both the membrane spanning regions and the topologies were predicted correctly. The observed level of accuracy is a strong argument in favor of our hypothesis.

© 1998 Academic Press

Keywords: hidden Markov model; transmembrane α -helices; topology prediction for helical transmembrane proteins; distribution of amino acids

*Corresponding author

Introduction

Integral membrane proteins play important and functionally diverse roles in living cells. So far, two basic classes are known, according to the structure of the membrane spanning segments. In the first class, all the transmembrane segments form an α -helical structure with lengths of 17 to 25 amino acid residues (von Heijne, 1994). Members of the second class are only known in the bacterial outer porins that have a 16-stranded β -barrel structure (Weiss & Schulz, 1992). While experimental structure determinations of globular proteins by means of X-ray crystallography are becoming more routine (Lattman, 1994), we cannot nurse such hopes for integral membrane proteins, due to the difficulties in crystallization of these proteins, though there are some new encouraging methods in sight (Gouaux, 1998).

However, it is commonly accepted that topology prediction of membrane proteins is easier, and

results in higher accuracy than the prediction of the secondary structure of globular proteins. The number of known sequences is increasing rapidly, resulting in a large gap between that and the number of known structures. Since prediction methods are the most convenient and least expensive ways of determining proteins structures, there is a great demand for developing efficient prediction methods. In addition, comparison of prediction methods based on different ideas can help to reveal the principles governing the structure formation of proteins.

The development of prediction of transmembrane helices in integral membrane proteins proceeded *via* several steps. The first approaches were based on hydrophobicity analyses (Kyte & Doolittle, 1982; Eisenberg *et al.*, 1984; Engelman *et al.*, 1986; Cornette *et al.*, 1987; Esposti *et al.*, 1990; Ponnuswamy & Gromiha, 1993; Gromiha & Ponnuswamy, 1995), i.e. they used information only about the amino acids that contributed to the formation of transmembrane helices. Their accuracy could be increased by exploiting information not only from transmembrane segments: namely, by considering the different charge distribution between the inside and outside loops

Abbreviations used: HMM, hidden Markov model; NFL, non-fixed length state; FL, fixed length state. E-mail address of the corresponding author: simon@enzim.hu

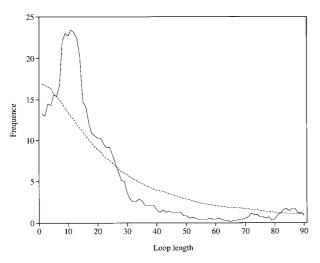
(Boyd et al., 1987; Hartmann et al., 1989; von Heijne, 1992; Sipos & von Heijne, 1993). As the number of experiments dealing with topology increased in the last few years, resulting in more reliable data, several statistical procedures were developed by applying whole amino acid distributions in various structural parts of proteins for the predictions (Jones et al., 1994). Using the advantages of neural network-based algorithms and combining prediction methods with multiple alignments (Persson & Argos, 1994, 1996; Lohmann et al., 1994; Rost et al., 1995, 1996; Casadio et al., 1996), the accuracy of the topology prediction reached the 70 to 80% level, while the accuracy of the prediction of the transmembrane helices reached the 90 to 95% level.

In a previous paper from our group a new method was used for sequence alignment of transmembrane proteins having a very low level of sequence similarities (Cserző et al., 1994). By this method we were able to locate the corresponding transmembrane segments and the method also give a high score for all pairs of transmembrane helices, indicating that certain transmembrane characteristics (namely the amino acid composition of these segments) are more relevant than the actual sequence similarity in the alignment. A prediction method based on this observation works well on a set of prokaryotic integral membrane proteins (Cserző et al., 1997). The application of the amino acid composition in distinguishing between the extracellular and intracellular proteins (Nakashima & Nishikawa, 1994) or in defining the folding class of proteins (Chou, 1995) shows that the amino acid composition of proteins contains enough information to predict their structure in "large resolution".

Studying amino acid similarity in a large database by means of independence divergence calculation indicates that from the viewpoint of structure formation amino acids may be classified into slightly different groups than one would expect on the basis of their physico-chemical parameters (Tusnády et al., 1995). Since there is a big difference between the physical environments of the membrane-spanning segments and the cytoplasmic or extracytoplasmic sides of the membrane proteins, it is not suprising that the amino acid compositions of these parts are different. Therefore, it seems reasonable to expect that a more accurate prediction can be developed when the amino acid compositions of these segments are considered instead of using physicochemical parameters like the hydrophobicity of the amino acids. Since integral membrane proteins have functionally diverse roles in cells and they are in different environments, these facts must be reflected in their amino acid compositions. Thus, enforcing some predetermined or common amino acid compositions of the structural parts of these proteins in topology prediction may produce false results.

Our method is based on the hypothesis that the differences between the amino acid distributions in the various structural parts are the main driving force in the folding of the membrane proteins, i.e. the topology of transmembrane proteins may be determined by the simple fact that the amino acid compositions of the various structural parts do show maximum differthan by enforcing ences rather specific compositions in these parts. The difference between two distributions can be characterized by the divergence function (Kullback, 1959; Gokhale & Kullback, 1978). Divergence calculation was demonstrated to be a useful tool in sequence database analyses in our earlier work (Tusnády et al., 1995). Here we use the sum of divergence values between the distribution of amino acids of the structural parts and the distribution of residues in the whole protein to measure differences in the amino acid distributions of the structural parts. This sum differs only in a constant from the log-likelihood, therefore the topology of membrane proteins can be determined if their amino acid sequences can be segmented to some part (e.g. inside, outside and membrane) in such a way that the product of the relative frequencies of the amino acids of these segments along the amino acid sequence should be maximal. Using more types of structural parts or enabling some controls on the length of the various segments may enhance the power of the method. We can solve this task with use of hidden Markov model (HMM).

HMM is widely used in bioinformatics. The most widespread use of this method is in aligning sequences and generating profiles for protein families (Baldi et al., 1994; Krogh et al., 1994a; Hughey & Krogh, 1996). The profile shows the common sequence motifs of biopolymers (Lawrence & Reilly, 1990) or can be used for database searching for finding new sequence homologs for a given family (White et al., 1993; Krogh et al., 1994b; Borodovsky et al., 1995). A special application of this alignment procedure is in protein topology prediction using secondary structure sequences (Francesco et al., 1997). Secondary structure predictions not based on alignment were also developed (Asai et al., 1993; Stultz et al., 1993; White et al., 1993), though their accuracies were modest.


In contrast with other prediction methods HMM can be suited to particular problems. Any actual structural knowledge may be incorporated into the model's architecture in order to increase its prediction power and to learn more about these proteins. Here, a special HMM is described showing that the maxima of the likelihood function on the space of all possible topologies of a given amino acid sequence correlate with the experimentally established topology. The accuracy of this method was tested in three different data sets. Prediction methods published earlier were compared with our method, to uncover the principles governing the structure formation of integral membrane proteins.

Results and discussion

The hidden Markov model

Investigations of the transmembrane topology of proteins give the impression that transmembrane segments are not located randomly in the sequences. These segments tend to group. To test this hypothesis the length distribution of the segments between transmembrane helices or at the ends of polypeptide chains was checked. In a purely random case the distribution of these segments would be close to geometric distribution as shown in Figure 1, but segments of transmembrane proteins show a different distribution. Short loops with lengths between around five and 30 amino acid residues were observed significantly more often than would be expected, when transmembrane segments were placed into the sequences randomly. Building this distribution into a prediction method may increase its accuracy.

This particular loop length distribution may be the consequence of the structure of the membrane and its environment. The asymmetry of lipid composition between the two halves of the lipid bilayer in most membranes has been well known for a long time (Bergelson & Barsukov, 1977; Rothman & Lenard, 1977). While phospholipids are more abundant in the cytoplasmic part of membranes, glycolipids are found mostly in the extra-cytoplasmic part. It was shown that the orientation of membrane depends on the anionic phospholipid content of the membrane, which suggests that

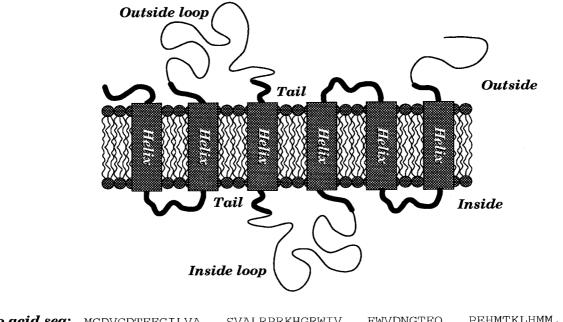
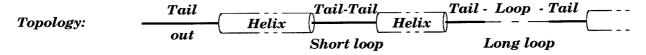


Figure 1. Distribution of loop lengths. The continuous line shows the length distribution of the non-membraneous part of the polypeptide chains in the reference data set. The broken line shows this distribution in the random sample in which transmembrane segments were shuffled for each protein in the reference data set; thus the number of membrane spanning segments remained the same, but their places were altered.

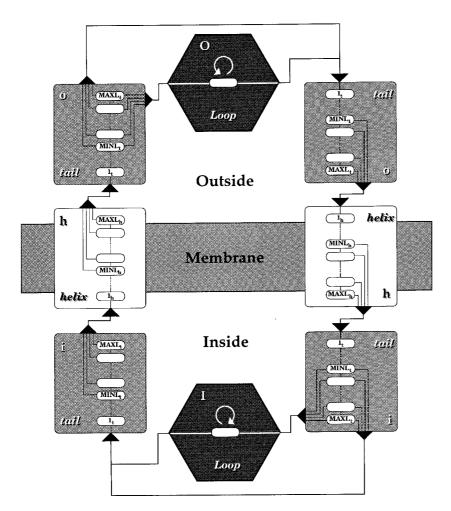

interactions between the negatively charged head of phospholipids and positively charged amino acid side-chains affect the orientation of membrane proteins (van Klompenburg *et al.*, 1997). Keeping in mind this feature of membranes, one would expect characteristic length and amino acid distribution in short loops between transmembrane helices and in the polypeptide chains close to the helices.

The architecture of HMM developed for topology was designed to exploit these particular properties of integral membrane proteins as well as the generally considered features. The model consists of five structural states, as shown in Figure 2. The five states are as follows: inside loop, inside helix tail, membrane helix, outside helix tail and outside loop. The helix parts are embedded in the membrane. The term loop means the longer part of a sequence outside the membrane, which can form a domain or a simpler structure. The tail is the elongation of the membrane helix, and it can be followed by a loop or another tail, forming a short loop interacting with the outside or inside part of the membrane. Note that this model is similar to that used by Jones *et al.* (1994); the differences are in the localizations and in the interpretation of helix tails, which were called helix ends in that study. While helix tails are not in the membrane, helix ends are the very ends of helices located in the membrane.

The power of the model lies in the architecture of possible transitions between states. According to the observations that the length distribution of the long loops (lengths above 30 residues) is close to geometric distribution, but the length of the short loops (about 5 to 30 residues) between helices follows a special distribution, two types of states were defined. These two types are the non-fixed length (NFL) and the fixed length (FL) states. From an NFL state there are only two possible transitions: one to the same state, which increases the length of this state and the other to the next state. This simple architecture of the NFL type transition matrix ensures that the length of this state can be arbitrary and the distribution of the lengths is geometric. The structure of the FL state is more complex. This state is split into MAXL substates in order to limit its length to between a minimum and a maximum (MINL and MAXL, respectively). There is only one possible transition from each of the first MINL substates and it is to the next substate. In each substate between MINL and MAXL there is another possible transition, which is to jump from the current state to the next state. The observation-symbol probabilities of substates in an FL state are the same, while transition probabilities are different between substates MINL and MAXL. The type of loops is defined as NFL, while tail and helix states are defined as FL. The next states are determined by the natural structure of the membrane proteins; for example, after an inside loop, the next state is the inside helix tail, then the helix, then the outside tail etc. The tail state on both sides

Amino acid seq:MGDVCDTEFGILVA...SVALRPRKHGRWIV...FWVDNGTEQ...PEHMTKLHMM...State seq:00000000hhhhh...hhhhiiiiiiihhh...hhho00000...0000000hhh...

Figure 2. Structural states defined for a typical helical transmembrane protein. The five states are: inside loop (I), inside tail (i), membrane helix (h), outside tail (o) and outside loop (O). Tails (thick lines) are thought to interact with the inside or outside parts of the membrane, while loops (thin lines) do not. Two tails between helices can form a short loop, but longer loops are formed by tail-loop-tail sequences.


of the membrane, coming after the helix state, can be followed by another tail or by a loop; that is, the state sequence between two helix states can be a tail-tail forming a short loop or a tail-loop-tail resulting in a long loop (see Figure 2). Short loops are thought to be associated with the heads of phospholipids, while long loops form a welldefined structure in the cytosol or in the other side of the membrane, but their very ends interact with the membrane. The architecture of the possible transitions is shown in Figure 3.

The prediction method based on this model has three steps. First, the initial estimates of HMM parameters (the initial state, the observation symbol and the state transition probabilities) have to be set. The parameters can be chosen by random values, or by predetermined values. The next step is the optimization of these parameters for the amino acid sequence studied or for homolog sequences. The third step is to find the best state sequence by the so-called Viterbi algorithm, given the model and the parameters. Elements of the state sequence show the localization of each amino acid in the query sequence. The mathematical details of these procedures are given in Materials and Methods. An excellent tutorial for using HMMs was written by Rabiner (1989). By applying random values in parameter settings optimization

produced various results, since the likelihood function over the sequence has many local optima. To avoid this problem iteration was started from a predetermined parameter set and the pseudocount method was used during the iteration process. Values of the parameters and the pseudocount array were derived from the amino acid sequences of transmembrane proteins whose topologies are experimentally well defined (see Materials and Methods). Since optimization of the parameters can work for multiple sequences (multiple observations), prediction can be made using multiple sequence information. One of the advantages of HMM is that related proteins do not have to be aligned before the prediction.

Prediction efficiency on various data sets

The prediction power of the newly developed HMM was tested on three different data sets, collected earlier for transmembrane prediction methods: 83TMP (Jones *et al.*, 1994), 48TMP (Rost *et al.*, 1996) and prokTMP (Cserző *et al.*, 1997), respectively (see Materials and Methods). The results on multiple sequences shown in Table 1 demonstrate the accuracy of the proposed prediction method for recognizing transmembrane topology. For the three data sets the transmembrane

Figure 3. Architecture of HMM used for topology prediction. States with the same transition matrices are colored in the same way: white, helix states; light gray, tail states; dark gray, loop states. Rectangular areas FL type states; hexagonal ones, NFL type states. The observation-symbol probabilities used by states are marked in each state. The structure of substates in the case of the FL type is drawn within states. Lines and arrows show the possible transition between states or substates.

helix prediction accuracy is over 98% in each case (altogether, for the 698 transmembrane segments 709 were predicted, of which 694 were predicted correctly), all transmembrane segments were predicted correctly in 74 out of 83 proteins on the 83TMP set (89%), 45/47 (96%) on the 48TMP set and 38/44 (86%) on the prokTMP set. The number of proteins with correctly predicted orientation and transmembrane segments reached a high level as well: 72/83 (87%), 43/47 (91%) and 32/44 (73%) on the three data sets, overall 135 out of 158 proteins (85%). The published and predicted transmembrane segments and topologies can be found in the Appendix or see Tusnády (1998).

Prediction based on single sequence information was naturally less accurate. Nevertheless, comparing these results with previously published methods (see the next section) using single sequence information, the prediction power of this method is astonishing. From the three data sets, 714 helices were predicted, of which 689 were correct. This value is less by only five transmembrane helices than the value in the case of multiple sequences. The number of proteins with correctly predicted membrane spanning segments was 131, while the topology and the transmembrane segments were predicted correctly in 124 cases (78%). This is much higher than the accuracy of predictions based on hydrophobicity plot analysis, the

Table 1. Results on various data sets using HMM for topology prediction

	N	No. of correct proteins							
Data set	$N_{\rm obs}$	$N_{\rm prd}$	$N_{\rm cor}$	$Q_{\rm P}$ (%)	Q_2	$N_{\rm TOT}$	$N_{\rm TM}$	$N_{\rm TT}$	Q _T (%)
83TMP	346	353	344	98.4	94.9	83	74	72	87
48TMP	194	197	194	99.2	94.6	47	45	43	91
prokTMP	262	264	259	98.5	89.8	44	38	32	73
Total	698	709	694	98.7	94.2	158	143	135	85

 $N_{obs'}$, N_{prd} and N_{cor} are the number of observed, predicted and correctly predicted transmembrane helices, respectively; $Q_P = 100 \cdot \sqrt{(N_{cor}/N_{obs}) \cdot (N_{cor}/N_{prd})} \cdot N_{TOT}$, N_{TM} and N_{TT} are the number of proteins in the data sets, the number of proteins for which all transmembrane segments were predicted correctly, and the number of proteins for which both the topology and the transmembrane segments were predicted correctly, respectively. Q_2 is the per residue accuracy. accuracies of which are about 60% on these data sets.

The prediction accuracy on the prokTMP set is not as good as the other two. In this data set, however, there are a few proteins without experimentally well-defined topology. In the case of cytochrome d terminal oxidase subunits I and II (CYDA_ECOLI and CYDB_ECOLI, respectively), according to the original article (Georgiou et al., 1988), an independent experimental approach is required to determine the actual topology, and from other experiments (Dueweke & Gennis, 1990, 1991) it is only acceptable that the loop between residues 239 and 393 in subunit I is located in the periplasma. Since there is no evidence that this protein contains seven transmembrane segments, the prediction made using HMM does not contradict the results of the experiments. The experimental results obtained on subunit II of this protein do not distinguish between the former prediction based on hydrophobicity analysis and the recent prediction made by HMM. The cytochrome *o* terminal complex is the other component of the aerobic respiratory chain of *Escherichia coli*. This complex consists of five subunits, whose topologies were determined by Chepuri & Gennis (1990). According to their work there is no evidence that the last putative transmembrane segment of the subunit I (CYO-B_ECOLI) really crosses the membrane. In case of the E subunit of this complex (CYOE_ECOLI), the results of experiments do not exclude the possibility that the polypeptide chain crosses the membrane twice between the fourth and fifth putative transmembrane segments in the original work, as the HMM predicted.

Comparison with other methods

To disclose the principles governing the structure formation of membrane proteins, it is interesting to compare the results of prediction methods based on different ideas. Three other prediction methods were taken into consideration. TOPPRED (von Heijne, 1992) uses the hydrophobic profile of transmembrane proteins and the observation that positively charged residues are more abundant in cytoplasmic regions ("positive-inside" rule). MEM-SAT (Jones et al., 1994) employs the amino acid log likelihood ratios in five structural classes of membrane proteins (inside loop, outside loop, inside helix end, helix middle and outside helix end) and uses a dynamic programming algorithm to maximize the sum of these log likelihoods over the sequences. In fact this method is one step of the HMM, i.e. finding the best state sequence for the amino acid sequence if the parameters and the model are given. The third method, PHDhtm_ref (Rost et al., 1996), introduced a refined neural network system to predict localization of transmembrane helices combined with the positive-inside rule.

The accuracies of these three prediction methods on the three data sets are listed in Table 2. Note that segment prediction accuracies (Q_p) are high for all of these methods (above 94%), thus to distinguish among them the number of proteins for which all the transmembrane segments and the topology are correctly predicted (N_{TT} or Q_{T} should be considered. TOPPRED, elaborated first, is the least accurate. The overprediction of this algorithm is remarkable, which may be the result of marking the apolar cores of the non-transmembrane

Table 2. Prediction accuracy of various algorithms on various data sets

		Ν	Jo. of transme	mbrane helio	ces		No. of corr	ect proteins	
Data set	Method	$N_{\rm obs}$	$N_{\rm prd}$	$N_{\rm cor}$	$Q_{\rm P}$ (%)	$N_{\rm TOT}$	$N_{\rm TM}$	$N_{\rm TT}$	Q _T (%)
83TMP	TOPPRED	346	381	336	92.5	83	54	54	65
	MEMSAT		351	336	96.4		69	65	78
	HMM_1		358	342	97.2		68	66	80
	PHDhtm_ref		351	342	98.1		75	73	88
	HMM _{multi}		353	344	98.4		74	72	87
48TMP	MEMSAT	194	174	165	89.8	47	26	23	49
	TOPPRED		200	193	98.0		40	25	53
	HMM_1		198	192	98.0		40	39	83
	HMM _{multi}		197	194	99.2		45	43	91
	PHDhtm_ref		192	192	99.5		45	42	89
prokTMP	PHDhtm_ref	262	259	254	97.5	44	31	28	64
-	MEMSAT		255	250	96.7		33	29	66
	TOPPRED		264	255	97.0		32	30	68
	HMM_1		264	258	98.1		36	30	68
	HMM _{multi}		264	259	98.5		38	32	73
Total	TOPPRED	698	740	681	94.8	158	112	95	60
	MEMSAT		673	647	94.4		114	103	65
	HMM_1		714	689	97.6		131	124	78
	PHDhtm_ref		699	685	98.1		136	128	81
	HMM_{multi}		709	694	98.7		143	135	85

References for methods are as follows: TOPPRED (von Heijne, 1992), MEMSAT (Jones *et al.*, 1994), PHDhtm_ref (Rost *et al.*, 1996), HMM₁ hidden Markov model used on single sequence information in this article, HMM_{multi} hidden Markov model used on multiple sequence information in this article. The meanings of the columns are the same as in Table 1.

domains as transmembrane regions. The positiveinside rule improves the accuracy, but the inclusion of only the positive to the charged residues in the prediction is not as efficient as taking into account the distribution of all amino acids in the structural units of membrane proteins. This observation explains why MEMSAT works better than TOPPRED, since in this procedure the distribution of all amino acids of five structural classes are built into the prediction. The difference in accuracy between MEMSAT and our method might reflect the fact that the various membrane proteins have different amino acid frequencies in their structural units, so that forcing the same distribution for each protein may result in underprediction of transmembrane regions. If the amino acid composition of transmembrane segments differs from the general composition, then these segments will not be predicted using the model recognition approach, but will be accepted as transmembrane segments if changes in the composition are considered. To understand this, a spectacular example is shown. Multiple polar residues were gradually introduced into helix D of bacteriorhodopsin, from one glutamine to as many as five hydrophilic residues (four glutamine and one aspartic acid) (Chen & Gouaux, 1997). All of the mutants refold and show properties similar to wild-type protein, demonstrating that micelle-solubilized bacteriorhodopsin can tolerate multiple non-conservative substitution of amino acids. Application of the MEMSAT method to these mutants yielded correct results in the case of mutants containing one and two glutamine residues but failed for mutants containing more hydrophilic residues. On the contrary, the method presented here failed only for mutants containing five additional hydrophilic residues.

The lower accuracy of the MEMSAT and TOPPRED methods on the 48TMP set may be due to the homolog proteins in this set (e.g. GABAreceptor subunits or members of TM4 superfamily). One should also note that MEMSAT uses another definition of structural units. Though the distributions of apolar amino acids are different in helix middle and ends, as first shown by Sipos & von Heijne (1993), this observation provides similar information about localization and orientation of transmembrane helices. Choosing the parameters in HMM used in MEMSAT resulted in a prediction accuracy similar to theirs. In the total data set, using only a single sequence for prediction, setting the helix's minimum and maximum lengths to 9 and 17, respectively, and the tail's minimum and maximum length to 4, as used in MEMSAT, the method predicted 658 helices, of which 644 were correct (673 and 647 were the values predicted by MEMSAT, respectively; Table 2). The number of perfectly predicted proteins decreased from 124 to 100, which is in good agreement with the prediction accuracy reached by MEMSAT (103). This result suggests that amino acids locate near the membrane have special roles in determining the protein topology, so application

of their distribution increases the efficiency of the prediction methods.

As it is known the prediction accuracy reaches a higher level when using more sequences, PHDhtm_ref reached the highest efficiency compared to the previous methods, since if includes sequence alignments. However, aligning the transmembrane segments can lead to wrong prediction, since the sequence identity is very low on these segments. For this reason, the way the HMM handles multiple observations can be a great advantage and may result in better prediction. Naturally, the neural network algorithm by which the markings of transmembrane segments was learned also increases the efficiency. However, we do not gain more knowledge about proteins, for the neural network algorithm is a black box. This algorithm cannot handle the length of the transmembrane segments properly and does not employ the charge bias between inside and outside loops, so the authors had to include them in the method as an inside filter.

Validation of the hypothesis

Here we suggest that the topology depends on the maximum divergence of the amino acid distributions of the various structural parts rather than on the absolute frequencies of amino acids in these parts. First, it is algebraic evidence that the maximum divergence (the sum of divergences between the amino acid distributions of these parts and the distribution of the whole proteins) can be obtained as the sum of the logarithm of the relative frequencies of residues in these parts along the given sequence (log likelihood), or without using a logarithm, the product of these frequencies (likelihood). When searching for the correct topology as the maximum of the likelihood function, the biological constraints have to be considered; for example, the length of a transmembrane helix cannot be arbitrary, or a helix after an inside loop can only be followed by an outside loop. However, even if the amino acid distributions in the five structural parts were known, the most likely topology could not be searched for by a direct searching method due to a combinatorical problem (Jones et al., 1994). In addition, according to our hypothesis, amino acid distributions in these parts have also to be searched for, thus finding the most likely topology becomes even harder by "brute-force searching Fortunately, this optimization problem can be solved by using HMM associated with the Baum-Welch algorithm. Thus HMM in this study is only a tool for searching for the topology corresponding to the maximum divergence, and therefore a high level of prediction accuracy, i.e. the observation that the most likely topology correlates with the natural topology of the proteins is a strong argument in favor of our hypothesis.

Starting the optimization from the amino acid distributions corresponding to the natural topology of proteins results in the same topology with only a small alteration in the ends of transmembrane segments (data not shown). This observation shows that the likelihood functions have local optima at these distributions, which also supports our hypothesis. Using the pseudocount vector in the optimization process can be interpreted as a search for the topology of the query protein in a restricted space of the amino acid distributions. However, optimizations without pseudocount vector result in only a little lower accuracy (number of proteins in which all transmembrane segments are correctly predicted is 132, with correct topology is 123 (79%)), showing the high level of validity of the hypothesis.

Conclusion

The accuracy of the prediction method described here indicates that the topology is determined by the maximum divergences of the amino acid distribution of the different structural parts in the membrane proteins rather than by the absolute composition of these parts.

This work is a wide generalization of the work of Jones *et al.* (1994). Improvements proposed by them are included in HMM automatically; for example, usage of multiple sequence information. The other advantage of HMM is that there is no need to make alignments before prediction. Since the actual topology is determined by the principles mentioned above, the effect of the parameters originating from the experimental results is much weaker. Thus the experimental errors do not affect the prediction accuracy. Moreover, the proposed method can work without any external parameters, with very high success.

It is worth mentioning that the various segment distributions of the membrane proteins can be stimulated in HMM by its special architecture. This architecture ensures the distinction between the short and long loops connecting helices.

Naturally, there are several weak points in this model originating from the methodology of HMM. One of them is that, using multiple sequences, the same predicted topology for each sequence is not guaranteed. The next point is related to the multiple optima problem in the optimization process. Since the Baum-Welch algorithm cannot find the global optimum of the likelihood function, the correct way to handle this problem may be by an exhaustive search for the optimum. Because of the huge computational demand for searching, each iteration was started from the same point.

Materials and Methods

The hidden Markov model

To apply the hidden Markov model, the model architecture has first to be defined; namely, the number of states, the possible transitions between states and the observation symbols of each state. The model described

Table	3.	Notation

Α	Amino acids ($A = a_1 \dots a_{20}$)
В	States $(B = b_1 \dots b_5)$
O,o,h,i,I	States (outside loop, outside tail, membrane
	helix, inside tail and inside loop)
Ν	Length of sequence
S	Sequence of amino acids ($S = s_1 \dots s_N$)
Q	Sequence of states ($Q = q_1 \dots q_N$)
α	Pseudocount vector ($\alpha = \alpha_{1,1} \dots \alpha_{5,20}$)
\mathcal{I}	Initial state distribution
	$\mathcal{I}_j = P(q_1 = b_j), j = 1 \dots 5$
\mathcal{P}	Emission probability distribution
	$\mathcal{P}_{ij} = P(a_i \dot{b}_j), \ i = 1 \dots 20, \ j = 1 \dots 5$
\mathcal{J}	Transition probability distribution
	$\mathcal{J}_{ij} = P(q_k = b_j q_{k-1} = b_i) \ i = 1 \dots 5, \ j = 1 \dots 5, k = 2 \dots N$

here consists of five states: loops (inside and outside, I and O, respectively), tails (inside and outside, i and o, respectively) and helices (h). The model is presented in Figure 2; our notation is given in Table 3. For defining the possible transitions between these states: first, two types were defined. In the first one, called non-fixed length (NFL) type state, there are only two possible transitions: from current state to current state with $\mathcal{J}_{Curr,Curr}$ probability and from current state to the next one with $\mathcal{J}_{Curr,Next}$ probability. By definition: $\mathcal{J}_{Curr,Curr} + \mathcal{J}_{Curr,Next} = 1$ (for definition of the term "Next" state, see below). In the second case, called fixed length (FL) type state, the minimum and maximum lengths of the state are fixed (MINL and MAXL, respectively; they are different for various FL type states). This can be ensured by introducing maximum length number substates. The values of the transition probabilities in this case are as follows: for the first MINL substates transition probabilities are unity to the next substate, and zero to any other substates and states $(\mathcal{J}_{Curr(j),Curr(j+1)} = 1, j = 1... \text{MINL}_{Curr} - 1).$ Between MINL and MAXL transition probabilities Between are $\mathcal{J}_{Curr(j),Curr(j+1)}$ to the next substate, $\mathcal{J}_{Curr(j),Next}$ ($j = MINL_{Curr} \dots MAXL_{Curr} - 1$) to the first element of the nest state and zero to any other substates or to other states. Naturally, from the last substrate of the current state transition is only possible to the next state. When a state is followed by two other states (see below) the transition probabilities are split into two parts $\mathcal{J}_{Curr(j),Next}$ and $\mathcal{J}_{Curr(j),Other}^{1}$ (see Figure 3). Tail and helix states are defined as FL type states, while loop states are NFL type states.

The sequence of states and the corresponding transition matrix follows the natural structure of transmembrane proteins, i.e. inside loop is followed by helix, helix is followed by outside loop and outside loop is followed again by helix. More exactly, a tail, which comes after a helix, can be followed by another tail or by a loop, thus a linker region between two helices can be formed by two tail states or by a tail-loop-tail state sequence.

The observation-symbol probabilities of substates were the same. So were the two kind of tails, which are on the same side of the membrane before and after helices. In this way the observation-symbol probability matrix (\mathcal{P}) contains five rows corresponding to five structural parts of the membrane proteins; each contains 20 observation-symbol probabilities for the 20 kinds of amino acids. For HMM the initial state probabilities (\mathcal{I}) have to be defined as well. They are zero for helix state and tail state, which are located after a helix. For the

other states they can be any value. This model corresponds to the natural structure of transmembrane proteins, containing a shorter or longer sequence before the first membrane spanning segment.

A prediction (i.e. sequence of states) for a given amino acid sequence can be generated by a "random walk" through the model. The first element of the state sequence (q_1) is chosen randomly according to the initial probability matrix (\mathcal{I}). The second one (q_2) is selected randomly according to the transition probabilities $\mathcal{J}(x|q_1)$, where x indicates any possible next state. The *i*th element of the state sequence is generated from transition probabilities $\mathcal{J}(x|q_i)$. The probability of this prediction (q_1 , $q_2 \dots q_N$) for a given amino acid sequence ($s_1, s_2 \dots s_N$), if the model ($\mathcal{I}, \mathcal{P}, \mathcal{J}$) is given is:

$$P(q_1 \cdots q_N, s_1 \cdots s_N | model) = \mathcal{I}(q_1) \cdot \mathcal{P}(s_1 | q_1)$$
$$\cdot \prod_{i=2}^N \mathcal{J}(q_i | q_{i-1}) \cdot \mathcal{P}(s_i | q_i) \quad (1)$$

The probability of an amino acid sequence associated with a given model can be calculated by summing these probabilities over all possible state sequences:

$$P(s_1 \cdots s_N | model) = \sum_{All \ q_1 \cdots q_N} P(q_1 \cdots q_N, s_1 \cdots s_N | model)$$
(2)

Given a set of homolog proteins (S(1), S(2)...S(M)) derived from the same model, the probability of the model is simply the product of the probabilities calculated for each sequence:

$$P(sequences|model) = \prod_{j=1}^{M} P(S(j)|model)$$
(3)

where *M* is the number of sequences, and each term P(S(j)|model) is calculated by substituting $s_1 \dots s_N = S(j)$ in equation (2). In this way a probability distribution on the space of sequences is defined. The goal is to find a model (i.e. values of the observation-symbol and transition probabilities) that accurately describes the topology of a given protein (or proteins) by assigning a maximal probability to the sequence(s).

The original Baum-Welch (or forward-backward) algorithm was used to find this best model. The detailed description of the HMM and the Baum-Welch algorithm can be found in Rabiner's excellent tutorial (Rabiner, 1989). To ensure the correct sequence of states and avoid the incorrect ones ($i \rightarrow h \rightarrow i$ or $o \rightarrow h \rightarrow o$, we used a special matrix in the forward-backward algorithm, where the two types of transmembrane helices ($i \rightarrow h \rightarrow o$ and $o \rightarrow h \rightarrow i$) were distinguished but the same transition and observation symbol probabilities were used for them.

Many authors pointed out the weakness of the Baum-Welch algorithm, i.e. it finds only a local optimum, not a global one. There are two suggested solutions to this problem in the literature, the "noise injection" heuristic procedure used by Krogh *et al.* (1994b) and a simulated annealing variant proposed by Eddy (1995). We have found the latter one to be unsatisfactory, due to the changing of the optimum place during the temperature change (data not shown). Obviously, using more sequences and doing many optimizations from various probability distributions, proposed by Krogh *et al.* (1994a), can help to solve this problem. We found that introducing the Dirichlet mixture to the HMM (Brown *et al.*, 1995; Sjölander *et al.*, 1996), or its simpler variant, the pseudocount method, the number of the local optimum places decreased drastically. We used the pseudocount method, where the prior distribution (α) was given by the relative frequencies of the amino acids in the reference data set (see below). In the likelihood function the count vector has to be considered in the following way:

 $Prob(sequences, model|\alpha) = Prob(sequences|model)$

$$\cdot \prod_{j=1}^{5} \prod_{i=1}^{20} \mathcal{P}(a_i | b_j)^{\alpha_{ij}} \tag{4}$$

where the probability of sequences for a given model *Prob (sequences|model)* was calculated as in equation (3).

Rabiner (1989) emphasized the importance of the initial estimates of HMM parameters. If a good estimation is given as a starting point to the Baum-Welch algorithm, the multiple optima problem can be avoided. For this reason, besides using the pseudocount method each iteration was started from the same point located by the count arrays.

Data sets, measure the prediction accuracy

Three data sets, collected earlier for transmembrane prediction methods, were used to measure the prediction accuracy. The first data set was originally collected by Jones et al. (1994), and was also used by Rost et al. (1996) (83TMP set). The second one is an extension of it by Rost et al. (1996) (48TMP set). The third data set contains prokariotic transmembrane proteins collected by Cserző et al. (1997) (prokTMP set). These data sets contain transmembrane proteins whose topologies are established by two kinds of approaches. Indirect experiments, providing information about certain parts of a protein (for example, an amino acid in a given position is inside or outside), were combined with hydrophobicity plot analyses resulting in the most probable topology. Thus the uncertainty of the termini of transmembrane segments has to be kept in mind in measuring the accuracy of the method (see below) and in the interpretation of the results. Apparently, the following entries were missing from the Swissprot database release 34.0 (Bairoch & Boeckmann, 1991): EGFR_DROME, GP1B_HUMAN, PT2M_ECOLI and IGGB_STRSP in the 83TMP set. These entries were replaced by the corresponding files in the current Swis-TOP_DROME, GPBB_HUMAN, sprot release, i.e. PTMA_ECOLI and IG1B_STRSP, respectively. In the 48TMP set there were also some missing files, AD1_RAT and COX1_PARDE. AD1_RAT was eliminated because it is the same as CD63_RAT, which originally belonged to the 48TMP set. COX1_PARDE was replaced by CX1B PARDE.

We have found some data in the data sets studied which were in contradiction with the original article or with other experimental results. According to van Beilen *et al.* (1992), the transmembrane segments of ALKB_PSEOL are as follows: 22-40, 41-69, 88-110, 114-137, 227-247 and 250-270. In COX2_PARDE the lengths of the two transmembrane segments were too long, so we shortened them according to the results of Iwata *et al.* (1995) to 66-88 and 108-128 instead of 56-88 and 103-134, respectively. The annotations of transmembrane segments were missing for UHPT_ECOLI and were added according to the results of Yan & Maloney (1993). Where the annotation of the topology, i.e. the localization of the first loop, was missing it was taken from Jones *et al.*

(1994) or Rost *et al.* (1996). Finally, annotation errors mentioned by Cserző *et al.* (1997) were corrected as well.

After these corrections 83TMP, 48TMP and prokTMP contain 83, 47 and 44 proteins, with 346, 194 and 262 transmembrane segments, respectively. Because of the overlapping proteins, the three data sets contain, altogether, 158 proteins and 698 transmembrane helices.

To measure the prediction accuracy we followed the method described by Cserző et al. (1997), with the following slight modification. The overlapping predicted and observed transmembrane segments were counted $(N_{\rm cor}).$ The total numbers of predicted $(N_{\rm prd})$ and observed $(N_{\rm obs})$ segments were also counted. If $N_{\rm cor}$ was higher than $N_{\rm prd}$ (which can happen if the observed helix overlaps two predicted helices), then it was reduced to $N_{\rm prd}$. The efficiency of the transmembrane helix prediction was measured in terms of the following ratios: $M = N_{\rm cor}/N_{\rm obs}$ and $C = N_{\rm cor}/N_{\rm prd}$. The overall prediction power can be measured as the geometric mean of these ratios ($Q_{\rm P} = 100 \cdot \sqrt{M \cdot C}$). As this value is very high for many prediction methods (above 90%), two other values were used to measure the prediction accuracy proposed by Rost et al., (1996): the number of proteins for which all the transmembrane segments were predicted correctly $(N_{\rm TM})$, and the number of proteins for which both the transmembrane segments and the topology were predicted correctly $(N_{\rm TT})$.

For using multiple observation sequences in the prediction method, homolog sequences of the query protein were searched by the BLAST automatic server (Altschul *et al.*, 1990). Sequences above 25% identity with the query protein were applied. Because of the limiting factor of the computer hardware, a maximum of 50 related proteins was used in the prediction.

The sequence processing before prediction was the same as found by Jones *et al* (1994), i.e. if the localization of the signal peptide was given in the databank then it was removed. If the precursor protein was marked in the database then only the precursor sequence was applied in the prediction.

Parameters

The control parameters of the algorithm described here are $MINL_s$ and $MAXL_s$, the minimum and maximum lengths of the FL type state *s*, respectively. They are 1 and 15 for tails (inside and outside), 17 and 25 for helix states.

As described above, the pseudocount method was used to eliminate the local optima problems. Proteins containing one transmembrane segment and sequences longer than 500 residues were eliminated from the 83TMP data set. Proteins that have no well-confirmed topology, by experimental results, were omitted from the 83TMP set as well. After this filtration 63 proteins remained (marked by asterisks in the Appendix, and see Tusnády, 1998), which were used to create the initial estimate of parameters and also the pseudocount array. From this set, proteins which have a higher sequence identity than 25% to proteins under prediction were also omitted (jack-knife method). The amino acid frequencies after elimination from the five states were counted. The initial observation-symbol probabilities were their normalized arrays for each state. The pseudocount array (α) was calculated as follows: the amino acid frequencies from the selected proteins were counted in each state and were normalized to a given size $(T = |\bar{\alpha}|, \alpha_{i,j} = T \cdot \alpha_{ij})$ β , where $\beta_{i,j}$ is the frequency of the *j*th amino acid in the *i*th state and $\bar{\beta} = \sum_{i=1}^{5} \sum_{j=1}^{20} \beta_{ij}$. The highest prediction accuracy was reached at T = 10,000.

The initial transition probabilities of the FL type states were also derived for the 63 selected proteins. Tail regions in this case were defined as follows: let lbe the length of a linker region between two helices. If $l \ge 2 \cdot MAXL_t$ (i.e. 30 residues), then two $MAXL_t$ length (15 residues) tail regions were marked else two symmetrical l/2 length ones. The frequencies of the various lengths of loops and membrane helices were counted. The initial transition probabilities were set in a manner by which they could generate these distributions of length: let λ_{ij} be the frequency of the segments of *j* length in the *i*th state. The let $\Lambda_{ij} = \lambda_{ij} / \sum_{k=j}^{MAXL_i} \lambda_{ik}$ and $\tau_{ij0} = 1 - \Lambda_{ij}$ (the initial probability of the elongation of the *j* length segment in the *i*th state), $\tau_{ij1} = \Lambda_{ij}$ (the initial probability of the termination of the *j* length segment in the *i*th state), which is the transition to the next state if the *i*th state is followed by only one state (loops, tails before membrane helix and membrane helices). If the *i*th state may be followed by two states (tails coming after membrane helices, see Figure 2 and Figure 3), Λ_{ij} is split into two parts according to the relative frequencies of the two states after the *j* length segments in the *i*th state (ω_{ii} and $1 - \omega_{ij}$, so $\tau_{ij1} = \omega_{ij} \cdot \Lambda_{ij}$ and $\tau_{ij2} = (1 - \omega_{ij}) \cdot \Lambda_{ij}$.

The initial parameter set of the model was determined using the 83TMP data set and for each protein the sequences which have higher sequence identity than 25% to proteins under investigation were omitted (jack-knife method).

Programs

The hidden Markov model described here has been implemented in ANSI C language on a Unix workstation (Silicon Graphics, Indigo2). The prediction method is available *via* an automatic server on the World-Wide Web site http://www.enzim.hu/hmmtop.

Methods for comparison with our method were used via an Internet site or the source codes were purchased. TOPPRED predictions (von Heijne, 1992) for the three data sets were generated using its automatic prediction (http://www.biokemi.su.se/~server/toppred2) server with default parameters (upper cutoff, 1.0; lower cutoff, 0.6; window size; top, 11; bottom, 21). The source code of MEMSAT program (Jones et al., 1994) was obtained from the authors, and was implemented on our workstation. The method developed by Rost et al. (1996) was used via their automatic server (http:// www.embl-heidelberg.de/predictprotein). In case of dubious prediction results we consulted Dr Rost. The results obtained with these programs on data sets were different from the original ones, due to the annotation errors mentioned above.

Acknowledgements

We thank Gábor Tusnády for very useful discussion and comments, and Zsuzsanna Dosztányi and Gábor Szirtes for their critical comments on the manuscript. We thank Burhard Rost for helping with discussion of results from the PHDhtm_ref method. This work was supported by research grants OTKA T017652, F019008 and F022051.

References

- Altschul, F. S., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. (1990). Basic local alignment search tool. J. Mol. Biol. 215, 403–410.
- Asai, K., Hayamizu, S. & Handa, K. (1993). Prediction of proteins secondary structure by the hidden Markov model. *Comp. Appl. Biosci.* 9, 141–146.
- Bairoch, A. & Boeckmann, B. (1991). The SWISS-PROT proteins sequence bank. Nucl. Acids Res. 19, 2247– 2249.
- Baldi, P., Chauvin, Y., Hunkapiller, T. & McClure, M. A. (1994). Hidden Markov models of biological primary sequence information. *Proc. Natl Acad. Sci.* USA, 91, 1059–1063.
- Bergelson, L. & Barsukov, L. I. (1977). Topological asymmetry of phospholipids in membranes. *Science*, 197, 224–230.
- Borodovsky, M., McIninch, J. D., Koonin, E. V., Rudd, K. E., Médigue, C. & Danchin, A. (1995). Detection of new genes in a bacterial genome using Markov models for three gene classes. *Nucl. Acids Res.* 23, 3554–3562.
- Boyd, D., Manoil, C. & Beckwith, J. (1987). Determinants of membrane proteins topology. *Proc. Natl Acad. Sci.* USA, 84, 8525–8529.
- Brown, M., Hughey, R., Krogh, A., Mian, I. S., Sjölander, K. & Haussler, D. (1995). Using Dirichlet mixture priors to derive hidden Markov models for protein families. In *Proceeding of First International Conference on Intelligent Systems for Molecular Biology* (Rawlings, C., ed.), pp. 47–55, AAAI/MIT Press, Menlo Park, CA, USA.
- Casadio, R., Fariselli, P., Taroni, C. & Compiani, M. (1996). A predictor of transmembrane alpha-helix domains of proteins based on neural networks. *Eur. Biophys. J.* 24, 165–178.
- Chen, G.-Q. & Gouaux, E. (1997). Reduction of membrane proteins hydrophobicity by site-directed mutagenesis: introduction of multiple polar residues in helix d of bacteriorhodopsin. *Protein Eng.* 10, 1061–1066.
- Chepuri, V. & Gennis, R. B. (1990). The use of gene fusions to determine the topology of all of the subunits of the cytochrome o terminal oxidase complex of Escherichia coli. *J. Biol. Chem.* **265**, 12978–12986.
- Chou, K. C. (1995). A novel approach to predicting protein structural classes in a (20–1)-d amino acid composition space. *Proteins: Struct. Funct. Genet.* **21**, 319–344.
- Cornette, J. L., Cease, K. B., Margalit, H., Spouge, L., Berzofsky, J. A. & DeLisi, C. (1987). Hydrophobicity scales and computational techniques for detecting amphipathic structures in proteins. *J. Mol. Biol.* 195, 659–685.
- Cserző, M., Bernassau, J., Simon, I. & Maigret, B. (1994). New alignment strategy for transmembrane proteins. J. Mol Biol. 243, 388–396.
- Cserző, M., Wallin, E., Simon, I., von Heijne, G. & Elofsson, A. (1997). Prediction of transmembrane alpha-helices in prokariotic membrane proteins: the dense alignment surface method. *Protein Eng.* 10, 673–676.
- Dueweke, T. J. & Gennis, R. B. (1990). Epitopes of monoclonal antibodies which inhibit ubiquinol oxidase activity of Escherichia coli cytochrome d complex localize functional domain. J. Biol. Chem. 265, 4273–4277.

- Dueweke, T. J. & Gennis, R. B. (1991). Proteolysis of the cytochrome d complex with trypsin localizes a quinol oxidase domain. *Biochemistry*, **30**, 3401–3406.
- Eddy, S. R. (1995). Multiple alignment using hidden Markov models. In Proceedings of Third International Conference on Intelligent Systems for Molecular Biology (Rawlings, C., ed.), pp. 114–120, AAAI Press, Menlo Park, CA, USA.
- Eisenberg, D., Schwartz, E., Komáromy, M. & Wall, R. (1984). Analysis of membrane and surface proteins sequences with the hydrophobic moment plot. *J. Mol. Biol.* **179**, 125–142.
- Engelman, D. M., Steitz, T. A. & Goldman, A. (1986). Identifying nonpolar transbilayer helices in amino acid sequences of membrane proteins. *Annu. Rev. Biophys. Chem.* 15, 321–353.
- Esposti, M. D., Crimi, M. & Venturoli, G. (1990). A critical evaluation of the hydropathy profile of membrane proteins. *Eur. J. Biochem.* **190**, 207–219.
- Francesco, V. D., Garnier, J. & Munson, P. J. (1997). Proteins topology recognition from secondary structure sequences: application of the hidden Markov models to the alpha class proteins. *J. Mol. Biol.* 267, 446–463.
- Georgiou, C. D., Dueweke, T. J. & Gennis, R. B. (1988). β-galactoside gene fusions as probes for the cytoplasmic regions of subunits I and II of the membrane-bound cytochrome d terminal oxidase from Escherichia coli. J. Biol. Chem. 263, 13130–13137.
- Gokhale, D. V. & Kullback, S. (1978). *The Information in Contingency Tables*, Marcel Dekker Inc., New York.
- Gouaux, E. (1998). It's not just a phase: crystallization and x-ray structure determination of bacteriorhodopsin in lipidic cubic phases. *Structure*, **15**, 5–10.
- Gromiha, M. M. & Ponnuswamy, P. K. (1995). Prediction of protein secondary structures from their hydrophobic characteristics. *Int. J. Peptide Proteins Res.* 45, 225–240.
- Hartmann, E., Rapoport, T. A. & Lodish, H. F. (1989). Prediction the orientation of eukaryotic membrane proteins. *Proc. Natl Acad. Sci. USA*, 86, 5786–5790.
- Hughey, R. & Krogh, A. (1996). Hidden Markov models for sequence analysis: extension and analysis of the basic method. *Comp. Appl. Biosci*, **12**, 95–107.
- Iwata, S., Ostermeier, C., Ludwig, B. & Michel, H. (1995). Structure at 2.8 Å resolution of cytochrome c oxidase from *Paracoccus denitrificans*. *Nature*, 376, 660–669.
- Jones, D. T., Taylor, W. R. & Thorton, J. M. (1994). A model recognition approach to the prediction of allhelical membrane protein structure and topology. *Biochemistry*, **33**, 3038–3049.
- Krogh, A., Brown, M., Mian, I. S., Sjölander, K. & Haussler, D. (1994a). Hidden Markov models in computational biology. J. Mol. Biol. 235, 1501–1531.
- Krogh, A., Mian, I. S. & Haussler, D. (1994b). A hidden Markov model that finds genes in *E. coli* DNA. *Nucl. Acids Res.* 22, 4768–4778.
- Nucl. Acids Res. 22, 4768–4778. Kullback, S. (1959). Information Theory and Statistics, Wiley, New York.
- Kyte, J. & Doolittle, R. F. (1982). A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157, 105–132.
- Lattman, E. E. (1994). Protein crystallography for all. Proteins: Struct. Funct. Genet. 18, 103–106.
- Lawrence, C. E. & Reilly, A. A. (1990). An Expectation Maximization (EM) algorithm for the identification and characterization of common sites in unaligned

biopolymer sequences. *Proteins: Struct. Funct. Genet.* 7, 41–51.

- Lohmann, R., Schneider, G., Behrens, D. & Wrede, P. (1994). A neural network model for the prediction of membrane-spanning amino acid sequences. *Protein Sci.* 3, 1597–1601.
- Nakashima, H. & Nishikawa, K. (1994). Discrimination of intercellular and extracellular proteins using amino acid composition and residue-pair frequencies. J. Mol. Biol. 238, 54–61.
- Persson, B. & Argos, P. (1994). Prediction of transmembrane segments in proteins utilising multiple sequence alignments. *J. Mol. Biol.* 237, 182–192.
- Persson, B. & Argos, P. (1996). Topology prediction of membrane proteins. *Protein Sci.* 5, 363–371.
- Ponnuswamy, P. K. & Gromiha, M. M. (1993). Prediction of transmembrane helices from hydrophobic characteristics of protein. *Int. Peptide Protein Res.* 42, 326–341.
- Rabiner, L. R. (1989). A tutorial on hidden Markov models and selected applications in speech recognition. *Proceedings of the IEEE*, **77**, 257–286.
 Rost, B., Casadio, R., Fariselli, P. & Sander, C. (1995).
- Rost, B., Casadio, R., Fariselli, P. & Sander, C. (1995). Transmembrane helices predicted at 95% accuracy. *Protein Sci.* 4, 521–533.
- Rost, B., Fariselli, P. & Casadio, R. (1996). Topology prediction for helical transmembrane proteins at 86% accuracy. *Protein Sci.* 5, 1704–1718.
- Rothman, J. & Lenard, J. (1977). Membrane asymmetry. *Science*, **195**, 743–753.
- Sipos, L. & von Heijne, G. (1993). Predicting the topology of eukaryotic membrane proteins. *Eur. J. Biochem.* 213, 1333–1340.
- Sjölander, K., Karplus, K., Brown, M., Hughey, R., Krogh, A., Mian, I. S. & Haussler, D. (1996). Dirichlet mixtures: a method for improved detection of weak but significant protein sequence homology. *Comp. Appl. Biosci.* **12**, 327–345.
- Stultz, C. M., White, J. V. & Smith, T. F. (1993). Structural analysis based on state-space modeling. *Protein Sci*, 2, 305–314.
- Tusnády, G. E. (1998). Appendix to "Principles governing amino acid compositions of integral membrain proteins: application to topology prediction". WWW document, http://www.enzim.hu/ hmmtop/appendix.html.
- Tusnády, G. E., Tusnády, G. & Simon, I. (1995). Independence divergence-generated binary trees of amino acids. *Protein Eng.* 8, 417–423.
- amino acids. *Protein Eng.* **8**, 417–423. van Beilen, J., Penninga, D. & Witholt, B. (1992). Topology of the membrane-bound alkane hydroxylase of pseudomonas oleovorans. *J. Biol. Chem.* **267**, 9194–9201.
- van Klompenburg, W., Nilsson, I., von Heijne, G. & de Kruijff, B. (1997). Anionic phospholipids are determinants of membrane protein topology. *EMBO J.* 16, 4261–4266.
- von Heijne, G. (1992). Membrane protein structure prediction. J. Mol. Biol. 225, 487–494.
- von Heijne, G. (1994). Membrane protein assembly: rules of the game. *BioEssays*, **17**, 25–30.
- Weiss, M. & Schulz, G. (1992). Structure of porin refined at 1.8 Å resolution. J. Mol. Biol. 227, 493–509.
- White, J. V., Stultz, C. M. & Smith, T. F. (1993). Protein classification by stochastic modeling and optimal filtering of amino-acid sequences. *Math. Biosci*, **119**, 35–75.
- Yan, R. & Maloney, P. (1993). Identification of a residue in the translocation pathway of a membrane carrier. *Cell*, **75**, 37–44.

Appendix

Predicted and observed topologies and transmembrane segments

Swissprot ID		Topology and		
4(2.1		Predicted		Observed
4f2_human	83	IN 104	82	IN 104
5h1a_human*	05	OUT	02	OUT
onna_naman	37	61	37	62
	74	95	74	98
	108	132	110	132
	153	174	153	178
	195	214	192	217
	347 384	371 403	346 379	367
5h2a_crigr*	304	OUT	319	403 OUT
Jiiza_erigi	77	101	76	99
	112	136	111	132
	147	171	148	171
	192	213	192	215
	234	258	234	254
	324	348	325	346
F1 () *	359	383	363	384
5ht3_mouse*	224	OUT 247	223	OUT 248
	259	281	255	248
	285	307	283	301
	438	460	442	461
a15_human		IN		IN
	13	34	12	35
	55	76	52	70
	85	107	82	107
a1aa_human*	210	232 OUT	209	229 OUT
alaa_numan	99	120	96	121
	135	156	134	159
	171	192	170	192
	213	234	214	238
	255	274	252	275
	350	371	349	373
0 1 *	386	405	381	405
a2aa_human*	34	OUT	34	OUT
	54 71	55 92	71	59 96
	108	129	107	129
	152	172	150	173
	195	214	193	217
	373	394	375	399
	410	429	407	430
a4_human	685	OUT 706	607	OUT 706
aa1r_canfa*	665	706 OUT	683	706 OUT
auri_curita	10	34	11	33
	45	69	47	69
	79	103	81	102
	126	146	124	146
	180	200	177	201
	235	259	236	259
aa2a_canfa*	269	289 OUT	268	292 OUT
aa2a_Cailla	10	34	8	30
	43	67	44	66
	77	101	78	100
	123	143	121	143
	176	196	174	198
	235	259	235	258
adt marent	269	289 INI	267	290
adt_ricpr*	28	IN 48	34	IN 54
	20 61	40 81	68	88
	94	112	92	113
	147	170	148	168
	183	206	185	205
	219	237	219	239

Membrane Protein Topology Prediction

Swissprot ID	I	Topology a Predicted		Helices Observed	Swissprot ID	I	Topology a Predicted		Helices Observed
	274	297	280	300		89	113	90	115
	317	337	321	341		202	226	202	226
	350	370	349	369	cd82_human		IN		IN
	383	401	380	400		12	36	11	34
	442	461	439	459		54	78	54	72
11.1 1	467	485 N	466	486		83	107	84	109
alkb_pseol	20	IN 20	01	IN 20	- 10	228	252	229	250
	20	39	21	39	cd9_cerae	10	IN 24	11	IN 24
	46 89	66 109	42 88	67 110		12 59	34 81	11 55	34 75
	89 119	109	00 114	137		39 87	111	87	110
	232	256	227	247		194	218	195	220
	329	230 348	250	270	cd9_felca	194	IN	195	IN
tpl_ecoli	52)	OUT	200	OUT	eu>_ieieu	12	34	11	34
api_econ	8	32	11	31		56	78	53	73
	53	77	53	73		84	108	85	108
pac1_hals1*	00	OUT	00	OUT		194	218	193	218
uci_nalor	16	40	17	38	cd9_human		IN	170	IN
	48	72	50	75		12	34	11	34
	81	105	90	170		59	81	55	75
	114	133	114	133		87	111	87	110
	141	162	144	164		194	218	195	220
	173	197	180	199	cek2_chick		OUT		OUT
	205	229	207	230	_	350	370	346	370
ach_halss*		OUT		OUT		516	534		
	33	56	33	56	co02_human		IN		IN
	66	89	68	91		11	33	10	33
	115	134	109	127		54	78	58	75
	139	158	138	161		84	108	84	109
	163	186	165	189		206	230	206	230
	207	226	198	221	cox2_parde		OUT		OUT
	231	254	233	256		38	58	37	59
acr_halha*		OUT		OUT		79	103	79	99
	10	34	10	29	cox3_parde		IN		IN
	42	66	44	63		14	33	15	35
	77	101	82	101		51	70	48	73
	108	127	108	127		88	107	79	104
	135 177	156 198	135 178	154 197		139 171	158 190	139	164 193
	206	224	204	223		208	190 232	168 203	228
561_bovin*	200	IN 224	204	IN		208 250	232	203 244	269
.501_00111	35	56	38	60	cx1b_parde	250	IN	277	IN
	76	94	75	97	exit_purde	31	50	29	54
	107	128	107	129		95	119	84	109
	148	169	145	167		133	154	130	151
	183	201	185	207		181	205	178	203
	221	242	219	241		219	243	218	243
b12_pea		IN		IN		270	294	263	288
-1	67	88	62	81		302	326	304	322
	114	133	114	134		340	364	334	359
	182	201	182	199		372	394	370	395
d37_human		IN		IN		408	432	404	429
	14	38	13	36		443	467	441	466
	56	80	60	77	. .	488	512	483	508
	85	109	86	111	cxb1_human*		IN		IN
1 1	242	266	242	266		16	40	20	40
d53_human		IN		IN		71	95	76	96
	12	36	11	36		133	157	143	163
	51	75	55	72	1 1 .4	188	212	189	209
	81	105	81	106	cxb1_rat*	17	IN 40		IN 40
162 harren	182	206	182	206		16 71	40	20	40
d63_human	11	IN 24	11	IN 24		71 122	95 157	76 142	96 162
	11 51	34 74	11 51	34 69		133 188	157 212	143	163 209
	51 81	105	51 81	106	cxb1_xenla*	188	IN Z1Z	189	IN 209
	203	227	203	223	CADI_ACIIIA	16	40	20	40
d63_rat	203	IN	203	IN ZZS		71	40 95	20 76	40 96
u00_1at	11	34	11	34		133	95 157	143	163
	51	54 74	51	54 69		133	213	143 189	209
		105	81	106	cyda_ecoli	109	OUT	109	IN 209
	×1		01	100	cyaa_ccon		001		11 N
	81 202			223		12		23	
181 human	81 202	226	203	223 IN		12 54	36	23 95	42
d81_human				223 IN 35	-	12 54		23 95	

	I	Topology a Predicted		Helices Observed	Swissprot ID	1	Topology a Predicted		Helices Observed
	91	115	130	149		42	61	50	67
	127	151	188	207		71	89	72	89
	182	206	220	239		145	163	145	162
	219	237	393	412	edg1_human*		OUT		OUT
	388	412	471	490		47	71	47	71
	425	444				80	104	79	104
	471	494				122	140	122	140
/db_ecoli		OUT		IN		160	184	160	185
	9	28	9	28		203	221	202	222
	50	74				252	276	256	277
	80	99	80	99		295	313	294	314
	118	142	123	142	egfr_chick		OUT		OUT
	164	188	165	184		625	647	625	642
	207	231	206	225	egfr_human		OUT		OUT
	264	283	263	282		622	644	622	644
	289	313	293	312	envz_ecoli		IN		IN
	335	359	337	356		16	40	16	35
oa_ecoli*		OUT		OUT		160	179	162	182
	16	40	27	45	exbb_ecoli		OUT		OUT
	66	84	69	87		21	42	25	42
vob_ecoli*		OUT		OUT		133	157	132	150
	15	39	17	35		174	195	178	195
	57	79	58	76	exbd_ecoli		IN		IN
	105	129	102	121		15	36	26	43
	139	163	144	162	fce2_human*		IN		IN
	189	213	195	213		24	44	22	47
	231	255	232	250	ftsh_ecoli		IN		IN
	273	297	277	296		5	23	5	24
	312	336	320	339		102	120	96	120
	346	370	348	366	ftsl_ecoli		OUT		IN
	380	404	382	401		38	57	38	57
	414	438	410	429	fucp_ecoli		IN		IN
	456	480	457	476		23	41	24	44
	490	514	494	513		65	84	65	85
	602	626	588	607		93	112	92	112
			613	633		121	145	115	134
oc_ecoli*		IN		IN		161	179	161	181
	26	50	32	50		211	229	214	234
	68	88	67	85		262	282	262	282
	98	118	102	120		292	311	291	311
	136	160	143	161		327	346	327	347
	178	202	185	203		354	373	350	369
od_ecoli*		OUT		IN		382	401	385	405
	15	39	18	36		411	429	408	428
	45	66	46	64	gaa1_chick		OUT		OUT
	78	102	81	99		224	245	225	246
oe_ecoli		IN		IN		256	277	252	273
	21	30	10	28		288	311	286	307
	38	56	38	56		397	415	394	414
	84	102	79	97	gaa1_human		OUT		OUT
	110	128	108	126		224	245	225	246
	132	150				256	277	252	273
	162	180				288	311	286	307
	208	226	198	216		398	416	395	416
	234	252	229	247	gaa2_human		OUT		OUT
	164	283	269	287		223	244	224	245
ng_ecoli		IN		IN		255	276	251	272
	11	31	11	36		287	310	285	306
	36	57	41	58		395	413	392	417
	63	81	63	81	gaa3_human		OUT		OUT
	87	108	96	113	U U	250	271	249	270
	113	131	119	141		276	297	276	297
nsc_ecoli		OUT		OUT		313	331	310	331
_	10	31	10	32		433	451	430	451
	44	64	44	66	gaa4_bovin		OUT		OUT
	79	103	88	107	0	224	245	224	245
	116	136	113	134		255	276	250	210
		173	153	176		287	306	230 284	306
	149								
	149 178	201	183	203		<u>4</u> G1	500	Aut	510
	178	201 240	183 223	203 243	gaa5 human	491	509 OUT	491	510 OUT
	178 216	240	223	243	gaa5_human		OUT		OUT
bb_ecoli	178				gaa5_human	491 227 259		491 229 255	

Swissprot ID

gaa6_mouse

gab1_human

gab2_human

gab3_human

gab4_chick

gab_lymst

gac1_rat

gac3_mouse

gca4_chick

gad_mouse

gar1_human

gar2_human

glp_pig*

glpa_human*

glpc_human*

glpt_ecoli

OUT

IN

94

OUT

IN

hoxn_alceu

I	Topology a Predicted		Helices Observed	Swissprot ID	I	Topology Predicted		Helices Observe
400	418	397	418		188	207	187	20
400	OUT	391	OUT		254	207	254	27
212	233	214	235		294	312	293	31
244	265 265	240	261		322	341	322	34
276	203	240	295		351	375	351	37
394	412		412					
394		391			384	408	382	40
210	OUT	221	OUT	alat as t	417	436 OUT	415	43
219	240	221	242	glr1_rat	470	OUT	F01	OUT
251	272	246	268		470	488	521	54
283	306	280	302		519	539	567	58
430	448	427	448		569	587	596	61
	OUT		OUT		596	620	788	80
219	240	221	242		788	812		
251	272	246	268	gmcr_human*		OUT		OUT
283	306	280	302		305	324	299	32
431	449	428	449	gpbb_human*		OUT		OUT
	OUT		OUT		123	147	122	14
219	240	221	242	gpt_crilo*		OUT		OUT
251	272	246	268		11	29	7	3
283	306	280	302		59	83	58	7
429	447	426	447		95	114	95	11
	OUT		OUT		126	145	126	14
218	239	220	241		157	181	165	18
250	271	246	267		189	208	195	21
282	305	279	301		222	241	222	24
444	462	441	462		249	268	253	27
	OUT		OUT		276	294	275	29
227	248	229	250		327	345	2.0	-
259	280	255	276		379	397	379	39
291	314	288	310	gra1_human	017	OUT	017	OUT
456	474	453	476	gra1_numan	221	242	220	24
450	OUT	455	OUT		253	242	253	27
236	257	238	259		233 285	308	233 285	30
268	289	264	285	2.1	392	410 OUT	393	41
300	323	297	319	gra2_human	220	OUT	207	OUT
406	429	410	430		228	249	227	25
007	OUT	220	OUT		260	281	260	27
237	258	238	260		292	315	292	31
269	290	264	286	-	393	411	397	41
301	324	298	320	gra3_rat		OUT		OUT
426	449	427	450		221	242	220	24
	OUT		OUT		253	274	253	27
235	256	236	258		285	308	282	30
267	288	262	284		397	415	401	41
299	322	296	318	grb_rat		OUT		OUT
412	435	413	436		245	266	244	26
	OUT		OUT		277	298	277	29
232	253	233	255		309	332	309	33
264	285	259	281		453	472	456	47
296	314	293	315	hema_cdvo		IN		IN
414	432	411	433	—	37	58	35	5
	OUT		OUT	hema_measi		IN		IN
261	282	261	284	ineinia_ineasi	22	43	35	F
293	314	288	310	hema_pi4ha		IN	00	IN
325	349	322	344	nenia_prina	24	45	28	
439	457	437	458	hg2a_human*	27	IN	20	IN
407	OUT	437		iigza_iiuiiiaii	47	11N 71	16	11 N
242		240	OUT 265	bions call-	4/		46	
242	263	242	265	hism_salty		OUT	07	OUT
274	295	269	291		23	47	27	4
306	330	303	325		61	85	59	7
426	444	424	445		104	125	105	12
	OUT		OUT		158	182	158	17
63	85	63	85		202	221	200	22
	OUT		OUT	hisq_salty		OUT		OUT
73	95	73	95		13	37	13	3
	OUT		OUT		55	79	59	-

IN

continued overleaf

IN

Observed

Swissprot ID	I	Topology a Predicted		Helices Observed	Swissprot ID	Topology and TM Helices Predicted Observed			
	48	72	52	72	lhb5_rhoac		IN		IN
	88	112	95	115		21	40	14	36
	128	149	129	149	lspa_ecoli		IN		IN
	198	222	200	220		12	36	12	29
	238	262	244	264		70	88	70	88
	278	302	270	290		99	117	96	113
	318	339	317	337		134	157	139	156
g1r_human		OUT		OUT	magl_mouse		IN		OUT
	904	928	906	929		3	21		
2a_human*		OUT		OUT		490	514	498	517
	220	239	220	238	malf_ecoli*		IN		IN
l2b_human*		OUT		OUT		15	36	17	35
	221	239	215	239		40	58	40	58
m23_schja		IN		IN		71	92	73	91
	13	36	13	36		285	306	277	295
	53	76	56	73		319	340	319	337
	83	107	83	108		371	392	371	389
	184	208	184	205		426	447	418	436
m23_schma		IN		IN		485	506	486	504
	13	36	13	36	malg_ecoli		IN		IN
	53	76	56	73	-	13	37	19	39
	83	107	83	108		91	111	82	102
	184	208	184	205		124	144	124	144
nm1_ecoli*		IN		IN		153	177	151	171
	5	24	9	26		207	227	205	225
	39	62	39	57		258	280	260	280
	86	110	84	104	melb_ecoli*		IN		IN
nma_citfr*		IN	÷.	IN		9	30	8	28
inita_citii	16	37	14	37		40	64	33	53
	69	89	69	89		74	96	76	96
	103	123	107	124		106	130	103	123
	105	125	143	165		100	163	105	125
a E maarraa	145		145						
a5_mouse	057	OUT	054	OUT		173	194	172	192
1 1 1.	957	981	956	981		229	253	231	251
dpd_ecoli	400	IN	100	OUT		263	283	263	283
	403	421	403	422		293	312	293	313
	426	444	425	444		322	346	320	340
	449	473	447	466		374	393	370	390
	478	498	478	498		403	426	408	428
gtp_ecoli		IN		IN	mota_ecoli		IN		IN
	25	49	26	51		4	28	4	21
	59	83	62	80		34	54	34	51
	95	115	96	116		165	189	171	191
	125	149	120	137		195	219	201	222
	159	183	163	185	motb_ecoli*		OUT		IN
	195	213	196	214		28	49	28	49
	245	266	244	261	mprd_human*		OUT		OUT
	278	302	275	300	-	160	184	160	184
	311	330	312	330	mtr_ecoli		IN		OUT
	339	360	337	360		10	30	16	36
	372	396	369	392		34	56	42	62
	405	423	403	423		89	109	89	109
cy_ecoli*		IN		IN		129	148	129	149
	9	27	11	33		152	171	152	172
	47	66	47	67		190	209	191	211
	75	94	75	99		228	251	229	249
	103	125	103	125			201	256	276
	105	123	105	163		284	305	286	306
	143	184	143	183		284 325	303 344	286 326	306
	222		212					326 348	345
		240		234		348	367		
	260	283	260	281	max.mo(1*	387	410 OUT	386	406 OUT
	292	311	291	310	myp0_human*	107	OUT	105	OUT
	315	334	315	334	1	126	150	125	150
	347	369	347	366	nep_human		IN	<i></i>	IN
	380	398	380	399		28	47	28	50
ech_human*		IN		IN	ngfr_human*		OUT		OUT
	40	58	40	60		223	244	223	244
eci_mouse*		IN		IN	oppb_salty*		IN		IN
	59	77	59	79	,	9	27	10	30
		OUT		OUT		100	121	100	121
p ecoli*									
p_ecoli*	4		4	22		135	156	138	158
p_ecoli*	4 58	28	4 58	22 76		135 169	156 190	138 173	
p_ecoli* 104_rhoac	4 58		4 58	22 76 IN		135 169 229	156 190 250	138 173 227	158 190 250

Swissprot ID	Ι	Topology a Predicted		Helices Observed	Swissprot ID	I	Topology a Predicted		Helices Observed
oppc_salty*		IN		IN	pigr_human		OUT		OUT
PP	40	59	38	59	r-8	621	642	621	643
	104	128	103	122	ptma_ecoli		IN		IN
	136	160	140	160	1 –	15	38	25	44
	164	183	164	181		48	69	51	69
	218	236	216	236		79	103	01	07
	271	290	268	290		134	158	135	154
pps1_calvi*	2/1	OUT	200	OUT		168	189	166	184
psi_calvi	50	74	48	72		213	234	100	104
								274	201
	85	109	85	110		258	282	274	291
	119	142	125	144	1 1 1	313	334	314	333
	163	187	164	187	rech_rhovi*		OUT		OUT
	218	239	212	237		12	31	12	32
	275	299	275	298	rcel_rhovi*		IN		IN
	310	330	306	330		22	46	32	55
ps2_drome*		OUT		OUT		78	102	84	109
	59	83	57	81		118	142	115	140
	94	118	94	119		174	198	170	195
	129	153	134	153		232	256	225	250
	173	197	173	196	rcem_rhovi*	202	IN		IN 250
	228	249	221	246		48	71	52	77
	284	308	384	307		111	129	110	135
	318	339	315	339		144	167	142	167
ps3_drome*		OUT		OUT		202	225	197	222
	60	84	58	82		266	289	259	284
	95	119	95	119	rfbp_salty		IN		OUT
	130	154	134	153	·	15	39	15	32
	165	189	172	196		56	74	56	73
	220	241	221	246		90	108	90	107
	285	309	285	308		116	134	115	132
								115	152
	319	340	317	341		160	179		
ps4_drome*		OUT		OUT		240	258		
	56	80	54	78		284	303	285	302
	90	114	91	113	rhat_ecoli		OUT		OUT
	125	149	130	149		4	24	4	24
	162	186	168	192		36	57	38	58
	217	238	217	242		74	93	74	94
	281	305	281	304		97	117	101	121
	315	336	313	337		136	157	137	157
opsb_human*	010	OUT	010	OUT		175	195	175	195
psb_numan	39	60	34	58			234	214	234
						214			
	69	93	71	96		253	274	259	279
	106	130	111	130		290	310	290	310
	150	171	150	173		322	343	323	343
	200	221	200	225	rib1_rat		IN		OUT
	250	274	250	273		88	107	416	433
	284	306	282	306		416	435		
psd_bovin*		OUT		OUT	secd_ecoli		IN		OUT
. –	37	61	37	61	_ **	10	29	10	30
	71	95	74	99		454	472	452	472
	115	133	114	133		476	497	476	497
	153	174	153	176		502	524	504	524
	203	224	203	228		549	524 573	564	584
	253	277	253	276	1.4	578	597	587	605 NI
	286	308	285	309	sece_ecoli*		IN		IN
psg_human*		OUT		OUT		13	32	19	36
	55	79	53	77		39	63	45	63
	88	112	90	115		95	119	93	111
	125	149	130	149	secy_bascu*		IN		IN
	169	190	169	192	<i>,</i> –	18	36	18	39
	219	240	219	244		68	87	59	80
	269	293	269	292		119	140	115	132
	302	325	301	325		148	140	148	167
nor humar*	502		501						
psr_human*		OUT		OUT		174	192	174	192
	55	79	53	77		214	233	217	234
	88	112	90	115		266	284	268	291
	125	149	130	149		310	329	310	329
	169	190	169	192		368	386	367	386
	219	240	219	244		394	413	392	410
	269	293	269	292	secy_ecoli	071	IN	074	IN
					secy_ccon	n 4		າາ	
hor oc-1:	302	325	301	325		24	43	23	42
hor_ecoli		IN 20		IN		75	96	75	95
	14	38	14 38	34 58					tinued ove

Swissprot ID	I	Topology a Predicted		Helices Observed	Swissprot ID]	Topology a Predicted		Helices Observed
	122	140	122	139	tolq_ecoli		OUT		IN
	154	175	154	174	1-	13	36	23	43
	183	204	183	203		127	150	127	152
	218	237	217	237		167	191	162	187
	271	292	274	294	tolr_ecoli		IN		IN
	318	337	316	335	_	16	40	16	40
	369	387	376	395	top_drome		OUT		OUT
	407	426	399	416	1 -	838	861	838	858
spg1_strsp*		IN		OUT		973	994		
5P51_5005P	_		389	409	trbm_human		OUT		OUT
sera rat		IN	007	OUT		496	516	495	518
ssrg_rat	30	51	38	48	trsr_human		IN		IN
	50 59	77	55	48 76	_	62	83	63	88
	135	156	136	157	uhpt_ecoli*		IN		IN
	164	130	150	137	1	27	45	26	46
• 1	104		104			62	80	70	90
suis_human	11	IN	10	IN		97	115	99	120
	11	32	13	32		124	148	124	144
tal6_human		OUT		IN		158	182	159	179
	10	30	10	30		191	210	190	210
	46	70	46	70		260	278	258	279
	91	115	89	114		295	319	295	315
	165	189	162	187		327	345	327	348
tcbl_rabit*		OUT		OUT		354	378	356	376
	289	313	292	313		394	418	382	402
tcr1_ecoli*		IN		IN		427	446	409	430
	7	31	8	28	upkb_bovin		IN		IN
	41	65	44	64		12	36	12	37
	75	99	76	96		56	80	60	80
	104	123	104	124		86	109	86	111
	133	157	133	153		229	253	230	253
	162	180	161	181	vmt2_iaann*		OUT		OUT
	212	236	216	236		25	43	25	42
	245	269	246	267	vnb_inbbe*		OUT		OUT
	279	297	279	298		16	40	19	40
	302	325	301	320	*Entrice which	are inclu	idad in the	initial .	aramotor
	334	358	338	358	*Entries which				Jarameter
	367	385	365	385	pseudocount setti	iigs nom i	ne os nur se	ι.	

Edited by J. Thornton

(Received 27 April 1998; received in revised form 9 July 1998; accepted 21 July 1998)