
sensors

Article

ClusterMap Building and Relocalization in Urban
Environments for Unmanned Vehicles

Zhichen Pan 1,†, Haoyao Chen 1,*,† , Silin Li 1,† and Yunhui Liu 2,‡

1 School of Mechanical Engineering and Automation, Harbin Institute of Technology Shenzhen,
Shenzhen 518055, China; zhchpan@163.com (Z.P.); lisilin013@163.com (S.L.)

2 Department of Mechanical and Automation Engineering, Chinese University of Hong Kong, Hong Kong,
China; yhliu@mae.cuhk.edu.hk

* Correspondence: hychen5@hit.edu.cn
† Current address: Building G1011, Shenzhen University Town, Nanshan, Shenzhen 518055, China.
‡ Current address: Room 208, William M.W. Mong Engineering Building, Chinese University of Hong Kong,

Shatin, Hong Kong, China.

Received: 13 August 2019; Accepted: 23 September 2019; Published: 30 September 2019
����������
�������

Abstract: Map building and map-based relocalization techniques are important for unmanned
vehicles operating in urban environments. The existing approaches require expensive high-density
laser range finders and suffer from relocalization problems in long-term applications. This study
proposes a novel map format called the ClusterMap, on the basis of which an approach to achieving
relocalization is developed. The ClusterMap is generated by segmenting the perceived point clouds
into different point clusters and filtering out clusters belonging to dynamic objects. A location
descriptor associated with each cluster is designed for differentiation. The relocalization in the global
map is achieved by matching cluster descriptors between local and global maps. The solution does
not require high-density point clouds and high-precision segmentation algorithms. In addition,
it prevents the effects of environmental changes on illumination intensity, object appearance, and
observation direction. A consistent ClusterMap without any scale problem is built by utilizing a
3D visual–LIDAR simultaneous localization and mapping solution by fusing LIDAR and visual
information. Experiments on the KITTI dataset and our mobile vehicle illustrates the effectiveness of
the proposed approach.

Keywords: relocalization; SLAM; Localization; Map Descriptor; LIDAR-based Map Building;
ClusterMap

1. Introduction

Simultaneous localization and mapping (SLAM) supplies pose and map information for
autonomous driving in unknown environments [1–4]. Precise localization ensures that vehicles run
along pregenerated trajectories, and a good map provides a priori information about the surrounding
environment that supports vehicles’ decision systems in predetermining driving commands. When an
unmanned vehicle re-enters a familiar scene or loses its own location information, the vehicle should
quickly regain its correct position in its operating environment to ensure safe driving. Position loss
may be caused by a number of factors, such as temporary failure of sensors, rapid vehicle movement,
and environmental changes. Practical unmanned vehicles should be able to relocalize independently
by using existing maps and current environmental information.

In complex urban environments, 3D maps that reflect road conditions, obstacle locations, and other
environmental information should be built to ensure safe driving. Existing autonomous driving
solutions rely on high-precision and dense maps to realize vehicle navigation and even localization.

Sensors 2019, 19, 4252; doi:10.3390/s19194252 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0003-1652-9681
http://dx.doi.org/10.3390/s19194252
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/19/19/4252?type=check_update&version=2

Sensors 2019, 19, 4252 2 of 22

Such maps provide accurate road/traffic descriptions and dense surrounding static information,
and are thus a popular solution for commercial autonomous driving. Building these maps requires
professional mapping devices and entails high building and maintenance costs. However, in many
other scenarios, e.g., residential areas, factories, and campuses, high-precision maps are difficult to
establish and maintain. 3D PointCloudMap is generally used as part of high-precision 3D maps to
describe static objects in urban environments. The higher the point cloud densities, the more accurately
the PointCloudMap reflects the details of environments. However, high densities lead to large map
storage sizes and cause maps to contain a large amount of redundant information. These drawbacks
increase the computational costs of localization and navigation approaches, which are based directly
on PointCloudMap. A solution to the problem is OctoMap [5], which divides the whole 3D space into
multiple cubes with a certain resolution. If a specific cube contains points belonging to PointCloudMap,
then this cube is occupied by some obstacle. Relative to PointCloudMap, OctoMap can maintain a small
data size and allow rapid processing. It is suitable for path planning and real-time obstacle avoidance.

To achieve a compact map representation and improve the usability of maps implemented in urban
environments, we propose a new type of map called ClusterMap, on the basis of which a relocalization
approach is developed. We first segment a point cloud into different point clusters according to the
differentiation of objects without considering the category of each cluster, as illustrated in the work by
the authors of [6]. Then, we design a cluster registration method to filter out the clusters belonging to
dynamic objects to keep only the static clusters in the map. Finally, for each point cluster contained
in the ClusterMap, we design a location descriptor by using the mutual positional relationship with
its neighboring clusters. When an unmanned vehicle needs to complete a relocalization task, a local
ClusterMap around the current vehicle’s location is built. Then, by matching location descriptors
in local and global maps, the vehicle can establish a series of correspondences between two maps
and, finally, obtain a relocalization result by calculating a transformation matrix on the basis of the
correspondences. This relocalization method requires neither high-density point cloud data nor
high-accuracy segmentation algorithms. Moreover, the developed location descriptor is strongly
invariant to the changes of environmental objects’ appearance, illumination, and observation direction
because it considers the spatial relationship among static environmental objects.

The paper is organized as follows. In Section 2, the current state of vision and LIDAR fusion-based
SLAM and outdoor relocalization approaches is outlined. In Section 3.1, the SLAM method used for
building ClusterMap is briefly introduced. In Section 3.2, the ClusterMap building algorithm and
location descriptor are provided. In Section 4, we detail the relocalization algorithm, which is based on
the ClusterMap. In Section 5, the experiments on the KITTI dataset and our experimental platform are
provided to verify the proposed algorithms. Finally, in Section 6, the conclusions is given.

2. Related Work

Many SLAM approaches are available in the literature. Various sensors, such as the most common
cameras and lasers, have also been used in map building and localization [7]. However, due to the
complexity of outdoor scenes, a single type of sensor cannot be effective in all cases [8]. Mur-Artal et al.
proposed an interesting framework called ORB-SLAM [9] using three threads to achieve tracking, local
mapping, and loop closing. Other monocular SLAM approaches [10,11] still suffer from initialization
and inconsistent scale issues. Although ORB-SLAM utilizes binocular and RGB-D cameras [12],
it is limited by insufficient detection distances and high susceptibility to illumination changes. For 2D
laser SLAM approaches, filter-based [13] and graph-based approaches [14] perform well in indoor
structured scenes. However, in unstructured outdoor environments, the failure rates of 2D laser SLAM
approaches increase because they are only able to use 2D laser range finders to perceive information in
open and littered outdoor scenes.

Meanwhile, 3D SLAM approaches are more suitable for complex urban environments than 2D
SLAM approaches. The 3D approaches in the literature [15–17] extract features such as lines, corners,
and surfaces from point clouds to accelerate motion estimation. Some algorithms [18] are extended

Sensors 2019, 19, 4252 3 of 22

variants of 2D SLAM methods that use point cloud segments and leveled range scans to achieve 3D
perceptions. Wang et al. [19] utilized 3D-LIDAR to precisely locate the autonomous vehicle, where
the curbs information was detected to assist the pose estimation. Several experimental results were
provided to demonstrate the accuracy and robustness of the method. The approaches proposed by
Zhang et al. [20] and Zhang and Singh [2] enhance visual features by associating the depth information
from LIDAR-based point clouds and obtain low-drift motion estimation results. Point clouds are
downsized to maintain a constant point density. The downsized points are stored by using a 2D k-d
tree. The depth values of visual features are obtained by finding and interpolating the three closest
points of these visual features from the k-d tree. The fusion of visual and LIDAR information makes
the motion estimation increasingly accurate because the method can use a series of 3D–3D or 3D–2D
relations to recover the transformation matrix between two image frames.

Utilizing 3D point clouds for loop closure or relocalization is a challenging problem that has
attracted increasing attention in the autonomous driving field. Lenac et al. [21] proposed a loop
detection method that uses planar surface segments in point clouds as features in maps. The proposed
method can achieve accurate and efficient SLAM in structured scenarios but not in unstructured
environments. Visual features contain rich information and are distinguishable. As such, some
approaches use visual information to assist loop detection. For example, Zhu et al. [22] and
Chen et al. [23] used visual appearances to aid the loop closures in 3D SLAM. However, they
used visual and LIDAR information separately without exploring the complementarity between
sensors. Meanwhile, visual features with rich information also suffer from many limitations; for
example, when the illumination or viewpoint changes are excessive, even robust features such as
SIFT or SURF [24] can fail during matching. Other existing approaches [25,26] extract keypoints
directly from 3D perceptions and construct relevant 3D Gestalt descriptors to describe each keypoint.
Then, vote matrix voting from the nearest neighbors is used to find loops. SegMatch [27,28]
provides a real-time algorithm for loop detection and localization on the basis of 3D point
cloud segments. This method clusters and segments all the received point clouds and then calculates
a corresponding descriptor for each segment. The k-d tree and machine learning approach are
used for descriptor matching. Finally, a six-degree-of-freedom transformation matrix is obtained by
geometric verification. However, the aforementioned approaches [25–27] require high-density point
clouds for describing keypoints or segments. In addition, the feature descriptors are susceptible to
environmental changes in long-term applications, in which shrubs or trees may change greatly, thereby
causing a large change in the feature descriptors of the same object at different times. Furthermore,
objects with high similarities in appearance, such as street lamps, vehicles, or other synthetic facilities,
challenge the feature descriptor-based solutions.

Finman et al. presented an interesting work on object-based place recognition [29]. Their approach
involves the use of a pregenerated primitive convolution kernel to convolute an entire point cloud
and extract objects. It also constructs an object graph that represents the locational relationship among
different objects. Through the matching of object graphs, places can be recognized despite appearance
changes in a single object. However, the method can only handle small-scale scenarios, because
the time to extract objects and the complexity of object graphs increase significantly for large-scale
environments. Bogoslavskyi et al. [6] proposed a real-time object extraction solution with small
computational requirements. The solution removes the ground from 3D scans and then clusters
the point clouds into different clusters. However, the process is merely a pre-segmentation. Thus,
the method cannot distinguish different clusters. Some descriptors, e.g., point feature histograms
(PFHs) [30] and fast point feature histograms (FPFHs) [31], have been developed by encoding the
neighborhood geometrical properties of points and using the average curvature of multidimensional
histograms around points. PFHs and FPFHs can provide informative signatures for the feature
representation of 3D points. They are also invariant to 6D movement and cope well even with
large noises. However, PFHs and FPFHs are only suitable for high-precision 3D reconstruction, and

Sensors 2019, 19, 4252 4 of 22

are thus not valid for practical outdoor applications because high-density point clouds in outdoor
environments are difficult to provide.

In view of the above problems, the present study aims to develop a novel type of map, i.e., the
ClusterMap, which is more compact than the OctoMap and PointCloudMap. The proposed map
contains point cluster information only, and thus it does not require a large storage space. This
characteristic favors storage and transfer processes in many cloud-based applications. A cluster
descriptor is also developed to distinguish different clusters in maps. It is used for map matching to
realize relocalization. Relative to existing approaches, the ClusterMap-based relocalization method
performs well even with low-density laser range finders, e.g., VLP-16. In addition, the algorithm
is strongly robust to changes in environmental objects’ appearance, illumination, and observation
direction. The ClusterMap-based relocalization method can be also used for loop closure, which we
will tackle in our future work.

3. ClusterMap Building

In this section, the process of building the ClusterMap and the details of the descriptor for each
cluster in the map are presented. The ClusterMap and the cluster descriptor are used to achieve the
relocalization of unmanned vehicles in urban environments.

3.1. SLAM for ClusterMap Building

Generally, the basic requirement for map building is precise localization information. To enhance
the consistency of the ClusterMap with the real world, we need to obtain accurate location information
in urban environments. The SLAM can be treated as a black box that provides consistent pose
estimation, and this estimation is very important to build consistent ClusterMap. Because SLAM
research is not the focus of the paper, we implement SLAM by directly integrate the visual–LIDAR
odometry [20] into the framework of ORB-SLAM [9,12]. The visual–LIDAR odometry fuses the
sensor data received from a monocular camera and a VLP-16 LIDAR, to extract depth information
for 2D visual features by using the advantages of different sensors. The ORB-SLAM implements
loop closures and uses global nonlinear optimization algorithms [32] to adjust odometry and map
features synchronously. The loop closures eliminate the accumulated errors generated during motion
estimation. The ORB-SLAM integrated with visual–LIDAR odometry provides good pose references
for constructing the ClusterMap. By considering the self-consistency of the work, the SLAM framework
is introduced briefly. For the details, please refer to the references herein [12,20].

Figure 1 shows the pipeline of the mapping framework. The 3D SLAM is indicated by a dashed
box in Figure 1. It includes the threads of TRACKING, LOCAL MAPPING, and LOOP CLOSING [12],
which are further expanded with two blocks, i.e., PointCloud Registration and Depth Association [20].
The localization results from SLAM are continuously utilized to register point clouds and generate
maps such as PointCloudMap, OctoMap, or ClusterMap.

The transformation between image frames is calculated in the TRACKING thread, as shown
in Figure 1, according to the 2D–3D relations between 2D visual features and 3D local map points.
With the localization result in the TRACKING thread, several recent frames of LIDAR data are
accumulated in the point cloud registration to increase the density of the perceived point clouds.
The process enables the usage of low-density LIDAR, e.g., VLP-16, to achieve a performance similar
to that of HDL-64 or other dense LIDARs, where the point cloud is reprojected to the synchronized
image by using the extrinsic calibration result between a camera and a LIDAR [33]. The point cloud is
stored by using a 2D k-d tree constructed in accordance with the coordinates of each point. Meanwhile,
to retain as much structural information as possible, the k-d tree is searched for all 3D points within
a range from a visual feature fi in the camera frame. Let {iP} = {iP1, iP2, ..., iPn} denote the set of
neighboring 3D points, where iPj = [xj, yj, zj]

T represents the 3D coordinates of the jth point. Let
fi = zi [xi, yi, 1]T denote the coordinates of the depth-enhanced visual feature, where zi is the unknown
depth parameter. Then, the three points with the smallest distance are selected from {iP}. The three

Sensors 2019, 19, 4252 5 of 22

points form a local planar patch in the 3D space. The visual feature fi is treated as a point on the patch.
The depth parameter zi is obtained by solving the following equation,

(fi − iPn1)
T((iPn1 −

iPn2)× (iPn1 −
iPn3)) = 0, (1)

where iPn1 , iPn2 , and iPn3 are the three selected points with known 3D information. When detected
visual features are initialized by calculating the depth parameter, they are directly registered in the map
with low-scale deviation. The initialization of monocular odometry is therefore simplified to benefit the
building of a consistent map. Using the above method, a significant portion of the features (~35–75% in
our experiments) in a keyframe can be associated with depth information; keyframes are then selected
and processed in the LOCAL MAPPING thread [12]. Compared with the triangulation method
that only uses the same visual features observed in multiple image frames to estimate depth values,
the depth association developed in the work by the authors of [20] exhibits enhanced computation
efficiency. It also makes SLAM further accurate and robust because the triangulation method depends
on visual odometry initialization, which suffers from scale and data association problems.

Figure 1. Pipeline of the mapping framework including the simultaneous localization and mapping
(SLAM) and ClusterMap building.

The above SLAM method is used to provide location info for building the ClusterMap, and the
ClusterMap is then used for relocalization. The relocalization problem is a key technology in
many robotic navigation applications of unmanned vehicles. For long-term applications, visual
appearance-based approaches are inefficient due to the significant changes in illumination or objects
in environments, as discussed in Sections 1 and 2. In addition, unmanned vehicles driving in urban
environments often face a situation in which they enter the same place, but from different directions.
The appearances of the same place observed from different directions are significantly different.
This characteristic leads to difficulties in relocalization. Furthermore, the existing LIDAR-based
relocalization approaches all depend on dense point clouds. In the present study, a novel map
named the ClusterMap and relocalization algorithms are developed for long-term unmanned
vehicle applications.

3.2. Building ClusterMap

From the SLAM, accurate and scale consistent trajectories of unmanned vehicles can be obtained.
In the block of Online Clustering in Figure 1, the method published by Bogoslavskyi and Stachniss [6]

Sensors 2019, 19, 4252 6 of 22

is utilized to segment the point cloud received from the current LIDAR frame into different clusters.
However, the clustering method [6] only produces clustering results in consequent frames without
providing associations for clusters belonging to the same object. Therefore, in the cluster registration
block in Figure 1, each cluster is associated with corresponding odometry information; then, all clusters
are registered into the same map frame. Assuming that dynamic objects do not appear frequently in
the same place, clusters derived from dynamic objects are removed by judging whether clusters are
appearing in the same location. Furthermore, the method by Bogoslavskyi and Stachniss [6] cannot
always guarantee the consistency of clustering; for example, in some cases, only the trunk of a tree is
segmented, whereas in other cases, only the canopy is segmented. To address this problem, Algorithm 1
is developed, which can piece together multiple clusters that belong to different parts of the same object.
Let {C } = {C1, C2, ..., Cm} be the set of registered clusters. ∀Ci ∈ {C }, Ci = {{Pi}, Oi, api}, where
{Pi} = {p0, p1, ..., pn} is the set of points belonging to Ci, where Oi = [(∑ pn)/n] is the virtual center
of Ci and api is the cluster’s occurrence number. Let Cx = {{Px}, Ox, apx} denote the cluster to be
registered. In Algorithm 1, the function sqrDist() on lines 2 and 5 is used to calculate the squared
distance between two clusters, in accordance with virtual center points; function radiusSearch() on line
10 returns the number of points belonging to {Pi} and within the range of a sphere, with pj as the
center and rad as the radius.

Algorithm 1 Cluster Registration.

Require: {C }:Set of registered clusters
Require: Cx:Cluster waiting for registration
Require: C0, C1, C2 ∈ {C }:Three clusters closest to Cx in {C }

1: for each i ∈ {0, 1, 2} do

2: if sqrDist(Oi, Ox)>maxDist then

3: {C } ← (Cx & apx = 1); break;
4: end if
5: if sqrDist(Oi, Ox)<minDist then

6: {Pi} ← ({Px} & api ++);
7: else

8: count← 0;
9: for all pj ∈ {Px} do

10: if radiusSearch(pj,{Pi},rad)>minNum then

11: count ++;
12: end if
13: end for
14: if count>sizeof ({Px}) / thresholdNum then

15: {Pi} ← ({Px} & api ++);
16: end if
17: end if
18: end for

The registration algorithm retains the clusters with api greater than a predefined threshold.
For example, if api > 10, then only clusters that appear more than 10 times in the same location
are considered to be generated by a common static object. Figure 2 illustrates PointCloudMap
in panel a and the ClusterMap in panel b created from the same dataset. The PointCloudMap is
built by continuously attaching the 3D point cloud data along the trajectory poses estimated by
SLAM. As shown in Figure 2a, moving pedestrians leave trailing smears, marked as circles in the
map. Meanwhile, a large number of redundant points are filtered out in the ClusterMap, and only
point clusters belonging to specific objects, e.g., trees, shrubs, street lamps, and wall columns, are
retained. As shown in Figure 2b, the moving objects are removed. Compared with PointCloudMap,
the ClusterMap is more compact, and it reserves almost all dominant static objects; thus, it can be
processed much faster.

Sensors 2019, 19, 4252 7 of 22

(a) (b)

Figure 2. Demonstration of PointCloudMap and ClusterMap built from the same dataset.
(a) PointCloudMap contains trailing smears caused by dynamic pedestrians; (b) ClusterMap reserves
only static objects.

3.3. Cluster Descriptor for Clusters in ClusterMap

Similar with the feature descriptors in the field of computer vision [12], cluster descriptors are
developed to distinguish different clusters in the ClusterMap. The cluster matching between the
global and local ClusterMap is then achieved according to the descriptor. The descriptor is defined by
describing the mutual spatial relationship among different objects. Generally, environmental objects are
roughly distributed on a ground plane in many outdoor applications, and the height values of different
objects are not clearly different. The main purpose of relocalization is to determine the location of a
vehicle in a global map quickly. As such, considering the height difference of environmental objects is
not entirely significant. Therefore, the 3D clusters perceived in the previous sub-section are projected
on the 2D plane for simplicity, as shown in Figure 3. The cluster descriptor is created for the simplified
2D clusters. The cluster descriptor can also be extended to 3D ClusterMap, which will be studied in
our future work. We project the 3D ClusterMap to the 2D plane by setting the third value of Oi equal
to zero. The 2D ClusterMap is used for relocalization in Section 4.

Figure 3. Building of 2D ClusterMap by projecting all clusters to a 2D horizontal plane.

Sensors 2019, 19, 4252 8 of 22

Let us denote Li as the descriptor associated with cluster Ci ∈ {C }, and SR as a neighboring
radius of clusters. Note that Li is a third-order tensor that stores the mutual spatial relationship among
different objects in the range of SR. The larger the SR, the more detailed the description for a cluster;
however, the time needed to establish the descriptor and match clusters also increases. Let {iC } denote
the set of neighboring clusters of Ci, and let

{iC } = {iC1,i C2, ...,i Cnnb},

where nnb denotes the number of neighboring clusters in iC . Then, as illustrated in Figure 4a, a series
of concentric circles are used to divide {iC } into X parts with equal annulus widths. Each annulus
contains an unequal number of clusters belonging to {iC }. The green dots denote the clusters.
For ∀iCk ∈ {iC }, a subdescriptor is built, denoted as iLk. It is part of the entire descriptor for Ci.
To build the subdescriptor of iCk, we first define a reference axis i

k
−→
RA from Ci to iCk as

i
k
−→
RA =

−−→
Ci

iCk,

where
−−→
Ci

iCk denotes the vector from Ci to iCk. Then, a measurement axis k
n
−−→
MA from iCk to i

kCn ∈ {i
kC }

is defined as
k
n
−−→
MA =

−−−→
iCk

i
kCn,

where
−−−→
iCk

i
kCn denotes the vector from iCk to i

kCn, and

{i
kC } := {i

kCn = iCn ∈ {iC }|n 6= k}. (2)

Figure 4a–c demonstrates the process of constructing subdescriptors for different
neighboring clusters. On the basis of i

k
−→
RA and k

n
−−→
MA, as shown in Figure 4a, a parameter

vector i
kLn = [i

kdn , i
kθn] is used to define the locational relationship between iCk and i

kCn as

i
kdn = ‖k

n
−−→
MA‖

|ikθn| = acos(
i
k
−→
RA ·kn

−−→
MA

‖i
k
−→
RA‖‖k

n
−−→
MA‖

),
(3)

where |ikθn| is the angle from k
n
−−→
MA to i

k
−→
RA obeying the right-hand rule. The sign of i

kθn is consistent
with the z-value of i

k
−→n n, where

i
k
−→n n = k

n
−−→
MA× i

k
−→
RA. (4)

By stacking the above parameter vectors for members in {i
kC }, defined in (2), we obtain the

following subdescriptor of iCk,
iLk = [i

kL1, i
kL2, ..., i

kLnnbe], (5)

where nnbe = nnb − 1 denotes the number of elements in {i
kC }. Each element in iLk is calculated

with (3). Note that each neighboring cluster of a cluster is associated with a subdescriptor.
And, by stacking all these subdescriptors, we obtain the complete cluster descriptor Li of Ci, which is
given as

Li = [iL1, iL2, ..., iLnnb].

Sensors 2019, 19, 4252 9 of 22

Figure 4. Process of constructing subdescriptors of Ci. (a–c) Illustrations of different neighboring
clusters of Ci.

At the same time, nnb members exist in {iC }, and nnbe members exist in {i
kC }.

Therefore, the computation complexity of building the entire cluster descriptor Li is O(nnbe ∗ nnb).
To accelerate the descriptor matching process, we divide the subdescriptors into different parts

in accordance with their location annulus, as shown in Figure 4. The series of annulus are labeled as
Aj, j ∈ 1, ..., na, where na denotes the number of annuli. The annulus’s label Aj is used to mark the
subdescriptors in different parts. Then, the entire descriptor of Ci is given as

Li = [[iLk11 , ...,i Lk1nA1
]A1 , [iLk21 , ...,i Lk2nA2

]A2 , ... ,

[iLkna1 , ...,i LknanAna
]Ana].

The structure of Li illustrated in Figure 5 is stored by using a third-order tensor. The numbers
nAj , j ∈ (1, ..., na) are not the same. As shown in Figure 5, each subdescriptor iLk is represented using
a page that contains n rows, where each row represents i

kLn defined in (3), consisting of a distance (d)
and an angle (θ) relative to iCk and i

kCn. For example, if there are nAj clusters included in Aj, then the
Aj area in Figure 5 contains nAj pages, each representing a subdescriptor iLk.

Sensors 2019, 19, 4252 10 of 22

Figure 5. Third-order tensor structure of location descriptor Li, which is divided into X parts.
Aj indexes the j-th annulus shown in Figure 4 .

4. Relocalization Algorithm Based on ClusterMap

To relocalize a vehicle, we build a local ClusterMap of the surrounding environment at the
vehicle’s current location. The descriptor for each cluster in the map is established by using the
proposed method in Section 3.3. By performing descriptor matching between clusters in the local
ClusterMap and a prebuilt global ClusterMap {C }, a series of cluster correspondences between
the two maps is obtained. The correspondences may contain wrong matches. Therefore, three
geometric conditions are utilized to remove the outliers. Finally, the relocalization is realized by
calculating the transformation between the local and global maps in accordance with the obtained
cluster correspondences.

4.1. Cluster Descriptor Matching

The variable notations for a locally built ClusterMap are associated with a hat, e.g., the set of all
clusters Ĉj included in the local map is {Ĉ }. Each cluster is followed by a descriptor L̂j, and so on.
The clusters from local and global ClusterMap are derived from the environmental objects. As such,
two clusters that belong to the same object should have at least similar descriptors—the two clusters
match each other. As discussed previously, the transformation between maps can be calculated on the
basis of the matches. To measure the similarity between two clusters Ci and Ĉj, the distanceDji between
descriptors Li and L̂j is defined. First, for each subdescriptor jL̂k1 ∈ L̂j with the annulus label of Ax,
the subdescriptors in Li with the same annulus label are searched to find matches; the matching error
between two subdescriptors is denoted as jiDk1k2 . Dji is proportional to the sum of all subdescriptor
matching errors; the smaller Dji, the smaller distance between Ci and Ĉj.

However, considering the matching error only can cause some problems. For example,
in matching Ĉ1 with C2 and C3, L̂1 has 10 successful subdescriptor matches with L2, with each
matching error being about 1.0m, whereas L̂1 has only one successful match with L3, where its
matching error being 0.1m. If the matching error is unique judging criterion, then C3 becomes the best
match for Ĉ1. However, C2 should be the better match for Ĉ1 because Ĉ1 and C2 are likely derived
from the same environmental object on the basis of the number of successful subdescriptor matches

Sensors 2019, 19, 4252 11 of 22

between them. Therefore, matching error and matching number are considered simultaneously.
The distance Dji between Li and L̂j is obtained as

Dji = (
1

nsuc
− 1

n̂nb
) ∑

k1,k2∈Ssuc

jiDk1k2, ∀j ∈ [1, Nl], i ∈ [1, Ng], (6)

where nsuc is the size of successful match set Ssuc, n̂nb is the size of jĈ , and Nl and Ng denote the total
number of clusters included in {Ĉ } and {C }, respectively. A key point in this study is to determine
whether two subdescriptors are successfully matched. As shown in Figure 6, a geometric distance
ji
k1,2
Dn1n2 between j

k1
L̂n1 and i

k2
Ln2 is defined as

ji
k1,2
D 2

n1n2
=

j
k1

d̂2
n1
+ i

k2
d2

n2

− 2 · j
k1

d̂n1 ·
i
k2

dn2 · cos(|jk1
θ̂n1 −

i
k2

θn2 |),
(7)

where i
kLn = (i

kdn , i
kθn) is defined in (3). Then, the matching error jiDk1k2 between two

subdescriptors jL̂k1 and iLk2 is calculated as

jiDk1k2 = (
1

nsuc,k1,2

− 1
n̂nbe,k1

) ∑
n1,n2∈Ssuc,k1,2

ji
k1,2
Dn1n2 (8)

where nsuc,k1,2 is the size of the set Ssuc,k1,2 , with the geometric distances defined in (7) being less than a

predefined threshold; n̂nbe,k1 is the size of j
k1

Ĉ . If the matching error jiDk1k2 is less than a predefined

threshold T′, then jL̂k1 and iLk2 match successfully with each other and are used to calculate Dji in (6).
If Dji is less than the threshold T, then Ci is added to a set {jĈ} containing all clusters matched to Ĉj,
which is defined as

{jĈ} = {jĈi1 ,j Ĉi2 , ...,j Ĉica}, (9)

where ica denotes the size of {jĈ}. The more distinguishable L̂j is, the fewer candidates are, i.e., the
smaller ica is. Furthermore, the threshold T is an empirical value roughly set to 1.5∼2.0 times the
accuracy of the ClusterMap, e.g., T = 0.06 m in our experiments. Although the entire {C } is queried
for each member in {Ĉ }, the time consumption of descriptor matching is within an acceptable range
owing to the small size of {Ĉ }, usually between 10 and 25. A computation analysis is further provided
in the experimental section.

Figure 6. Geometric distance between two parameter vectors.

Sensors 2019, 19, 4252 12 of 22

4.2. Removing Outliers Based on Geometric Verification

After acquiring the sets of {jĈ}, j ∈ (1, ..., Nl), several geometric verification rules are then
defined to filter out match outliers. If a cluster j1Ĉi1 ∈ {

j1Ĉ} and Ĉj1 matches correctly, then they
should be generated with the same object. Thus, j1Ĉi1 satisfies the following three geometric conditions,
as illustrated in Figure 7.

• Length condition: Use distances between clusters included in {Ĉ } to filter out some unsatisfied
candidates. In any other set, {jx Ĉ}, a cluster, jx Ĉix , should be found so that

(‖
−−−−−−→
j1Ĉi1

jx Ĉix‖ − ‖
−−−→
Ĉj1 Ĉjx‖)

2 < T 2, (10)

where T is the same as the threshold mentioned above.
• Inclusion condition: Let j1 lmax be the maximum distance between Ĉj1 and all other clusters in

the local ClusterMap {Ĉ }. Therefore, Nl clusters are present in the circle, with Ĉj1 as the center
and j1 lmax as the radius. Correspondingly, in the global ClusterMap, ~Nl clusters are available in
the circle, with j1Ĉi1 as the center and j1 lmax as the radius. The cluster j1Ĉi1 is preserved only if
enough different groups exist in this circular range.

• Triangular condition: A cluster Ĉj1 and every two other clusters in {Ĉ } can form a base triangle
(the blue dotted triangle shown in Figure 7c); if clusters in the corresponding groups can form
a triangle similar to the base one, then the cluster j1Ĉi1 is retained. By randomly selecting two
clusters from {Ĉ } except Ĉj1 , denoted as Ĉjx1

and Ĉjx2
, jx1 Ĉix1

and a jx2 Ĉix2
should be derived

from {jx1 Ĉ} and {jx2 Ĉ}, respectively, satisfying

4 j1Ĉi1
jx1 Ĉix1

jx2 Ĉix2
≈ 4 Ĉj1 Ĉjx1

Ĉjx2

and
(‖
−−−−−−−→
j1Ĉi1

jx1 Ĉix1
‖ − ‖

−−−−→
Ĉj1 Ĉjx1

‖)2 < T 2

(‖
−−−−−−−→
j1Ĉi1

jx2 Ĉix2
‖ − ‖

−−−−→
Ĉj1 Ĉjx2

‖)2 < T 2

(‖
−−−−−−−−→
jx1 Ĉix1

jx2 Ĉix2
‖ − ‖

−−−−→
Ĉjx1

Ĉjx2
‖)2 < T 2.

(11)

The conditions are applied one by one. Under the first two conditions, more than 80% of
unqualified candidates can be filtered out in our experiments. Under the last condition, at most one
candidate can be left in each set. Finally, several cluster correspondences between {Ĉ } and {C } are
obtained. The transformation T between the local and global ClusterMaps is then calculated by

T = arg min
T

1
2

msuc

∑ ‖Oi − TÔj‖2, (12)

where Oi and Ôj are the virtual center points of the cluster mentioned in Section 3.2, and msuc

is the number of remaining matching pairs after applying RANSAC selection. The RANSAC
algorithm is used to eliminate the effects of possible mismatches and ultimately obtain more reliable
matching results.

All candidates in each {jĈ} are transversed. Thus, the algorithm of geometric verification may
reach a poor complexity O(nNl), where n is the maximum size of {jĈ}. However, because the size of
each {jĈ} is generally ~2–15, the value of n is of small order of magnitude. By sequentially applying
the three geometric conditions, a considerable number of candidate outliers are filtered out. The results
show that not much time is spent on geometry verification. The time consumption of the entire
relocalization process is evaluated in Section 5.

Sensors 2019, 19, 4252 13 of 22

(a) (b) (c)

Figure 7. Demonstration of the three geometric conditions, where different candidate sets are indicated
by different colors: (a) length condition, (b) inclusion condition, and (c) triangular condition.

5. Experiments

In this section, several experiments are performed to illustrate the effectiveness of the proposed
algorithms, i.e., ClusterMap building and ClusterMap-based relocalization. The KITTI dataset [34] for
autonomous driving is used as a benchmark in performance evaluation. All experiments are tested on
a laptop computer with Intel i7-4900MQ CPU@2.80 GHz and 6 GB memory. The proposed algorithms
are evaluated in our campus with our unmanned vehicle platform, whose sensor configuration is
illustrated in Figure 8. The sensor module is equipped 0.7 m above the ground surface. The LIDAR
is operated with 10 Hz measurement speed, and the vehicle is moving at a maximum speed of
2 m/s. Only the information from the camera and LIDAR is used to complete the motion estimation.
Figure 9 illustrates some snapshots of our experimental environment. Our campus is a part of
Shenzhen’s urban environment, which has moving pedestrians and parking cars. All the algorithms
are implemented with C++.

(a) (b)

Figure 8. Our experimental platform: (a) Robotnik Guardian equipped with a monocular camera and a
3D LIDAR, and (b) sensor module including a Pointgrey FMVU-03MTM-CS and a Velodyne VLP-16.

Sensors 2019, 19, 4252 14 of 22

Figure 9. Photos of our campus environment.

5.1. Evaluation on KITTI Data Set

To verify the proposed map format and the relocalization ability, an evaluation experiment is
first performed on KITTI dataset. In this experiment, we utilize ORB-SLAM to estimate the robotic
trajectory; on the basis of which the ClusterMap of KITTI sequence 00 is built as illustrated in Figure 10.
The figure on the left shows all 3D clusters in the KITTI 00 scene, whereas the right one shows the
results of the relocalization tests. Five tests are performed where the locations are randomly selected.
In the right subfigures of Figure 10, red points denote clusters in the global ClusterMap, green ones
indicate clusters of the local map, and each pink dotted line indicates the vehicle path to establish
the local map. The places in the global map are randomly selected to evaluate the relocalization
performance. The perceived data at these local places are obtained from the original dataset. As shown
in Figure 10, the vehicle relocalizes successfully at all places. However, the relocalization on KITTI is
ideal because the locally perceived data for the local map is the same as that for building the global
ClusterMap, i.e., illumination, objects, and other conditions are exactly the same.

Figure 10. Experimental results of relocalization on KITTI dataset.

5.2. Evaluation with Our Experimental Vehicle

To verify the proposed approach, we perform an experiment in our campus, as shown in Figure 11.
We use the experimental platform shown in Figure 8, which is equipped with VLP-16 of low density.
As shown in Figure 9, the campus is a typical urban environment with various natural objects, e.g., trees,

Sensors 2019, 19, 4252 15 of 22

shrubs, concrete columns, parking cars, and walking pedestrians. The vehicle shown in Figure 8a is
driven manually in the campus. The global ClusterMap is initially built by using the SLAM method
given in Section 3.1. Then, the vehicle is manually driven after three months to verify the relocalization
algorithm on the basis of the built ClusterMap. Within three months, the environmental appearance
presents significant changes, e.g., parked vehicles disappear, and trees grow. In accordance with the
experimental results, the relocalization performs well in our campus. The experimental video can be
found in the supplementary materials.

(a)

(b)

(c)

(d)

Figure 11. Experiments of relocalization in our campus. (a,b) The results at the same location but at
different times with a three-month interval; (c,d) the results at the same location but from different
entry directions.

Sensors 2019, 19, 4252 16 of 22

Two difficult cases are demonstrated for the relocalization, as shown in Figure 11. In each part,
the figure on the left is a monocular image, whereas the right one shows the relocalization result.
In the first case, as shown in Figure 11a,b, the parked vehicles disappear, and the shrubs grow after
three months; the visual appearance changes significantly and leads to difficulty in relocalization.
The results show that the relocalization is reliable despite large occlusions in scenes. However, long
paths are required to collect additional local clusters. In the second case, as shown in Figure 11c,d,
the vehicle enters the same place but from different directions. The perceived visual appearances are
totally different due to the different directions and occlusion situation. Therefore, the relocalization
is challenging if existing visual approaches are used. Nevertheless, the spatial relationships among
long-term static objects are stable, even when some objects are occluded or observed from different
directions. The relationships are considered in the proposed approach. As such, the relocalization in
the two kinds of difficult cases is completed successfully.

5.3. Parameters Evaluation

As stated in Section 3.3, the parameter of search radius SR plays an important role in the
performance of cluster descriptors. Figure 12a shows the numerical statistics of the computation
time for establishing each descriptor under different values of SR on KITTI sequence 00 and the
dataset from our campus environment. The built ClusterMap contains 965 clusters. Thus, 965
location descriptors are established. The cluster number in the local ClusterMap also affects the
performance. Therefore, the number of local clusters is set to 20 in evaluating the parameter SR.
Figure 12b shows the histogram chart of the relocalization success rate versus SRs. In the experiment,
for each different SR condition, 100 tests are performed on the ClusterMaps built from the KITTI
sequence 00 (Figure 10) and the dataset from our campus environment (Figure 3). The testing places
are randomly selected. The global ClusterMap building and relocalization experiments are performed
on the same KITTI dataset. However, in terms of our dataset, the situation is different. All the datasets
used for relocalization are collected after three months. Thus, they are different from those used for
building the global map.

As shown in Figure 12a,b, the larger the value of SR, the more time it consumes, but the higher
the success rate of the relocalization. To evaluate the factor of cluster number in the local ClusterMap
further, we fix the value of SR to 35 m. The same method is used to obtain the relocalization success
rates with different cluster numbers in the local ClusterMap. Figure 12c illustrates the experimental
result. Large cluster numbers in local maps increase success rates. As shown in Figure 12c, when the
value of SR is set to 35 m with the number of local clusters as 20, the relocalization success rate reaches
more than 92% and 97% in the KITTI sequence 00 and our campus datasets, respectively.

With the same parameters, another 100 tests are performed to evaluate the computation time of
the entire relocalization. The relocalization includes creating all descriptors for the local ClusterMap,
completing the descriptor matching, and implementing geometric verification. Figure 13 illustrates the
experimental results, where the horizontal axis is the test index. The duration of the entire process
is short, and relocalization is achieved quickly. Because the GPS information is unstable in urban
environments especially in the places with many buildings, the ground truth is unable to provide for
the evaluation in our dataset.Therefore, we define the reprojection error as

e =

√
∑msuc ‖Oi − TÔj‖2

msuc
. (13)

Sensors 2019, 19, 4252 17 of 22

(a)

(b)

(c)

Figure 12. Performance evaluation of the algorithm parameters SR and cluster number Nl in local
ClusterMap. (a) Computation time of establishing each location descriptor under different SR values;
(b,c) visualization of the success rate of relocalization versus different values of SR and Nl .

Figure 14 illustrates the reprojection errors of different tests. The reprojection errors performed on
our experimental platform in our campus are approximately ~3–5 times the errors of KITTI sequence 00.
Two reasons can explain this result. First, the LIDAR equipped on our platform is a Velodyne VLP-16,
whereas the one in KITTI is a Velodyne HDL-64E. Second, our own datasets for evaluation are recorded
using our experimental platform at different times with significant time intervals; many changes
occur in environmental appearances and vehicle trajectories. The environmental changes cause a large
difference between local and global ClusterMaps. Even for the same object, the virtual center point
Oi of its point cluster obtained by the simple clustering algorithm is inconsistent in different maps.
Nevertheless, on the basis of the experimental results, the relocalization success rate still reaches a high
level. The ClusterMap-based relocalization method exhibits strong robustness to noise and long-term
environmental changes.

Sensors 2019, 19, 4252 18 of 22

(a)

(b)

Figure 13. Computation time evaluation of the match process on (a) KITTI sequence 00 and (b) our
campus dataset.

(a)

(b)

Figure 14. Reprojection error of the entire process on the (a) KITTI sequence 00 and (b) our
campus dataset.

Sensors 2019, 19, 4252 19 of 22

To further illustrate the performance, experiments are also performed to compare with the recently
published work SegMap [28]. SegMap utilizes 3D LIDAR information only and can achieve both
localization and relocalization. We perform 100 tests by randomly selecting the relocalization positions.
Because KITTI provides ground truth for evaluation, both the time consumption and relocalization
error are compared. Figure 15 shows the computation time’s comparison between SegMap and the
proposed approach. Note that the computation time of our approach in Figure 15 contains the entire
time for local map construction and map matching; therefore, the time is longer than that in Figure 13.
Figure 16 shows the relocalization error of SegMap and the proposed approach. From Figures 15 and
16, it is seen that although the relocalization accuracy of our approach is similar or a little bit worse,
the computation time is much lower than that of SegMap. The poorer accuracy may derive from the
simple cluster extraction in our approach. It will be our future work to improve cluster extraction.

0 10 20 30 40 50 60 70 80 90 100

Test Index

0

5

10

15

20

25

R
e
lo

c
a
liz

a
ti
o
n
 T

im
e
 C

o
n
s
u
m

in
g
 (

S
)

SegMap

Ours

Figure 15. Comparison on the computation time of the entire process on KITTI sequence 00 between
SegMap and ours.

0 10 20 30 40 50 60 70 80 90 100

Test Index

0

0.2

0.4

0.6

0.8

1

1.2

1.4

R
e
lo

c
a
liz

a
ti
o
n
 E

rr
o
r

(m
)

SegMap

Ours

Figure 16. Comparison on the relocalization error on KITTI sequence 00 between SegMap and ours.

5.4. Discussion

From the experiments, it is seen that the proposed approach need to travel for a certain distance
to collect enough local clusters. The limitation derives from the compact character of ClusterMap,
because ClusterMap is composed with only salient clusters detected from the primary point clouds.
However, the relocalization is achieved quickly, ~3–10 s based on our experiments, and it will not be

Sensors 2019, 19, 4252 20 of 22

a problem in practical applications. Other solutions, like the SegMatch-based approach [27], require
high-density point clouds for describing keypoints or segments. In addition, the feature descriptors are
susceptible to environmental changes in long-term applications, in which shrubs or trees may change
greatly, thereby causing a large change in the feature descriptors of the same object at different times.
In contrast, our approach can address the problems. Therefore, the proposed approach can be applied
in the low-speed fields with autonomous logistic cars, surveillance robots, or sanitation vehicles, and so
on. These applications have strong requirements of low-cost and high performance.

6. Conclusions

The study proposes a novel representation of environmental maps called ClusterMap.
The ClusterMap is composed of point cloud clusters, each of which is associated with a descriptor
describing the location relationship with neighboring clusters. The new kind of map directly represents
the distribution of long-term static objects in complex environments. To build a ClusterMap that is
consistent with a real operating environment without scale problems, we utilize the multisensor fusion
approach that combines visual features and LIDAR’s point clouds. This approach can compensate
for the shortcomings of different sensors and obtain low-scale drift localization and mapping results.
Furthermore, a novel cluster descriptor and its matching algorithm are developed for finding cluster
correspondences among different ClusterMaps. On the basis of the ClusterMap building and cluster
descriptor, a robust relocalization algorithm is developed. Finally, several experiments are performed
on well-known datasets and on our own experimental vehicle in our campus environment to illustrate
the performance of the proposed algorithms.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/19/19/4252/s1,
Video S1: Experiments of ClusterMap Building and Relocalization in Urban Environments for Unmanned Vehicles.

Author Contributions: Conceptualization, H.C.; methodology, Z.P.; software, Z.P. and S.L.; validation, Z.P. and
S.L.; formal analysis, Z.P.; writing—review and editing, H.C.; supervision, H.C.; project administration, H.C. and
Y.L.; funding acquisition, H.C. and Y.L.

Funding: This work was partially supported by grants from the National Natural Science Foundation of China
(Reference No. 61673131, U1713206 and U1613218) and the Bureau of Industry and Information Technology of
Shenzhen (Reference No. 20170505160946600).

Acknowledgments: We would thank Pengpeng Su, Wenqiang Chen, and Renxiao Liang for their
technical support.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations

The following abbreviations are used in this manuscript.

SLAM Simultaneous Localization and Mapping
PFHs Point Feature Histograms
FPFHs Fast Point Feature Histograms

References

1. Cadena, C.; Carlone, L.; Carrillo, H.; Latif, Y.; Scaramuzza, D.; Neira, J.; Reid, I.D.; Leonard, J.J.
Past, Present, and Future of Simultaneous Localization and Mapping: Toward the Robust-Perception
Age. IEEE Trans. Robot. 2016, 32, 1309–1332. [CrossRef]

2. Zhang, J.; Singh, S. Laser–visual–inertial odometry and mapping with high robustness and low drift.
J. Field Robot. 2018, 35, 1242–1264. [CrossRef]

3. Wang, H.; Guo, D.;Liang, X.; Chen, W.; Hu, G.; Leang, K.K. Adaptive vision-based leader-follower formation
control of mobile robots. IEEE Trans. Ind. Electron. 2017, 64, 2893-2902. [CrossRef]

4. Lin, L.S.; Yang, Y.J.; Cheng, H.; Chen, X.C. Autonomous Vision-Based Aerial Grasping for Rotorcraft
Unmanned Aerial Vehicles. Sensors 2019, 19, 3410. [CrossRef] [PubMed]

http://www.mdpi.com/1424-8220/19/19/4252/s1
http://dx.doi.org/10.1109/TRO.2016.2624754
http://dx.doi.org/10.1002/rob.21809
http://dx.doi.org/10.1109/TIE.2016.2631514
http://dx.doi.org/10.3390/s19153410
http://www.ncbi.nlm.nih.gov/pubmed/31382629

Sensors 2019, 19, 4252 21 of 22

5. Schauwecker, K.; Zell, A. Robust and efficient volumetric occupancy mapping with an application
to stereo vision. In Proceedings of the IEEE International Conference on Robotics and Automation,
Hong Kong, China, 31 May–7 June 2014; pp. 6102–6107.

6. Bogoslavskyi, I.; Stachniss, C. Efficient online segmentation for sparse 3d laser scans. Photogramm. Remote
Sens. Geoinf. Sci. 2017, 85, 41–52. [CrossRef]

7. Lynen, S.; Achtelik, M.W.; Weiss, S.; Chli, M.; Siegwart, R. A robust and modular multisensor fusion approach
applied to mav navigation. In Proceedings of the Intelligent Robots and Systems (IROS), Tokyo, Japan, 3–7
November 2013; pp. 3923–3929.

8. Wan, G.; Yang, X.; Cai, R.; Li, H.; Wang, H.; Song, S. Robust and Precise Vehicle Localization based on
Multi-sensor Fusion in Diverse City Scenes. arXiv 2017, arXiv:1711.05805.

9. Mur-Artal, R.; Montiel, J.M.M.; Tardos, J.D. ORB-SLAM: A versatile and accurate monocular SLAM system.
IEEE Trans. Robot. 2015, 31, 1147–1163. [CrossRef]

10. Engel, J.; Schöps, T.; Cremers, D. LSD-SLAM: Large-scale direct monocular SLAM. In Proceedings of the
European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014; pp. 834–849.

11. Engel, J.; Koltun, V.; Cremers, D. Direct Sparse Odometry. IEEE Trans. Pattern Anal. Mach. Intell. 2018,
40, 611–625. [CrossRef] [PubMed]

12. Mur-Artal, R.; Tardós, J.D. Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras.
IEEE Trans. Robot. 2017, 33, 1255–1262. [CrossRef]

13. Grisetti, G.; Stachniss, C.; Burgard, W. Improved techniques for grid mapping with rao-blackwellized
particle filters. IEEE Trans. Robot. 2007, 23, 34–46. [CrossRef]

14. Hess, W.; Kohler, D.; Rapp, H.; Andor, D. Real-time loop closure in 2D LIDAR SLAM. In Proceedings of the
Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016; pp. 1271–1278.

15. Zhang, J.; Singh, S. Low-drift and real-time lidar odometry and mapping. Auton. Robot. 2017, 41, 401–416.
[CrossRef]

16. Pfrunder, A.; Borges, P.V.; Romero, A.R.; Catt, G.; Elfes, A. Real-time autonomous ground vehicle
navigation in heterogeneous environments using a 3D LiDAR. In Proceedings of the Intelligent Robots and
Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017; pp. 2601–2608.

17. Opromolla, R.; Fasano, G.; Rufino, G.; Grassi, M.; Savvaris, A. LIDAR-inertial integration for UAV
localization and mapping in complex environments. In Proceedings of the Unmanned Aircraft
Systems (ICUAS), Arlington, VA, USA, 7–10 June 2016; pp. 649–656.

18. Brenneke, C.; Wulf, O.; Wagner, B. Using 3d laser range data for slam in outdoor environments.
In Proceedings of the Intelligent Robots and Systems, Las Vegas, NV, USA, 27–31 October 2003; Volume 1,
pp. 188–193.

19. Wang, L.; Zhang, Y.; Wang, J. Map-based localization method for autonomous vehicles using 3D-LIDAR.
IFAC-Papersonline 2017, 50, 276–281. [CrossRef]

20. Zhang, J.; Kaess, M.; Singh, S. A real-time method for depth enhanced visual odometry. Auton. Robot. 2017,
41, 31–43. [CrossRef]

21. Lenac, K.; Kitanov, A.; Cupec, R.; Petrović, I. Fast planar surface 3D SLAM using LIDAR. Robot. Auton. Syst.
2017, 92, 197–220. [CrossRef]

22. Zhu, Z.; Yang, S.; Dai, H.; Li, F. Loop Detection and Correction of 3D Laser-Based SLAM with
Visual Information. In Proceedings of the 31st International Conference on Computer Animation and
Social Agents, Beijing, China, 21–23 May 2018; pp. 53–58.

23. Chen, H.; Huang, H.; Qin, Y.; Liu, Y. Vision and Laser Fused SLAM in Indoor Environments with
Multi-Robot System. Assem. Autom. 2019, 39. [CrossRef]

24. Karami, E.; Prasad, S.; Shehata, M.S. Image Matching Using SIFT, SURF, BRIEF and ORB: Performance
Comparison for Distorted Images. arXiv 2017, arXiv:1710.02726.

25. Bosse, M.; Zlot, R. Place recognition using keypoint voting in large 3D lidar datasets. In Proceedings of the
Robotics and Automation (ICRA), Karlsruhe, Germany, 6–10 May 2013; pp. 2677–2684.

26. Gawel, A.; Cieslewski, T.; Dubé, R.; Bosse, M.; Siegwart, R.; Nieto, J. Structure-based vision-laser matching.
In Proceedings of the 2016 IEEE/RSJ International Intelligent Robots and Systems (IROS), Daejeon, Korea,
9–14 October 2016; pp. 182–188.

27. Dubé, R.; Dugas, D.; Stumm, E.; Nieto, J.; Siegwart, R.; Cadena, C. Segmatch: Segment based loop-closure
for 3d point clouds. arXiv 2016, arXiv:1609.07720.

http://dx.doi.org/10.1007/s41064-016-0003-y
http://dx.doi.org/10.1109/TRO.2015.2463671
http://dx.doi.org/10.1109/TPAMI.2017.2658577
http://www.ncbi.nlm.nih.gov/pubmed/28422651
http://dx.doi.org/10.1109/TRO.2017.2705103
http://dx.doi.org/10.1109/TRO.2006.889486
http://dx.doi.org/10.1007/s10514-016-9548-2
http://dx.doi.org/10.1016/j.ifacol.2017.08.046
http://dx.doi.org/10.1007/s10514-015-9525-1
http://dx.doi.org/10.1016/j.robot.2017.03.013
http://dx.doi.org/10.1108/AA-04-2018-065

Sensors 2019, 19, 4252 22 of 22

28. Dubé, R.; Cramariuc, A.; Dugas, D.; Nieto, J.; Siegwart, R.; Cadena, C. SegMap: 3D Segment Mapping using
Data-Driven Descriptors. In Proceedings of the Robotics: Science and Systems (RSS), Pittsburgh, PA, USA,
26–30 June 2018.

29. Finman, R.; Paull, L.; Leonard, J.J. Toward object-based place recognition in dense rgb-d maps.
In Proceedings of the ICRA Workshop Visual Place Recognition in Changing Environments, Seattle, WA,
USA, 26–30 May 2015.

30. Rusu, R.B.; Blodow, N.; Marton, Z.C.; Beetz, M. Aligning point cloud views using persistent feature
histograms. In Proceedings of the Intelligent Robots and Systems, Nice, France, 22–26 September 2008;
pp. 3384–3391.

31. Rusu, R.B.; Blodow, N.; Beetz, M. Fast point feature histograms (FPFH) for 3D registration. In Proceedings
of the Robotics and Automation, Kobe, Japan, 12–17 May 2009; pp. 3212–3217.

32. Scaramuzza, D.; Fraundorfer, F. Visual odometry [tutorial]. IEEE Robot. Autom. Mag. 2011, 18, 80–92.
[CrossRef]

33. Dhall, A.; Chelani, K.; Radhakrishnan, V.; Krishna, K.M. LiDAR-Camera Calibration using 3D–3D
Point correspondences. arXiv 2017, arXiv:1705.09785.

34. Geiger, A.; Lenz, P.; Stiller, C.; Urtasun, R. Vision meets Robotics: The KITTI Dataset. Int. J. Robot. Res. 2013.
[CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/MRA.2011.943233
http://dx.doi.org/10.1177/0278364913491297
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	ClusterMap Building
	SLAM for ClusterMap Building
	Building ClusterMap
	Cluster Descriptor for Clusters in ClusterMap

	Relocalization Algorithm Based on ClusterMap
	Cluster Descriptor Matching
	Removing Outliers Based on Geometric Verification

	Experiments
	Evaluation on KITTI Data Set
	Evaluation with Our Experimental Vehicle
	Parameters Evaluation
	Discussion

	Conclusions
	References

