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The practical worth of models of technical processes depends on their accuracy, that is, the difference between model outputs and
real measurements. Forminimizing these differences, process identificationmethods are used. In this article, coordination software
for process identification is presented which has the unique feature that it allows the integration of models that have been created
with external tools, for example, Matlab or Python scripts. There is no need to transform the models into another type of software
format to use the common identification coordinator. The concept of the software is described and two examples for the coupling
with external simulation software are given. Additionally, this article contains a detailed case study of the parameter identification of
two models using that identification coordination software. This highlights the benefit of the new coordination software regarding
similar work flow for different model types. The modeled physical subject is the thermal behavior of an actuator strut.

1. Introduction

Models of technical systems are used for solving many kinds
of problems reaching from prediction over simulation, con-
dition monitoring, and failure detection to controller design.
However, the quality of the results for all these goals depends
on the model quality, that is, the accuracy. The smaller the
difference between themodel and the real process is, themore
accurate a prediction, control loop, and so forth can be.

Allmodel types consist of amodel structure and a number
of parameters.The structure defines the underlying equations,
assumptions, and the resolution (granularity, order) of the
model. One model structure can often be used for many
technical processes with the same qualitative behavior. The
parameters (e.g., coefficients of polynomials, differential, or
difference equations) can be adjusted for getting the desired
quantitative results. The task of finding the parameter values
which minimize the difference between real measurements
and simulation results of the model (for the same inputs and
other conditions) is called system identification, process identi-
fication, or parameter identification.

There are a lot of tools which can be used for parameter
identification; an overview is given in [1]. Probably the most
frequently used software is Matlab [2]. There are many tool-
boxes forMatlabwhich support process identification for a lot
of different kinds of models. However, for models which have
not been implemented in Matlab, usually other identification
tools appropriate to the other modeling software must be
used.This often results in suboptimal identification results as,
for example, due to time reasons, only simple tuning metho-
dologies are used, often just manual adjustments in a trial-
and-error manner.

Recently, higher level process identification software has
been presented, which neither provides new process identifi-
cation methods nor replaces existing identification software.
Instead, it sets a coordination view on top of them [1]. Besides
process identification, this software has its focus on virtual
sensor design and can thus be used not only on standard
PCs in offline mode, but also on embedded PCs in online
mode. In the state at the publication of [1] it was not possible
to use external models in that software. The software has
now been extended to support different external model types
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(e.g., Matlab and Python scripts) additionally to “internal”
model types (strictly speaking realized as Java plug-ins) like
static equations, difference equations, or discrete time and
continuous-time transfer functions. This allows using the
identification software for already existing models that have
been implemented in external software without the need to
convert these models to new software’s format. Additionally,
it is even possible to combine externalmodels (cosimulation).
For example, the parameters of a Matlab script model can in
that way easily be optimized simultaneously with parameters
of a Python script model.

The article is structured as follows. In Section 2, the basic
system identification procedure, which is the background
of the software, is presented. An overview about the high
level identification software is given in Section 3 with the
focus on the integration of external models. In Section 4, an
application example (case study) is presented in detail. In that
example, two different model types are used to model the
same physical object.The example is the thermal modeling of
an actuator strut that can be found in similar form in many
machine tools. Although the models have been implemented
in different software, the new higher level software has been
used for bothmodels to coordinate the process identification.
The section compares both the quality of the models and
the effort for creating them. Finally, conclusions are drawn
(Section 5).

The abbreviations and symbols used in this article are
presented in Notations.

2. Identification Procedure

In this section, the identification procedure is presented,
which is supported by the software. It is based on [1, 3, 4].

Let 𝑦(𝑘) be a vector of 𝑀 time series where 𝑘 is the
index of the sampling instant. Each element of the vector
represents a time series for one physical quantity. More
concretely, 𝑦

model
(𝑘) is the vector of the outputs of the model

and 𝑦
measurement

(𝑘) the vector of measured time series for the
same physical quantities and under the same conditions and
inputs. The difference between the model outputs and the
corresponding measurements is mostly evaluated using the
sum of squared error (SSE)

SSE = [SSE1 SSE2 ⋅ ⋅ ⋅ SSE𝑁]𝑇 , (1)

SSE𝑖 = 𝑁∑
𝑗=1

(𝑦model,𝑖 (𝑘) − 𝑦measurement,𝑖 (𝑘))2 , (2)

where 𝑁 is the number of recorded time steps (sampling
instants), SSE is the vector of squared errors, and 𝑖 is the
row index in the vectors 𝑦

model
(𝑘), 𝑦

measurement
(𝑘), and SSE.

Another often used measure is the root-mean-square error
(RMSE)

RMSE = [RMSE1 RMSE2 ⋅ ⋅ ⋅ RMSE𝑁]𝑇 ,
RMSE𝑖 = √ SSE𝑖𝑁 . (3)

In general, there are two main strategies of parameter
identification.

(1) The first one is the analytical computation of the opti-
mal parameters for a givenmodel structure according
to given measurements. For that purpose, there are
mathematical strategies like least squares method,
instrumental variable method, maximum likelihood
method, and so forth [5, 6].Thesemethods deliver the
optimal parameters for a given optimization criterion
(usually SSE with 𝑀 = 1) after a finite number of
computational steps.However, this is only possible for
certain model structures, for example, linear models,
polynomials for static models, or linear difference
equations for dynamic models, mostly models that
are linear in their parameters. Most text books as
well as publications on process identification focus on
analytical methods [5, 6].

(2) On the other hand, there is the possibility of “training”
models using iterative optimization methods. In this
case, the model is simulated again and again with
varied parameters and the difference (SSE) between
the model output and the measurements is evaluated.
There are a lot of optimization strategies like Monte
Carlo optimization, simulated annealing, Levenberg-
Marquardt, gradient-based search, and evolutionary
algorithms. Most such algorithms take less assump-
tions on the model structure than analytical methods
and can therefore be used for a wide variety of
model types or even unknown (black-box) models.
Therefore, they are the usual way of process identi-
fication for complex model types like finite element
models [7, 8]. But also for simple models, where
analytical methods exist, such optimization methods
are sometimes used; a well-known example is the
Matlab System Identification Toolbox [9]. However,
thesemethods do not guarantee to deliver the globally
optimal results (due to local optima), especially not in
finite time.

Both types of identification procedures are supported by the
new software to give a maximum of freedom to the user. It is
also possible to combine both strategies. For example, linear
model parts can first be identified analytically, and more
complex or even black-box parts can be identified via evolu-
tionary algorithms, afterwards.

3. Software Overview

A first description of the developed software has been given
in [1]. The coordinator manages a modular model where
the subsystems are connected via “signals,” as scientifically
known from “systems theory.”

Most functionality is provided to that core via plug-ins.
There are currently three types of plug-ins:

(1) System-processing plug-insprovidemodel type specific
functions, especially model simulation, parameter
identification, and inversion.
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Figure 1: Screenshot of the parameter selection for a script (variable
names and values). The physical meaning of the parameters is
explained in Section 4.2.

(2) Reader plug-ins are responsible for getting measure-
ment data into the software—for example, from
files, data bases, or (in online mode) directly from
sensors—that is used to compare the model outputs
with the real modeled system.

(3) Visualization plug-ins are used to visualize simulation
results, for example, graphically or as tables, or for
writing output data into files.

Besides the management of the modular model and system
identification work flow the core contains standard optimiza-
tionmethods that are independent of the model type and can
thus be used for all model types together.

One of the reasons for the plug-in concept is the ability
to extend the identification software by functionality of other
software products using “wrapper plug-ins.” That concept
has now been used to integrate models that have been
implemented as Matlab or Python scripts. For the end user
of the software, the following work flow results.

(1) Usually, models that have been written as scripts
contain adjustable parameters as variables of the
software. If that is not the case, variables for uncertain
parameters that are to be identified have to be created
in the script to use the identification coordinator.

(2) After that, in the GUI (graphical user interface)
of the identification coordinator, a system of type
“Matlab script” or “Python script” is created. In the
corresponding dialog the used script file name and the
names of the parameters that have to be optimized are
edited (Figure 1). It is also possible to set parameter

Figure 2: Screenshot of the form for selection of the parameters to
be identified with their lower and upper limits. The physical mean-
ing of the parameters and their limits is explained in Section 4.2.

values manually from the software, which is helpful if
the same script is used in different contexts.

(3) The needed other parts for process identification are
specified. This contains the selection of an appro-
priate “reader” (e.g., file format, data base) for the
measurement data that is to be used, as well as—if
necessary—additional preprocessing steps or further
model parts that are not part of the script.

(4) Since scripts can usually contain all thinkable types of
models or combinations of them, they are treated as
black-box in the current implementation.TheMatlab
and Python plug-ins provide therefore no model-
specific optimization methods. Because of this, the
window for iterative standard parameter optimization
can be opened. The parameters that shall be opti-
mized automatically are selected together with their
expected bounds and—if needed for the optimization
method that is chosen later—start values (Figure 2).

(5) In the next step, the optimization criterion is chosen.
This is a set of signal pairs (usually a pair of one
measurement signal 𝑦measurement and one simulation
output signal 𝑦model) together with a weighting factor
for each pair. Let 𝑤 be the vector of weighting factors
with size𝑀; then the error

𝑒 = 𝑤 ⋅ SSE (4)

is the evaluated criterion, with SSE taken from (1).
(6) Now, the identificationmethod is chosen.Onlymodel

independent identification methods are provided by
the core, for example, Monte Carlo simulation, simu-
lated annealing, and an evolutionary algorithm.

(7) Finally, the parameter optimization can be started.
The possible stop criteria are currently a defined
number of iteration steps and a time limit. A quality
limit (i.e., desired value of 𝑒) could be added easily.
The parameter optimization finishes when (at least)
one of the specified criteria is reached.

The coupling withMatlab is realized with the “Matlab Engine
API for Java” [10] and the couplingwith Pythonby integrating
the open-source Jython interpreter [11]; see Figure 3. These
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Figure 3: Integration of external scripts in the identification coordinator.

two solutions represent also two of the three main possible
ways of integrating external software into a Java plug-in:

(1) Use an API (application programmer’s interface) of
the external software to directly communicate with
the external software for setting parameter values,
starting simulation, and exchanging signals.

(2) Provide an interpreter or simulator for the external
models as a plug-in.

(3) Start a simulation as a batch job, that is, via command
line.

The last type of coupling should only be chosen if the other
two solutions are not possible or if the required libraries are
too large for the application (e.g., on embedded systems),
because starting a simulation as a batch job is usually slower,
especially if the start of the external simulation software needs
significant time.

4. Case Study: Actuator Strut

In this section, the concept of the software is explained using
a practical application example, that is, the comparison of two
model types for the same modeled object.

The system to be modeled is an actuator strut.This exam-
ple is taken from the collaborative research center Transregio
96, in which the software for parameter identification has
been created. Actuator struts are typically used in machine
tools, where for each axis (𝑥, 𝑦, and 𝑧) one actuator strut is
used to move either the work piece or the main spindle with
the tool. Figure 4 shows themodeled actuator strut which has
been separated from the overall machine for instrumentation
and experimentation. It has only one relevant way of move-
ment: the spindle canmove out of and into the tube. Since one
spindle end is fixed at the drive end (“bearing”), the spindle
itself does not move, but the tube does (around the spindle).
However, this has no influence on the thermal model as it is
only a question of a coordinate transformation.

From the research project’s perspective, the interesting
quantity is the thermal “deformation” which is here only
relevant in one dimension (axial), that is, the change of the
length of the actuator strut due to temperature changes.
This is interesting because thermal deformation in machine
tools leads to less accuracy of production processes like
milling or drilling. The thermal deformation is a function
of the temperature field in the actuator strut. Therefore, the
possibility of computing the temperature field is practically
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Figure 4: Actuator strut with measurement points. “TS” = “temperature sensor.”

enough to estimate the change of the length that can be
measured only with much higher costs than the temperature.

Since the object is long and thin and only at one end
fixed in 𝑥 direction, only one direction (axial) is important
for practical use. Assuming that for each point 𝑥 on the axial
direction the strut has the same temperature 𝜗(𝑥, 𝑡) for each𝑦 and 𝑧, the change Δ𝑙 of the length can be estimated from

Δ𝑙 = ∫𝑙
0
𝛼 (𝑥) Δ𝜗 (𝑥) d𝑥, (5)

where 𝛼(𝑥) is the linear heat expansion coefficient for the
substance at point 𝑥, Δ𝜗(𝑥) the change of the temperature at
point 𝑥 compared to its initial value, and 𝑙 the initial length
[12].

The heat flow in a solid is described by the heat equation

𝑐 ⋅ (𝜕2𝜗𝜕𝑥2 + 𝜕
2𝜗𝜕𝑦2 + 𝜕

2𝜗𝜕𝑧2) = 𝜕𝜗𝜕𝑡 , (6)

where 𝑐 is a constant (thermal diffusivity). However, this
three-dimensional partial differential equation is too com-
plex for practical simulation. At the same time, it is even
not sufficient for describing the thermal behavior of the
actuator strut, because ofmissing consideration of convection
or heat radiation at surfaces. Therefore, several simplified
model structures are available to approximate the behavior.
Two of them will be used in the models described below.
The input quantity of the models is the feed-rate (speed) and
the outputs are the temperatures at the measured points. The
deformation (change of length) is left out of consideration in
the models but could be added using (5).

Starting from a thermal steady state, temperature curves
(step responses) have been measured at several positions
at the strut. For gaining these measurements, the actuator
strut has been moved periodically with a constant feed-
rate (velocity) for a duration between 80 and 170 minutes.
Measurements have been taken for the feed-rates 20m/min,
25m/min, and 30m/min. The sensor positions are shown in
Figure 4 and the measurement results in Figure 5.

In the following, it is shown how two models are set up
using the data for a feed-rate of 20m/min. The parameters
are estimated using the new software. The quality of each
model is evaluated by simulating the model for the feed-
rates 20m/min, 25m/min, and 30m/min and comparing the

outputs with the appropriate measurements. The samples are
nearly equidistant, but for technical reasons the sampling
period depends on the feed-rate and is thus not equal for the
three cases. For the case V = 20m/min, the sampling period
is 2.35min (140.9 s), for V = 25m/min 2.48min (148.7 s), and
for V = 30m/min 2.64min (158.3 s).

4.1. Model 1: Set of Transfer Functions. Themeasured temper-
ature curves of the experiments shown in Figure 5 are typical
step responses of nonintegrating systems; that is, the influ-
ence of the speed on each temperature measurement point
can be modeled either by a higher order dynamic system, a
series of first-order systems, or (roughly) a first-order system
with a time delay (FOPTD). The latter has the advantage
that the parameters can be interpreted intuitively (but not
physically) by comparing them with the step response. The
transfer function of a FOPTD model is

𝐺𝑖 (𝑠) = Θ𝑖 (𝑠)𝑉 (𝑠) = 𝐾𝑖1 + 𝑇𝑖𝑠 𝑒
−𝑠𝐿 𝑖 , (7)

where 𝐾𝑖 is the proportional action coefficient, 𝑇𝑖 the time
constant (first-order lag), 𝐿 𝑖 the time delay or dead time,
and 𝑠 the Laplace variable (complex frequency of the Laplace
transform [13]). Θ𝑖(𝑠) is the Laplace transform of a (scalar)
output (one temperature measurement point 𝜗𝑖(𝑠)). 𝑉(𝑠) is
the Laplace transform of the input (feed-rate V(𝑡)). 𝑖 is the
index of the measurement position.The transfer function (7)
is equivalent to the differential equation

𝜗𝑖 (𝑡) + 𝑇𝑖 d𝜗𝑖 (𝑡)d𝑡 = 𝐾𝑖 ⋅ V (𝑡 − 𝐿 𝑖) , (8)

where 𝑡 is the (continuous) time.
Even this simple model type has a relatively complex

modular structure (see Figure 6), because for each measure-
ment point a separate FOPTDmodel has to be set up and the
initial temperature of themeasurements has to be subtracted.
The latter is the case, because for the input (speed) equal to
zero a linearmodel like an FOPTDmodel always delivers zero
as output.

Since there are seven measurement points and each
FOPTD model contains three parameters, the overall model
has totally 21 parameters.
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(b) V = 25m/min
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(c) V = 30m/min

Figure 5: Measurements used for parameter identification.

The values of the parameters 𝐾𝑖 and 𝑇𝑖 can be identified
using the least squares method [5, 6, 14]. For that purpose,
first the coefficients 𝑎𝑚1 and 𝑏𝑚0 of a discrete difference
equation

𝜗𝑖 [𝑘] + 𝑎𝑚1 ⋅ 𝜗𝑖 [𝑘 − 1] = 𝑏𝑚0 ⋅ V [𝑘 − 𝜏] (9)

or the equivalent transfer function

𝐺𝑑 (𝑧−1) = 𝑧−𝜏 𝑏𝑚01 + 𝑎𝑚1𝑧−1 = 𝑧
−𝜏𝐾𝑖 ⋅ (1 − 𝑚1)1 − 𝑚1𝑧−1 (10)

with the discrete time delay 𝜏 = 𝐿 𝑖/𝑇𝑠 and
𝑚1 = exp(−𝑇𝑠𝑇𝑖 ) ,
𝑎𝑚1 = −𝑚1,
𝑏𝑚0 = 𝐾𝑖 ⋅ (1 − 𝑚1)

(11)

are computed. 𝑧 is the variable of the 𝑧-Transform [13] and 𝑇𝑠
the sampling period. Then, the continuous-time parameters𝐾𝑖 and 𝑇𝑖 can be computed from them using

𝐾̂𝑖 = 𝐺𝑑 (1) = 𝑏𝑚01 + 𝑎𝑚1 ,
𝑇̂𝑖 = − 𝑇𝑠

ln𝑚1 = −
𝑇𝑠

ln (−𝑎𝑚1) .
(12)

The discrete time delay 𝜏 (and thus also the continuous-
time time delay 𝐿 𝑖) cannot be computed using the least
squares method. Therefore, for each integer value of 𝜏 in the
interval [0, 20] the model parameters have been computed
(automatically) and the one with the smallest mean quadratic
error has been used.

This model type is not provided via external software as
it is relatively simple. The model structure, the appropriate
version of the least squares algorithm, and the loop of time
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Figure 6: Structure of the model consisting of FOPTD models.

delays have been directly programmed as a Java plug-in
without a link to an external software product.

Table 1 shows the identified values of the parameters for
each measurement point for the feed-rate 20m/min.

The validation cases show much larger values of RMSE
than the optimized case. This is a hint that the true modeled
object is nonlinear. In the case V = 25m/min, the biggest
differences occur for the drive, because it had not fully cooled
down before the experiment started. For V = 30m/min all
values of RMSE become much larger. This can be explained
with the nonlinearity, as according to the measured data the
final temperature does not change significantly although the
final temperature of themodel output is proportional to V due
to the superposition principle of linear models.

Positions that are far away from any heat source show
the largest time constants, the highest delay, and the smallest
proportional action coefficient. The curve of the belt housing
is typical for a higher order process due to the long way from
the heat sources to themeasurement point. Since themodel is

not of higher order, the time delay is in that case larger. Also
the tube is reached relatively slowly by the heat, resulting in
long time constants and a time delay.

Since the delay can only be estimated as an integer
multiple of the sampling period, further deviations occur.
However, since the changes of the sampling period are below
13%, this influence can be neglected compared to large
influence of the nonlinearity. Also the importance of the
influence of the air temperature is minor.

4.2. Model 2: Electric Equivalent Circuit Diagram

4.2.1. Model Overview. In this section, the actuator strut
is modeled using an electric equivalent circuit diagram
(based on electrothermomechanical analogies), shown in a
simplified form in Figure 7. In an electric equivalent circuit
diagram, each relevant physical component (with index 𝑖) of
the actuator strut ismodeled by a nodewith a heat capacity𝐶𝑖
and a power loss 𝑄̇𝑖 (heat source). Between each pair of nodes
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Table 1: FOPTDmodels for temperature sensors. Optimized for V = 20m/min (sampling period 2.35min), other cases as validation without
new parameter optimization.

Number Sensor Delay𝐿 in min
Prop. act. coeff.𝐾 in Kmin/m

Time constant𝑇 in min
RMSE 20m/min

in K
RMSE 25m/min

in K
RMSE 30m/min

in K
8 Spindle 0 1.33 22.39 0.66 2.49 7.96
5 Ball screw nut 0 1.24 28.25 0.74 1.78 7.60
3 Drive 0 1.20 39.06 0.45 5.59 7.05
4 Bearing 0 1.05 42.52 0.40 2.48 5.20
2 Belt housing 4.70 0.85 57.53 0.51 1.38 3.83
6 Tube middle 2.35 0.52 41.99 0.48 0.42 2.50
7 Tube end 11.74 0.15 93.04 0.08 0.19 0.56

Mean of all — — — 0.47 2.05 4.96

(𝑖, 𝑗) there is thermal conductance 𝑔𝑖𝑗. If two nodes have no
direct contact to each other, the conductance is zero.

Each node 𝑖 of the𝑃 nodes is modeled with the first-order
ordinary differential equation

𝐶𝑖 ⋅ d𝜗𝑖 (𝑡)d𝑡 = 𝑄̇𝑖 + 𝑃∑
𝑗=1,𝑗 ̸=𝑖

𝑔𝑖𝑗 ⋅ (𝜗𝑗 (𝑡) − 𝜗𝑖 (𝑡)) . (13)

However, in practice, the heat flows 𝑄̇𝑖(𝑡), which are the
inputs of the model (13), are not known. Instead, the feed-
rate V(𝑡) is known and it is assumed that the heat flows 𝑄̇𝑖(t)
are a function of V(𝑡). In the simplest case, a proportional
dependency can be assumed; that is,

𝑄̇𝑖 (𝑡) = 𝑞𝑖 ⋅ V (𝑡) (14)

with a proportionality factor 𝑞𝑖 (in J/m).

4.2.2. Parameters of the Model. The model contains three
types of parameters: a heat capacity 𝐶𝑖 and a velocity-
dependent heat loss 𝑞𝑖 for each node and heat conductance𝑔𝑖𝑗 between each pair of connected nodes. Nodes that are not
connected have a heat conductance 𝑔𝑖𝑗 of 0.The heat capacity
of the air can be treated as infinity.

Since 𝑔𝑖𝑖 is not needed and 𝑔𝑖𝑗 = 𝑔𝑗𝑖, it is enough to
estimate the heat conductance 𝑔𝑖𝑗 with 𝑖 < 𝑗, that is, ((𝑃 − 1) ⋅𝑃)/2 heat conductance parameters. Together with the 𝑃 heat
capacities and 𝑃 heat losses, the total number of parameters
can be computed to 2⋅𝑃+((𝑃−1)⋅𝑃)/2.Themodel of Figure 7
contains 19 nodes, so the number of parameters is 209.

4.2.3. Parameter Reduction. The whole model can be rep-
resented by a system of first-order differential equations
according to (13). Therefore, it is possible to create an
equivalent state-space model and use analytical methods
for parameter identification [15, 16]. However, the analytical
process identification methods for state-space models are
quite complex, because not only are there many parameters
to be estimated (here 209), but also the state has to be
estimated, here the temperatures of all model nodes—also
these that are not measured at the real machine. Additionally,
in the present example the model has been implemented
as a Python script (see Figure 8) and the goal is to reuse

this script and not to convert it into a state-space model of
another type of software. In that way, this script serves as
an example for the integration of arbitrary external scripts
onto the identification coordinator. Because of that, only
standard optimization methods are used. However, to iden-
tify 209 parameters simultaneously, especially with standard
optimization methods, is practically hopeless because of the
huge search space. Fortunately, the number of parameters to
be identified can be heavily reduced using a priori knowledge.
In particular, the 5 most uncertain parameters have been
determined and only these are optimized by the optimization
algorithm. All other parameters are set to values that have
been estimated using physical knowledge. The strategy of
finding the 5 most uncertain parameters and how the others
have been estimated is described in Appendix.

The remaining 5 parameters are “ratio parameters”; that
is, they have no physical meaning but are factors that are
multiplied with theoretically estimated physical parameters.
The ratio parameter 𝑟𝑚 is related to the motor heat loss, 𝑟𝑏 to
the heat loss of the bearing, 𝑟𝑛 to the heat loss of the ball screw
nut, 𝑟sa to the heat conductance between the spindle and the
air, and 𝑟ta to the heat conductance between the tube and the
air. See Appendix for details.

The limits of the ratio parameters can be computed from
the uncertainties shown in [4]; that is, the uncertainty is
+200/−70% for the power loss of ball screw nut and bearing,
+30/−20% for heat conductance with free convection and
radiation, and ±25% for the motor power loss. Therefore

𝑟𝑚 ∈ [0.75, 1.25] ,
𝑟𝑏, 𝑟𝑛 ∈ [0.6, 2.0] ,
𝑟sa, 𝑟ta ∈ [0.8, 1.3] .

(15)

In conclusion, the Python script has the five parameters 𝑟𝑛,𝑟𝑏, 𝑟𝑚, 𝑟sa, and 𝑟sb which are multiplied with the theoretically
estimated model parameters according to Table 5.

4.2.4. Evaluation. Each parameter 𝑟𝑖 has been optimized
in the given interval using Monte Carlo optimization. This
optimization strategy is relatively slow but avoids sticking in
local minima. The results are presented in Table 2. As for
the FOLPD models, the parameters have been optimized for
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Table 2:Optimal parameters of the equivalent circuitmodel for different optimization goals (optimized for V = 20m/min data). Optimization
time 60min per case and Monte Carlo optimization (about 7600–9200 iterations per case).

Optimized for sensor 𝑟𝑛 𝑟𝑏 𝑟sa 𝑟ta 𝑟𝑚 SSE 20m/min
in K2

RMSE 20m/min
in K

RMSE 25m/min
in K

RMSE 30m/min
in K

Spindle 1.13 1.68 1.25 1.26 0.96 1.21 0.13 2.07 7.30
Ball screw nut 0.88 1.21 1.16 1.25 1.23 1.90 0.16 1.83 7.30
Drive 0.86 1.02 1.17 1.06 1.24 48.52 0.81 4.59 6.35
Bearing 1.74 0.70 1.13 1.12 0.92 6.10 0.29 2.40 4.93
Belt housing 1.58 0.76 1.00 1.03 0.77 6.79 0.30 2.03 4.13
Tube middle 0.96 0.99 1.07 0.94 1.06 0.74 0.10 0.29 2.43
Tube end 0.61 1.75 0.85 0.99 1.15 5.48 0.27 0.45 0.79
Mean of all 0.89 0.71 0.88 1.14 1.16 268.12 1.73 2.34 4.79

the data of V = 20m/min and the results of the unchanged
model for V = 25m/min and V = 30m/min are given for
comparison.The accuracy of the model is quite similar to the
set of transfer functions. Especially regarding the validation
cases (V = 25m/min and V = 30m/min) the differences are
negligible. The reason is that both models are linear and thus
suffer in an equal manner from the inability to model the
nonlinear behavior of the physical process.

It is evident that although for each simulation the same
model structure of the overall machine has been used, the
optimal parameters are very different depending on the
quantity to be optimized. However, it is often possible that
different settings produce the same output—which is one
reason for this diversity. Others are given later in this section.

As explained before, only 5 parameters have been opti-
mized with optimization algorithms while in Section 4.1
for the set of transfer functions 21 parameters have been
optimized. Nevertheless, in the transfer function model only
3 parameters have an influence on one output signal while in
the equivalent circuit model all 5 parameters have an effect
on all output signals. These can be interpreted as degrees of
freedom.Due to the five parameters, there ismore freedom in
the equivalent circuit model for adjusting the signal behavior
at a given point as with the three parameters of the FOPTD
model. Therefore, the accuracy of the equivalent circuit
model is mostly higher than the accuracy of the FOPTD
models when optimized for one signal to be as close as
possible to the appropriate measured signal. However, there
are also several shortcomings of this model type:

(i) The effort for making the model structure, imple-
menting the script, computing the start values of the
209 parameters, and identifying the 5 most unknown
parameters is much higher.

(ii) The time for optimization ismuch higher (60minutes
for the Monte Carlo algorithm with the numerous
Python script calls versus less than 1 second for
the least squares method with the FOPTD models)
since iterative optimization methods have to be used
instead of the least squares method.

(iii) If not only one signal but the average of the RMSEs of
all 7measurement points is optimized, then themodel
is much worse than the set of independent FOLPD

models. One reason is that in the set of transfer
functions 21 parameters have been optimized but for
the equivalent circuit model only 5. Additionally, the
transfer functions are not coupled and can thus be
optimized independently from each other while in
the equivalent circuit model each parameter has an
influence on every output signal.

(iv) While one advantage of the equivalent circuit model
is the physical interpretability of the parameters
(capacities, heat conductivities, and heat losses), it is
a wrong conclusion that the optimizer would bring
the parameter values to the real physical parameters.
Instead, it chooses any values that minimize the
difference between measurements and simulation
outputs, even if they are not physically correct but
a result of the simplified model structure (a finite
number of mass points) or unmodeled disturbances.
The extremedifferences between the optimal values of
the parameters for the different optimization criteria
(measurement points) confirm that. A further con-
firmation of that problem is the poor model quality
when not only one signal but the average of all RMSEs
is optimized. The conclusion of this problem is that
the advantage of the equivalent circuit model—where
the parameters are physically interpretable—is only
working if the model structure is sufficiently correct
and all parameters can be computed without param-
eter identification techniques. As soon as parameter
identification is used, the identified parameters have
no better physicalmeaning than the parameters of the
phenomenological FOPTD model.

Nevertheless, the choice of a model type always depends
on the concrete application and the questions to be answered.

5. Conclusions

There are two main goals of this article. The first is the
presentation of a higher level software for parameter iden-
tification that allows now the inclusion of models that have
been realized with external software without the need for
remodeling in the new software. In particular, this has been
realized for Matlab and Python scripts, demonstrating the
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generic concept. Due to the plug-in-based architecture, it
is possible to extend the software for coupling a lot of
other simulation software without changing the core of the
identification coordinator. Additionally, this allows reusing
established simulation and modeling software with all their
specific features.

The second goal of this article is the detailed presentation
of a case study where two models of an actuator strut are
compared with respect to parameter identification. A set of
transfer functions has been compared to an equivalent circuit
model. Both have their advantages and disadvantages regard-
ing reachable accuracy, modeling effort, identification effort,
and physical interpretability. Although with an equivalent
circuit model a higher accuracy can be reached for single
output signals, this results in less physical interpretability
and less quality when all output signals are optimized. Both
models have been identified using the new identification
coordinator software such that the reading of measurement
data and signal comparison “infrastructure” could be reused,
saving time for parameter identification.

Appendix

Parameter Reduction for the Equivalent
Circuit Model

This appendix gives some complementary details for Sec-
tion 4.2.3 about the parameter reduction of the equivalent
circuit model.

Many of the 209 parameters are known to be negligible,
that is, approximately zero or infinity. This is the case for
the heat conductance between nodes that are not directly
connected aswell as for the heat capacity of the air (that can be
treated as infinity) and the power loss of nodes without fric-
tion. After excluding these parameters, the model contains
only the remaining 14 heat capacities, 6 (speed-dependent)
power losses, and 28 heat conductance parameters, that is,
totally 48 parameters. The initial (theoretically computed)
values of all parameters (that are not zero) can be found in
Tables 3 and 4.

The number of parameters to be optimized (i.e., the
search space) has been reduced significantly, but it is still too
large for standard optimization methods. Therefore, the next
step is to find parameters that can be computed from physical
knowledge with relatively large accuracy.

The heat capacities of the nodes are relatively certain
(±7% according to [4]), because they can be computed from
the product of their mass and substance-specific heat storage
capacity. If necessary, the mass can be computed from the
product of the volume and the density; the volume can often
be taken from a CAD model. For components that consist
of only one material (substance), the computed capacities
are very certain. Since the model structure represents the
“real” physics (see (6)) only very roughly, this accuracy is
sufficient as more accurate parameters would not result in
a significantly more accurate description of the real thermal
behavior. The heat capacity of the drive (motor) is more
uncertain, because it consists of many parts of different
substances, but themotor is less relevant for the thermoelastic

Table 3: Heat capacities and feed-rate-dependent heat losses of the
nodes (computed or estimated without parameter identification).

Node
number 𝑖 Meaning Heat capacity𝐶𝑖 in J/K

Heat loss factor𝑞𝑖 in J/m
0 Drive 982.08 0.533

1 Belt housing
drive 657.40 0

2 Belt housing
spindle 694.97 0

3 Shoulder joint 435.41 0
4 Bearing seat 330.66 0.303

5 Spindle
clamping end 50.73 0.454

6 Spindle lower
part 253.65 0.306

7 Spindle upper
part 253.65 0.306

8 Spindle free end 24.92 0
9 Ball screw nut 406.48 0.408
10 Tube lower part 243.51 0
11 Tube upper part 243.51 0
12 Tube joint end 179.43 0
13 Hand joint 14.35 0
14 Air belt housing ∞ 0
15 Air tube ∞ 0
16 Air spindle ∞ 0
17 Air bearing ∞ 0
18 Air drive ∞ 0

deformation of the actuator strut, because it is only at one,
relatively small, point connected to the strut; compare (5).

The heat conductance 𝑔𝑖𝑗 is a priori less accurate than
the heat capacities 𝐶𝑖, because an equivalent circuit model
assumes each node to be a mass point and not a three-
dimensionally extended object. For homogenous uniform
heat exchange the equation

𝑔 = 𝜆 ⋅ 𝐴𝑙 (A.1)

with distance 𝑙, (mean) cross-sectional area 𝐴, and thermal
conductance 𝜆 holds. For more complex geometries, the
approximations from [12] are used. The heat conductance
between two steel components that are mounted together is
relatively certain (about ±10% [4]).

Large uncertainties exist regarding conductance at rolling
contacts (+100/−40%), conductance to the air (+30/−20%
without forced convection), and power losses (+200/−70%
for rolling contacts and ±25% for electric units like motors)
[4].The values of these parameters have been taken from [12].

The heat conductance between the spindle and the bear-
ing or ball screw nut can be neglected as it is small compared
to the heat loss due to friction at this positions. There are
also some other uncertain conductance (heat conductance
of motor to air, etc.) but their influence on the thermal
deformation (thermal expansion of the strut) ismuch smaller.
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Table 4: Heat conductance 𝑔𝑖𝑗. All the other 162 combinations are not connected and treated as zero.

Number Node 𝑖 Meaning of node 𝑖 Node 𝑗 Meaning of node 𝑗 Heat conductance 𝑔𝑖𝑗 in W/K
#0 0 Drive 1 Belt housing drive 1.97
#1 0 Drive 18 Air drive 0.38
#2 1 Belt housing drive 2 Belt housing spindle 1.41
#3 1 Belt housing drive 14 Air belt housing 0.27
#4 2 Belt housing spindle 3 Shoulder joint 2.74
#5 2 Belt housing spindle 4 Bearing seat 3.17
#6 2 Belt housing spindle 14 Air belt housing 0.25
#7 3 Shoulder joint 14 Air belt housing 0.25
#8 4 Bearing seat 5 Spindle clamping end 0.95
#9 4 Bearing seat 17 Air bearing 0.06
#10 5 Spindle clamping end 6 Spindle lower part 0.05
#11 6 Spindle lower part 7 Spindle upper part 0.03
#12 6 Spindle lower part 9 Ball screw nut 0.13
#13 6 Spindle lower part 10 Tube lower part 0.04
#14 6 Spindle lower part 16 Air spindle 0.25
#15 7 Spindle upper part 8 Spindle free end 0.05
#16 7 Spindle upper part 9 Ball screw nut 0.13
#17 7 Spindle upper part 10 Tube lower part 0.07
#18 7 Spindle upper part 11 Tube upper part 0.04
#19 7 Spindle upper part 16 Air spindle 0.06
#20 9 Ball screw nut 10 Tube lower part 0.10
#21 9 Ball screw nut 15 Air tube 0.19
#22 10 Tube lower part 11 Tube upper part 0.05
#23 10 Tube lower part 15 Air tube 0.45
#24 11 Tube upper part 12 Tube joint end 0.10
#25 11 Tube upper part 15 Air tube 0.45
#26 12 Tube joint end 13 Hand joint 0.83
#27 12 Tube joint end 15 Air tube 0.06

Table 5: Uncertain parameter influences.

Influenced model parameters Physical parameter Ratio variable
𝑞0 𝜃𝑚 𝑟𝑚𝑞6, 𝑞7, 𝑞9 𝜃𝑛 𝑟𝑛𝑞4, 𝑞5 𝜃𝑏 𝑟𝑏𝑔#14, 𝑔#19 𝜃sa 𝑟sa𝑔#21, 𝑔#23, 𝑔#25, 𝑔#27 𝜃ta 𝑟ta

Therefore, up to here the remaining parameters are 6
power losses and 6 heat conductance parameters, that is,
totally 12 parameters. However, it is possible to reduce the
number of parameters further.

Let 𝜃 be the set of physical parameters and 𝜃𝑢 ⊂ 𝜃 the
set of significantly uncertain physical parameters. Also, let
Θ be the set of model parameters and Θ𝑢 ⊂ Θ the set of
significantly uncertain model parameters; see Figure 9.Then,
each model parameter Θ ∈ Θ is a function of 𝜃 and also
each unknown model parameter Θ ∈ Θ𝑢 is a function of 𝜃,
but each known model parameter Θ ∈ (Θ \ Θ𝑢) is only a
function of (𝜃\𝜃𝑢).This is relevant as it can help to reduce the

number of parameters in an optimization task, if |𝜃𝑢| < |Θ𝑢|,
which happens if several model parameters depend on the
same physical parameter.

In the present example, there are five uncertain physical
parameters that are represented by a variable 𝜃: the motor
heat loss 𝜃𝑚, the heat loss between bearing and spindle 𝜃𝑏,
the heat loss between ball screw nut and spindle 𝜃𝑛, the
heat conductance 𝜃sa between spindle and air, and the heat
conductance 𝜃ta between tube and air. Therefore, Θ𝑢 = {𝑟𝑚,𝑟𝑛, 𝑟𝑏, 𝑟sa, 𝑟ta} and 𝜃𝑢 = {𝑞0, 𝑞4, 𝑞5, 𝑞6, 𝑞7, 𝑞9, 𝑔#14, 𝑔#19, 𝑔#21,𝑔#23, 𝑔#25, 𝑔#27}. The relationship between the physical para-
meters and the model parameters is shown in Table 5 and
Figure 10. If the model parameters can be computed from
the physical parameters, it is enough to identify the 5 physical
parameters instead of 12 model parameters.

Each physical parameter can be roughly estimated from
theoretical backgrounds. This estimation is called 𝜃estim.
Similarly, each model parameter can be estimated as Θestim.
Assuming a proportionality between physical parameter and
model parameter, the equation

𝑟 = ΘoptΘestim
= 𝜃opt𝜃estim (A.2)
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Figure 10: Parameter sets of unknown physical parameters and
unknown model parameters.

holds, where 𝜃opt andΘopt are the optimal values of the phys-
ical and model parameters, respectively, found by parameter
identification. Therefore, the “ratio variable” 𝑟 can be a
replacement of the physical variable to be optimized, which
has the advantage that it is 1 at the optimization beginning and
the value of the physical parameter needs not to be computed
explicitly. If 𝑟 = 1 after optimization, the initial estimation
was correct.

Thus, only 5 (of the original 209) parameters have to
be identified by parameter identification techniques and all
other parameters are either known with relatively high cer-
tainty or can be computed from these five “ratio parameters.”

Notations

Abbreviations

FOPTD: First order plus time delay
CAD: Computer-aided design
PC: Personal computer
RMSE: Root-mean-square error
SSE: Sum of squared errors.

Symbols

𝛼: Linear heat expansion coefficientΔ𝜗: Change of temperatureΔ𝑙: Change of length𝜆: Thermal conductance𝜏: Discrete time delay𝜗, 𝜗𝑖, 𝜗𝑗: Temperature (of node 𝑖 or 𝑗, resp.)

𝜃: Set of physical parameters𝜃𝑏: Heat loss between bearing and
spindle𝜃estim: Estimated value of a physical
parameter𝜃𝑚: Motor heat loss𝜃𝑛: Heat loss between ball screw nut
and spindle𝜃opt: Optimal values of a physical
parameter𝜃sa: Heat conductance between spindle
and air𝜃ta: Heat conductance between tube
and air

𝜃𝑢: Set of significantly uncertain
physical parameters

Θ: Set of model parametersΘestim: Estimated value of a model
parameterΘ𝑖(𝑠): Laplace transform of temperature𝜗𝑖Θopt: Optimal values of the model
parameters

Θ𝑢: Set of significantly uncertain
model parameters𝐴: (Mean) cross-sectional area𝑎𝑚1: Coefficient of a discrete difference
equation𝑏𝑚0: Coefficient of a discrete difference
equation𝑐: Thermal diffusivity𝐶𝑖: Heat capacity𝑒: Error or Euler-Mascheroni
constant𝑔, 𝑔𝑖𝑗: Heat conductance (between nodes𝑖 and 𝑗)𝐺𝑑(𝑧−1): Discrete time transfer function𝐺𝑖(𝑠): Continuous-time transfer function𝑖, 𝑗: Row index in a vector𝑘: Index of the sampling instant𝐾𝑖: Proportional action coefficient𝐾̂𝑖: Estimation of𝐾𝑖𝑙: (Spatial, initial) length or distance𝐿 𝑖: Time delay or dead time𝑀: Number of time series in a vector𝑚1: Auxiliary variable𝑁: Number of recorded time steps
(sampling instants)𝑃: Number of nodes in an electrical
circuit model𝑞𝑖: Velocity-dependent heat loss𝑄̇𝑖: Heat flow𝑟, 𝑟𝑖: Ratio variable𝑟𝑏: Ratio parameter of bearing heat
loss𝑟𝑚: Ratio parameter of motor heat loss𝑟𝑛: Ratio parameter of nut heat loss𝑟sa: Ratio parameter of 𝜃sa
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𝑟ta: Ratio parameter of 𝜃ta
RMSE: Vector of root-mean-square errors
RMSE𝑖: 𝑖th element in RMSE𝑠: Laplace variable (complex

frequency)
SSE: Vector of squared errors
SSE𝑖: 𝑖th element in SSE𝑡: (Continuous) time[⋅]𝑇: Transposed matrix or vector𝑇𝑖: Time constant (first-order lag)𝑇̂𝑖: Estimation of 𝑇𝑖𝑇𝑠: Sampling period
V: Feed-rate𝑉(𝑠): Laplace transform of V(𝑡)𝑤: Vector of weighting factors𝑥, 𝑦, 𝑧: Coordinates𝑦(𝑘): Vector of𝑀 time series𝑦
model

(𝑘): Vector of the outputs of a model𝑦
measurement

(𝑘): Vector of measured time series𝑧: Variable of the 𝑧-transform.
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