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Abstract

With a growing population of elderly people, the number of subjects at risk of

cognitive disorders is rapidly increasing. Many research groups are studying per-

vasive solutions to continuously and unobtrusively monitor fragile subjects in their

homes, reducing health-care costs and supporting the medical diagnosis. Clin-

icians are interested in monitoring several behavioral aspects for a wide variety

of applications: early diagnosis, emergency monitoring, assessment of cognitive

disorders, etcetera. Among the several behavioral aspects of interest, anomalous

behaviors while performing activities of daily living (ADLs) are of great impor-

tance. Indeed, these anomalies can be indicators of serious cognitive diseases like

Mild Cognitive Impairment. The recognition of such abnormal behaviors relies

on robust and accurate ADLs recognition systems. Moreover, in order to enable

unobtrusive and privacy-aware monitoring, environmental sensors in charge of un-

obtrusively capturing the interaction of the subject with the home infrastructure

should be preferred.

This thesis presents several contributions on this topic. The major ones are

two novel hybrid ADLs recognition algorithms. The former is supervised while

the latter is unsupervised. Preliminary results, which still need to be confirmed,

show that the recognition rate of the unsupervised method is comparable to the

one obtained by the supervised one, with the great advantage of not requiring the

acquisition of an annotated dataset. Beyond ADLs recognition, other contributions

on smart sensing and anomaly recognition are presented. Regarding unobtrusive

sensing, we propose a machine learning technique to detect fine-grained manipu-

lations performed by the inhabitant on household objects instrumented with tiny

accelerometer sensors. Finally, a novel rule-based framework for the recognition

of fine-grained abnormal behaviors is presented. Experimental results on several

datasets show the effectiveness of all the proposed techniques.

ii



Author’s Publications

This thesis is based on the following publications, which have been written during

my three years of PhD.

Journals

1. Daniele Riboni, Claudio Bettini, Gabriele Civitarese, Zaffar Haider Janjua,

Rim Helaoui, “SmartFABER: Recognizing Fine-grained Abnormal Behav-

iors for Early Detection of Mild Cognitive Impairment”. Artificial Intelli-

gence in Medicine, Elsevier, 2016.

International conferences

1. Daniele Riboni, Claudio Bettini, Gabriele Civitarese, Zaffar Haider Janjua,

Rim Helaoui, “Fine-grained Recognition of Abnormal Behaviors for Early

Detection of Mild Cognitive Impairment”. In Proceedings of the 2015 IEEE

International Conference on Pervasive Computing and Communications (Per-

Com), pp. 149-154, Computer Society, 2015.

2. Daniele Riboni, Timo Sztyler, Gabriele Civitarese, Heiner Stuckenschmidt,

“Unsupervised Recognition of Interleaved Activities of Daily Living through

Ontological and Probabilistic Reasoning”. UbiComp ’16: Proceedings of

the 2016 ACM International Joint Conference on Pervasive and Ubiquitous

Computing, 2016.

iii



International workshops

1. Daniele Riboni, Claudio Bettini, Gabriele Civitarese, Zaffar Haider Janjua,

Viola Bulgari, “From Lab to Life: Fine-grained Behavior Monitoring in the

Elderly’s Home”. In Proceedings of the 2015 IEEE International Confer-

ence on Pervasive Computing and Communications Workshops, pp. 344-

349. IEEE Computer Society, 2015.

2. Gabriele Civitarese, Zaffar Haider Janjua, Daniele Riboni, Claudio Bettini,

“Demonstration of the FABER System for Fine-grained Recognition of Ab-

normal Behaviors”. In Proceedings of the 2015 IEEE International Confer-

ence on Pervasive Computing and Communications Workshops, pp. 199-

201. IEEE Computer Society, 2015.

3. Daniele Riboni, Gabriele Civitarese, Claudio Bettini. “Analysis of Long-

term Abnormal Behaviors for Early Detection of Cognitive Decline”. In

Proceedings of the IEEE International Conference on Pervasive Comput-

ing and Communications Workshops (PASTA2016: Workshop on PervAsive

Technologies and care systems for sustainable Aging-in-place), IEEE, 2016.

4. Gabriele Civitarese, Stefano Belfiore, Claudio Bettini. “Let the objects tell

what you are doing”. UbiComp ’16: Proceedings of the 2016 ACM Interna-

tional Joint Conference on Pervasive and Ubiquitous Computing: Adjunct,

2016.

5. Gabriele Civitarese, Claudio Bettini. “Monitoring Objects Manipulations

to Detect Abnormal Behaviors”. In Proceedings of the 2017 IEEE Inter-

national Conference on Pervasive Computing and Communications Work-

shops, 2017.

6. Gabriele Civitarese. “Behavioral Monitoring in Smart-Home Environments

for Health-Care Applications”. In Proceedings of the 2017 IEEE Inter-

national Conference on Pervasive Computing and Communications Work-

shops, 2017.



Contents

1 Introduction 1
1.1 Motivation and problem description . . . . . . . . . . . . . . . . 1

1.1.1 Unobtrusive sensing . . . . . . . . . . . . . . . . . . . . 3

1.1.2 Semantic integration of sensor data . . . . . . . . . . . . 3

1.1.3 ADLs recognition . . . . . . . . . . . . . . . . . . . . . . 4

1.1.4 Behavioral analysis . . . . . . . . . . . . . . . . . . . . . 4

1.2 Research contributions . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Hybrid techniques to recognize ADLs . . . . . . . . . . . 6

1.2.2 Recognition of objects manipulations . . . . . . . . . . . 8

1.2.3 Fine-grained and long-term anomalies recognition . . . . 9

1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Related work 12
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Unobtrusive sensing . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Environmental sensing . . . . . . . . . . . . . . . . . . . 13

2.2.2 Monitoring the interaction with everyday objects . . . . . 13

2.3 ADLs recognition . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.1 Data-driven methods . . . . . . . . . . . . . . . . . . . . 14

2.3.2 Knowledge-based methods . . . . . . . . . . . . . . . . . 15

2.3.3 Hybrid methods . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Behavioral analysis . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4.1 Applications of activity recognition to MCI diagnosis . . . 17

2.4.2 Long-term analysis of activity data . . . . . . . . . . . . . 18

2.5 Research problems addressed by this thesis . . . . . . . . . . . . 19

v



3 Supervised activity recognition through statistical and symbolic rea-
soning 22
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.1 Activities . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.2 Sensor events and semantic integration . . . . . . . . . . 24

3.2.3 Activity recognition problem . . . . . . . . . . . . . . . . 26

3.3 The technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3.1 Classification of events . . . . . . . . . . . . . . . . . . . 27

3.3.2 Naive aggregation . . . . . . . . . . . . . . . . . . . . . 29

3.3.3 Smart aggregation . . . . . . . . . . . . . . . . . . . . . 30

3.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4.1 A smart lab dataset . . . . . . . . . . . . . . . . . . . . . 35

3.4.2 A real-home deployment . . . . . . . . . . . . . . . . . . 36

3.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4 Unsupervised activity recognition through ontological and probabilis-
tic reasoning 44
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2.1 Description logics and formal ontologies . . . . . . . . . 46

4.2.2 Markov Logic with numerical Constraints . . . . . . . . . 48

4.3 Model and system overview . . . . . . . . . . . . . . . . . . . . 49

4.3.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3.2 Ontological model . . . . . . . . . . . . . . . . . . . . . 50

4.3.3 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.4 Ontological reasoning . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4.1 Semantic correlation reasoner . . . . . . . . . . . . . . . 52

4.4.2 Deriving necessary sensor observations . . . . . . . . . . 55

4.5 Recognizing activity instances . . . . . . . . . . . . . . . . . . . 56

4.5.1 Statistical analysis of events . . . . . . . . . . . . . . . . 57

4.5.2 MLN modeling . . . . . . . . . . . . . . . . . . . . . . . 57

4.5.3 Hidden predicates and domain constraints . . . . . . . . . 58

4.5.4 Semantic correlation rules . . . . . . . . . . . . . . . . . 59



4.5.5 Knowledge-based constraints . . . . . . . . . . . . . . . 59

4.5.6 Temporal constraints . . . . . . . . . . . . . . . . . . . . 60

4.5.7 Time-aware inference rules . . . . . . . . . . . . . . . . . 60

4.5.8 Inference of activity instances and temporal boundaries . . 61

4.6 Experimental evaluation . . . . . . . . . . . . . . . . . . . . . . 61

4.6.1 CASAS Dataset . . . . . . . . . . . . . . . . . . . . . . . 62

4.6.2 Real-home Dataset . . . . . . . . . . . . . . . . . . . . . 64

4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5 From macro- to micro-activity recognition: Unobtrusive detection of
object manipulations 68
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2 Modeling objects manipulations . . . . . . . . . . . . . . . . . . 70

5.3 The technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.3.1 Recognition Framework . . . . . . . . . . . . . . . . . . 71

5.3.2 Segmentation and feature extraction . . . . . . . . . . . . 72

5.3.3 Manipulation recognition . . . . . . . . . . . . . . . . . . 73

5.4 Experimental evaluation . . . . . . . . . . . . . . . . . . . . . . 75

5.4.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . 75

5.4.2 The sensing devices . . . . . . . . . . . . . . . . . . . . 76

5.4.3 Sensor data analysis . . . . . . . . . . . . . . . . . . . . 76

5.4.4 Dataset collection . . . . . . . . . . . . . . . . . . . . . . 77

5.4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.5 Limitations of current BLE technology . . . . . . . . . . . . . . . 81

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6 A health-care use case: Fine-grained and long-term anomalies recog-
nition 84
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.2 Fine-grained and long-term abnormal behaviors . . . . . . . . . . 86

6.2.1 Fine-grained abnormal behaviors . . . . . . . . . . . . . 86

6.2.2 Long-term abnormal behaviors . . . . . . . . . . . . . . . 89

6.3 Recognition of fine-grained abnormal behaviors based on objects

manipulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.3.1 General architecture . . . . . . . . . . . . . . . . . . . . 90

6.3.2 Fine-grained anomalies recognition . . . . . . . . . . . . 91



6.3.3 Experimental evaluation . . . . . . . . . . . . . . . . . . 94

6.3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.4 Long-term analysis of abnormal behaviors . . . . . . . . . . . . . 100

6.4.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.4.2 Historical behavior analysis . . . . . . . . . . . . . . . . 101

6.4.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7 Conclusions 107
7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110



List of Figures

1.1 General architecture of behavioral analysis frameworks . . . . . . 2

3.1 The relations between an activity instance, the performed opera-

tions, and the involved sensor events. . . . . . . . . . . . . . . . . 24

3.2 Reconstruction of the activity instances generating a set of sensor

events. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 The system’s architecture . . . . . . . . . . . . . . . . . . . . . . 27

3.4 Some sensors used in the smart home lab. . . . . . . . . . . . . . 35

3.5 Part of the sensors deployed at the elderly’s home . . . . . . . . . 36

3.6 Smart home lab dataset. Accuracy of activity boundary detection;

n is the length of the considered temporal sequence of sensor events 39

3.7 Real home dataset. Accuracy of activity boundary detection; n is

the length of the considered temporal sequence of sensor events . 40

3.8 The general structure of a HMM . . . . . . . . . . . . . . . . . . 40

4.1 Excerpt of our ontology. The dashed lines represent a subClassOf

relation where the upper is the parent of the lower class. In addi-

tion, the individual classes have relations that describe dependencies. 50

4.2 System overview. . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3 Probabilistic activity recognition framework. The arrows indicate

the relations and dependencies between the depicted observed and

hidden predicates. . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.4 CASAS dataset: Detailed recognition results for each activity, ag-

gregated over all subjects and represented by a box plot. . . . . . . 63

5.1 General architecture . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2 Direct classification schema for a specific object . . . . . . . . . . 74

5.3 Multi-layer classification schema for a specific object . . . . . . . 75

ix



5.4 The monitored objects . . . . . . . . . . . . . . . . . . . . . . . 76

5.5 Application layout . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.1 Overall anomaly recognition framework . . . . . . . . . . . . . . 90

6.2 The architecture of our long-term analysis framework . . . . . . . 100

6.3 Detection of two long-term abnormal behavior intervals with our

technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.4 Trend of fine-grained abnormal behaviors. For each day, the value

represents the number of anomalies detected in the previous 15 days.106



List of Tables

3.1 List of considered features . . . . . . . . . . . . . . . . . . . . . 28

3.2 An example of naive aggregation based on a sequence of classified

events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 An example of smart aggregation based on a sequence of classified

events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4 Comparison between our method and the HMM-based technique

with the smart lab dataset . . . . . . . . . . . . . . . . . . . . . . 42

3.5 Comparison between our method and the HMM-based technique

with the real home dataset . . . . . . . . . . . . . . . . . . . . . 42

4.1 Prior probability matrix of our running example. . . . . . . . . . 55

4.2 CASAS dataset: Results (F1 measure) of the proposed activity

recognition method compared to related work for interleaved ac-

tivities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3 CASAS dataset: Results of boundary detection with MLNNC . It

shows the average deviation [min] of the candidate compared to

the refined instances. . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4 Real-home dataset: Results (F1 measure) of the proposed activity

recognition method compared to our supervised approach. . . . . 65

4.5 Real-home dataset: Results of the boundary detection method. It

shows the average deviation [min] of the candidate compared to

the refined instances. . . . . . . . . . . . . . . . . . . . . . . . . 66

5.1 Nearables data frame . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2 Liquid bottle’s manipulations . . . . . . . . . . . . . . . . . . . . 79

5.3 Medicine box’s manipulations . . . . . . . . . . . . . . . . . . . 80

5.4 Bread knife’s manipulations . . . . . . . . . . . . . . . . . . . . 81

xi



5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.1 List of considered abnormal behaviors categories . . . . . . . . . 87

6.2 Examples of rules modeling abnormal behaviors . . . . . . . . . . 93

6.3 Preliminary results of our fine-grained anomaly recognition method

considering abnormal behaviors based on objects’ manipulations. . 97



Chapter 1

Introduction

1.1 Motivation and problem description

Thanks to recent advances in medicine and to improved quality of life, life ex-

pectancy considerably increased thus allowing people to live longer and health-

ier with respect to previous generations. However, in an aging world population,

more citizens are exposed to many challenges due to cognitive decline, chronic

age-related diseases, limitations in physical activities and so on. This scenario

brings negative consequences on the ability of independent living and the quality

of life of these fragile subjects, but also on the sustainability of healthcare sys-

tems [1]. The majority of older adults prefer to stay in the comfort of their own

homes, and given the costs of nursing home care [2], it is imperative to develop

technologies that help older adults to age in place. For these reasons, indepen-

dent living and pro-active health-care are becoming strategic application areas for

major research programmes all over the world [3], considering that the senior pop-

ulation is projected to double as a percentage over the whole population in the

next decades [4]. Indeed, many research groups are studying pervasive solutions to

continuously and unobtrusively monitor fragile subjects at their homes, reducing

health-care costs and supporting the medical diagnosis. These studies are possible

due to the increased availability of affordable and reliable sensing infrastructures,

which allowed to build the so-called smart-homes: residences equipped with tech-

nology (i.e. sensors and actuators) that enhances the safety of patients at home

and monitors their health conditions [5]. Continuous in-home monitoring should

avoid video/audio recording, since it is often perceived as too privacy obtrusive in
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a home environment. Moreover, there are indications of a general adversity or dis-

affection of users to wearables sensors targeted to health-care related applications

[6]. Hence, smart-home sensing infrastructures should mostly rely on environ-

mental sensors in charge of capturing the interaction of the subject with the home

infrastructure.

Among the several health conditions which can be continuously monitored

within smart-homes, clinicians are interested in understanding the everyday func-

tioning of individuals to gain insights about difficulties that affect the quality of

life [7]. One of the most frequent threats to independent living is cognitive decline,

whose early symptoms often lead to a mild cognitive impairment (MCI) diagnosis.

According to the International Working Group on MCI, there is evidence of subtle

differences in performing activities of daily living (ADLs) among MCI patients

compared to both healthy older adults and individuals with dementia [8]. Hence,

from a medical point of view, there is a clear interest in methods to monitor ADLs

of the elderly with the goal of identifying specific abnormal behaviors as indicators

of cognitive decline. For these reasons, several pervasive frameworks to assess the

behavior of smart-home’s inhabitants have been proposed. Figure 1.1 illustrates

the general architecture of such systems.

Figure 1.1: General architecture of behavioral analysis frameworks

In the following, we provide a high-level description for each component of

this architecture.
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1.1.1 Unobtrusive sensing

In order to recognize activities and anomalous behaviors, there is a need for a re-

liable and unobtrusive sensing infrastructure in charge of capturing the subject’s

interaction with the home environment [9]. Advancement of semiconductor fabri-

cation technology and smart algorithms has made it possible to design and develop

smart sensors with built-in intelligence [10]. For instance, power sensors have been

developed in order to monitor usage time and duration of different appliances. Sim-

ilarly, water sensors exploit an in-line flow transducer to give an indication of when

water is being used. In the literature, several wireless sensors have been used to

monitor the execution of ADLs, like magnetic sensors, presence sensors, pressure

sensors, power sensors, water sensors, etcetera. A significant unobtrusive sensing

system has been proposed in [11], where a smart apartment was equipped with

a wide variety of sensing devices, like a smart floor to constantly measure gait

and balance parameters of inhabitants, smart lighting, water monitoring, and many

other sensors to continuously and unobtrusively monitor the subject’s interaction

with the home environment.

1.1.2 Semantic integration of sensor data

Raw sensor data by itself might not provide meaningful context that can be directly

understood and utilized by behavioral reasoning algorithms. For instance, if a sen-

sor identified as P3 attached to the electrical stove’s plug detects a sudden increase

of power consumption, we want to map it to the high-level concept “the kitchen’s

stove has been turned on”. An abstraction layer is then needed to annotate sensor

measurements with semantics that are structured around a set of contextual con-

cepts [12] (e.g., smart-home infrastructure, household objects, home locations).

The main benefit of mapping raw sensor data to semantic is that reasoning algo-

rithms are independent from the specific sensing infrastructure being used. Hence,

there is a need for tools that model at high-level the context gathered by raw sensor

data. The survey proposed in [13] gives a broad overview of context modeling tech-

niques in pervasive computing scenarios (e.g., Context Modeling Language [14],

ontologies [15], hybrid methods [16]). This thesis is not focused on context mod-

eling, but we recognize that it is a fundamental aspect which should be taken into

account when developing behavioral analysis frameworks.
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1.1.3 ADLs recognition

In order to accurately detect abnormal behaviors, a reliable ADLs recognition sys-

tem is needed. Indeed, detecting the specific activities being performed is some-

times a pre-requisite to detect an anomaly [17]. An ADLs recognition algorithm

takes as input the pre-processed sensor events and produces as output the most

likely performed activities. Several solutions have been proposed in the literature,

and in general they are they are divided into two macro categories: data-driven

and knowledge-driven. Data-driven methods rely on machine learning techniques

to build the activities model from sensor data [18]. The strong point of this cat-

egory of techniques is that they are good at handling the intrinsic noise and un-

certainty of sensor data. The main drawback is that a large annotated dataset of

ADLs should be acquired to capture most execution patterns in different situations

[19]. Indeed, activity execution patterns are strongly coupled to the individuals

characteristics and home environment, and the portability of activity datasets is an

open issue [20]. As a consequence, ideally one extensive ADLs dataset should be

acquired from each monitored individual. Unfortunately, acquiring ADLs datasets

is very expensive in terms of annotation costs [21]. Besides, activity annotation by

an external observer, by means of cameras or direct observation, violates the users

privacy. In order to solve these issues, knowledge-driven solutions have been pro-

posed to manually specify ADLs through logic languages and ontologies. Those

models are matched with acquired sensor data to recognize the activities [22]. The

main advantage of these techniques with respect to data-driven methods is that

they can capture complex semantic relationships between sensor events and activi-

ties. The main shortcoming of this approach relies on the rigidity of specifications.

For instance, complex ADLs are often specified through temporal sequences of

simpler actions [23]. In fact, it is not always feasible to enumerate all the possible

sequences of actions describing a complex ADL. Moreover, this rigidity does not

allow to deal with noisy or uncertain sensor measurements.

1.1.4 Behavioral analysis

Automatic and continuous monitoring of the behavior of fragile subjects addresses

many issues of classic solutions. Indeed, questionnaires and interviews have been

used to assess cognitive health about the ability to perform various kinds of ADLs

[24]. This approach is of course prone to reporting bias; moreover, it cannot be
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applied for continuous monitoring, since it incurs evident overheads in terms of

time, resources and monetary costs.

An anomaly detection system needs an accurate model of the regular behavior

of the monitored subject in order to detect when anomalies occur. Indeed, different

subjects may perform the same activities in very different ways. Moreover, each

subject may adhere to his/her specific medical prescriptions (e.g., medicine intake

time, diet, rehabilitation exercises, . . . ). Time context (e.g., the day of the week,

season, holidays, . . . ) should also be taken into account, since activities can be

performed differently depending on temporal context.

The majority of the proposed anomaly recognition methods exploit probabilis-

tic [25] or clustering [26] techniques in order to construct the “normal behavior”

of the subject analyzing sensor data without abnormal behaviors. Anomalies are

then detected on new sequences of sensor data when divergences from the original

model are found. The main drawback of this type of approaches is that behav-

ioral changes are detected without giving specific explanations of what happened.

Some other works proposed supervised learning techniques to detect the general

anomaly’s category (e.g. omission, substitution, replacement, . . . ) [27]. How-

ever, the results show a high rate of false positives. Moreover, the acquisition of a

comprehensive annotated dataset of abnormal behaviors is hardly feasible.

1.2 Research contributions

In this section, every research contribution of this thesis is introduced. It is impor-

tant to note that these contributions have been achieved in collaboration with my

research group, which is EveryWare Lab1 at University of Milan (Italy). Moreover,

the unsupervised ADLs recognition algorithm proposed in Chapter 4 is the result

of a collaboration with researchers of University of Cagliari (Italy) and University

of Mannheim (Germany). However, even if the proposed contributions are the re-

sult of a teamwork, I can list my specific contributions.

The major research contributions of this thesis are two hybrid smart-home

ADLs recognition algorithms. We also propose an unobtrusive method to detect

the manipulations that elderly people perform on household objects. Finally, we
1http://everywarelab.di.unimi.it/
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introduce interesting research contributions regarding novel abnormal behaviors

detection algorithms. In the following we introduce these contributions; in this

context, my specific contributions are highlighted.

1.2.1 Hybrid techniques to recognize ADLs

First technique: Supervised activity recognition through statistical and sym-
bolic reasoning

In Chapter 3, we propose a hybrid method to recognize ADLs which is based on

a combination of supervised learning and knowledge-based conditions to refine

the statistical predictions [3]. The proposed technique combines data-driven and

knowledge-driven methods in order to exploit the strong points of both approaches.

A machine learning algorithm is in charge of classifying, for each sensor event, the

most likely performed ADL. In particular, time-based features are extracted from

windows of consecutive sensor events to capture temporal relationships between

events. A knowledge-based algorithm, named SMART AGGREGATION, is then

in charge of grouping together those sensor events which most likely belong to

the same activity instance and to correct possible mis-predictions produced by the

machine learning algorithm. We experimentally compare the activity recognition

ability of our approach with a state of the art technique proposed in the literature

showing its superiority both on a lab-acquired dataset and on a real-home dataset.

Chapter 3 is based on the following publication:

• Daniele Riboni, Claudio Bettini, Gabriele Civitarese, Zaffar Haider Janjua,

Rim Helaoui, ”SmartFABER: Recognizing Fine-grained Abnormal Behav-

iors for Early Detection of Mild Cognitive Impairment”. Artificial Intelli-

gence in Medicine, Elsevier, 2016.
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My Contributions:

• Concept and methodology design of the SMART AGGREGATION algorithm.

• System’s implementation.

• Design of the evaluation methods.

• Experiments execution.

• Collaboration in results analysis and interpretation.

Second technique: Unsupervised activity recognition through ontological and
probabilistic reasoning

In Chapter 4, we propose an unsupervised method which overcomes the limitations

of data-driven and knowledge-driven approaches [19]. First, it does not need the

acquisition of an expensive labeled dataset. Second, the activity model is based on

general semantic relations among activities and smart-home infrastructure; hence,

the model can be seamlessly reused with different individuals and in different en-

vironments. We rely on ontological reasoning to derive necessary conditions about

the sensor events that must occur during the execution of a specific activity in the

current environment. This also enables to extract semantic correlations among fired

sensor events and executed ADLs. Based on the semantic correlations, a statisti-

cal algorithm (named STATISTICAL ANALYSIS OF EVENTS) pre-processes sensor

events to identify candidate activity instances, i.e., initial hypotheses about the start

and end time of occurred activities. Finally, we translate our ontological model in

a Markov Logic Network (MLN) [28], and perform probabilistic reasoning to re-

fine candidate activity instances and check their consistency. Our MLN model is

carefully crafted to support the recognition of interleaved activities. We performed

extensive experiments with real-world datasets of ADLs performed by 22 individ-

uals in two different smart home environments. Results show that, even using a

smaller number of sensors, the performance of our unsupervised method is com-

parable to the one of existing methods that rely on labeled activity datasets.

Chapter 4 is based on the following publication:

• Daniele Riboni, Timo Sztyler, Gabriele Civitarese, Heiner Stuckenschmidt,

”Unsupervised Recognition of Interleaved Activities of Daily Living through
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Ontological and Probabilistic Reasoning”. UbiComp ’16: Proceedings of

the 2016 ACM International Joint Conference on Pervasive and Ubiquitous

Computing, 2016.

My contributions:

• Concept and methodology design of the STATISTICAL ANALYSIS OF

EVENTS algorithm.

• Collaboration in designing a part of the MLN knowledge base.

• System’s implementation (except ontological reasoning).

• Collaboration in the design of the evaluation methods.

• Collaboration in experiments execution.

• Collaboration in results analysis and interpretation.

1.2.2 Recognition of objects manipulations

Monitoring the interaction of the subject with everyday objects is crucial to accu-

rately detect ADLs. Moreover, clinicians are interested in monitoring how objects

are manipulated in order to assess cognitive health. This topic is dealt in Chap-

ter 5, where a novel framework to unobtrusively recognize object manipulations is

presented [29]. In particular, we take advantage of current commercial low cost

and low energy consumption multi-sensor devices that can be attached to everyday

objects. We collected a dataset of more than two thousands labeled manipulations,

and we report encouraging preliminary results on their recognition through ma-

chine learning techniques applied to accelerometer data collected from the objects.

We believe that our study contributes to the design of a sensing subsystem that

could be effectively integrated into the smart-home environments used in several

previous works on monitoring complex activities at home [30], independently from

the algorithmic method being used, since object manipulations may be considered

as simple events.

Chapter 5 is based on the following publication:

• Gabriele Civitarese, Stefano Belfiore, Claudio Bettini. ”Let the objects tell
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what you are doing”. UbiComp ’16: Proceedings of the 2016 ACM Interna-

tional Joint Conference on Pervasive and Ubiquitous Computing: Adjunct,

2016.

My specific contributions:

• Problem identification and concept design.

• Methodology design.

• Design of evaluation methods.

• Results analysis and interpretation.

1.2.3 Fine-grained and long-term anomalies recognition

In Chapter 6, we propose a novel technique for fine-grained abnormal behavior

recognition [31, 3, 17]. Our method relies on medical models describing abnor-

mal activity routines that may indicate the onset of early symptoms of MCI. These

models have been acquired through the collaboration with cognitive neuroscience

experts, and they are translated into first-order logic rules. The input for anomaly

recognition is high-level events produced by the sensing infrastructures and de-

tected ADLs. The considered abnormal behaviors include inappropriate timing

and unnecessary repetitions of sub-actions, but also high-level observations like

irregularly consuming meals or often consuming cold meals. Different from pre-

vious works which consider an anomaly as a simple divergence from a regular

behavior [25, 26], we use symbolic reasoning over recognized activities to detect

abnormal behaviors at a fine-grained level. In particular, we focus our studies on

abnormal behaviors related to object manipulations. Experimental results show

that our technique is able to detect most of the abnormal behaviors that we have

targeted while producing a small number of false positives.

Moreover, we also propose a novel long-term analysis method to detect signifi-

cant changes in the trend of performing activities (e.g., changes in habits regarding

the timing of meal consumption) [32]. Indeed, when considered in isolation, fine-

grained abnormal behaviors are only weak indicators of possible cognitive issues.

On the contrary, the frequency of anomalies detected over long periods of time and

their temporal trend are much stronger indicators.
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Chapter 6 is based on the following publications:

• Daniele Riboni, Claudio Bettini, Gabriele Civitarese, Zaffar Haider Janjua,

Rim Helaoui, ”SmartFABER: Recognizing Fine-grained Abnormal Behav-

iors for Early Detection of Mild Cognitive Impairment”. Artificial Intelli-

gence in Medicine, Elsevier, 2016.

• Daniele Riboni, Gabriele Civitarese, Claudio Bettini. ”Analysis of Long-

term Abnormal Behaviors for Early Detection of Cognitive Decline”. In

Proceedings of the IEEE International Conference on Pervasive Comput-

ing and Communications Workshops (PASTA2016: Workshop on PervAsive

Technologies and care systems for sustainable Aging-in-place), IEEE, 2016.

• Gabriele Civitarese, Claudio Bettini. ”Monitoring Objects Manipulations

to Detect Abnormal Behaviors”. In Proceedings of the 2017 IEEE Inter-

national Conference on Pervasive Computing and Communications Work-

shops, 2017.

My specific contributions:

• Collaboration in concept design of logic representations of fine-grained

anomalies.

• Collaboration in methodology design of fine-grained anomalies recogni-

tion.

• Design of evaluation methods for specific fine-grained anomalies related to

object manipulations.

• Results analysis and interpretation for the experiments concerning fine-

grained abnormal behaviors.

1.3 Outline

The rest of the thesis is structured as follows. Chapter 2 provides a wide overview

of the state-of-the-art for both activity and anomaly recognition, and it presents

the specific challenges tackled by this thesis. Chapter 3 presents a hybrid sta-

tistical/symbolical framework to recognize ADLs which uses a knowledge-based
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algorithm to refine the prediction of a supervised classifier. In Chapter 4 we present

an unsupervised ADLs recognition algorithm that combines ontological and prob-

abilistic reasoning. Our contributions on object manipulations detection are pre-

sented in Chapter 5. Chapter 6 focuses on a use case of ADLs recognition, which

is the detection of abnormal behaviors to support clinicians diagnosis of cognitive

decline. Finally, Chapter 7 concludes this work.
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Chapter 2

Related work

2.1 Introduction

Smart-home activity recognition systems proved to be effective for supporting the

diagnosis and improving healthy aging [33, 34]. In the literature, various strate-

gies have been proposed to devise effective and unobtrusive activity monitoring

systems by exploiting pervasive computing technologies [35]. A popular research

direction for activity recognition consists in exploiting audio-visual information

recorded by cameras and microphones with the help of sound, image and scene

recognition software [36, 37]. However, those methods are sometimes tolerated

in retirement residences, but much less in private homes due to the privacy issues

that they determine. Other proposed activity recognition systems are mainly based

on data acquired from body-worn accelerometers [38, 39, 40] in order to recog-

nize physical activities. However, solutions based on wearables are critical: there

is no guarantee that wristbands or pendants are constantly worn. There are also

indications of a general adversity or disaffection of users to wearables targeted to

health-care related applications [41]. Moreover, those methods are not well suited

to recognize complex activities, like ADLs executed at home, which are character-

ized by the interaction of the individual with several objects and furniture.

For the above-mentioned reasons, in this chapter we restrict our attention to

non-invasive sensor-based techniques. In this context, this chapter introduces an

overview of the state-of-the-art on unobtrusive sensing (Section 2.2), as well as on

activity (Section 2.3) and anomaly (Section 2.4) recognition. Finally, Section 2.5

introduces the research questions addressed by this thesis.
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2.2 Unobtrusive sensing

Unobtrusive ADLs recognition relies on several sensors that detect the inhabitant’s

interaction with objects and furniture and his/her movements in the home. The

measurements produced by those devices are continuously transmitted to a home

gateway, in order to be used by behavioral monitoring applications. In the follow-

ing, we introduce an overview of unobtrusive sensing technologies adopted in the

literature.

2.2.1 Environmental sensing

Environmental sensors are cheap devices that unobtrusively monitor the interac-

tion of the subject with the home infrastructure and his/her movements. The most

common are binary sensors [42]; i.e., sensors which produce as output “0” or “1”

depending on the interaction being performed. Examples of such devices are mag-

netic sensors (e.g., to detect when doors or drawers are opened or closed) and

pressure sensors (e.g., to detect when the subject sits on a chair). Passive InfraRed

(PIR) sensors have been widely used [43, 44, 45] to monitor the presence of the

subject in specific home locations and to track his/her motion patterns. Coarse-

grained human movements have been monitored also by using air pressure sen-

sors [46]. Power meter sensors have been proposed to detect the usage of home

appliances [47, 48]. Water usage can be monitored using flow meters [49] or at-

taching low-cost microphones to the pipes of water distribution infrastructure [50].

2.2.2 Monitoring the interaction with everyday objects

Besides environmental sensors, smart-home activity recognition highly benefits

from tracking the inhabitant’s manipulations of everyday objects [51]. The ma-

jority of the solutions in the literature are based on a combination of RFID tech-

nologies and wearable devices [52, 53]. In those approaches, the subject needs

to wear a glove which acts as an RFID reader. An RFID tag is hence attached

to each object of interest in order to detect objects interaction. The main issue

with this approach is that the monitored subject needs to continuously wear the

glove. Moreover, it has been shown that RFID technologies are not reliable for a

real deployment [54]. Finally, those methods only detect the generic interaction

of the subject with the objects, thus not providing a specific information about the

performed manipulation.
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2.3 ADLs recognition

ADLs recognition methods in ubiquitous computing can be broadly classified into

two categories: data-driven methods and knowledge-based methods [35]. Data-

driven techniques are more flexible in terms of implementation (i.e., they do not

require rigid definitions of activities) and they are more robust with respect to noisy

and uncertain sensor data. Moreover, since they do not rely on a rigid specification

of how ADLs should be performed, they potentially can capture more variations

of the considered activities. For example, in case of the activity of preparing a

meal, a person can turn on the stove in the beginning and then retrieve the food

items from the cabinets or vice versa. Depending on the recipe, the person can

skip or add some steps to the activity. Thus, in such cases we need techniques

that are scalable. However, the acquisition of a comprehensive annotated dataset is

expensive and often unfeasible. Moreover, it is difficult to incorporate the domain

knowledge about the activity using these techniques.

On the other hand, the knowledge-driven techniques are more powerful to rep-

resent the semantics of the sensor events. These techniques use the domain knowl-

edge to conceptually model an activity. In this way, an activity can be modeled

without the need for large training data. However, such techniques lack the bene-

fits of flexibility and scalability in the system. In addition to the above-mentioned

methods, hybrid solutions have also been proposed to combine data-driven and

knowledge-based approaches. In the following, we go into more details of these

categories.

2.3.1 Data-driven methods

Data-driven methods rely on a training set of sensor data, labeled with executed

activities, and machine learning algorithms to build the activities’ model. Obser-

vations regarding the user’s surrounding environment (in particular, objects’ use),

possibly coupled with body-worn sensor data, are the basis of those activity recog-

nition systems [3, 55]. In [56] the authors propose a time series data analysis

method to segment sequences of sensor events in order to recognize ADLs. The

application of Hidden Markov Models inference is proposed in [42] to recognize

activities based on features extracted from recent sensor events according to a slid-

ing window. Conditional Random Fields [57] and Emerging Patterns [58] have also

been proposed in order to detect sequential, interleaved and concurrent activities.
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The authors in [59] combine Bayes Networks with interval algebra in order to ex-

plicitly model complex temporal dependencies over time intervals. In [60], the

authors propose a supervised learning classifier that automatically adapts its model

according to the dynamically discovered context (i.e., new data sources).

However, since training data is hard to acquire in realistic environments, sys-

tems relying on supervised learning are prone to serious scalability issues the more

activities and the more context data are considered. Moreover, datasets of complex

ADLs are strongly coupled to the environment in which they are acquired (i.e., the

home environment and the sensors setup), and to the mode of execution of the spe-

cific individual. Hence, the portability of activity datasets in different environments

is an open issue [61].

2.3.2 Knowledge-based methods

Knowledge-based methods rely on specification-based definitions of the character-

istics and semantics of complex activities. These are matched with available sen-

sor data to recognize the current activity. Those definitions are usually expressed

through logical axioms, rules, or description logics [62, 63, 64]. Hence, different

frameworks for knowledge representation and reasoning have been investigated to

appropriately model complex human activities by means of ontologies. In par-

ticular, description logics [65] have emerged among other symbolic formalisms,

mostly because they provide complete reasoning (i.e., every true well-formed for-

mula can be derived) supported by optimized automatic tools.

Some proposed methods take uncertainty in sensor data acquisition into ac-

count by means of probabilistic and fuzzy logic [66]. Other works rely on descrip-

tion logic languages to formally express activity definitions [63, 64]. Background

knowledge of ADLs has been used to create activity models, used to recognize

ADLs based on the similarity of sequences of sensor events to the general mod-

els [67]. Ontological reasoning has also been proposed to perform dynamic seg-

mentation of sensor data [68, 69, 70] or to refine the output of supervised learning

methods [71]. Defeasible reasoning has been adopted to enhance existing sequen-

tial activity recognition systems by detecting interleaved activities and handling in-

consistent or conflicting information [72]. A further method to segment activities

based on their semantic description is proposed in [73]; that method also supports

the recognition of overlapped activities.
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However, those works rely on rigid assumptions about the simpler constituents

of activities. Hence, while the specification-based approach is effective for activ-

ities characterized by a few typical execution patterns, it is hardly scalable to the

comprehensive specification of complex ADLs in different contexts.

2.3.3 Hybrid methods

Given the limitations of both statistical and symbolic approaches, a few hybrid

activity recognition systems have been proposed in the literature, which vary on

the adopted reasoning techniques and on their interaction mechanisms.

An interesting instance of those approaches is Markov Logic Networks (MLN),

a probabilistic first-order logic [74]. Given a training set, and a set of probabilistic

formulas, with MLN it is possible to learn a weight for each grounded formula by

iteratively optimizing a pseudo-likelihood measure. Those weights represent the

confidence value of the formula. Deterministic formulas can be added to proba-

bilistic ones to express deterministic knowledge about the domain of interest. Dif-

ferent reasoning tasks can be executed to infer additional information based on

formulas and facts [31]. A similar approach was adopted in [23] to model and

recognize activities at different levels of complexity using probabilistic description

logic. The advantage of using probabilistic logic is that it allows defining complex

knowledge-based constraints which can capture the intrinsic uncertainty of sensor

measurements. Indeed, learning the weights of those constraints allows combin-

ing the strong point of knowledge-base and data-driven methods, thus improving

the recognition rate. However, those approaches still require the acquisition of a

labeled dataset.

In [75] the authors proposed to exploit ontologies in order to derive seman-

tic similarity between sensor events. This similarity is then used to segment sen-

sor data, obtaining sequential activities’ patterns used to train a clustering model.

The semantic segmentation of sensor data allows to accurately individuate transi-

tions between activities without supervised techniques. The main drawback of this

method is that it requires a comprehensive dataset of activities (even if not labeled)

acquired from the monitored subject to construct an accurate activities model.

Hybrid ontological and statistical reasoning is also proposed in [76] to contin-

uously assess the fall risk of a senior at home, by integrating data acquired from

different fall detection systems and environmental sensors. Semantic reasoning
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considering the context is hence used to reduce the number of false positives ob-

tained by the statistical fall-detection system.

2.4 Behavioral analysis

2.4.1 Applications of activity recognition to MCI diagnosis

Several studies in the neuropsychology research field show that it is possible to

distinguish between cognitively healthy adults and cognitively impaired individu-

als based on subtle differences in their behavioral patterns [77, 78]. For instance,

in [79], subjects were asked to execute a set of predefined ADLs in the observation

room of a clinical center, while two cameras recorded their activities. Researchers

annotated the dataset manually based on the observation of the video recordings,

giving partial scores to the performed activities considering different factors, in-

cluding activity duration, omitted steps, and the number of repeated steps. The

partial scores were then aggregated to obtain a comprehensive score, who proved

to be effective in distinguishing MCI subjects from Alzheimer’s patients, and cog-

nitively healthy seniors from MCI subjects. There is a growing interest in exploit-

ing pervasive computing technologies to automatically capture and measure those

differences [34].

Machine learning methods applied to accelerometer data and video record-

ings were used in [80] to distinguish between cognitively healthy seniors and

Alzheimer’s patients based on activity execution and gait events. Similarly, sensors

and video recordings were used in [81] to distinguish between MCI and Alzheimer’s

patients. Those methods were applied in controlled environments, while we aim at

monitoring the elderly’s activities at a fine-grained level at home.

Several European projects have addressed the usage of ICT technologies for

enhancing active and healthy aging [82, 83, 84] and for supporting people with de-

mentia at home [85]. Based on this line of research, different works have proposed

to apply machine learning techniques on data acquired in sensor-rich environments,

for assessing the cognitive health status of an individual performing a set of ADLs.

For instance, motion sensors and contact sensors have been used in [45] to measure

low-level activity patterns, such as walking speed and activity level in the home;

results have shown that the coefficient of variation in the median walking speed is a

statistically significant measure to distinguish MCI subjects from healthy seniors.

17



A sensor-based infrastructure has been used in [86] to unobtrusively monitor the

execution of ADLs by older adults in a smart-home; the results have shown a sig-

nificant correlation between the cognitive health status of the subject and the level

of assistance that he needs to complete the activities. In the work of Dawadi et

al. [87], patients were invited to execute a list of routines (e.g., write a letter, pre-

pare lunch) inside a hospital smart-home. Different kinds of sensors were used to

detect movements inside the home and to track the use of furniture and appliances.

Based on data coming from the home sensors, supervised learning methods were

used to assign a score to each performed activity; the score measures the ability

of the subject to perform the activity correctly. The achieved scores were used to

predict the cognitive status of the patient (cognitive health or dementia). The su-

pervised learning approach has been applied in other works, including [88, 89, 90],

using several other learning methods. However, while a significant correlation

exists between the inferred activity scores and the cognitive health status of the

individual, those methods do not provide a description of the observed behavioral

anomalies. On the contrary, the medical assessment would benefit from detailed

knowledge of the abnormal behavior of the patient.

2.4.2 Long-term analysis of activity data

In the aforementioned works, the detection of abnormal behaviors is mostly done

on a short-term basis and does not take into account the patient’s personal habits.

Other works have proposed methods to model the patient’s usual behavior from the

activities performed in the past and use this model to detect anomalies as changes

from his/her usual behavior. In [91], a method has been proposed to monitor the

circadian (24-hours) variability of the patient’s activities using location sensors

and statistical calculations were performed regularly on sensors data to recognize

possible deviations in the patient’s behavior. In [92] in-home activities and sleep

restlessness were captured using different sensors and a simple alert system was

implemented to detect changes in the activity patterns and generate health alerts

that were sent to clinicians to be rated for their clinical relevance. These ratings

were then used as ground truth in developing classifiers to recognize relevant alerts.

In [93], the authors propose a technique to detect recurrent ADLs patterns, as well

as their variations, by mining heterogeneous multivariate time-series from sensor

data acquired in a smart home.

Another approach based on temporal data mining was presented in [94]. Fre-
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quently occurring temporal relationships between activities were extracted from

the observed history of sensor events and used to model the probability that a par-

ticular event should or should not occur on a given day. A technique based on

unsupervised learning is proposed in [95] to automatically discover ADL patterns

and their variations. That technique is coupled with an activity recognition module

and with visualization tools to allow practitioners inspecting the trend of activity

patterns. Visualization of spatiotemporal data extracted from the long-term ob-

servation of elderly’s activities at home is used in [96] to identify potential risk

situations.

2.5 Research problems addressed by this thesis

In this section we outline the research questions tackled in this thesis. For each

question, we introduce the research problem and we indicate the specific chapter

of the thesis where the problem is addressed.

Q1) How can knowledge-based and data-driven methods be combined in or-
der to improve ADLs recognition?
As previously mentioned, data-driven methods are more scalable and they are ro-

bust against the intrinsic noise and uncertainty of sensors measurements, while they

lack the capability of capturing important semantic relationships between sensor

events and activities. On the other hand, knowledge-based methods capture very

well the above-mentioned complex semantic relationships, but their specification

is often too rigid to cope with the variability of execution of ADLs and to handle

noise and uncertainty.

In Chapter 3, we propose a novel hybrid ADLs recognition method which

uses knowledge-based conditions to refine the statistical prediction of a super-

vised learning algorithm. This method thus combines the strong points of both

approaches in order to improve the recognition rate.

Q2) How can ADLs be recognized with a scalable method which avoids the
acquisition of an annotated dataset?
Supervised learning methods require the acquisition of a large annotated dataset,

which is often unfeasible to obtain. On the other hand, knowledge-based methods
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do not rely on a dataset, but they are often based on rigid specifications.

In Chapter 4, we propose an ADLs recognition method which overcomes the

drawbacks of both approaches combining ontological and probabilistic reasoning.

First of all, our method is unsupervised and it does not require a training set. Sec-

ond, the activity model is based on general semantic relations among activities and

smart-home infrastructure; hence, we can seamlessly reuse our model with differ-

ent individuals and in different environments.

Q3) How to unobtrusively recognize fine-grained manipulations performed by
the inhabitant on household objects?
Monitoring the interaction of the subject with household items is important to ac-

curately recognize the performed ADLs. Moreover, clinicians are interested in

monitoring how objects are manipulated in order to identify abnormal behaviors

which can be early symptoms of cognitive decline. In the literature, computer-

vision methods have been proposed to track the objects usage [97]. However, the

use of cameras is too much privacy intrusive in home environments. Other methods

proposed wearable solutions, but there are indicators of disaffection from elderly

users to wear such technologies in their home [41].

In Chapter 5 we propose an unobtrusive method to monitor the manipulations

of household items. We shift the monitoring burden to the objects’ side, by at-

taching tiny wireless accelerometer directly on the objects. The continuous stream

of acceleration data is then analyzed by a machine learning algorithm in order to

identify the fine-grained manipulations that the subjects performed on the house-

hold items.

Q4) How to recognize abnormal behaviors at a fine-grained level?
A general approach to recognize anomalies is to build a model of the “regular” be-

havior of the subject in order to identify those activity patterns which diverge from

the expected ones. The main drawback of this type of approaches is that behavioral

changes are detected without giving specific explanations of what happened.

In Chapter 6 we propose a knowledge-based technique to detect abnormal be-

haviors at a fine-grained level. The description of anomalies provided by clini-
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cians is translated in first-order-logic rules, which are evaluated considering sensor

events, performed activities, and subject-specific information. In this thesis, we

focus on abnormal behaviors based on objects manipulations.
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Chapter 3

Supervised activity recognition
through statistical and symbolic
reasoning

3.1 Introduction

In this chapter we present a novel hybrid ADLs recognition algorithm based on a

combination of supervised learning and knowledge-based conditions to refine the

statistical predictions. We combine data-driven and knowledge-based approaches

to take advantage of the strong points of both techniques. In particular, supervised

learning allows us to handle the variability of execution and the intrinsic uncer-

tainty and noise of sensor measurements, while knowledge-based reasoning allows

us to consider complex semantic relations between events and activities.

Our method relies on a machine learning algorithm which classifies, for each

sensor event, the most likely performed activity. We adopt a state-of-the-art feature

extraction technique to capture important temporal relationships between sensor

events. A novel knowledge-based algorithm is then in charge of a) grouping to-

gether those sensor events which most likely belong to the same activity instance

and b) correcting possible mis-predictions produced by the machine learning algo-

rithm.

Few other methods in the literature unified supervised and knowledge-based

reasoning for activity recognition. The use of knowledge-based reasoning to re-
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fine the prediction of supervised learning has been already proposed for activity

recognition [71]. However, that method is limited to simple physical activities.

In [98], probabilistic description logics are used to support both modeling and

reasoning with uncertainty by combining log-linear models and description log-

ics. However, that work relies on rigid activity patterns, while our method exploits

time-based feature extraction and machine learning to mine those patterns from a

training set. The probabilistic first-order logic Markov Logic Network has been

used in [31], where soft and hard constraints were combined in order to learn the

activities performed by the subject. That technique obtained good results on a

dataset acquired in a controlled environment, while it performed poorly in a real-

home scenario [54].

We experimentally compare the recognition results of our approach with a state

of the art technique proposed in the literature, showing its superiority both on a lab-

acquired dataset and on a real-home dataset.

The rest of the chapter is structured as follows. Section 3.2 introduces our

notation and the formulation of the activity recognition problem. In Section 3.3

the architecture of the proposed method is described in the details. Section 3.4

introduces our smart lab and real-home datasets and it presents the recognition

results. Finally, Section 3.5 concludes the chapter.

3.2 Notation

3.2.1 Activities

We denote by activity class an abstract activity (e.g., cooking and cleaning), and

by activity instance the actual occurrence of an activity of a given class during a

certain time period. More formally, we define A = {A1, A2, . . . , Ak} as the set

of k considered high-level activity classes (e.g.: A = {Preparing Meal, Eating

Meal, Taking Medicines}). An instance ai of an activity class A ∈ A is an occur-

rence of A during a timespan. Intuitively, a timespan is a particular time interval

represented by a start time and an end time, where not every timestamp between

the boundaries necessarily belongs to the timespan. This representation allows us

to consider activities performed in an interleaved fashion. In particular, we define
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a timespan ts as a non-convex time interval characterized by a finite set of non

overlapping temporal intervals:

{[x1, y1], [x2, y2] . . . , [xn, yn]}

where ∀i xi, yi ∈ T. Given a timestamp t ∈ T and a timespan ts, we say that t

belongs to the timespan ts if it belongs to one of its intervals. We denote with aAts
an instance of the activity class A ∈ A occurred during the timespan ts.

3.2.2 Sensor events and semantic integration

We assume a smart home instrumented with sensors to detect interactions with

items and furniture, context conditions (e.g., temperature), and presence in certain

locations. Figure 3.1 illustrates the relation between recorded sensor events and an

activity instance. Hence, during the execution of activity instance ai1 (preparing

dinner), the subject executes the operations op1 (opening the silverware drawer)

and op2 (turning on the microwave oven). Supposing that sensors are available to

detect these operations, op1 and op2 generate two sensor events se1 and se2, whose

timestamps corresponds to the time of the respective operation.

Activities
timeline time smart-home environment

Preparing
dinner

Sensor time
events
timeline

    ai1

op1 op2

se1 se2

Figure 3.1: The relations between an activity instance, the performed operations,

and the involved sensor events.

Raw sensor data by itself might not provide meaningful context that can be

directly understood and utilized by reasoning algorithms. An abstraction layer

is necessary in order to annotate sensor events with semantics that are structured

around a set of contextual concepts (e.g., smart-home infrastructure, household

objects, home location, . . . ). For this reason, we introduce the concept of semantic

integration. By semantic integration we mean applying simple inference methods
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to derive high-level events from raw sensor events. In particular, we adopt rules

to express conditions about the type of detected raw events, which determine the

recognition of high-level events. Those rules may include conditions about the

temporal occurrence of raw sensor events. Consider the example below.

Example 3.2.1. Suppose that the infrastructure includes one presence sensor cov-

ering the kitchen table area, and one pressure sensor installed on a chair to detect

the weight of the person sitting on it. Then, the following rule is used to detect that

the person is sitting on a chair at the kitchen table: “if at time t the presence sensor

detects a presence near the kitchen table, and after a short lapse of time (at t′) the

pressure sensor detects that a person sits on the chair, then the current event at t′

is sitting on a chair at the kitchen table”. Formally, this rule expressed in natural

language is encoded in propositional logic as follows:

ev(SitOnChairAtKitchenTable, t′)← ev(PresenceAtKitchenTable, t) ∧

ev(SitOnChair, t′) ∧ t′ ≥ t ∧ (t′ − t) ≤ 5sec.

For the sake of this work, we defined those rules by considering common-sense

knowledge, the available datasets and the targeted activities. We are aware that a

more systematic methodology to define and specify such events would make our

method more flexible, but this is out of the scope of this thesis. Moreover, when

one (or more) of the sensors that are involved in the generation of an event stops

working, we are not able to detect that event anymore. To address this problem, one

of the possible solutions is sensing redundancy: the same high-level event should

be captured by multiple sensing modalities and multiple rules to derive the same

event. In future works we will investigate this fault-tolerance aspect.

We define E as the set of all the considered event types (e.g. E = {Door is opened,

Door is closed}). We adopt a simple temporal model for the events. We denote as

T the set of all the possible timestamps. A sequence of events is represented as

follows:

〈 ev(E1, t1), ev(E2, t2), . . . , ev(Em, tm) 〉,

where ev(Ei, ti) indicates that an instance of the event type Ei ∈ E occurred at

timestamp ti ∈ T. A unique timestamp is assigned to each event, based on the time

at which the related raw sensor events are received by the central mobile device.

In this way we impose a total order on event timestamps 〈 t1, t2, . . . , tm 〉. Given
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a sensor-equipped environment, an activity instance aAts generates a sequence of

events that we call “aAts observations”, formally denoted by

Obs(aAts) = 〈ev(E1, t1), ev(E2, t2), . . . , ev(Ek, tk)〉

where ∀i Ei ∈ E and ti ∈ ts.
In this work, we do not adopt ontological reasoning to recognize high-level

events. Instead, we use formal ontologies for the sake of interoperability. In par-

ticular, event types are represented using our OWL 2 ontology of events, actions,

and activities. For instance, the event type sit on chair at kitchen table is defined

as follows:

ETSITONCHAIRATKITCHENTABLE v EVENTTYPE u

∀ HASACTOR.
(

PERSON u ∃ HASLOCOMOTION.SIT u

∃ HASOBJECT.CHAIR u ∃ HASLOCATION.KITCHENTABLEAREA
)
.

3.2.3 Activity recognition problem

Based on the observation of a set of timestamped events

〈 ev(E1, t1), ev(E2, t2), . . . , ev(Em, tm) 〉,

the goal of the activity recognition system is to reconstruct which activity in-

stances generated those events. As shown in Figure 3.2, the objective is thus to

assign each event to the observations of the activity instance that most probably

generated it. Activity instances can also be performed in an interleaved fashion, as

it is the case for ai2 and ai3 where the subject temporarily interrupts the meal to

take medicines.

Activities timeline time

Preparing dinner
Eating
Taking medicines

Sensor events timeline time

ai1
ai2 ai2

ai3

ev1 evkev2 ...

Figure 3.2: Reconstruction of the activity instances generating a set of sensor

events.
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3.3 The technique

Our hybrid reasoning framework, shown in Figure 3.3, exploits both statistical and

knowledge-based methods. In particular, knowledge-based methods are used by

the SEMANTIC INTEGRATION LAYER to recognize simple events from raw sensor

data (like discussed in Section 3.2.2) and by the SMART AGGREGATION module

to identify activity instances. Statistical reasoning, taking into account temporal

features, is used to classify events into activities and to recognize activity instances.

At each pre-processed event, a time-based supervised learning technique is applied

to assign the most probable activity class. The classified events are then post-

processed in order to identify the most probable activity instances. In the following,

...

SEMANTIC	INTEGRATION	LAYER

PRESENCE	
SENSORS

CONTACT	
SENSORS

ENVIRONMENTAL	
SENSORS

pre-processed	events

... ... ... ...ev(E2,t2) ev(E3,t3)ev(E1,t1) ...

event	features

TIME-BASED	FEATURE	EXTRACTION

classification	of	events	into	activities	 (ev(Ei,ti),	Aj)

raw	sensor	events

MACHINE	LEARNING	ALGORITHM

activity	instances	(ai	=	<ev(E1,t1),	...,	ev(Ek,tk)>)

SMART	AGGREGATION

Figure 3.3: The system’s architecture

we describe in detail the main components of the proposed system.

3.3.1 Classification of events

The events produced by the SEMANTIC INTEGRATION LAYER are communicated

to the TIME-BASED FEATURE EXTRACTION module. For each event ev(Ei, ti),

this module is in charge of building a feature vector representing the sequence S
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No. Feature name Description

1 . . . 5 Repository usage Each of these features measures the temporally-
weighted occurrences of usage of an individual
repository (fridge, kitchen cabinet, . . . )

6 Stove usage Measures the temporally-weighted occurrences of
stove usage events

7 Cooking pot usage Measures the temporally-weighted occurrences of
cooking pot usage events

8 Food retrieval Measures the temporally-weighted occurrences of
food retrieval events

9 Medicine retrieval Measures the temporally-weighted occurrences of
medicine retrieval events

10 Approaching table Measures the temporally-weighted occurrences of
the event type “approaching kitchen table”

11 Leaving table Measures the temporally-weighted occurrences of
the event type “leaving kitchen table”

12 Start time Time of the day of the oldest event in the sequence
S

13 End time Time of the day of the most recent event in the
sequence S

14 Duration Difference between end time and start time

Table 3.1: List of considered features

of the n most recent events:

S = 〈 ev(Ei−n+1, ti−n+1), . . . , ev(Ei−1, ti−1), ev(Ei, ti) 〉.

We adopt the feature extraction technique proposed in [99], since it takes into ac-

count temporal aspects, and proved to be effective in recognizing activities based

on streams of sensor events. We consider the features listed in Table 3.1. Some

of the features (i.e., from feature 1 to feature 11) measure the number of events

happened in S that are related to the usage of a particular object or to the presence

in a particular area of the home. When computing the value of those features, we

use a weighting factor to fine-tune the contribution of each event in S, so that re-

cent events contribute more than older ones. In particular, we use an exponential

function to compute the weight for each ev(Ej , tj) ∈ S based on the time distance

between tj and ti (the latter is the most recent event in S):

w(tj , ti) = exp(−χ(ti − tj)),
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where the factor χ determines the time-based decay rate of the events. The value

of feature Fk(S) (with k = 1 . . . 11 ) is computed as:

Fk(S) =
∑

ev(Ej ,tj)∈S

w(tj , ti) · fk(ev(Ej , tj)),

where fk(ev(Ej , tj)) is the time-independent contribution of ev(Ej , tj) to the

computation of the Fk value. For instance, when we consider F3 that measures the

number of events in S related to the usage of the fridge, the value of f3(ev(Ej , tj))

is 1 if Ej corresponds to either “open fridge” or “close fridge”; it is 0 otherwise.

The feature vector computed based on S is given as input to a supervised MACHINE

LEARNING ALGORITHM to infer the most probable class of the activity instance

carried out at ti. The algorithm is trained using a dataset of activities and feature

vectors.

3.3.2 Naive aggregation

The next step is to infer the actual activity instances from the output of the MA-

CHINE LEARNING ALGORITHM by grouping together those events which can be

considered observations generated by the same activity instance. Intuitively, tem-

porally close events classified with the same activity class are most likely generated

by the same activity instance. We first discuss the baseline approach, named naive

aggregation. The basic idea of this algorithm is the following: if two consecutive

events occurred respectively at ti and ti+1 are classified with the same activity class

Ai = Ai+1, they are considered as observations generated by the same instance of

an activity of class Ai. Otherwise, they are considered observations generated by

different activity instances.

Example 3.3.1. Consider the case illustrated in Table 3.2. This table illustrates

in the first three columns a sequence of events associated with activity classes pre-

dicted by the MACHINE LEARNING ALGORITHM; in the fourth column, the ground

truth about activity instances; and in the last column the output of the naive aggre-

gation method. The naive aggregation algorithm produces 5 different instances of

activities. However, it is easy to see that this aggregation is not correct. Indeed, the

events E2, E4 and E6 share the same activity class and are temporally close. With

high probability, the inferred activity classes for the events E3 and E5 are mis-

predictions, since the “Eating meal” and the “Preparing meal” activity instances

would have a too short duration. Moreover, consider the case where events E1 and
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E2 correspond respectively with Presence in the kitchen and Open the medicine

repository. These two events alone can not be considered as the only observations

generated by an instance of a Taking Medicines activity: the medicine repository

can possibly contain items not related with medicines and it is also possible that it

may be opened just to check the content. Another issue of this technique is that two

consecutive events labeled with the same activity class but temporally distant (like

E6 and E7) would be grouped together, while they most likely belong to separate

activity instances. Hence, the particular sequence of events illustrated in Table 3.2

should identify a single instance of “Taking medicines” that generated the events

from E1 to E6.

Table 3.2: An example of naive aggregation based on a sequence of classified

events
Event type Timestamp Predicted activity class Actual instances Predicted instances

E1 08:32:31 Taking medicines

E2 08:32:48 Taking medicines takingMedicines1

E3 08:32:55 Eating meal takingMedicines1 eatingMeal1

E4 08:33:02 Taking medicines takingMedicines2

E5 08:34:11 Preparing meal preparingMeal1

E6 08:34:13 Taking medicines

E7 11:34:27 Taking medicines takingMedicines3

. . . . . . . . . takingMedicines2

. . . . . . . . .

3.3.3 Smart aggregation

In order to overcome the limitations of the naive aggregation algorithm, illustrated

in Example 3.3.1, we refined our recognition method. We introduce for each ac-

tivity class A ∈ A a set of conditions that are necessary for a sequence of events

to be considered observations generated by an instance of that class. For exam-

ple, assuming that the infrastructure includes sensors to detect the stove usage, any

instance of the activity Preparing a hot meal should generate some observations re-

lated to the usage of the stove. Other examples of conditions may be constraints on

the duration of the activity instance or on the number of generated events. Among

those conditions, we consider the upper bound about the duration of activity in-

terruptions: the time distance between every pair of consecutive events within the

observations generated by an activity instance aAts must be lower thanmaxDelayA.
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ALGORITHM 1: Smart aggregation
Input: A set S = {(ev(E1, t1), A1), (ev(E2, t2), A2), . . . , (ev(En, tn), An)} of

events associated with the predicted current activity classes, where ∀i
Ei ∈ E, ti ∈ T and Ai ∈ A.

Output: A set A of activity instances.

A ← ∅;
mispredictions← ∅;
foreach A ∈ A do

X ← the events in S predicted with A;
G← segmentation(X,maxDelayA);
foreach g ∈ G do

if g satisfies all the conditions in C(A) then
a← an activity instance of class A that generated the observations g;
A ← A

⋃
{a};

else
mispredictions← mispredictions

⋃
g;

end
end

end
foreach ev(E, t) ∈ mispredictions do

I ← ∅;
foreach aAts ∈ A do

if t lies between the boundaries of ts then
x = Obs(aAts)

⋃
{ev(E, t)};

if x satisfies all the conditions in C(A) then
I ← I

⋃
{aAts};

end
end

end
if I 6= ∅ then

a′ = argmax
aA
ts∈I

freq(E,A);

add ev(E, t) to the observations of a′;
else

consider ev(E, t) as observation of an activity instance of class “other
activity”;

end
end
return A;
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ALGORITHM 2: Segmentation of activity instances
Input: A set of events X = {ev(E1, t1), ev(E2, t2), . . . , ev(En, tn)} and the

threshold maxDelay.
Output: A partition of X according to maxDelay.

groups← ∅;
currGroup← {ev(E1, t1)};
for i← 2 to n do

if ti − ti−1 < maxDelay then
currGroup← currGroup

⋃
{ev(Ei, ti)};

else
groups← groups

⋃
{currGroup};

currGroup← {ev(Ei, ti)};
end

end
return groups

⋃
{currGroup};

The value of the upper bound maxDelayA depends on the activity class A. Those

values are determined statistically (i.e., mined from available datasets); as a re-

sult, for example, “Preparing meal” will have a higher maxDelay than “Taking

medicines”. Formally, let C(A) = {c1, c2, . . . , ck} be a set of necessary conditions

expressed in logic over a sequence of events that are observations of any instance

of a class A ∈ A (e.g. {”The sequence of events must last more than 3 minutes”,

“The sequence of events must contain an event regarding the usage of the stove”,

. . . }). A sequence of events s = 〈ev(E1, t1), ev(E2, t2), . . . , ev(Ek, tk)〉 can be

considered as observations generated by an activity instance aAts if it satisfies ev-

ery condition in C(A). The set of conditions for each class are determined after a

detailed analysis of the semantics of the activity class and on statistics about the

available observations acquired from the sensor infrastructure. For instance, the

previously discussed condition about the duration of the interruption of an activity

A ∈ A over a sequence of events s can be expressed as:

∀i : ev(Ei, ti), ev(Ei+1, ti+1) ∈ s→ (ti+1 − ti < maxDelayA)

The condition about overall duration of the activity A ∈ A over a sequence of

events s can be expressed as:

∀k : ev(E1, t1), ev(Ek, tk) ∈ s→ (tk − t1 ≤ maxDurationA)
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where ev(E1, t1) is the first event identified in s, and maxDurationA indicates

the maximum duration of the activity A (which is determined statistically like

maxDelayA). As a last example, a condition for the activity Cooking which ex-

presses that the sequence of events s must contain an event regarding the usage of

the stove can be expressed as:

∃i : ev(Ei, ti) ∈ s | Ei = “Turning on the stove”

We now introduce the SMART AGGREGATION algorithm, a refined activity instance

recognition method. The pseudo-code is shown in Algorithm 1. The first step of

the algorithm is a segmentation over the output of the MACHINE LEARNING AL-

GORITHM: all the events associated with the same activity class A and temporally

close (according to maxDelayA) are grouped together. For each group g of events

classified with an activity class A, it is checked if it satisfies all the conditions in

C(A). If all the conditions are satisfied, an activity instance aAts that generated the

observations contained in g is recognized. All the events contained in those groups

which did not satisfy the conditions of their class are considered as mispredictions.

Hence, the algorithm tries to include them in one of the activity instances recog-

nized at the previous step. For each misprediction ev(E, t), the algorithm builds a

set I of activity instances aAts (that have been recognized in the previous step) such

that t lies between the boundaries of the timespan ts and {ev(E, t)}
⋃
Obs(aAts)

satisfies all the conditions in C(A). When |I| > 1 we choose the most probable in-

stance based on a function freq, which computes the frequency of an event being

an observation of the instances of a particular activity class. The values of freq

for each possible combination of event type and activity class are computed offline

based on the annotated dataset. The event ev(E, t) is added to the observations of

the instance aAts ∈ I , where A is the most frequent activity class. If I is empty,

ev(E, t) is considered an observation of an “other activity” instance.

Example 3.3.2. Continuing Example 3.3.1, suppose to apply the smart aggregation

algorithm to the same sequence of events considered in Table 3.2. The fourth

column of Table 3.3 shows the result of the first step of the algorithm, which applies

a segmentation based on the predictions of the MACHINE LEARNING ALGORITHM

for the occurred events. Four groups are created at this step.

The first group g1, classified as Taking medicines, is formed by the first, sec-

ond, fourth and sixth events, which are temporally close according to the threshold

maxDelayTakingMedicines and associated with the same activity class. The seventh
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Table 3.3: An example of smart aggregation based on a sequence of classified

events
Event type Timestamp Predicted activity class First step Predicted instances

E1 08:32:31 Taking medicines g1

E2 08:32:48 Taking medicines g1

E3 08:32:55 Eating meal g3 takingMedicines1

E4 08:33:02 Taking medicines g1

E5 08:34:11 Preparing meal g4

E6 08:34:13 Taking medicines g1

E7 11:34:27 Taking medicines

. . . . . . . . . g2 takingMedicines2

. . . . . . . . .

event does not belong to g1 since it is not temporally close to the events in that

group; hence, it is assigned to another group g2, together with other subsequent

events. The other two groups are g3, classified as Eating meal and formed by

the third event only, and g4, classified as Preparing meal and formed by the fifth

event only. Note that g3 and g4 are interleaved with g1. Then, for each group,

the algorithm check if it satisfies the conditions C(A) for its activity class. Sup-

pose that both g1 and g2 satisfy the conditions for Taking medicines; hence, the

algorithm creates an activity instances for each of them (TakingMedicines1 and

TakingMedicines2, respectively). Then, the algorithm considers g3 and checks if

it satisfies the conditions for Eating meal. Suppose that g3 does not satisfy the

conditions, since it violates the constraint about the minimum temporal duration

of Eating meal. Hence, the predicted activity class for the third event is consid-

ered a misprediction. Since the third event has happened during the timespan of

TakingMedicines1, the algorithm tries to include it in that activity instance, and

checks if the conditions for Taking medicines are still respected. Suppose that the

conditions are respected; hence, the third event is included in TakingMedicines1.

Similarly, suppose that the group g3 (containing the fifth event only) violates the

constraint about the minimum temporal duration of Preparing meal. Hence, the

activity class Preparing meal associated to the fifth event is considered a mispre-

diction. Supposing that no condition for Taking medicines is violated, the algorithm

includes the third event in TakingMedicines1. The predicted instances, which cor-

respond to the actual ones, are reported in the fifth column.
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3.4 Evaluation

3.4.1 A smart lab dataset

We have acquired a dataset of ADLs and abnormal behaviors, asking to voluntary

actors to reproduce the daily routine of 21 elderly persons in our smart home lab.

Executed ADLs and anomalies have been carefully designed in collaboration with

neuroscience experts to realistically mimic the behavior of two groups: 7 healthy

seniors (group 1), and 14 elderly persons with early symptoms of MCI (group 2).

During the execution of the daily routines, we have acquired the timestamped data

(a) Magnetic sensor attached to

a drawer

(b) Presence sensor above the

kitchen table

(c) RFID reader for medicine

boxes and food items

Figure 3.4: Some sensors used in the smart home lab.

coming from the sensors deployed in the smart home and manually annotated the

dataset with the start- and end-time of the performed activities and anomalies. In

this chapter we will only focus on the evaluation of activity recognition. Results on

anomaly recognition can be found in [3]. The following ADLs have been selected

to validate our method:

• Preparing food: the patient has to prepare the daily meals (breakfast, lunch,

dinner) at appropriate times.

• Consuming meal: when the patient prepares a meal, he has to consume it

within a reasonable time period.

• Taking medicines: the patient has to take the prescribed medicines in the due

time. We assume that no smart dispenser is used; instead, we assume that

the patient keeps all the medicines in a dedicated cabinet.
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3.4.2 A real-home deployment

As a first step towards the evaluation of our methods in the actual home of el-

derly persons, we took advantage of our cooperation with a medical institution and

a tele-medicine company as partners of the SECURE1 project, and deployed our

prototype inside the home of an elderly woman aged 74, with a diagnosis of MCI

and medical co-morbidities, who lives alone. We will call her Mary in the follow-

ing. Details about the technical implementation of the system in Mary’s home are

reported in [54].

(a) Magnetic contact sensor on

the fridge door

(b) Passing a tagged

medicine box over

the RFID reader

(c) A board with

temperature sensor

over the stove

(d) Passive infrared

presence sensor over

the kitchen table

Figure 3.5: Part of the sensors deployed at the elderly’s home

We acquired a dataset consisting of 55 days of ADLs performed by Mary. In

that period of time, we collected data for about 200 instances of activities. We

considered the same type of ADLs as for the smart home lab dataset. For the sake

of this project, it was not feasible to directly observe the execution of the activities,

except for limited periods of time during the setup of the system, due to obvious

privacy reasons. Hence, we manually labeled most of the activities offline, based on

the observation of raw sensor data; this was possible since the considered activities

are relatively easy to distinguish by a human observer based on the collected sensor

readings.

3.4.3 Results

We performed an extensive experimental evaluation to compare the proposed sys-

tem with another hybrid method –named FABER– that was proposed in [31]. That
1http://secure.ewlab.di.unimi.it/
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method is based on the probabilistic logic Markov Logic Network (MLN) [100],

which is used to correlate windows of n consecutive sensor events with the bound-

aries (i.e., start and end) of activity instances. More details about that technique

can be found in [31].

For both datasets, we applied those activity recognition techniques:

• Our method with the naive aggregation algorithm;

• Our method with the smart aggregation algorithm;

• The FABER method [31].

For each technique, we performed a leave-one-day-out cross-validation, evalu-

ating the prediction’s quality in terms of the standard measures of precision, recall

and F1 score (the latter is the harmonic mean of precision and recall). In the fol-

lowing we explain how these measures are computed.

Each predicted activity instance aAts is characterized by three parameters: the

class A of the activity, its start time ts (i.e., the initial timestamp of ts), and its

end-time te (i.e., the last timestamp of ts). For each prediction aAts, we count a true

positive (TP) when an activity instance of typeA actually started in a neighborhood

of ts; i.e., between ts − α and ts + α. For the sake of these experiments, we

set α to 15 minutes. Indeed, for our application scenario (i.e., the recognition

of abnormal behaviors), it is sufficient to know the approximated boundaries of

activity instances. In the other case, we count the prediction as a false positive

(FP). Finally, for each activity instance of type A that actually started at t we count

a false negative (FN) when no prediction exists for an activity of class A having its

start-time in a neighborhood of t. Similarly, we count TP, FP and FN for the end-

time of predictions and actual activity instances. Precision, recall and F1 scores

are computed as follows:

precision p =
TP

TP + FP

recall r =
TP

TP + FN

F1 =
p · r

2 · p · r
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We preliminarily performed cross-validation to select the most appropriate

classifier for the machine learning module. As a result, we chose to use a Ran-

dom Forests classifier [101]. As a first step, we first experimentally calibrated the

optimal value for the parameter n, corresponding to the length of the temporal

sequence of sensor events to be used by our algorithms. The results of activity

boundary recognition on the smart home lab and real home datasets are shown in

Figures 3.6 and 3.7, respectively.

With the smart home lab dataset, very positive results have been achieved (with

F1 score that exceeds 0.96) with all the three considered methods. With the MLN-

based technique used in FABER, the highest recognition rate is achieved with n =

3. This means that, with this dataset, the temporal sequence of the 3 most recent

sensor events is sufficient to reliably detect the start or end of an activity. This

is due to the quite repetitive way in which activities have been executed in the

lab; longer sequences of sensor events may be needed when activities are executed

in more variable ways. Values of n lower than 3 produce worse results, while

larger values strongly increase the execution times of the learning phase, without

increasing recognition rates. With our boundary detection method (i.e., SMART

AGGREGATION), the highest recognition rates are achieved using with n = 2 or

n = 3. The naive aggregation and the smart aggregation methods achieve similar

recognition rates; however, the former produces a larger number of false positives.

On the contrary, the smart aggregation method provides more balanced and slightly

higher values of precision and recall.

In general, with the real home dataset we achieve lower recognition rates. This

is due to the intrinsic variability of activity execution in a real-world situation,

with respect to the relatively stable activity execution patterns reproduced in the

smart home lab. Moreover, the level of sensor noise due to missing or incorrect

sensor readings is inevitably larger in a real home environment than in the lab.

With the real home dataset, the MLN-based method used in FABER is the least

effective among the ones that we evaluated. The highest recognition rates with

MLN are achieved with n = 5. We were not able to test the performance with

larger values of n, since the execution of the learning algorithm did not terminate

in a reasonable amount of time. Independently from the value of n, the FABER

method achieved particularly low values of recall. Our technique achieves better

results. In particular, the smart aggregation method leads to the highest values

of F1 score (slightly above 0.8 with n = 4), and very well balanced values of
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Figure 3.6: Smart home lab dataset. Accuracy of activity boundary detection; n is

the length of the considered temporal sequence of sensor events

precision and recall. The naive aggregation method achieves lower recognition

rates, producing a large number of false positives.

Summarizing, with both datasets, the smart aggregation algorithm of our method

reduces the number of false positives with respect to the FABER method, and im-

proves the overall accuracy.

In order to compare our activity recognition method with a well-known tech-

nique, we implemented the method proposed by Van Kasteren et al. in [42]. That

method is based on the usage of Hidden Markov Models (HMMs) [102]. HMMs

are generative probabilistic models consisting of a temporal sequence of hidden

variables and observable variables. The general structure of HMMs is shown in

Figure 3.8. A hidden variable at time t, named x(t), depends only on the hidden

variable at time t − 1 (named x(t − 1)). An observable variable at time t, named

y(t), depends only on the hidden variable x(t). In our case, the observable variable

y(t) corresponds to the observations of the occurrences of sensor events during t,

while the hidden variable x(t) corresponds to the class of the activity instance per-

formed during t.
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Figure 3.7: Real home dataset. Accuracy of activity boundary detection; n is the

length of the considered temporal sequence of sensor events

Figure 3.8: The general structure of a HMM

HMMs are specified using three probability distributions:

• The probability distribution over initial hidden states;

• The probability distribution of transitions among hidden states;

• The probability distribution of an hidden state x(t) generating an observation

y(t).

Those distributions are estimated using an annotated dataset. Thanks to this

model, the prediction of an activity at t depends not only on the current observa-

tions, but also on the activity predicted at the previous time slice t − 1. Applying

the method proposed in [42], the temporal sequence of sensed events is divided
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into time slices of constant length (60 seconds). The sensor events occurred during

the time slice t are represented by a binary feature vector F t = 〈FE1 , . . . , FEm〉,
in which every event type Ei ∈ E corresponds to a feature FEi (we remind that

E is the set of all the considered event types). Among different feature extraction

methods, the most effective proved to be the following:

• Change point: The value of the feature FE at t is 0 if no instances of the

event type E occurred during t; it is 1 otherwise.

• Last: The value of the feature FE at t is 1 if the type of the most recent event

occurred within or before t is E; it is 0 otherwise.

The above feature extraction methods can be combined to obtain the Change
point + last method, in which feature vectors are built by concatenating the vectors

obtained using the change point and the last representations.

Example 3.4.1. Consider three event types: E1, E2 and E3. The following tables

show a possible event sequence and the corresponding time slices representations.

Event type Timestamp

E1 10:44:31
E2 10:44:48
E3 10:46:23

Time slice Change point Last Change point + Last

10:44 1 1 0 0 1 0 1 1 0 0 1 0

10:45 0 0 0 0 1 0 0 0 0 0 1 0

10:46 0 0 1 0 0 1 0 0 1 0 0 1

Inferencing to derive the most probable sequence of hidden states generated

by the sequence of observations is performed by applying the well known Viterbi

algorithm [102]. In order to identify the boundaries of the activities instances, we

applied a segmentation of the time slices considering the predicted hidden states:

consecutive time slices classified with the same activity class are considered as part

of the same instance. A leave-one-day-out cross-validation was performed on both

datasets in order to obtain the measures of precision and recall. The comparison

with our method using smart aggregation and n = 3 is shown in Tables 3.4.3

and 3.4.3.

The results show that, with both datasets, our method achieves better values

of precision and recall than the HMM-based technique, with all the three feature

extraction methods. In particular, with the smart lab dataset, the improvement in

the recall rate obtained by our method is very relevant (i.e., from 0.925 to 0.989).
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Technique Precision Recall F1

HMM (Change point) 0.929 0.925 0.927

HMM (Last) 0.919 0.915 0.917

HMM (Change point + Last) 0.929 0.925 0.927

Our method 0.957 0.989 0.972

Table 3.4: Comparison between our method and the HMM-based technique with

the smart lab dataset

Technique Precision Recall F1

HMM (Change point) 0.820 0.736 0.776

HMM (Last) 0.790 0.723 0.755

HMM (Change point + Last) 0.821 0.726 0.770

Our method 0.855 0.771 0.811

Table 3.5: Comparison between our method and the HMM-based technique with

the real home dataset

The precision rate also improves consistently (i.e., from 0.929 to 0.957). This trend

is confirmed with the real home dataset.

3.5 Summary

In this chapter, we presented a hybrid activity recognition method which uses

knowledge-based reasoning to refine the classification of a machine learning al-

gorithm and, most importantly, to infer the most likely activity instances. The

proposed method relies on Random Forest and temporal-based feature extraction

to classify, for each high-level event, the most likely activity. Then, an algo-

rithm based on a set of knowledge-based conditions groups together those sen-

sor events which most likely belong to the same instances. We experimentally

evaluated that our method outperforms state-of-the-art solutions purely based on

supervised learning. Our method addresses the research question Q1) presented

in Section 2.5, thus proposing a novel approach to combine knowledge-based and

data-driven methods to improve ADLs recognition. However, the proposed method

has several limitations. First of all, the semantic conditions used by the SMART

AGGREGATION algorithm requires a relevant knowledge-engineering effort. It is

questionable if such system would scale with an increasing number of activities.
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Second, this method requires the acquisition of an annotated dataset, which is of-

ten unfeasible. Even if a labeled dataset is available, usually it is adequate only for

specific subjects and environments. Hence, the flexibility of the proposed system is

questionable. In the following chapter, we introduce another hybrid ADLs recogni-

tion algorithm which overcomes these limitations. In particular, it does not require

training sets, and it relies on a more flexible specification of semantic relations

among activities and smart-home artifacts.
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Chapter 4

Unsupervised activity recognition
through ontological and
probabilistic reasoning

4.1 Introduction

Even if most activity recognition systems rely on supervised learning [38, 39],

its applicability to detect complex ADLs (e.g., cooking, cleaning, and dressing)

is questionable. On the one side, the way in which individuals perform ADLs

strongly depends on current context conditions. Hence, a large dataset of ADLs

should be acquired to capture most execution patterns in different situations. On

the other side, activity execution patterns are strongly coupled to the individual’s

characteristics and home environment, and the portability of activity datasets is an

open issue [61]. As a consequence, ideally one extensive ADLs dataset should be

acquired from each monitored individual. Unfortunately, acquiring ADLs datasets

is very expensive in terms of annotation costs [103, 104]. Besides, activity anno-

tation by an external observer, by means of cameras or direct observation, violates

the user’s privacy. Indeed, to overcome that problem many other works relied on

knowledge-based activity models, manually specified through logic languages and

ontologies. Those models are matched with acquired sensor data to recognize the

activities [62, 64, 105]. However, the main shortcoming of that approach relies

in the rigidity of specifications. For instance, complex ADLs are often specified

through temporal sequences of simpler actions [98]. Nevertheless, it is unfeasible
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to enumerate all the possible sequences of actions describing a complex ADL.

In this chapter, we propose a method to overcome the limitations of both ap-

proaches. First, our method is unsupervised: we do not need to acquire expensive

activity datasets. Note that the term unsupervised does not refer to unsupervised

learning, but we use it to highlight that our method does not require a training

set. Second, our activity model is based on general semantic relations among ac-

tivities and smart-home infrastructure; hence, we can seamlessly reuse our model

with different individuals and in different environments. Specifically, we defined

an OWL 2 [106] ontology to formally model the smart home environment and the

semantics of activities. We rely on ontological reasoning to derive necessary con-

ditions about the sensor events that must occur during the execution of a specific

activity in the current environment. This also enables to extract semantic correla-

tions among fired sensor events and executed ADLs. Based on the semantic cor-

relations, a statistical algorithm pre-processes sensor events to identify candidate

activity instances, i.e., initial hypotheses about the start and end time of occurred

activities. Finally, we translate our ontological model in a Markov Logic Network

(MLN) [28], and perform probabilistic reasoning to refine candidate activity in-

stances and check their consistency.

The combination of specification-based and probabilistic approaches has also

been investigated in other fields of Artificial Intelligence [107]. However, our

method supports the recognition of interleaved activities, while most existing tech-

niques are restricted to sequential ones. We target the recognition of interleaved

activities explicitly by considering this aspect in our MLN model, where sensor

events can be assigned to overlapping activity instances. Some methods analyze

textual descriptions of activities mined from the Web in order to obtain correla-

tions among used objects and activities [108, 109]. In our work, we mine not

only correlations, but also necessary conditions about sensor events that must be

observed during the activity execution. Moreover, we derive correlations and nec-

essary conditions considering the actual environment where activities are executed,

while methods based on Web mining derive generic correlations. An unsupervised

method that is close to our approach has been proposed by Ye et al. [75], where

ontologies are used to derive semantic similarity between sensor events. This sim-

ilarity is used to segment sensor data, obtaining sequential activities’ patterns used
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to train a clustering model. With respect to that work, our method is totally inde-

pendent of the data and it also considers interleaved activities. Further, probabilistic

description logics have been used to recognize ADLs considering the variability of

activity execution [98]. However, those works rely on rigid assumptions about the

simpler constituents of activities. Hence, while the specification-based approach is

effective for activities characterized by a few typical execution patterns, it is hardly

scalable to the comprehensive specification of complex ADLs in different contexts.

On the contrary, in this work we rely on general semantic relations among activities

and smart-home infrastructure, which are fine-tuned to the current context.

We performed extensive experiments with real-world datasets of ADLs per-

formed by 22 individuals in two different smart home environments. Results show

that, even using a smaller number of sensors, the performance of our unsupervised

method is comparable to the one of existing methods that rely on labeled activity

datasets.

This chapter is structured as follows. Section 4.2 introduces some preliminary

notions which are useful to understand the proposed technique. A general overview

of our system is introduced in Section 4.3. The ontological and probabilistic rea-

soning methods are respectively in Section 4.4 and Section 4.5. The experimental

evaluation of our method on two different datasets is discussed in Section 4.6. Fi-

nally, Section 4.7 concludes the chapter.

4.2 Preliminaries

In this section, we introduce preliminary notions about description logics and Markov

Logic Networks.

4.2.1 Description logics and formal ontologies

In computer science, description logics (DLs) [65] have emerged as the state-of-

the-art formalism to represent ontologies. These enable to formally define concepts

of a domain of interest, their properties, and the relationships among concepts. In

this work, we use an ontology to formally define the semantics of activities, sen-

sor events, and context data. Moreover, DLs support ontological reasoning, which
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allows to verify the consistency of the knowledge base, and to infer additional in-

formation from existing facts. The formalism of choice is typically OWL 2 [106].

A knowledge engineer can model the domain of interest by means of classes, in-

dividuals, properties of individuals, and relationships among individuals. Several

operators can be used to declare complex definitions based on simpler ones, includ-

ing operators for conjunction, disjunction, negation, and universal and existential

quantification. For instance, the activity PREPARINGHOTMEAL can be defined

based on the definitions of PREPARINGMEAL and PREPARINGCOLDMEAL:

PREPARINGHOTMEAL ≡ PREPARINGMEALu

¬PREPARINGCOLDMEAL

In this work, we also exploit the following operators:

• Qualified cardinality restriction restricts the class membership to those in-

stances that are in a given relation with a minimum or maximum number of

other individuals of a given class. For instance, the following axiom states

that the activity ”Preparing hot meal” requires the use of at least one instru-

ment to cook food:

PREPARINGHOTMEAL v ACTIVITYu

≥ 1 REQUIRESUSAGEOF.COOKINGINSTRUMENT

• Composition of properties. OWL 2 supports a restricted form of property

composition ◦. For instance, the following axiom states that if a person is in

a given apartment, and she is executing a given activity, then that activity is

executed in that apartment:

EXECUTESACT− ◦ ISINLOCATION v ACTISEXECUTEDINLOCATION

Note that EXECUTESACTIVITY− denotes the inverse of EXECUTESACTIVITY.

Formally, a DLs knowledge base is composed by a pair 〈T ,A〉. The TBox T
constitutes the terminological part of the knowledge base. The TBox is composed

of a set of axioms C v D or P v R (inclusions) and C ≡ D or P ≡ R (equality),

where C and D are classes, and P and R are object properties. An axiom C v D

is satisfied by an interpretation I when CI ⊆ DI . An interpretation I satisfies a

TBox T when I satisfies all the axioms of T .
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The ABox A is the assertional part of the knowledge base. The ABox is com-

posed of a set of axioms of the form x : C and 〈x, y〉 : R, where x and y are

individuals, C is a class, and R is an object property. For instance,

MARY : ELDERLYPERSON

denotes that Mary is an elderly person and

〈MARY, APARTMENT23〉 : LIVESIN

represents that Mary lives in Apartment23. Axioms x : C and 〈x, y〉 : P are

satisfied by an interpretation I when xI ∈ CI and 〈xI , yI〉 ∈ P I , respectively.

An interpretation I satisfies an ABox A when I satisfies all the axioms of A. An

interpretation I that satisfies both the TBox T and the ABox A is called a model

of 〈T ,A〉. DLs support several reasoning tasks. In particular, we rely on the

following ones:

• Satisfiability: a class C is satisfiable with respect to a TBox T if there exists

a model I of T such that CI is non empty. We execute this reasoning task

to check the consistency of our ontological model.

• Property fillers retrieval: retrieving all the instances inA that are related to a

given individual with respect to a given property. We execute this reasoning

task to derive semantic correlations among activities and sensor events.

4.2.2 Markov Logic with numerical Constraints

In addition to purely logical or probabilistic approaches, a Markov Logic Network

provides many benefits and allows to handle uncertainty, imperfection, and con-

tradictory knowledge. These characteristics make it an appealing tool to reason

with sensor data and ADLs. Technically, a Markov Logic Network (MLN)M is

a finite set of pairs (Fi, wi), 1 ≤ i ≤ n, where each Fi is an axiom in function-

free first-order logic and wi ∈ R [28]. Together with a finite set of constants

C = {c1, ..., cn} it defines the ground MLNMC , i.e., the MLN in which axioms

do not contain any free variables. This comprises one binary variable for each

grounding of Fi with weight wi. Hence, a MLN defines a log-linear probability

distribution over Herbrand interpretations (possible worlds)

P (x) =
1

Z
exp

(∑
i

wini(x)

)
(4.1)
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where ni(x) is the number of satisfied groundings of Fi in the possible world x

and Z is a normalization constant.

In this work, we rely on an extended version of MLN which includes numerical

constraints, also denoted as MLNNC [110, 111]. We use this extension to reason on

the temporal domain of activities and sensor events. The constraints are predicates

of the form θ ./ ψ, where θ and ψ denote variables, numerical constants, or al-

gebraic expressions (that might contain elementary operators). In this context, the

binary operator ./ returns a truth value under a particular grounding.

Definition 4.2.1 (MLNNC). A numerical constraint NC is composed of numerical

constants (e.g., elements of N, I), variables, elementary operators or functions (+,

∗,−, %,
√

), standard relations (>,<,=, 6=,≥,≤), and Boolean operators (∧,∨).

An MLNNC is a set of pairs (FCi, wi) where FCi is a formula in first-order logic

that may contain a NC and wi is a real number representing the weight of FCi.

Example 4.2.1. Using MLNNC it is possible to represent the axiom: two events

“turning on the oven” cannot belong to the same instance of meal preparation if

their temporal distance is more than two hours:

{∀ se1 , se2 , ai1 , ai2 , t1 , t2 : event(se1 ,
′oven ′, t1 ) ∧

event(se2 ,
′ oven ′, t2 ) ∧ occursIn(se1 , ai1 ) ∧ occursIn(se2 , ai2 )

∧ NC(t1 , t2 )⇒ ai1 6= ai2 , NC(t1 , t2 ) = |t1 − t2 | > 120}.

Maximum a posteriori (MAP) inference is the task of finding the most probable

world given some observations also referred to as evidence. Given the observed

variables E = e, the MAP problem aims to find an assignment of all non-evidence

(hidden) variablesX = x such that I = argmax
x

P (X = x | E = e). Based on the

MLN of sensor events and semantic constraints, we apply MAP inference to derive

the most probable activities. In the following, we outline our model, architecture,

and the individual components.

4.3 Model and system overview

4.3.1 Notation

In this chapter we adopt a similar but slightly different notation with respect to the

one presented in Chapter 3. We consider A = {ac1, ac2, . . . , ack} as the set of

activity classes. Further, an instance aii of an activity class acj ∈ A represents the
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occurrence of acj during a given timespan. The activity instance is associated to

the operations executed to perform it, where the start and end time of instances of

different activities can overlap. We denote E as the set of pre-processed event types

that correspond to the set of monitored operations (e.g., E = { opening the fridge,

closing the fridge }). In addition, T describes the set of all possible event times-

tamps. An event is defined as ev(se, et, t), where se is the identifier of the instance

of an event with type eti ∈ E occurred at timestamp ti ∈ T.

4.3.2 Ontological model

Figure 4.1 illustrates an excerpt of our ontology, which models a complete home

environment. In addition, it also covers axioms for each activity class that describe

Figure 4.1: Excerpt of our ontology. The dashed lines represent a subClassOf

relation where the upper is the parent of the lower class. In addition, the individual

classes have relations that describe dependencies.

dependencies and conditions. In particular, we express necessary conditions for a

set of operations to be generated by an instance of that class, according to the activ-

ity semantics. For example, the operations generated by an instance of preparing

hot meal must include an operation using a cooking instrument. The ontology also

models sensors and the operation that they detect; e.g., a power sensor attached to

the electric stove detects the operation turning on the stove. In turn, this operation

is a subclass of using a cooking instrument. The ontology carefully describes these

kind of relations and, through ontological reasoning, we can derive constraints like

the following: “since the stove is the only cooking instrument in the home, and a
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sensor is available that detects the usage of the stove, then each instance of prepar-

ing hot meal executed in the home must necessarily generate an event from that

sensor”.

Besides, other necessary conditions regard time and location. This includes

constraints on the duration of the activity instance, and dependencies between ac-

tivity and location. As explained in the next section, ontological reasoning is also

used to infer probabilistic dependencies among sensor event types and classes of

executed activities; we denote them as semantic correlations. Our ontology is pub-

licly available1.

4.3.3 Architecture

Figure 4.2 shows an overview of our system. The smart-home monitoring system

...

Semantic integration layer

CONTACT 
SENSORS

ENVIRONMENTAL 
SENSORS

pre-processed events

... Event(sek, etk, tk)

MLNNC knowledge base

raw sensor events

MAP inference 

MLNNC model
Recognized

activity
instances

PRESENCE 
SENSORS

Post-processing

Statistical analysis of events

sensor events and candidate ac�vity instances

Event(se1, et1, t1)

Semantic
correlation
reasoner

Ontological
model

Figure 4.2: System overview.

collects raw events data from the sensor network, including environmental, pres-

ence, and contact sensors. The SEMANTIC CORRELATION REASONER performs

ontological reasoning to derive semantic correlations among event types and activ-

ity classes; e.g., “the event type UseStove is strongly related to PreparingHotMeal

and unrelated to PreparingColdMeal”. Those correlations are used by the module

for STATISTICAL ANALYSIS OF EVENTS to identify candidate activity instances,
1http://sensor.informatik.uni-mannheim.de/#results2016unsupervised
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which are then refined by the MLNNC reasoner. In particular, the events as well

as the candidate activity instances are used to populate the assertional part of the

MLNNC knowledge base. The ontological model of considered activities and

events is translated into the MLNNC model. Periodically (e.g., at the end of each

day), MAP inference is performed to assign each event to the candidate activity

instance that most probably generated it, according to semantic correlations and

ontological constraints. Finally, the output of MAP inference is post-processed to

detect the exact start and end time of occurred activity instances.

4.4 Ontological reasoning

In the following, we introduce a simple running example to illustrate our approach.

Example 4.4.1. Suppose to monitor three activities in a smart home: preparing hot

meal, preparing cold meal, and preparing tea. The home contains: one silverware

drawer, one stove, and one freezer, each equipped with a sensor to detect its usage.

No training set of activities is available. How can we exploit semantic reasoning to

recognize the activities?

In the following of this section, we explain how we answer the above question.

4.4.1 Semantic correlation reasoner

The specific objective of this reasoner is to compute the degree of correlation

among sensor events and the activities performed in the home. As illustrated in

the axioms below, in our ontology, artifacts are organized in a hierarchy. The class

STOVE is a sub-class of cooking instruments, used in the apartment to prepare hot

meal or tea, where FREEZER is a DEVICE used to prepare hot or cold meal. SIL-

VERWAREDRAWER belongs to FOODPREPFURNITURE and is used for the three

activities. The instance {APT} represents the current apartment. For clarity, we

represent the name of ontological instances within curly brackets.

STOVE v COOKINGINSTRUMENTu(
∃ USEDFOR.

(
(PREPHOTMEAL t PREPTEA)u

(∃ OCCURSIN.{APT})
))
.
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FREEZER v DEVICE u
(
∃ USEDFOR.

(
(PREPHOTMEALt

PREPCOLDMEAL) u (∃ OCCURSIN.{APT})
))
.

SILVERWAREDRAWER v FOODPREPFURNITURE.

FOODPREPFURNITURE v FURNITUREu(
∃ USEDFOR.

(
(PREPTEA t PREPCOLDMEALt

PREPHOTMEAL) u (∃ OCCURSIN.{APT})
))
.

Based on the smart home setup, we instantiate the ontology with the sensors and

artifacts in the apartment, and we specify which activities we want to monitor.

Example 4.4.2. The activities that we want to monitor are {AC PREP COLD MEAL},
{AC PREP HOT MEAL} and {AC PREP TEA}. They are instances representing

the generic occurrences of PREPCOLDMEAL, PREPHOTMEAL, and PREPTEA,

respectively. Lines 5 and 6 state that at most one instance of each activity type can

be monitored at a time. Further, lines 7 and 8 represent that the {APT} contains

exactly one cooking instrument, one silverware drawer, and a freezer:

{APT} = APARTMENT (4.1)

u
(
∃MONITACT.({AC PREP COLD MEAL})

)
(4.2)

u
(
∃MONITACT.({AC PREP HOT MEAL})

)
(4.3)

u
(
∃MONITACT.({AC PREP TEA})

)
(4.4)

u (≤ 1MONITACT.PREPCOLDMEAL) (4.5)

u (≤ 1MONITACT.PREPHOTMEAL) u (≤ 1MONITACT.PREPTEA) (4.6)

u (= 1(ISIN)−.COOKINGINSTRUMENT) (4.7)

u (= 1(ISIN)−.SILVERWAREDRAWER) u (= 1(ISIN)−.FREEZER). (4.8)

Subsequently, we introduce an instance in the ontology for each artifact in the
apartment:

{STOVE} ≡ STOVE u ∃ ISIN.{APT}.

{FREEZER} ≡ FREEZER u ∃ ISIN.{APT}.

{SILVERWARE DRAWER} ≡ SILVERWAREDRAWER u ∃ ISIN.{APT}.

We also instantiate each sensor that occurs in our apartment:

{S STOVE} ≡ POWERSENSOR u (∃ SENSESUSAGEOF.{STOVE})

u (∃ PRODUCESEVENT.{ET STOVE}).
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{S SILVERWARE DRAWER} ≡ CONTACTSENSOR

u (∃ SENSESUSAGEOF.{SILVERWARE DRAWER})

u (∃ PRODUCESEVENT.{ET SILVERWARE DRAWER}).

{S FREEZER} ≡ CONTACTSENSOR

u (∃ SENSESUSAGEOF.{FREEZER})

u (∃ PRODUCESEVENT.{ET FREEZER}).

According to the introduced axioms, {S STOVE} is an instance of POWERSEN-

SOR which senses the usage of {STOVE} and produces a generic event of type

{ET STOVE}. Similarly, the last two axioms define sensors and events for the sil-

verware drawer and the freezer, respectively.

We exploit the property composition operator to infer the semantic correlations

between sensor events and activity types. In particular, we use the following axiom,

which states that: “if an event of type et is produced by a sensor that detects the

usage of an artifact possibly used for an activity of class ac, then et is a predictive

sensor event type for ac”:

PRODUCESEVENT− ◦ SENSESUSAGEOF ◦

USEDFOR → PREDICTIVESENSOREVENTFOR

Then, we perform ontological reasoning to infer the fillers of property PREDIC-

TIVESENSOREVENTFOR, and use them to compute semantic correlations.

Example 4.4.3. Considering all of the introduced axioms, the OWL 2 reasoner

infers that:

• {ET STOVE} is a predictive sensor event type for

{AC PREPARE HOT MEAL} and {AC PREP TEA}.

• {ET SILVERWARE DRAWER} is a predictive sensor event type for

{AC PREP HOT MEAL}, {AC PREP COLD MEAL } and {AC PREP TEA}.

• {ET FREEZER} is a predictive sensor event type for {AC PREP HOT MEAL}
and {AC PREP COLD MEAL}.

We represent semantic correlations using a prior probability matrix (PPM ).

The rows correspond to the activity classes, where the columns to the sensor event
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types. Hence, PPM(ac, et) stores the probability of an event of type et being

generated by an activity of class ac. If a given sensor event type is predictive of a

single activity class, the value of the corresponding entry is 1; if it is predictive of

multiple activity classes, the value is uniformly distributed among them. The prior

probability matrix resulting from our running example is shown in Table 4.1. The

PPM is given as input to the STATISTICAL ANALYSIS OF EVENTS module.

{et stove}
{et silverware

{et freezer}
drawer}

{ac prep
0.5 0.33 0.5

hot meal}

{ac prep
0.0 0.33 0.5

cold meal}

{ac prep
0.5 0.33 0.0

tea}

Table 4.1: Prior probability matrix of our running example.

4.4.2 Deriving necessary sensor observations

Our ontology includes a property REQUIRESUSAGEOFARTIFACT, which asso-

ciates artifacts in the apartment with activities for which they are necessary.

Example 4.4.4. Continuing our running example, the axiom below defines PREPHOT-

MEAL as a subclass of PREPAREMEAL that requires the usage of a cooking instru-

ment:

PREPHOTMEAL v PREPAREMEAL u ∃REQUIRESUSAGEOFARTIFACT.(
COOKINGINSTRUMENT u (∃ ISIN.{APT})

)
.

Thus, we infer which sensor events must necessarily be observed during the

execution of an activity. The following axiom states that: “if an event of type et

is produced by a sensor that detects the usage of an artifact required for executing

an activity of class ac, then et is a necessary sensor event type for each activity

instance of class ac”.

PRODUCESEVENT− ◦ SENSESUSAGEOF ◦

REQUIRESUSAGEOF− → NECESSARYEVENTFOR.
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Then, we infer the fillers of property NECESSARYEVENTFOR through ontologi-

cal reasoning, translate them in MLNNC axioms, and add them to the MLNNC

model.

Example 4.4.5. Given the introduced axioms, in this case the OWL 2 reasoner in-

fers that {ET STOVE} is a necessary sensor event type for {AC PREP HOT MEAL}.
Indeed, ET STOVE is produced by usage of STOVE, which is the only instance of

COOKINGINSTRUMENT available in the home.

4.5 Recognizing activity instances

At first, we identify activity instance candidates and consider them as part of our

MLNNC knowledge base (KB). The KB also includes observed sensor events and

computed semantic correlations. Then, MAP inference enables us to assign each

activity instance to its most probable class, and each event to its most probable

activity instance. Figure 4.3 depicts our MLNNC model, where we distinguish

between observed (star symbol) and hidden predicates.

*PriorProb(SensorEvent, Ac�vInstance, Ac�vClass, p)

Predic�on(SensorEvent, Ac�vInstance, Ac�vClass)

OccursIn(SensorEvent,
Ac�vInstance)

InstanceClass(Ac�vInstance,
Ac�vClass)

Seman�c correla�on rules (MLNNC probabilis�c axioms)

Domain constraints (MLNNC determinis�c axioms)

*Event(SensorEvent, EventType, Timestamp)
*Instance(Ac�vInstance,STime,ETime)

Ontological constraints:
o Time-aware inference rules (MLNNC

                             probabilis�c axioms)
o Temporal constraints (MLNNC

                           determinis�c axioms)
o Knowledge-based constraints (MLNNC

                           determinis�c axioms)

Figure 4.3: Probabilistic activity recognition framework. The arrows indicate the

relations and dependencies between the depicted observed and hidden predicates.

Observed predicates represent knowledge facts, where the instances of hidden

predicates are computed by MAP inference. In the following, we explain the dif-

ferent components of our framework in detail.
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4.5.1 Statistical analysis of events

Candidate activity instances are computed by a heuristic algorithm, shown in Algo-

rithm 3, which implements the STATISTICAL ANALYSIS OF EVENTS module. The

algorithm iterates over all temporally ordered events provided by the SEMANTIC

INTEGRATION layer. It considers the PPM matrix of semantic correlations to in-

fer, for each sensor event se, the most probable activity class ac generating it. The

corresponding timestamp of the event and the resulting activity class enables us

to formulate initial hypotheses about the occurred activity instances. If an activity

instance ai of class ac exists, whose boundaries (start and end time) are temporally

close to se according to an activity-dependent threshold maxGapac, then se is as-

signed to ai. Otherwise, a new instance of class ac is created, and se is assigned

to it. The boundaries of each instance are respectively represented by the first and

the last event of the instance.

ALGORITHM 3: Statistical analysis of events
Input: Sensor events {event(se0, et0, t0), . . . , event(sen, etn, tn)},
Input: prior probability matrix PPM

Output: Candidate activity instances {i0, i1, . . . , im−1}
1: instances← ∅
2: for each event(se, et, t) ∈ X do
3: ac← activity class with max correlation with et according to PPM

4: ai← activity instance in instances of class ac closest to se

5: if ai exists and t is temporally close to ai according to maxGapac then
6: assign event(se, et, t) to ai

7: else
8: ai← a new instance of class ac
9: assign event(se, et, t) to ai

10: instances← instances
⋃
{ai}

11: end if
12: end for
13: return instances

4.5.2 MLN modeling

Semantic correlations are modeled through predicates PriorProb, Event, and In-

stance. The PriorProb predicate represents correlations among sensor events and

activities:

∗PriorProb(SensorEvent,ActivInstance,ActivClass, p)
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Hence, it describes the probability p that a given sensor event se corresponds to

a given activity instance ai of an activity class ac. The probability relies on the

semantic correlation between the event type et and the activity class ac (PPM),

and also depends on the temporal distance between the sensor event se and the

boundaries of the activity instance ai.

Formally, given an activity instance ai of class ac with start time tst and end

time ted, and a sensor event se of type et and timestamp t, the probability p of

*PriorProb(se, ai, ac, p) is computed by the following function:

p =

{
PPM(ac, et) if ted-MaxGapac ≤ t ≤ tst+MaxGapac

0 otherwise

Each sensor event is represented by an instance of the predicate Event, which

represents the sensor event, its type, and its timestamp:

∗Event(SensorEvent, EventType, T imestamp)

Candidate activity instances computed by Algorithm 3 are represented by the predi-

cate Instance which models the relation between the activity instance, its start time,

and end time:

∗Instance(ActivInstance, ST ime,ET ime)

The instantiated predicates, derived from the activity instances and the recorded

sensor events, are added as facts to our MLNNC knowledge base.

4.5.3 Hidden predicates and domain constraints

Beside the observed predicates, the model also comprises a set of hidden predi-

cates, which can be considered our target classes: Prediction, OccursIn, and In-

stanceClass. The predicate Prediction represents the predicted assignment of a

sensor event to an activity instance of a given class:

Prediction(SensorEvent,ActivInstance,ActivClass)

In addition, the other two predicates are used to express domain constraints about

the consistency of inferred activity instances:

OccursIn(SensorEvent,ActivInstance)

InstanceClass(ActivInstance,ActivClass)
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In particular, the following domain constraint states that each sensor event occurs

in exactly one activity instance:

|ai|OccursIn(se, ai) = 1,

while the following one states that each activity instance belongs to exactly one

activity type:

|ac|InstanceClass(ai, ac) = 1.

4.5.4 Semantic correlation rules

The relations between the observed and hidden predicates are modeled by prob-

abilistic axioms. As illustrated in Figure 4.3, the hidden predicate Prediction is

derived from PriorProb:

conf : ∗PriorProb(se, ai, ac, conf) ⇒ Prediction(se, ai, ac).

Thus, the confidence value describes the probability that a sensor event is assigned

to an activity instance of a given class. In turn, the remaining hidden predicates

are derived from the hidden Prediction predicate. The corresponding probabilistic

axioms are the following:

Prediction(se, ai, ac) ⇒ OccursIn(se, ai),

P rediction(se, ai, ac) ⇒ InstanceClass(ai, ac).

Note that the above rules are subject to the domain constraints introduced before.

4.5.5 Knowledge-based constraints

Knowledge-based constraints enable us to express conditions about the occurrence

(or non-occurrence) of sensor events of a given type during the occurrence of an

activity instance.

Example 4.5.1. The constraint “each activity instance of type ‘preparing hot meal’

must be associated to an event of type ‘UseStove’ ” is logically expressed by the

rule:

InstanceClass(ai, “PreparingHotMeal”) ⇒ ∃ se, t :

OccursIn(se, ai) ∧ ∗Event(se, ”UseStove”, t).
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Knowledge-based constraints are automatically derived from the fillers of the

NECESSARYEVENTFOR OWL 2 property obtained from ontological reasoning as

already mentioned.

4.5.6 Temporal constraints

We model MLNNC temporal constraints regarding the duration and the distance

of events or activities. We consider two kinds of temporal constraints:

1) Temporally close events (e.g., whose temporal distance is below ∆ seconds)

likely belong to the same activity instance. We express this soft constraint through

these axioms:

∀ t1, t2 : (|t1 − t2| < ∆) ⇒ tClose(t1, t2)

w Event(se1, et1, t1) ∧ Event(se2, et2, t2)∧

tClose(t1, t2) ∧OccursIn(se1, ai) ⇒ OccursIn(se2, ai)

The latter is a probabilistic axiom whose weight w is chosen experimentally.

2) Constraints on typical duration of each activity (e.g., “showering cannot last

more than ∆′ minutes”). We express these constraints either through probabilistic

or deterministic axioms, according to the characteristics of the considered activ-

ity. Indeed, the variance of the duration of certain activities (e.g., showering) is

relatively small, while it is larger for other activities (e.g., preparing dinner). The

duration of the former is modeled with deterministic axioms where probabilistic

ones are used for the latter. The axioms below state that an instance of “shower-

ing” cannot last more than ∆′ minutes:

∀ t1, t2 : (|t1 − t2| < ∆′) ⇒ tclose showering(t1, t2)

InstanceClass(ai, “Showering”) ∧ OccursIn(se1, ai)∧

OccursIn(se2, ai) ∧ Event(se1, et1, t1)∧

Event(se2, et2, t2) ⇒ tclose showering(t1, t2)

4.5.7 Time-aware inference rules

Finally, as explained before, the semantics of some simple activities is naturally

expressed in our ontology based on the typical actions composing them. Hence,
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we apply rules that express the relation of specific operations derived from sensor

events in context of time. Consider the following example:

Example 4.5.2. A typical pattern of operations for watering plants consists in (1)

“getting water” and (2) “moving to the plants” shortly after. We express this activ-

ity inference pattern through the MLNNC axioms below:

Event(se1, “water sensor”, t1)

∧Event(se2, “plant presence sensor”, t2) ∧ t1 < t2

∧ tclose waterplants(t1, t2) ⇒ ∃ ai :

InstanceClass(ai, “WaterP lants”)

∧ occursIn(se1, ai) ∧ occursIn(se2, ai).

4.5.8 Inference of activity instances and temporal boundaries

In order to infer activity instances, their class, and corresponding sensor events,

we execute MAP inference on the presented MLNNC model. The output of MAP

inference is the most probable assignment of (i) sensor events to activity instances

(i.e., fillers of the OccursIn predicate), and (ii) activity classes to activity instances

(i.e., fillers of the InstanceClass predicate). Since computing the start and end time

of activity instances within MLNNC reasoning would be unnecessarily compli-

cated, we post-process the result of MAP inference to detect the temporal bound-

aries of each activity instance ai:

STime(ai) = min{t : ∃Event(se, et, t) ∧OccursIn(se, ai)},

ET ime(ai) = max{t : ∃Event(se, et, t) ∧OccursIn(se, ai)}.

4.6 Experimental evaluation

In the following, we present our experimental setup and results. Unless other-

wise specified, the presented results rely on the introduced unsupervised approach,

where the semantic correlations (PPM matrix) were derived from ontological rea-

soning. To evaluate the effectiveness of semantic correlations extracted with our

method, we also performed experiments computing the PPM from the dataset;

more precisely, based on the frequency of the sensors types produced by the dif-

ferent activities. We denote by MLNNC (Ontology) the former method, and by
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MLNNC (Dataset) the latter. We use the well-known dataset of Cook et al. [112,

113], named CASAS, and the real-home dataset introduced in Chapter 3. Both

datasets include interleaved activities in a smart-home environment. To provide

the possibility to reconstruct our approaches and experiments, we provide a REST

API and web interface which is publicly available2 and supports the MLNNC

solver.

4.6.1 CASAS Dataset

The CASAS dataset covers interleaved ADLs of twenty-one subjects acquired in

a smart home laboratory. Sensors collected data about movement, temperature,

use of water, interaction with objects, doors, phone; 70 sensors were used in total.

Eight activities were considered: fill medication dispenser (ac1), watch DVD (ac2),

water plants (ac3), answer the phone (ac4), prepare birthday card (ac5), prepare

soup (ac6), clean (ac7), and choose outfit (ac8). The order and expenditure of time

were up to the subject and it was allowed to perform the activities in parallel. Dur-

ing the data collection only one single person was present in the smart home. With

our MLNNC (Ontology) method, only 25 out of 70 sensors were used. Indeed,

the semantic correlation reasoner excluded the remaining 45 (mostly movement

sensors), since they had no significant correlation with the considered activities.

During this experiment, we evaluated how well the considered sensor events

could be assigned to the corresponding activity instance, but also the quality of de-

tected activity boundaries. Table 4.2 shows that our method outperforms the HMM

approach used in [112] in assigning each sensor event to the activity instance that

generated it. We observe that we recognize each activity at least equal or better than

HMM, except Clean. The poor performance in recognizing Clean is due to the fact

that, in the CASAS dataset, it is characterized by different movement patterns that

are only partially captured by our method, especially when semantic correlations

are extracted from the ontology. Considering the other activities, the PPM gener-

ated by ontological reasoning obtains essentially the same performance of the one

extracted from the dataset, confirming the effectiveness of our semantic correlation

reasoner.

Focusing on the other activities, the experiments show that the interactions with
2http://executor.informatik.uni-mannheim.de
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Table 4.2: CASAS dataset: Results (F1 measure) of the proposed activity recogni-

tion method compared to related work for interleaved activities.

Class
HMM [112] MLNNC MLNNC

(time-shifted) (Dataset) (Ontology)
ac1 0.656 0.803 0.848
ac2 0.862 0.882 0.811

ac3 0.285 0.740 0.720

ac4 0.589 0.688 0.723
ac5 0.828 0.807 0.808

ac6 0.826 0.873 0.882
ac7 0.881 0.781 0.574

ac8 0.673 0.904 0.882

avg. 0.700 0.810 0.781

objects are strong indicators of the performed activities. However, inspecting the

recognition result in detail, we noticed a few cases in which subjects exhibited

strange behaviors; e.g., prepared soup without water or took the phone but did not

place a phone call. Especially the latter case is hard to recognize without further

information. The former case is probably related to sensor errors. Figure 4.4 illus-

trates the individual results in more detail. It highlights that there are cases where
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ac1 ac2 ac3 ac4 ac5 ac6 ac7 ac8
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Figure 4.4: CASAS dataset: Detailed recognition results for each activity, aggre-

gated over all subjects and represented by a box plot.

we could not recognize the activities Answer the phone and Clean at all, but in

general the distribution is very similar and narrowed.
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Considering the boundary detection method, the experiments show that preced-

ing results and the quality of the detected boundaries for the individual activities

are weakly related. Table 4.3 describes the deviation from the actual boundaries in

detail. ∆Start is the average difference between the actual and predicted start of an

activity instance in minutes. ∆Dur is the average difference of actual and predicted

duration. In context of the typical duration of each activity, the boundaries are well

detected. Hence, the highest deviations are associated with the longest activities,

and the overall results are acceptable for most applications.

Table 4.3: CASAS dataset: Results of boundary detection withMLNNC . It shows

the average deviation [min] of the candidate compared to the refined instances.

Class
∆Start ∆Start ∆Dur ∆Dur

(Candidate) (Refined) (Candidate) (Refined)

ac1 0.670 0.765 1.436 0.890

ac2 0.592 0.592 2.974 3.140

ac3 0.075 0.081 0.930 0.829

ac4 0.079 0.079 0.341 0.422

ac5 1.300 1.079 5.810 4.642

ac6 1.617 0.109 4.077 0.803

ac7 1.311 0.692 2.390 2.249

ac8 0.079 0.097 1.300 0.521

avg. 0.727 0.456 2.424 1.701

When we compare the candidate instances and the refined (final) results ob-

tained throughMLNNC reasoning, it strikes that our method refines the candidates

reliably. Regarding watch DVD (ac2) and answer the phone (ac4), the refined dura-

tion increased slightly, because in some cases subjects took the phone well before

using it, or turned on the DVD player well before watching a DVD. Besides, the

low numbers clearly show that the duration of the different activities was in general

short.

4.6.2 Real-home Dataset

We also considered the real-home dataset presented in Chapter 3. This dataset was

acquired from an elderly woman diagnosed with Mild Cognitive Impairment, living

alone in her apartment. Different environmental sensors (magnetic sensors, motion

sensors, temperature sensors) have been used to monitor three ADLs for 55 days:
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Taking medicines (ac9), Cooking (ac10), Eating. Moreover, activity Others (ac11)

was also labeled. Totally, 11 sensors were deployed. Our semantic correlation rea-

soner discarded 2 sensors among them, because they had no significant correlation

with the considered activities. Compared to CASAS, this dataset was acquired in

a fully naturalistic environment. Due to the cognitive decline of the subject, ac-

tivities have been performed in many different and sometimes unexpected ways.

Besides, the acquired data is also affected by noise due to various technical issues

encountered during data acquisition [54]. Hence, the recognition of ADLs in this

scenario is challenging, even if the number of considered activities is limited.

In order to be comparable with the results presented in Chapter 3 on the same

dataset, we focused on activity instance classification. Table 4.4 shows the cor-

responding results and indicates that the accuracy achieved by our unsupervised

method is comparable to the one achieved by the supervised method proposed in

Chapter 3. However, we were unable to recognize Eating, because in the dataset it

Table 4.4: Real-home dataset: Results (F1 measure) of the proposed activity recog-

nition method compared to our supervised approach.

Class
Supervised MLNNC MLNNC

(Chapter 3) (Dataset) (Ontology)

ac9 0.946 0.837 0.831

ac10 0.757 0.669 0.752

ac11 - 0.665 0.702

was only characterized by a single presence sensor close to the table, that was also

used in context of the other activities. Hence, our semantic correlation reasoner

did not find any sensor significantly correlated to Eating. Therefore, we decided to

exclude that activity from the evaluation. On the other side, we were able to rec-

ognize Others, which was not previously considered. In particular, we consider as

part of an Others activity instance each event in the dataset which is not annotated

with a specific activity.

Inspecting the results, we notice that, with Cooking, our unsupervised method

achieves essentially the same recognition rate of the supervised technique. With

Taking medicines, the accuracy of our method is lower, mainly due to the absence

of sensors strongly correlated to that activity. The accuracy of recognizing Others

is in line with the one of the other activities. Note that we did not specify any rule

for the Others activity, while the ontology derived that each event has a certain
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semantic correlation with that activity (i.e., any event can potentially occur outside

the targeted activities). Considering the corresponding instance boundary results,

Table 4.5 shows that, also with this dataset, MLNNC refinement significantly im-

proves the accuracy of predicted activity instances.

Table 4.5: Real-home dataset: Results of the boundary detection method. It shows

the average deviation [min] of the candidate compared to the refined instances.

Class
∆Start ∆Start ∆Dur ∆Dur

(Candidate) (Refined) (Candidate) (Refined)

ac9 2.199 2.533 1.084 1.084

ac10 14.437 8.954 25.833 21.133

ac11 7.559 3.255 34.170 16.590

avg. 8.065 4.914 20.362 12.936

4.7 Summary

In this chapter, we proposed an unsupervised method to recognize complex ADLs

through ontological and probabilistic reasoning. An ontology is in charge of infer-

ring semantic correlations between sensor events and ADLs. Those correlations are

then combined with sensor events collected in the home and processed by a Markov

Logic Network to infer the most likely ADLs. The advantages of our method are:

a) it does not require any training set, and b) the activity model is based on gen-

eral relations among activities and smart-home infrastructure. Indeed, our model

can be seamlessly reused with different individuals and in different environments.

Moreover, our method can recognize activities performed in an interleaved fashion.

Extensive experiments with real-world datasets showed that the accuracy of

our unsupervised method is comparable to the one of supervised approaches, even

using a smaller number of sensors. Our method addresses the research question

Q2) presented in Section 2.5, thus recognizing ADLs with a scalable method which

avoids the acquisition of an annotated dataset

On the negative side, our technique requires a relevant knowledge engineer-

ing effort to define a comprehensive ontology of activities, home environment, and

sensor events. For instance, our ontology includes 235 classes and 59 properties.

One could argue that exploiting ontological reasoning is not worth the effort, since

it would be easy to manually estimate correlations among activities and sensor
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events based on common sense. However, consider the CASAS setup used in our

experiments: it involves 70 sensors and 8 activities, resulting in 560 combinations

of activities and sensor events. Other real-world deployments are much more com-

plex. Hence, manual modeling would be unfeasible in a realistic scenario.

We point out that the knowledge engineering effort can be reduced by reusing

existing ontologies. In particular, the ontology used in this work is an extension

of the COSAR ontology [71], which was originally intended to model context data

and human activities. The extension mainly regarded the definition of a few classes

of activities and artifacts that were not considered before, and a few additional

properties used by our reasoning method. Developing the extension required one

day of work by a researcher with good skills in OWL 2 modeling. Moreover,

we were able to use the same ontology for both apartments involved in our ex-

perimentation, which had very different characteristics. However, it is question-

able whether in larger scale implementations the same ontology can be adequate

to cover every possible home environment and individuals’ mode of activity exe-

cution. We intend to perform extensive experiments in real-world environments to

answer this question. Moreover, as a future research direction, we want to exploit

active learning to fine-tune the probabilistic model according to the user’s environ-

ment and personal habits, and to automatically evolve the ontology according to

the current context.
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Chapter 5

From macro- to micro-activity
recognition: Unobtrusive
detection of object manipulations

5.1 Introduction

In the previous chapters we presented two techniques to recognize high-level ac-

tivities. However, complex ADLs often consist of a sequence of simpler activities,

also called micro-activities. For instance, the activity taking medicines can be com-

posed of the following sequence of micro-activities: extracting the medicine box

from the drawer, moving the medicine box on the table, fill a glass with water and

take the medicine. The detection of those micro-activities can be adopted as an

intermediate step to recognize more complex ADLs. In this chapter we focus on a

novel method to recognize a specific set of micro-activities: objects manipulations.

Indeed, ADLs recognition proved to be very effective when the interaction of the

inhabitant with household items is considered. Analyzing how objects are manip-

ulated can be particularly useful, in combination with other sensor data, to detect

anomalies in performing ADLs, and hence to support early diagnosis of cognitive

impairments for elderly people. We propose an unobtrusive solution which shifts

all the monitoring burden at the objects’ side. In particular, we investigate the

effectiveness of using tiny BLE beacons equipped with accelerometer and temper-

ature sensors attached to everyday objects. We adopt statistical methods to analyze

in real-time the accelerometer data coming from the objects, with the purpose of
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detecting specific manipulations performed by seniors in their homes.

The advantages of having sensors on everyday artifacts for ADL recognition

have been identified long ago, exploring solutions mainly based on accelerometers

and RFID [114, 115], however the technology has not been sufficiently reliable

and cost-effective for a wide-scale deployment. A common argument against using

sensor-augmented objects as opposed to wearables for ADL recognition, in addi-

tion to technological issues, has been the difficulty in identifying the subject that is

performing the activity in case of multiple inhabitants of the same space [116]. On

this respect, there has been some progress on this issue both on the technological

side (miniaturization of identifying beacons) and on wearable-free solutions based

on data analysis [117]. Another approach to recognize specific object manipula-

tions without neither sensors on objects nor wearables takes advantage of audio

and/or video recording [97], but this solution is often perceived as too obtrusive.

Our investigation is driven by a specific application domain: the recognition of

fine-grained anomalies in performing instrumented activities of daily living by el-

ders at risk of cognitive impairment [3]. Clinicians need to identify manipulations

of specific objects in a home environment including omissions, substitutions and

improper manipulations. For example, these include reaching and opening a wrong

medicine box, using the wrong tool to perform an action or unnecessarily repeating

a given manipulation. The system described in this chapter is not intended by itself

to support early diagnosis based on improper object manipulations. However, reli-

able object manipulation monitoring is an essential subsystem of a more complex

monitoring environment. In particular, what we describe is intended to substitute

the RFID-based subsystem used in [3] to monitor the use of items in preparing and

consuming meals as well as taking medicines. As shown in Figure 5.1, in order to

recognize anomalies in performing these high-level activities other sensor subsys-

tems are used, including sensors revealing presence, pressure, temperature, power

consumption and more.

In our experience on deployments in the real homes of the elderly for continu-

ous monitoring, solutions based on wearables are critical: there is no guarantee that

wristbands or pendants are constantly worn, not to mention smart-phone or RFID

readers that have been proposed for the advantage of identifying the specific ma-

nipulated object. There are also indications of a general adversity or disaffection of

users to wearables targeted to healthcare related applications [41]. Similarly, cam-
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eras and microphones are sometimes tolerated in retirement residences, but much

less in private homes.

Our major contributions are experimental results on the effectiveness of un-

obtrusive object manipulation recognition, using current commercial low cost and

low energy consumption multi-sensor devices that can be attached to everyday ob-

jects. A closely related work is [118], which uses acceleration data acquired from

sensors on items to evaluate surgeons’ skill in manipulating precision tools. With

respect to that work, we monitor manipulations relevant to our application domain,

which are more coarse-grained and of a different nature. We collected a dataset of

more than two thousands labeled manipulations, and we report encouraging pre-

liminary results on their recognition through machine learning techniques applied

to accelerometer data collected from the objects. We believe that our study con-

tributes to the design of a sensing subsystem that could be effectively integrated

into the smart-home environments used in several previous works on monitoring

complex activities at home [119, 120, 121], independently from the algorithmic

method being used, since object manipulations may be considered as simple events.

This chapter is structured as follows. In Section 5.2 we introduce the nota-

tion to formalize object manipulations. Our framework based on machine learning

to detect fine-grained object manipulations is explained in Section 5.3. In Sec-

tion 5.4 we provide a detailed description of our experimental evaluation. Finally,

Section 5.6 concludes the chapter.

5.2 Modeling objects manipulations

We define as object manipulation the interaction of an individual with an object of

interest with the objective of achieving some task within the execution of a particu-

lar ADL. More formally, we define a manipulation instance as m = 〈o,M, ts, te〉,
where o is the object manipulated, M is the manipulation type, ts and te are re-

spectively the start and end time of the manipulation. Given aiA an instance of an

ADL A, we say that a manipulation m ∈ aiA if m is performed during aiA.

Example 5.2.1. Considering as object of interest a glass, some possible types of

manipulation of that object could be: using the glass to drink while eating a meal,

moving the glass on the table while preparing the table, emptying the glass in the
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sink, inserting the glass in the dishwasher, and so on. A manipulation instance

could be: m = 〈glass, drinking, 12:45:32, 12:45:45〉 where m ∈ aieating (a ma-

nipulation which consists in using the glass to drink during the consumption of a

meal).

We point out that not every type of object manipulation is interesting for mon-

itoring ADL execution, hence we divide the manipulation types in two categories:

relevant ad irrelevant. We consider a manipulation relevant if the task that is

achieved by performing the manipulation is crucial to monitor a particular ADL;

irrelevant otherwise. Of course, classification of manipulation types in relevant

and irrelevant has to be decided accurately by domain experts. Manipulations con-

sidered as relevant are further classified in specific sub-classes.

Example 5.2.2. Suppose that we’re interested in monitoring the activity of taking

medicines. In this scenario, we consider a manipulation relevant if a medicine

package is extracted from its repository, or if it is opened; while it is considered

irrelevant if a medicine package is just slightly displaced inside the repository while

searching.

5.3 The technique

In this section, we illustrate our technique to analyze the data coming from ac-

celerometer positioned on objects, in order to recognize specific manipulations.

5.3.1 Recognition Framework

The system is considered as part of a smart home environment instrumented with

several environmental sensors. The general architecture is shown in Figure 5.1.

Each object of interest has attached a wireless device which incorporates a 3-axis

accelerometer sensor. Each device communicates periodically the raw sensor data

to the Smart-object data processing module, along with the device’s unique iden-

tifier. This module is in charge of: a) segmenting the accelerometer data in order

to identify the manipulation occurrences, b) extracting several features and c) ap-

plying machine learning techniques in order to recognize the specific manipulation

performed. Since each type of object has an associated set of specific manipula-

tions (e.g., a bottle of water is used to pour/drink water, differently from a medicine

box that is used to extract pills), we built a specialized classifier for each object
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Figure 5.1: General architecture

type. Of course, this does not mean using a different classifier for each object: for

instance, a bottle of water and a milk box can be manipulated similarly and a single

classifier is in charge of recognizing the manipulations of both objects. Detected

manipulations, along with measurements acquired from smart-home environmen-

tal sensors, are transmitted to a system which is in charge of recognizing ADLs

performed by the monitored subject and the possible abnormal behaviors.

5.3.2 Segmentation and feature extraction

We pre-process data transmitted from the objects in order to identify the manip-

ulation occurrences. To do this, we analyze 3-axis accelerometer data in order

to detect whether an object is in motion. This is done by using a straightfor-

ward threshold based method on accelerometer data which detects when the object

starts and stop moving. Each manipulation occurrence occi = 〈o, ts, te, ~x, ~y, ~z〉
is represented by: the object o manipulated, the start time ts (i.e. the time in-

stant where the object started moving), the end time te (i.e. the time instant

where the object stopped moving) and the accelerometer data on the three axis.

The output of segmentation module is a set of n manipulation occurrences O =

{occ1, occ2, . . . , occn}.
From each manipulation occurrence, we build a feature vector which comprises

more than 40 different features regarding statistics on accelerometer data and the

duration of the manipulation. In particular, for each axis (~x, ~y and ~z) we consider
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the following statistics:

• Maximum

• Minimum

• The difference between maximum and minimum

• Mean

• Variance

• Standard Deviation

• Zero-crossing rate

• Root mean square

• First quartile

• Third quartile

• Energy

• Kurtosis

• The average difference between consecutive acceleration values

Moreover, for each pair of axis we also compute the Pearson Correlation and the

covariance. We selected these features considering the literature on activity recog-

nition from acceleration data [38, 122, 123].

5.3.3 Manipulation recognition

The next step is to infer, for each feature vector, the specific manipulation per-

formed with the related object. As previously described, for each type of object

we’re interested in distinguishing between irrelevant manipulations and a set of

specific relevant manipulations. Since we’re not interested in detecting the fine-

grained types of irrelevant manipulations, they’re grouped together into a single

class called Irrelevant. We adopt a supervised approach, using state-of-the-art

classifiers like Random Forest [101] and AdaBoost [124] depending on the spe-

cific object.
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We adopted two different classification approaches:

• Direct classification

• Multi-layer classification

In the following we describe these techniques.

Direct classification

Our first straightforward approach consists in directly distinguishing the fine-grained

manipulations using a multi-class classifier. This method is shown in Figure 5.2.

Hence, depending on the type of object from which the manipulation comes, a

Figure 5.2: Direct classification schema for a specific object

specific classifier is used. Every single classifier is trained with a set of relevant

manipulations and irrelevant manipulations of the specific object type.

Multi-layer classification

With the objective of improving the above mentioned method, we also propose a

different approach, which is represented in Figure 5.3. Instead of directly detect-

ing the manipulation type from the feature vector, we use two layers. In the first

layer a binary classifier is in charge of distinguishing, for a specific object, relevant

manipulations from the irrelevant ones. This classifier is trained with relevant ma-

nipulations (all grouped together in the same class) and irrelevant manipulations

of the specific object. Only the manipulations which are classified as relevant are

forwarded to the second layer, while the others are discarded. In the second layer, a
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multi-class classifier is in charge of recognizing the specific relevant manipulation

performed on the object. Hence, this classifier is trained only with the correspond-

ing relevant manipulations.

Figure 5.3: Multi-layer classification schema for a specific object

5.4 Experimental evaluation

In this section we describe our experimental setup, how we acquired a dataset of

manipulations, and finally we present our preliminary results.

5.4.1 Experimental setup

Driven by requirements from clinicians, we currently focus on fine-grain moni-

toring of three complex activities: preparing a meal, consuming a meal and tak-

ing medicines. While the final deployment of stable versions of the system is in

real homes, our experimental activity is conducted in a smart-room lab. Activity

recognition is performed by processing data coming from a wide variety of en-

vironmental sensors, including pressure pads, temperature sensors, power meters,

magnetic switches, presence sensors and more. The experiment reported in this

work is intended to verify the viability of substituting our RFID based solution for

recognizing manipulations of specific items. For this purpose we selected specific

objects: a) medicine boxes as they have a key role in monitoring adherence to pre-

scription and their improper manipulation can also be a useful indicator, b) a liquid

bottle as it is an example of an item used in meal consumption, may have to be

refrigerated, and may also play a role in monitoring water consumption, and c) a

75



kitchen tool, a knife in particular, as a tool being used both in meal preparation,

and in meal consumption. These objects are shown in Figure 5.4 with their sensing

device attached.

(a) Liquid bottle (b) Medicine boxes (c) Knife

Figure 5.4: The monitored objects

5.4.2 The sensing devices

In order to monitor objects manipulation, we take advantage of current off-the-shelf

devices: Estimote’s Stickers. A sticker is a packaged PCB with a battery-powered

ARM CPU equipped with 3-axis accelerometer, temperature sensor, and a Blue-

tooth Smart radio able to periodically broadcast its sensed data in a short range (a

few meters). Their tiny packaging makes it easy to attach them on objects as shown

in Figure 5.4. Each sticker can be easily distinguished by a unique identifier which

is particularly useful to improve manipulation detection by exactly knowing which

kind of object is manipulated. Estimote Stickers adopt a proprietary communica-

tion protocol called Nearables; Table 5.1 reports the data frame of this protocol. In

our setup, each sticker broadcasts a packet every 100 milliseconds while it is mov-

ing; every 200 milliseconds otherwise. A BLE scanner is in charge of collecting

the data coming from each sticker.

5.4.3 Sensor data analysis

We perform data acquisition by scanning the BLE signal through a mobile device.

In order to perform segmentation, we exploit the value of the Motion field trans-

mitted in every packet by the stickers. This field is set to true when the sticker is in
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Field Description
Identifier Unique identifier

Motion Whether the sticker is moving (boolean)

xAcceleration X-Axis acceleration

yAcceleration Y-Axis acceleration

zAcceleration Z-Axis acceleration

Temperature Stickers temperature value (in Celsius)

Orientation Physical orientation of the sticker

RSSI Signal strength

Power Signal strength at 0 meters

Battery Level Sticker’s battery level

Table 5.1: Nearables data frame

motion. Our experiments revealed that this value provides sufficient accuracy for

determining begin and end of our manipulations. Hence, for a specific sticker we

consider all the consecutive data packets with the Motion field set to true as part of

the same manipulation occurrence.

A labeled dataset is used to construct the predictive model. We performed ex-

periments with different type of models for each of our considered objects, and we

selected Random Forest for the liquid bottle and the medicine boxes, and AdaBoost

for the knife manipulations.

Segmentation, feature extraction and classification are performed in real time

on the mobile platform. The output serialized in JSON format is sent to a REST

server for integration with events detected by processing data coming from other

sensors as illustrated in Figure 5.1.

5.4.4 Dataset collection

Since our recognition technique is based on supervised machine learning, a crit-

ical task is the acquisition of a sufficiently large and significant dataset of object

manipulations. The dataset must also be annotated with the ground truth related

to each manipulation. In order to facilitate this task, we developed a mobile appli-

cation. The application starts with a simple screen consisting in only one button.

When that button is clicked, the Bluetooth scanner starts acquiring Nearables data

packets, which are internally stored. After a few manipulations we conclude the
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experiment, and the app performs segmentation, it creates a set of three axis accel-

eration data for each manipulation and then allows the user to label each one with

the ground truth (Figure 5.5).

Figure 5.5: Application layout

As already mentioned, in this experiment, we focus on manipulations of a liq-

uid bottle, a medicine box, and a knife. For the purpose of this first assessment of

our system we collected manipulations performed by six different adults without

physical impairments. They executed those manipulations spontaneously within

realistic scenarios of activities of daily living executed in a smart room lab (e.g.

cooking, taking medicines, . . . ). The total number of manipulations is 2058, with

887 manipulations involving the liquid bottle, 656 the medicine boxes and 515 the

knife. Out of the total, 1365 manipulations are considered relevant, while the rest

are considered irrelevant. This distinction is clearly application dependent, and in

our case it has been driven by the scenarios of our e-health domain and by the

interest in specific manipulations by the clinicians.

It is important to consider that the specific way in which we perform segmenta-

tion can lead to group more than one manipulation into a single one; for example, if

a subject extracts the water bottle from the fridge and pours the water in a glass as

a single action without interruption, the motion value of Nearable remains true and

the whole action will be segmented as a single manipulation. On the contrary, if the
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bottle is moved from the fridge to the table, and then used to fill a glass, the system

will identify two manipulations. We considered alternative segmentation meth-

ods, but actually observed that the presence of these ’composed’ manipulations is

sometimes a benefit for our specific application, considering the final recognition

accuracy.

Liquid bottle’s manipulations

The total number of manipulations of the bottle that we acquired is 887. We con-

sider 500 of them as relevant because their detection is useful to monitor the activity

of meal consumption or even just drinking (e.g., ”extract from the fridge” or ”pour

water”). Table 5.2 shows how we classify manipulations of the bottle.

Class Include Description

Irrelevant

Minor displacement Bottle is displaced in the same place

Irrelevant Bottle is moved, but not by a person (e.g.,

movements of the fridge)

Displacing in the fridge Bottle is displaced inside the fridge

Opening/closing fridge

door

When the bottle is in the fridge door and it

is opened, bottle moves

Relevant

displacement

Displaced Bottle is displaced from a place to another

which is not a fridge

Inserted Bottle is displaced from a place to the fridge

Extracted Bottle is displaced from the fridge to a place

Drinking/Pouring
Drink Bottle is taken from a place and is brought

to lips and tilted

Pour Bottle is taken from a place and liquid is

poured in a glass

Table 5.2: Liquid bottle’s manipulations

Medicine box’s manipulations

The total number of these manipulations is 656. We consider 474 of them as rel-

evant, because their detection is useful to monitor the activities ”taking medicine”

(e.g. ”extract from the repository” or ”open medicine box”). Table 5.3 shows how

we classify manipulations of medicine boxes. Note that distinguishing manipula-

tions like “displacing the medicineM box” and “accessing the content of medicine

M box” is very important in our domain, since the first if not followed by the sec-
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ond may be an indication that the patient prepared the medicine but in the end

forgot to take it.

Class Include Description

Irrelevant

Handle Medicine box is taken and handled

Irrelevant Medicine box is moved, but not by a per-

son (e.g., hit the repository)

Displacing in the repos-

itory

Medicine box’s manipulations when

someone searches for the correct one

Opening/closing repos-

itory drawer

When the medicine box is in the repos-

itory and it is opened, medicine box

moves

Relevant

displacement

Displaced Medicine box is displaced from a place to

another which is not the medicine repos-

itory

Inserted Medicine box is displaced from a place to

the correct repository

Extracted Medicine box is displaced from the

repository to a place

Accessing

content

Opened Medicine box is taken from a place and a

blister pack is extracted in the same place

or in another

Table 5.3: Medicine box’s manipulations

Knife’s manipulations

The total number of manipulations involving the knife is 515. We consider 391 of

them as relevant because their detection is useful to monitor the activities ”prepar-

ing meal” (e.g. ”extract from the drawer” or ”cut something”). Table 5.4 shows

how we classify manipulations involving the knife.

5.4.5 Results

Table 5.5 summarizes our results on the recognition of object manipulations. We

use a 10-folds cross-validation method. The table shows both the results using

the direct classification approach and the ones using the layered approach. De-

spite several extensions will be required, we considered these results encouraging

since they show that direct classification with a simple segmentation strategy and

state-of-the-art machine learning already provides quite adequate accuracy for our
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Class Include Description

Irrelevant

Irrelevant Knife is moved but not by a person (e.g., the

repository is shaked)

Displacing in the repos-

itory

Knife’s manipulations when someone

searches for a tool or silverware

Opening/closing repos-

itory drawer

When the knife is in the repository and it is

opened, the knife is moved

Relevant

displacement

Displaced Knife is displaced from a place to another

which is not the knife repository

Inserted Knife is displaced from a place to the cor-

rect repository

Extracted Knife is displaced from the repository to a

place

Cutting Cut Knife is taken from a place and something

is cut in the same place or in another

Table 5.4: Bread knife’s manipulations

application requirements. We expected more from the layered approach that shows

improvements only on specific object manipulations.

5.5 Limitations of current BLE technology

The use of BLE accelerometers attached to objects addresses important drawbacks

of different technological solutions proposed in the literature. However, it currently

has several limitations. First of all, energy consumption, since we observed that the

high transmission rate we used reduced the battery life to levels not acceptable for

a real home deployment. Energy consumption was also affected by the need to

increase the standard transmission power in order to cover at least the whole room.

A second problem we found is interference when these devices are close to metal

objects. Other problems arise when the monitored objects are dipped in water or

exposed to high temperatures, since the devices would be damaged. However, we

are confident that technological evolution will soon solve these limitations, while

the ones affecting other approaches are not only technological, but involve user

acceptance and privacy issues that may be more difficult to overcome.
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Accuracy (%)

Multi-layer classification Direct classification Total occurrences

Bottle
Total 90,41 91,54 887

Irrelevant 91,73 94,83 387

Rel. displacement 85,28 85,71 231

Drink/Pour 92 91,82 269

Medicine box
Total 92,07 92,98 656

Irrelevant 88,46 91,75 182

Rel. displacement 84,67 85,40 137

Accessing content 97,03 96,73 337

Knife
Total 96,88 96,11 515

Irrelevant 97,58 97,56 124

Rel. displacement 95,51 93,58 156

Cut 97,44 97,02 235

Total
Total 92,56 93,14 2058

Irrelevant 91,91 94,51 693

Relevant 93,51 93,06 1356

Table 5.5: Results

5.6 Summary

In this chapter, we proposed a method to detect fine-grained manipulations per-

formed on everyday objects exploiting small BLE accelerometers attached to the

objects of interest. A simple segmentation strategy and standard machine learning

techniques are applied to the continuous stream of accelerometer data to classify

in real-time the most likely manipulation that the subject performed on the mon-

itored object. Extensive experiments with a dataset consisting of more than two

thousands manipulations show that our approach can obtain encouraging results.

Our method addresses the research question Q3) presented in Section 2.5, thus un-

obtrusively recognizing fine-grained manipulations performed by the inhabitant on

household objects. We intend to extend our work in several directions. First of all,

we want to combine accelerometer data with temperature information of the object

in order to identify displacement of items to and from refrigerated repositories, as

well as recognizing when an item which needs to be refrigerated has been forgotten

somewhere else the kitchen. Acceleration data can also be usefully combined with
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fine-grained indoor positioning data, as well as other sensor data to refine manip-

ulation detection. We also intend to investigate and evaluate different recognition

techniques. Finally, we aim to consider a richer set of manipulations (and objects

involved) acquiring the dataset from our target users, the elderly, in their homes.
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Chapter 6

A health-care use case:
Fine-grained and long-term
anomalies recognition

6.1 Introduction

In this chapter we present a specific use case scenario for activity recognition in the

health-care domain. In particular, we investigate one of the most frequent threats to

independent living: cognitive decline. Indeed, its first early symptoms often lead

to a Mild Cognitive Impairment (MCI) diagnosis. According to the International

Working Group on MCI, there is evidence of subtle differences in performing ac-

tivities of daily living (ADLs) among MCI patients compared to both healthy older

adults and individuals with dementia [77]. Other studies [125, 126] observed how

a closer examination of functional skills in individuals with MCI may enhance our

understanding of the natural history and cognitive correlates of functional deteri-

oration associated with dementia. They pointed out the limits of informant-based

reports on subject abilities and proposed to extend well-known performance evalu-

ation tests (e.g., NAT [127]) with subtle errors recognition. Hence, from a medical

point of view there is a clear interest in methods to monitor the elderly with the

goal of identifying specific abnormal behaviors as indicators of cognitive decline.

Indeed, several research projects, and numerous research papers have tried to de-

tect behavioral markers of MCI onset through ubiquitous computing technologies,

obtaining a correlation between the predicted and actual cognitive status of the pa-
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tient. A general approach is to build a model of the “regular” behavior in order to

identify those activity patterns which diverge from the expected ones [120]. The

main drawback of this type of approaches is that behavioral changes are detected

without giving specific explanations of what happened. Other research groups

tried to refine the identification by recognizing the general anomaly’s category (e.g.

omission, substitution, replacement, . . . ) using statistical methods [121]. However,

the results show a high rate of false positives. Moreover, some of these approaches

require the execution of ability tests about the performance of ADLs in an instru-

mented smart home of a medical institution; hence, they incur in high costs and

cannot be applied on a continuous basis. Some of them deploy cameras and sensor

networks in controlled environments and use video and audio for activity recog-

nition: these systems are often perceived as too invasive for the elderly’s privacy.

Other works rely on continuous monitoring of low-level behavioral markers (steps

taken, walking speed, . . . ) and trigger alarms whenever they detect situations suf-

ficiently distant from the expected (modeled) behavior.

We have joined this research effort by designing and implementing a pervasive

system for fine-grained abnormal behavior recognition [31, 3, 17]. We propose a

tool for clinicians for analyzing the decline of functional abilities, supporting the

diagnosis of MCI or even distinguishing between different MCI subtypes. Our sys-

tem has a sensor network component intended to be installed in the home of the

senior and continuously acquiring data. Video and audio acquisition are excluded

as too intrusive, while sensors are used to detect the presence in particular loca-

tions, opening and closing of drawers, fridge and cabinet doors, use of appliances,

as well as the use of specific tools and food items.

Our system identifies the anomalies that can be observed in carrying out the

activity (e.g., inappropriate timing in assuming food or medicine intake, improper

use of equipment, unnecessary repetitions of actions). This is a challenging task for

at least two reasons: a) only certain anomalies or patterns of anomalies are relevant

indicators for clinicians and they need to be properly modeled based on cognitive

neuroscience expertise; b) most approaches to activity recognition lack the ability

to identify the fine-grained anomalies that are of interest to clinicians.

Preliminary and encouraging results of fine-grained anomalies recognition have
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been presented in a related Ph.D. thesis [128]. In this work we extend that system

in order to consider new fine-grained abnormal behaviors based on objects manip-

ulations. To do so, we exploit our results presented in Chapter 5 on using Bluetooth

Low Energy (BLE) accelerometers attached to everyday objects in order to recog-

nize performed manipulations. We present preliminary results on a new dataset

consisting of hundreds of complex/interleaved ADLs and anomalies.

We also propose a novel long-term analysis method to detect significant changes

in the trend of performing activities and to avoid raising alerts for isolated abnormal

activities [32]. In particular, we introduce a novel system to automatically recog-

nize long-term abnormal behaviors (e.g., changes in habits regarding the timing of

meal consumption).

The definitions of fine-grained and long-term abnormal behaviors are provided

in Section 6.2. In Section 6.3 we introduce our framework to detect fine-grained

abnormal behaviors based on objects manipulations. Finally, our system to detect

long-term abnormal behaviors is presented in Section 6.4.

6.2 Fine-grained and long-term abnormal behaviors

6.2.1 Fine-grained abnormal behaviors

By fine-grained abnormal behaviors (also called anomalies for short) we define

those behaviors, observed during the execution of everyday tasks by a subject,

which diverge from the expected ones, according to a given model provided by

clinicians. In particular, we consider models of abnormal behaviors that may in-

dicate the onset of MCI, and more generally of a cognitive decline. In order to

formally specify those models, we considered previous studies on these indica-

tors [125, 126] as well as medical practice results [129], and we collaborated with

cognitive neuroscience experts from the Institute Fatebenefratelli1, Lombardy –a

leading center in the field of mental health research and research on neurodegener-

ative disorders– within the SECURE2 research project funded by Lombardy region
1IRCCS (Research and Care Institute) St John of God Clinical Research Centre, Brescia – http:

//www.irccs-fatebenefratelli.it
2SECURE: Intelligent System for Early Diagnosis and Follow-up at Home, http://secure.

ewlab.di.unimi.it/
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and MIUR Italian ministry.

Our term fine-grained refers to the ability of distinguishing each type of anomaly

through the identification of single actions and on the analysis of their sequence,

frequency and relation to specific activities. We also believe that this is related to

the notion of subtle errors investigated in [126] that proved to be important indica-

tors of early phases of cognitive decline. These errors include specific gestures or

manipulation of objects. For example, “Picks up and puts down sugar bowl without

using it”.

Neuropsychology researchers characterized several functional difficulties in

achieving everyday tasks that may be predictive of serious cognitive disorders like

MCI or Dementia [125]. Each category corresponds to several different types of

abnormal behaviors. The categories that we considered in this work are presented

in Table 6.1.

Table 6.1: List of considered abnormal behaviors categories
Type of anomaly Description Example
Omission An important step within an ADL is not

performed

The medicine box has been re-

trieved but no medicine is taken

Substitution A different object than appropriate is

used or a different component action

than expected is performed

Pouring sugar instead of salt to

prepare pasta

Replacement The subject replaces a correct action

with a wrong one

Putting the medicine box in the

fridge

Wrong activity The subject performs an activity that

should not be done

The subject takes a not pre-

scribed medicine

Inefficient execution The subject performs actions which slow

down/compromise the execution of the

ADL

The subject takes double of the

usual time in watering plants

Repetition The subject repeats an ADL that he/she

already performed forgetting it already

took place

A medicine which is prescribed

once is taken twice

Searching The subject actively searches through

home’s repository for an item

The subject forgets where

he/she put the salt and he/she

searches it in all the repositories
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Activity-dependent anomalies

Abnormal behaviors may depend on how ADLs are executed (or non-executed),

while others are more generic and not tight to a specific ADL. In our model we

consider both types of anomalies, distinguishing the two categories:

• Activity-dependent: if the anomaly is contextual to the occurrence (or non-

occurrence) of one or more activity instances (e.g., the elderly executes the

activity of taking medicines but takes the wrong medicine)

• Activity-independent: if the anomaly is not contextual to the occurrence (or

non-occurrence) of one or more activity instances (e.g., the elderly just keeps

on wandering around, searching for something for an unusually long time)

In the case of activity-dependent anomalies, they could be related to one or multiple

activity instances. For instance, the omission of the activity Preparing the table can

be considered as anomalous only if the ADL is not performed before the activities

Eating lunch or Eating dinner, while it is not anomalous to omit it before the

Preparing breakfast ADL. Another example is the repetition of medicines intake,

where the same medicine is taken twice in two different taking medicines instances

within the same prescription time.

Activity-independent anomalies, on the other hand, only rely on the sensed in-

formation. For instance, a substitution like the butter is inserted in a non-refrigerated

repository should be fired independently with respect of recognized ADLs.

Subject-dependent anomalies

Orthogonally with respect to activity dependency, we also consider subject-dependent

abnormal behaviors. Indeed, a behavior which is abnormal for an individual could

be normal for another one. First of all, this may depend on medical prescriptions

(e.g. medicines to be taken, diet, . . . ). Considering this type of information it

is possible to provide detailed anomalies like “the patient forgot to take his/her

morning medicine”.

In addition to medical prescriptions, another important aspect of personalized

abnormal behaviors is personal habits. For instance, the usual time and duration of

execution of an ADL may vary for each person. Whenever a subject changes sig-

nificantly his/her habits (e.g. taking longer to perform ADLs), it may be a symptom
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of a cognitive decline. Hence, we define some rules which capture the deviation

from a past “normal behavior”, mining statistics on the normal execution of ADLs.

In general, subject-dependent rules are dynamically generated by considering

medical prescriptions and personal habits.

Example 6.2.1. Consider the case where the subject is searching for salt to prepare

pasta. It may be a normal habit to open two or three repositories in order to effec-

tively find and retrieve the salt shaker. Hence, until the subject keeps on behaving

as usual, no anomaly is detected. However, if the subject wanders around the home

opening several times different repositories (much more than the usual two or three

times), it may be considered as an abnormal behavior. Hence, the anomaly related

to searching for an item is dynamically defined based on the past normal behavior

of the subject.

6.2.2 Long-term abnormal behaviors

Human behaviors are characterized by wide variability; factors such as contextual

conditions, individual habits and personality traits may determine the execution of

various anomalies that are not necessarily due to cognitive impairment. Consider,

for instance, the anomaly of leaving repositories open. This may be normally done

by cognitively healthy people for negligence or hastiness. Hence, when considered

in isolation, fine-grained abnormal behaviors are only weak indicators of possible

cognitive issues. On the contrary, the frequency of anomalies detected over long

periods of time and their temporal trend are much stronger indicators.

We define as long-term abnormal behaviors those groups of activities and

anomalies, observed over relatively long periods of time (from one week to several

months), showing significant changes from the normal trend observed in the past,

and which may indicate the onset of cognitive impairment or the progression of

MCI. Long-term abnormal behaviors are better indicators when personalized, i.e.,

when specified with respect to trends observed as ‘normal’ for a specific patient or

patient-profile. In particular, we focus on abnormal behaviors that emerge from a

personalized long-term temporal analysis of performed activities (e.g., considering

the timing of meal consumption, duration of meal preparation), since time-related

difficulties in task executions are known to be associated with MCI onset [130].
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6.3 Recognition of fine-grained abnormal behaviors based
on objects manipulations

6.3.1 General architecture

The architecture of our recognition framework is shown in Figure 6.1. Our frame-

Anomalies recognition 
           platform

   Fine-grained abnormal behaviors recognition

ADLs recognition

manipulations + pre-processed events

activity instances

anomalies

clinicians

   Personalized 
Knowledge-base

Manipulations
    detection

Manipulations refinement

 Semantic Integration
     of sensor data

manipulations pre-processed events

Monitored Objects

accelerometer data

Environmental
     Sensors

raw sensor data

Local data processing

Figure 6.1: Overall anomaly recognition framework

work consists of two main components. The LOCAL DATA PROCESSING part is

in charge of continuously collecting and pre-processing raw data from sensing de-

vices. It runs within the smart-home environment. The ANOMALIES RECOGNI-

TION PLATFORM component runs recognition algorithms on data provided by the

LOCAL DATA PROCESSING component. Currently, the recognition algorithms run

periodically (e.g., on all the data collected in each day). This component could

be deployed both in the smart-home environment or as a cloud service. We con-

sider a smart-home environment instrumented with two kinds of sensing devices:

a) environmental sensors to monitor the inhabitant’s interaction with the home en-

vironment, b) wireless accelerometers attached to a set of everyday objects in order

to recognize the performed manipulations. Raw data from environmental sensors

are preprocessed by SEMANTIC INTEGRATION OF SENSOR DATA module, which

applies simple inference rules to derive high-level events. The MANIPULATIONS
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DETECTION module applies the manipulation recognition technique presented in

Chapter 5. The MANIPULATIONS REFINEMENT module combines the detected

manipulations with information derived from environmental sensors to derive more

precisely characterized manipulations. This process is done by a set of rules taking

into account temporal and semantic relationships.

Example 6.3.1. Suppose that the system detected the manipulation of a medicine

box and classified it as significant displacement. This can happen if the medicine

box has been moved from a place to another3. If the system also detects that the

medicine repository has been opened just before the start of the manipulation, the

system can infer that the medicine box has been retrieved from the medicine repos-

itory. Hence, the manipulation class provided by the MANIPULATION DETECTION

for that specific box in that timespan will be converted from significant displace-

ment to retrieved from repository.

Refined manipulations along with pre-processed events are then temporally to-

tally ordered. Aggregated and refined sensing data is used by the ADLS RECOG-

NITION module to detect activity instances with their timespans. Detected ADLs

along with sensed data are transmitted to the FINE-GRAINED ABNORMAL BEHAV-

IORS RECOGNITION module, which applies knowledge-based reasoning to infer

the occurred fine-grained abnormal-behaviors.

6.3.2 Fine-grained anomalies recognition

The abnormal behaviors are usually described in natural language by domain ex-

perts (i.e., clinicians). We use a first-order logic knowledge-base to model those

descriptions in terms of temporal relations between detected ADLs, high-level

events, manipulations and personalized knowledge of the monitored individual.

Then anomaly recognition is performed using a logic programming engine. In our

model, an anomaly is represented with the predicate

anomaly(an, aid, obj, ts, te)

where an is the anomaly’s type, aid is the identifier of the activity instance related

to the anomaly (if any), obj is the object related to the anomaly (if any), and ts
3A displacement is characterized as significant when the movement is not just a minor involuntary

change of position, like for example a medicine box moved within a drawer while grasping a different

box
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and te are respectively the starting and ending time of the anomaly occurrence. A

manipulation occurrence is represented by the logic fact

manipulation(o,m, ts, te)

where o is the object being manipulated, m is the manipulation label provided by

the machine learning algorithm, and ts and te are the starting and ending time of

the manipulation, respectively. A sensor event as, for example, the opening of a

cabinet is represented with the logic fact

action(Cooking-Id, open, Kitchen-Drawer, 2016-11-12 12:01:34)

where the first argument is an activity instance id (used only when the system has

classified the event as part of an activity), the second argument is the event type,

the third is the object/area involved, and the last is the timestamp. An activity, as

for example Cooking, once recognized by the system is represented by the logic

fact:

activity(Cooking-Id, Cooking, 2016-11-12 11:58:00, 2016-11 12-12:05:12)

where the first argument is the activity instance identifier, the second the activity

type, and the last two are starting and ending timestamps, respectively. Subject-

dependent knowledge, like prescribed medication, is also added to the knowledge

base in terms of logic facts. For example, if medicineA has to be taken every day

between 8 and 9 am, the fact prescribedMedicineT ime(medicineA, 8am, 9am)

is added to the knowledge base.

Table 6.2 illustrates some examples of first-order logic rules used to infer ab-

normal behaviors. The role of object manipulations in the process of recognizing

fine-grained anomalies is highlighted by the first two rules. Both rules detect an

omission: the subject did not take a medicine which was prescribed in a specific

time interval (e.g. in the morning). In the first case, the subject completely forgets

to take the medicine, while in the second case the subject actually retrieves the

medicine from the repository but then forgets to take it. Even if the practical impli-

cation of the two anomalies is the same, they represent two different patterns which

may be important to distinguish for devising appropriate intervention mechanisms

and possibly also for the clinical evaluation.
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The third example illustrates a rule for the recognition of an activity-independent

anomaly. When the manipulation return of a refrigerated object is close to the in-

teraction with a non-refrigerated repository, the anomaly is fired. Note that this

particular behavior is anomalous regardless of the performed ADL.

The last rule is an example of subject-dependent and activity-independent ab-

normal behavior. The anomaly is fired when the subject consecutively opens and

closes k repositories without retrieving or returning any item, which indicates con-

fusion about where an item is placed. The number of repositories k which are

consecutively accessed to fire the anomaly is subject-dependent, and it is mined

by analyzing the past normal behavior of the subject. If the subject consecutively

accesses more repositories than the usual, then the behavior is considered as abnor-

mal. Hence, the rule is automatically generated based on the value of k. The value

∆t indicates the maximum amount of time between the opening of two reposito-

ries.

6.3.3 Experimental evaluation

Experimental setup

We implemented the system’s prototype within our smart lab, which is instru-

mented with several environmental sensors like magnetic, power, presence and

plug sensors. Those sensing devices are used to capture the interaction of the

inhabitant with the home environment (repositories, chairs, electrical stove, . . . )

and continuously communicate their readings to a smart-home gateway using Z-

Wave protocol. We also attached tiny BLE accelerometers to several objects which

are interesting to monitor different ADLs. In particular, we considered medicine

boxes, a liquid bottle, a knife, food/beverage packages and a watering can. Those

devices continuously transmit their accelerometer data to an Android mobile appli-

cation which runs the MANIPULATIONS DETECTION module. Manipulations are

classified in real-time and then transmitted to the gateway.

We configured a Raspberry Pi to act as the smart-home sensor gateway to

collect environmental sensors observations and object manipulations. A NodeJS

REST server is in charge of receiving sensor data and storing it in a SQLite database.

Periodically (e.g. at the end of each day) the gateway executes the SEMANTIC IN-

TEGRATION OF SENSOR DATA module on environmental sensors, and transmits
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the derived high-level events, along with objects manipulations, to the MANIPU-

LATIONS REFINEMENT module. Both modules are written in Java language. The

MANIPULATIONS REFINEMENT module produces several log files containing the

refined and aggregated sensor data. The sensor logs are used by the recognition

algorithms of the ANOMALIES RECOGNITION PLATFORM, which are executed

off-line.

Dataset collection

In order to validate our system, we accurately designed the acquisition of a dataset

of several ADLs and anomalies. Our target activities are related to the kitchen envi-

ronment. In the specific we considered the following ADLs: taking the prescribed

medicines, preparing breakfast, preparing meal (i.e. lunch or dinner), laying the

table, eating, cleaning up (i.e. clear the table and washing dishes) and watering

plants. We designed several realistic scenarios, where each scenario represents a

whole day of ADLs and abnormal behaviors performed by a different subject in its

kitchen. Activities execution is designed to be as realistic as possible, with com-

plex and interleaved patterns. In order to obtain a dataset which is the more general

and robust possible, we introduced in all the scenarios several levels of variability

in performing the ADLs/anomalies:

• Variability in how a task is performed: the same ADL can be performed in

several different ways. For instance, a medicine can be taken with or without

drinking water. Another example is the preparation of the meal, which can

significantly vary depending on the recipe.

• Variability in the order of actions: Even two different ADLs execution

which consist on the same task can significantly vary, since the order of ac-

tions can be different. Suppose, for instance, the pasta preparation. The

inhabitant can significantly vary the order at which he/she accesses to repos-

itories to retrieve food items and cooking instruments.

• Variability in how ADLs are interleaved: ADLs are often performed in an

interleaved fashion. Hence, we introduced in the scenarios different ways

of interleaving the activities. For instance, while sitting at the table during

lunch, the inhabitant stops eating for a while to take its medications.
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• Variability in how an anomaly occurs: Abnormal behaviors can occur with

different patterns just like ADLs. Suppose for example the anomaly “forget-

ting to take a prescribed medicine”. This can be done by totally forgetting to

take it (no interaction with the medicine box) or by retrieving it at its repos-

itory but then forgetting to take it. Thanks to the manipulation recognition,

we can monitor and distinguish these two cases.

Moreover, we included additional realistic scenarios, asking the actors to simulate

ADLs without following pre-defined scripts. Of course, those scenarios do not

contain abnormal behaviors.

In total we acquired 752 instances of ADLs and 150 different patterns of abnor-

mal behaviors. Those ADLs and anomalies have been collected in 40 scripted and

20 unscripted scenarios executed by 19 different adult volunteers. Unfortunately,

in this phase we couldn’t involve in the experiments senior adults or individuals

with cognitive decline.

Results

In this work we focus on the accuracy in recognizing fine-grained abnormal behav-

iors mostly based on the execution of ADLs. This accuracy is affected by different

factors: a) the propagation of errors from noisy sensing devices, b) mistakes in

manipulations classification, c) mistakes in ADLs recognition and d) inaccuracy in

the modeling of abnormal behaviors rules. Since the accuracy of activity recogni-

tion has been extensively evaluated in several previous works, we assume to have

an ADL recognition system which is accurate at 100%. This allows us to have

a better understanding of which errors are introduced by the anomaly recognition

rules engine in combination with a possibly noisy sensing infrastructure. This as-

sumption does not imply completely unrealistic results, since running the ADLs

recognition algorithm presented in Chapter 3 on this dataset resulted in an overall

F1 score greater than 0.9. A detailed evaluation of the manipulations classification

accuracy can be found in Chapter 5. Our preliminary results are summarized in

Table 6.3.

True positives, false positives and false negatives are computed by comparing

the abnormal behaviors inferred by our rules with the ground truth, since the dataset

has been annotated with the occurred anomalies. In this phase of the project we
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Anomaly Precision Recall F1 score
Medicine X not even re-

trieved

0.79 1.0 0.88

Retrieve Medicine X But

Not Opened

0.67 1.0 0.80

Open Medicine X Twice 0.88 0.70 0.78

Wrong Medicine Opened 1.0 0.8 0.89

Object Retake Multiple

Times

1.0 1.0 1.0

Wrong Repository 0.9 1.0 0.95

Repository Search 0.89 0.89 0.89

Overall 0.88 0.91 0.89

Table 6.3: Preliminary results of our fine-grained anomaly recognition method con-

sidering abnormal behaviors based on objects’ manipulations.

focused our attention on anomalies related to medicine packages manipulations

and more general anomalies which can occur by manipulating different types of

objects.

The first two anomalies in the table describe the scenario where the subject

does not take a certain medicine which was prescribed in a particular time interval

by the clinicians. In particular, the occurrence of the anomaly “Medicine X not

even retrieved” implies that the subject did not even retrieve that medicine from

its drawer, while “Retrieve medicine X but not opened” occurs when the subject

retrieves the medicine from the drawer but then he/she forgets to take it. The preci-

sion in recognizing these anomalies is negatively affected by mistakes in manipu-

lations classification. Indeed, the manipulation “accessing the content of medicine

box” is sometimes confused with the manipulation “significant movement”. In

other words, in some cases the system detected that a medicine box was moved

from a place to another, while it was actually manipulated to extract the medicine.

These mistakes generated a small number of false positives of anomalies regarding

skipped intakes of medicines.

The anomaly “Open Medicine X Twice” represents the scenario where the sub-

ject wrongly takes the same medicine twice within the same prescription time,

while the anomaly “Wrong Medicine Opened” describes the situation where the
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subject takes a medicine which is not prescribed at the time of intake. As expected,

the previously mentioned mistakes in manipulations detection negatively impact

the sensitivity (i.e., the recall value) in recognizing these anomalies. Indeed, since

the manipulation “accessing the content of medicine box” is sometimes misclas-

sified, the capability of our method of identifying abnormal medicine intakes is

affected.

The remaining anomalies are based on more generic manipulations of objects,

and they are easier to detect. The anomaly “Object Retake Multiple Times” occurs

when the subject repeatedly interacts with an object without performing any useful

action with it. This anomaly is perfectly captured by our method.

The “Wrong Repository” anomaly captures the situation where an object is

placed in a not appropriate repository (e.g., the salt is placed in the fridge). The few

mistakes in recognizing this anomaly are due to mis-classifications of “significant

movement” manipulations (i.e., our system was sometimes unable to detect that an

object was actually moved to a repository).

Finally, the “Repository Search” anomaly describes the scenario where the sub-

ject continuously opens and closes the home’s repositories several times, without

retrieving and returning any item. This anomaly should capture a confusion state of

the monitored subject. However, few times the subject normally executed ADLs by

opening and closing several times the home’s repositories and interacting with ob-

jects which were not equipped with wireless accelerometers. Our system wrongly

identified these occurrences as anomalies.

The overall results are promising, showing an average F1 score of almost 0.9.

Moreover, the method produced a very low number of false positives. Consider that

the dataset consists of over 700 activity instances which included in total over 6.000

sensor events, while the total number of actual instances of abnormal behaviors

is just 150. The total number of false positives considering the whole dataset is

low, and this means that rarely an abnormal behavior is fired during the normal

execution of ADLs (i.e. the true negative rate is very high).

6.3.4 Summary

In this section we showed how, by detecting specific object manipulations, we

could significantly refine and improve our previous work on the recognition of

fine-grained abnormal behaviors. Our approach is based on the translation of high-
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level descriptions of abnormal behaviors (provided by domain experts) into first-

order logic rules. Detected ADLs, sensor events, recognized manipulations and

subject-specific information are translated in logic facts and added to the knowl-

edge base in order to infer fine-grained anomalies performed by the subject. We

experimentally evaluated the effectiveness of our method on a large dataset, consid-

ering a set of anomalies specifically based on objects manipulations and analyzing

how mistakes produced by manipulation detection algorithm proposed in Chapter 5

impacts on the recognition of abnormal behaviors. This method addresses the re-

search question Q4) presented in Section 2.5, thus recognizing abnormal behaviors

at a fine-grained level.

It is important to note that the knowledge-based approach used to detect anoma-

lies requires the effort of knowledge engineers and domain experts (e.g., clinicians)

to formally define the abnormal behaviors. The quality of their work is critical to

obtain significant results. Moreover, the anomalies should be defined indepen-

dently from the specific technological setup, which may vary in different environ-

ments.

While the considered anomalies are indicators of possible abnormal behaviors,

they are not intended to provide an automatic diagnosis of the patient’s cognitive

status, especially when they occur in isolation. For instance, the fact that the subject

has taken a medicine that was not prescribed is critical if he does it unintentionally

(e.g., for a memory disorder). In other cases it may be a normal behavior; e.g.,

if the patient intentionally takes an over-the-counter drug that does not interfere

with his medical prescriptions. Therefore, our system is not intended to provide

a diagnosis hypothesis, but simply as a powerful data analysis tool at the service

of practitioners reporting the type, frequency, correlation and temporal trend of

detected anomalies. By joining this information with other methods and with the

subject profile and therapy, it is also possible to set personalized trigger alarms.

Future work includes a) the investigation of probabilistic methods to model

and detect certain types of anomalies that are not suited to be modeled by logic, b)

the real-time operation of our framework, and c) the acquisition of a dataset from

seniors using monitored objects while performing the activities.
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6.4 Long-term analysis of abnormal behaviors

The method proposed in the previous section detects abnormal behaviors on a

short-term basis. What we propose in this section, instead, is a long-term anal-

ysis to detect significant changes in the trend of performing activities and to avoid

raising alerts for isolated abnormal activities. We propose a framework called

LOTAR, which exploits unobtrusive ADLs and fine-grained anomalies recognition

algorithms to automatically detect long-term abnormal behaviors (e.g., changes in

habits regarding timing of meal consumption).

6.4.1 Architecture

In Figure 6.2 we show the general architecture of LOTAR. Its core is composed of

two main software modules: (i) the first one takes as input the timestamped sen-

sor data and the models of abnormal behaviors, and it returns recognized actions,

manipulations, activities and fine-grained anomalies; (ii) the historical behavior

analysis module performs historical data analysis to identify long-term abnormal

behaviors. The outputs of both fine-grained and long-term abnormal behavior

recognition are transmitted to the e-HealthCare service, and can be inspected by

clinicians through a Web dashboard.

SMART-HOME	MONITORING	SYSTEM

...PRESENCE	
SENSORS

CONTACT	
SENSORS

ENVIRONMENTAL	
SENSORS

CLINICAL	
KNOWLEDGE

BASE

definitions	of
abnormal	behaviors

FINE-GRAINED
ABNORMAL
BEHAVIORS

fine-grained
anomalies

MCI	models
and	indicators

ac�vity	instances,
high-level	events
and	manipula�ons

ADLs	AND	FINE-GRAINED	ABNORMAL
BEHAVIOR	RECOGNITION

HISTORY
OF	PAST

BEHAVIORS

HISTORICAL	BEHAVIOR	ANALYSIS

LONG-TERM	ABNORMAL	BEHAVIORS
e-HealthCare	

Service

home-acquired	sensor	data

Figure 6.2: The architecture of our long-term analysis framework
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6.4.2 Historical behavior analysis

While fine-grained anomalies identify situations that can be precisely specified and

effectively detected through symbolic methods, long-term abnormal behaviors are

characterized by wide inter- and intra-individual variability; hence, we rely on a

personalized statistical approach to detect them. In our approach, we map the daily

activities of the patient in activity feature vectors, which succinctly describe some

characteristics of interest of the activities performed during a given period (e.g., one

day). The goal is to statistically monitor the temporal evolution of those vectors to

detect significant changes from the patient’s usual behavioral pattern.

Building activity feature vectors

Of course, the technique to build activity feature vectors depends on the considered

activities, on their characteristics of interest and on the patient’s profile. In the fol-

lowing, we illustrate an application of the technique considering meal preparation

activities, where the characteristics of interest is the temporal distribution of their

occurrences during the day.

Example 6.4.1. In order to represent the distribution of meal preparation activities

during a day, we partition the day in k time slots, not necessarily of equal length,

and map each occurrence of meal preparation to the time slot in which that activity

has ended. Hence, for each day we build an activity feature vector vi of length k

that stores the number of meals prepared during each time slot during day i. For

example, if we consider the partition:

0: breakfast 5am - 11am

1: morning 11am - 12noon

2: lunch 12noon - 3pm

3: afternoon 3pm - 6pm

4: dinner 6pm - 10pm

5: night 10pm - 5am

vector vi = 〈102010〉 means that “during day i, the patient prepared one meal

within the breakfast slot, two meals within the lunch slot, and one meal within the

dinner slot; he/she did not prepare any other meal during that day”.
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Mining for long-term abnormal behaviors

In order to detect whether there has been any recent change in the patient’s habits,

we compare the activity feature vectors of the last n days (called current period)

with the ones observed in a preceding period of m days (called baseline period),

with m � n. Note that there is no intersection between the days in the baseline

period and the ones in the current period. We assume that the baseline period

represents the usual behavior of the patient in a recent past. A frequent pattern

mining [131] algorithm can be applied to the activity feature vectors of the baseline

period B to obtain the set V of typical activity routines; i.e., those vectors whose

frequency in B is equal to or larger than the support value s. Then, for each day i

in the current period C, we check whether the associated vector vi appears in V or

not. If not, we consider day i as anomalous. If the rate of anomalous days duringC

exceeds the threshold t, we detect a long-term anomaly during C and the algorithm

returns the set of anomalous days in C.

The algorithm pseudo-code for checking if a long-term abnormal behavior oc-

curred in the current period is shown in Algorithm 4. Note that F is the set of

frequent patterns, while N is the set of anomalous days. The function set takes

as input a sequence and outputs the set of its elements (without repetitions). The

algorithm is executed using a sliding window approach: for instance, each day it

is executed considering the last two weeks as the current period, and the previous

three months (last two weeks excluded) as the baseline period.

Extensions to consider periodic routines

Based on the individual’s profile, the mining algorithm can be refined to take into

account periodic habits and routines. For instance, it is possible to divide the days

used for the analysis into classes (e.g., working days vs holidays), and apply the

algorithm to each class separately to discover changes in periodic routines or ab-

normal behaviors correlated with them.

Profile-based calibration of parameters

Parameters s and t need to be carefully calibrated based on the patient’s habits.

In general, increasing the value of s reduces the number of activity feature vec-

tors that are considered normal, and therefore increases the number of days in the

current period detected as anomalous. A higher value of t, instead, will make the
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ALGORITHM 4: Long-term abnormal behavior detection
Input:
C: set of days of the current period; B: set of days of the baseline period; s:
minimum support value for frequent pattern mining; t: threshold for anomalous
days in C; SC , SB sequences of activities feature vectors associated to the days in
C and B, respectively.

F ← ∅; N ← ∅; S′B ← set(SB)

forall w ∈ S′B do
if w appears in SB at least s times then F ← F

⋃
{w} ;

end
forall vi ∈ SC do

if vi /∈ F then N ← N
⋃
{i} ;

end
if |N | ≥ t · |SC | then

return N
else return ∅ ;

algorithm require a higher portion of abnormal days to output a long-term anomaly.

To effectively run the analysis, we need to carefully balance those values, so that

we can properly recognize whether the current days are deviating from the baseline

activity pattern.

In the following we explain our approach to calibrate s and t values. We fix

the value s based on the profile of the patient. If the patient has very regular habits,

he/she would tend to execute very frequently a limited set of routines. In this

case, a relatively high value of s should be chosen, to include only his/her normal

routines in the set of frequent activity feature vectors. On the contrary, a relatively

low value of s should be chosen when the patient has not very regular routines, to

account for the wide variability of his/her typical activity patterns. The patient’s

profiling can be done manually by practitioners during the clinical assessment, or

by automatically mining a dataset of the typical activity routines of the patient.

The value of s should be periodically re-calibrated to account for changes in the

patient’s habits.

After fixing s, we initially set the value of t to a default value, which is currently

manually chosen according to the current cognitive status of the patient. The value
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of t is periodically re-calibrated considering the clinical assessment of the patient.

6.4.3 Evaluation

We have applied the technique to recognize long-term abnormal behaviors (Algo-

rithm 4) using the real-home dataset presented in Chapter 3 and the meal prepa-

ration routines previously discussed. We have used the time slots shown in Ex-

ample 6.4.1, which were calibrated according to the patient’s habits. We have

considered a baseline period (B in Algorithm 4) of 30 days from 30 October 2014

to 22 December 2014. We had to skip some days due to temporary failures of

the sensor platform used for the data acquisition. For the sake of simplicity, we

have considered the days in the test period as consecutive, disregarding skipped

days. We have applied our algorithm, with a temporal sliding window of 7 days (C

in Algorithm 4), over a test period ranging from 10 January 2015 to 15 February

2015, for a total of 32 days. We have used our profile-based technique for param-

eter calibration. According to the patient’s clinical profile, we have set s = 2 and

t = 0.5. As explained in Section 6.4.2, s must be carefully calibrated according

to the personal profile and health status of the subject. In our case, we have cho-

sen a small value for the support s, since the subject exhibited large variability in

the execution pattern of activities, probably due to MCI symptoms. The value t

(0 ≤ t ≤ 1) determines the sensibility of the long-term recognition algorithm: in

our experimentation we have chosen an intermediate value. For the sake of this

work and driven by the indications of clinicians, we also divided fine-grained ab-

normal behaviors in three levels of seriousness: green (e.g.; if a meal is consumed

out of the prescribed time), yellow (e.g.; if a meal is skipped), and red (e.g.; if

a prescribed medicine is not taken). This classification is orthogonal to the one

presented in Section 6.2.

The algorithm detected two long term anomalies, one from 12 January to 23

January, and one from 29 January to 6 February. Those intervals are shown in

Figure 6.3 as horizontal bars. The days that were classified as anomalous by the

algorithm are colored in violet. According to the choice of parameters, each ab-

normal interval bar includes at least 4 anomalous days. In order to understand

whether those intervals actually correspond to a period characterized by anoma-

lous behaviors, we have identified the days in the overall test period in which the

highest number of red anomalies occurred. We found 5 days in which the patient

did 7 or more such anomalies (identified by a red square in the figure), while in
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the other days no more than 5 red anomalies occurred. We can notice that 4 out of

5 among those days are contained in the two intervals. We believe that the corre-

lation is significant, especially considering that our long-term abnormal behavior

recognition algorithm considered meal preparation activities, while red anomalies

regard medicine intake, which are not related to meal consumption according to

the patient’s clinical prescriptions. However, we point out that more extensive ex-

periments, carried out with more patients and for longer time periods, are needed

to thoroughly assess the effectiveness of the algorithm.

We also computed the long-term trend of the occurrences of detected fine-

grained abnormal behaviors, using a simple sliding window approach: for each

day in the dataset, we count the number of anomalies detected in the 15 previous

days. We used the previously described rule-based fine-grained abnormal behav-

iors recognition method, considering the anomalies presented in [3]. Figure 6.4

shows a comparison between the results obtained using our technique and the ac-

tual ones (i.e., the ground truth). We can notice that, in general, the amount of

anomalies detected with our technique is close to the ground truth. Moreover, we

can notice that, despite the differences in value, the general trend is preserved;

hence, our method provides the clinicians with a reliable tool to recognize signifi-

cant changes in the rate of anomalies.

Figure 6.3: Detection of two long-term abnormal behavior intervals with our tech-

nique

6.4.4 Summary

We addressed the challenging issue of unobtrusively recognizing long-term abnor-

mal behaviors exhibited by elderly persons at home. The recognition of behav-

ioral anomalies is guided by medical models provided by cognitive neuroscience

experts. We have implemented the system and conducted an extensive experimen-

tation, considering a three months deployment in a patient’s home.

Even though the achieved results are promising, we consider to improve this
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Figure 6.4: Trend of fine-grained abnormal behaviors. For each day, the value

represents the number of anomalies detected in the previous 15 days.

work in several directions. We plan to evaluate the effectiveness of long-term ab-

normal behavior recognition by executing additional experiments with multiple

patients and for longer time periods. We will also closely collaborate with clini-

cians for both identifying anomalies of interest to be monitored, and evaluating the

clinical utility of our framework.

It is important to note that after few months that we published our method [32],

Dawadi et al. published an independently developed framework to recognize long-

term abnormal behaviors [132]. This method is significantly better than our ap-

proach, and it has been evaluated on 18 subjects in their homes for an extended

period (almost 2 years). In that work, the authors propose to model the behavior

of a subject during a time period with an activity curve: a model that describes

the generalized routine of the inhabitant. In particular, considering a period of d

days, each day is divided in m equal-size consecutive windows, and a probability

distribution over the activities is defined for each window. An activity curve thus

represents a compilation of these distributions for the considered d days. Long-

term abnormal behaviors occur when an activity curve diverges from another one

considered as the “regular behavior” of the subject.
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Chapter 7

Conclusions

7.1 Summary

In this thesis we proposed novel methods to continuously and unobtrusively mon-

itor the ADLs performed by elderly subjects in their homes, with the objective

of detecting abnormal behaviors which can be indicators of cognitive decline.

We focused on unobtrusive sensing infrastructures, avoiding the privacy issues

of video/audio based solutions (unacceptable for many subjects in home environ-

ments) and the obtrusiveness of wearable solutions.

We proposed two hybrid ADLs recognition algorithms which addressed some

of the known problems of data-driven and knowledge-based approaches. We also

introduced a novel framework to detect the manipulations that the inhabitant per-

forms on household objects, combining cheap sensors and machine learning tech-

niques. Finally we discussed how unobtrusive sensing, objects manipulations de-

tection and ADLs recognition can be combined together to detect fine-grained ab-

normal behaviors. In particular, we considered abnormal behaviors that may indi-

cate the onset of Mild Cognitive Decline, and more generally of a cognitive decline.

The trend and the frequency of those anomalies can be inspected by clinicians in

order to support the early diagnosis of cognitive disorders. For this purpose, we

also introduced a preliminary investigation on the analysis of long-term abnormal

behaviors. Extensive evaluation on several datasets showed the effectiveness of our

methods. In the following we summarize the specific contributions introduced in

this thesis.

107



Hybrid ADLs recognition
Our major contributions introduced in this thesis are two novel hybrid ADLs recog-

nition algorithms. The first, proposed in Chapter 3, combines both data-driven and

knowledge-based approaches in order to take advantage of their strengths to im-

prove the recognition rate. In particular, we combined supervised learning with a

knowledge-based algorithm to correct statistical mis-predictions and to identify the

activities boundaries. Experimental results showed that our method outperforms

classic solutions purely based on supervised learning. The main drawback of that

approach is that it requires the acquisition of a comprehensive annotated dataset.

For this reason in Chapter 4 we proposed an unsupervised approach which com-

bines probabilistic and ontological reasoning. This method overcomes the main

limitations of data-driven and knowledge-based approaches. First of all, it does

not require the acquisition of an expensive dataset. Further, the activity model is

based on general semantic relations among activities and smart-home infrastructure

and the model can be seamlessly reused with different individuals/environments.

We exploited ontological reasoning to derive (in an offline phase) semantic correla-

tions between sensor events and activities. A probabilistic reasoning module based

on Markov Logic Network is in charge of combining those correlations with the

sensor events collected in the home in order to derive the most likely performed

activities. We evaluated this method on two different datasets, showing that the

recognition rate is comparable to the one obtained by supervised solutions. One

of the biggest limitations of this approach is the relevant knowledge engineering

which is needed to build a comprehensive ontology. We thus need to investigate

with larger scale implementations whether the same ontology can be adequate to

cover every possible home environment and individuals’ mode of activity execu-

tion.

Objects manipulations recognition
Monitoring the interaction of the inhabitant with household items is an impor-

tant step to accurately detect the ADLs performed by the subject in his/her home.

Moreover, clinicians are interested in monitoring how objects are manipulated for

cognitive assessment. Wearables solutions have been proposed to identify the ob-

jects manipulations. However, there is no guarantee that wristbands or pendants are

constantly worn and there are also indications of a general adversity or disaffection

of users to wearables targeted to healthcare related applications. Computer vision
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techniques have been proposed as well to track the objects’ usage, but cameras are

too privacy intrusive in a smart-home environment. To address the problems of

existing solutions, in Chapter 5 we introduced a novel framework to detect ma-

nipulations performed on everyday objects. To do so, we attached tiny Bluetooth

Low Energy accelerometers to the objects of interest. A real-time machine learn-

ing algorithm is in charge of continuously segmenting the stream of accelerometer

data produced by the objects and to classify each segment with the most likely per-

formed manipulation. We evaluated our system with a dataset consisting of thou-

sands of manipulations performed by several volunteers on three different types of

objects. Our results show that a simple segmentation strategy and standard ma-

chine learning algorithms already provide acceptable results. However, the usage

of Bluetooth Low Energy sensors has several limitations. First of all, the life-time

of the battery is not acceptable for a real-home deployment. Moreover, problems

arise when these sensors are attached to short-life objects (e.g. food packages) or

objects that need to be dipped in water or exposed to high temperatures. We are

however confident that these limitations will be solved by technological evolution.

Fine-grained and long-term abnormal behaviors detection
Most of the state-of-the-art approaches to detect abnormal behaviors build a model

of the “regular” behavior in order to identify those activity patterns which diverge

from the expected ones. However, those methods do not provide a detailed descrip-

tion of the anomalous behavior which can be useful to clinicians to support their

diagnosis. To overcome this issue, in Chapter 6 we proposed a novel framework to

recognize abnormal behaviors at a fine-grained level. In particular, we considered

anomalies related to objects manipulations, taking advantage of the framework

presented in Chapter 5. Through the collaboration with neuroscience experts, we

considered anomalies which can be indicators of early symptoms of cognitive dis-

orders. We translated the natural language descriptions of the anomalies provided

by clinicians to first-order logic rules. Periodically (e.g., daily) sensor events, de-

tected manipulations, recognized ADLs and subject-dependent information (e.g.,

medical prescriptions) are converted in logic facts and anomaly recognition is per-

formed with a logic programming engine. We evaluated the proposed system on

a dataset acquired in a smart lab consisting of hundreds of ADLs and anomalies

performed by several volunteers. Preliminary results show that our method gen-

erates a low number of false positives, while reaching a promising accuracy. It
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is important to note that the occurrence of a single fine-grained anomaly is not a

direct indicator of cognitive disease, while their frequencies and temporal trend

can be used to derive behavioral changes. Hence, we also proposed tools to detect

long-term abnormal behaviors and we also studied how the variations of the trend

of fine-grained abnormal behaviors could be predictive of anomalous situations.

Extensive evaluation with data acquired in real deployments from senior subjects

is needed to further validate our approaches.

7.2 Future work

The results presented in this thesis are encouraging, and we plan to further im-

prove our methods by investigating several interesting research directions. In the

following we outline the ones we believe are more promising.

Online recognition and active learning
Except for the manipulation recognition algorithm presented in Chapter 5, the pro-

posed methods do not support real-time recognition. However, many important ap-

plication scenarios require detecting on-the-fly the subject’s behavior. For instance,

a system to detect dangerous behaviors of the elderly should report the potential

danger as it happens, since a delay could put the elderly’s safety at risk. In contrast

to offline recognition, online recognition is typically harder: it has to deal with a

continuous stream of sensor events to be processed in nearly real-time. We thus

will extend our ADLs and fine-grained anomalies recognition algorithms in order

to realize a behavioral analysis system capable to work in real-time scenarios. In

combination with online recognition, we will also investigate semi-supervised and

active learning techniques to improve the recognition rate of our methods. In par-

ticular, we want to investigate how active learning can be used to personalize and

fine-tune the recognition model for a specific subject. Moreover, we want to inves-

tigate how similar subjects (e.g., according to physical characteristics or home en-

vironments) can be grouped together in order to share the same recognition model

and to fine-tune it collaboratively.

Privacy aspects
Smart-homes produce a huge amount of data which is not feasible to store and

manage in local gateways. For this reason, sensor events along with detected ADLs
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and anomalies can be periodically outsourced to cloud servers in order to achieve

storage scalability and data availability at reduced costs. Moreover, cloud servers

provide efficient and scalable tools to query and process big data. Those tools

could be used by clinicians in order to inspect the subject’s behavior and to support

their diagnosis of cognitive disorders. Unfortunately, many privacy issues arise

when data collected from smart-homes is outsourced to untrusted third parties,

since the control on such data is lost. Indeed, outsourced data can reveal several

sensitive information about the inhabitants: what they are doing and when. Cloud

servers are operated by commercial providers which are very likely to be outside

of the trusted domain, offering data protection only against outsiders. We plan to

investigate a privacy model which allows outsourcing sensitive smart-home data

while maintaining its confidentiality and integrity. The model should allow trusted

clinicians and caregivers to efficiently perform fine-grained queries on encrypted

data in order to inspect the subject’s behavior.

Outdoor behavioral monitoring
While in this thesis we only focused on behavioral monitoring in smart-home en-

vironments, it is very important to monitor elderly subjects also when they are

outside home. The rate of adults older than 65 who own mobile devices (e.g.,

smart-phones) increased by 24% since 2013. This trend allows designing systems

that take advantage of sensors integrated on those devices to monitor the behav-

ior of elderly subjects when they are not at home. We aim to use inertial sensors

(i.e., accelerometer, magnetometer and gyroscope) to track the motion patterns and

thus the physical activities performed by the subject. Moreover, we want to inte-

grate contextual information (e.g., location, light, weather, . . . ) to refine activity

recognition and at the same time to detect abnormal situations.

Experiments with seniors
The majority of experiments that we presented in this work were performed on

datasets acquired in controlled environments (e.g., smart labs). The only dataset

acquired in a real-home scenario involved only one subject and few ADLs were

observed. In order to further validate our methods, extensive and long-term exper-

iments with real elderly subjects are needed.
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