Al-Sayouri et al. Applied Network Science
https://doi.org/10.1007/541109-019-0160-1

(2019) 4:88

Applied Network Science

RESEARCH Open Access

SURREAL: Subgraph Robust
Representation Learning

Check for
updates

Saba A. Al-Sayouri'”, Danai Koutra®T, Evangelos E. Papalexakis®>™ and Sarah S. Lam' T

*Correspondence:
ssyouril@binghamton.edu

TDanai Koutra, Evangelos E.
Papalexakis and Sarah S. Lam
contributed equally to this work.
'Systems Science and Industrial
Engineering Department,
Binghamton University, 4400 Vestal
Pkwy E, 13902 Binghamton, NY,

United States
Full list of author information is

available at the end of the article

@ Springer Open

Abstract

The success of graph embeddings or nodrepresentation learning in a variety of
downstream tasks, such as node classification, link prediction, and recommendation
systems, has led to their popularity in recent years. Representation learning algorithms
aim to preserve local and global network structure by identifying node neighborhoods.
However, many existing network representation learning methods generate
embeddings that are still not effective enough, or lead to unstable representations due
to random processes (e.g., random walks to generate context) and thus, cannot
generalize to multi-graph problems. In this paper, we propose SURREAL, a novel, stable
graph embedding algorithmic framework that leverages “spatio-electric” (SE)
subgraphs: it learns graph representations using the analogy of graphs with electrical
circuits. It preserves both local and global connectivity patterns, and addresses the
issue of high-degree nodes that may incidentally connect a pair of nodes in a graph.
Further, it exploits the strength of weak ties and meta-data that have been neglected
by baselines. The experiments show that SURREAL outperforms state-of-the-art
techniques by up to 37% (6% on average) on different multi-label classification
problems. Further, in contrast to baseline methods, SURREAL, being deterministic, is
stable and thus can generalize to single and multi-graph tasks.

Keywords: Large-scale information networks, Representation learning, Graph
embeddings, Graph embeddings

Introduction

Conventional graph mining algorithms (Goyal and Ferrara 2017) have been designed
to learn a set of hand-crafted features that best perform to conduct a specific down-
stream task; i.e., link prediction (Liben-Nowell and Kleinberg 2007), node classification
(Bhagat et al. 2011), and recommendation (Yu et al. 2014). However, present research
has steered the direction towards a more effective way to mine graphs: feature learn-
ing (Bengio et al. 2013). That is, a unified set of features that can effectively generalize
over distinct graph mining-related tasks is exploited. To this end, recent research efforts
have focused on designing either unsupervised or semi-supervised algorithms to learn
node representations (Perozzi et al. 2014; Perozzi et al. 2016; Grover and Leskovec 2016;
Tang et al. 2015). Such efforts have been initiated in the domain of natural language pro-
cessing (NLP) (Mikolov et al. 2013; Le and Mikolov 2014; Mikolov et al. 2013), where
two word2vec (Mikolov et al. 2013) models have been proposed, namely continuous
bag of words (CBOW) and SkipGram. Inspired by the recent advancements in the NLP
© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and

reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1007/s41109-019-0160-1&domain=pdf
mailto: ssyouri1@binghamton.edu
http://creativecommons.org/licenses/by/4.0/

Al-Sayouri et al. Applied Network Science (2019) 4:88 Page 2 of 20

domain, and the analogy in the context, various algorithms have been developed to learn
graph representations (Perozzi et al. 2014; Tang et al. 2015; Grover and Leskovec 2016).
However, since real-world networks convey more complex relationships compared to
those emerging in corpora, some recent representation learning algorithms (Perozzi et al.
2014; Perozzi et al. 2016; Grover and Leskovec 2016) generate representations that are still
not effective enough in preserving network structure, and have room for improvement.
This in turn impacts the quality of node representations, which compromises the perfor-
mance of downstream processes. In addition, state-of-the-art algorithms, such as random
walk-based methods, share a major stability issue that renders them less robust and appli-
cable to multi-graph problems (Heimann and Koutra 2017; Heimann et al. 2018), such
as graph similarity (Koutra et al. 2013) and network alignment (Bayati et al. 2009). This
can be attributed to the fact that nodes on random walks are sampled by ID, where the
basic assumption is that graphs are permuted and nodes that should align do not neces-
sarily have the same ID. As a result, while baseline representation learning methods strive
to preserve similarities among nodes in a single graph, they fail to maintain similarities
across different runs of the methods, even with using the same dataset (Heimann et al.
2018) (graph similarity (Koutra et al. 2013) and network alignment (Bayati et al. 2009)).

In addition to the representations’ robustness, the quality of the learned representations
is heavily influenced by the preserved local and global structure, matters. Therefore, we
develop a robust graph embedding method that preserves connectivity patterns unique to
undirected and (un)weighted graphs. It employs the concept of network flow represented
by spatio-electric (SE) subgraphs. The SE subgraphs leverage the analogy with electri-
cal circuits: a node is assumed to serve as a voltage source, and an edge is assumed to
be a resistor, where its conductance is considered as the weight of the edge. Forming a
SE subgraph allows to: (1) Concurrently capture the node local and global connections,
(2) Account for the node degree imbalances by downweighing the importance of paths
through high-degree nodes (hops), (3) Take into account both low- and high-weight
edges; and (4) Account for meta-data that is largely being neglected by existing embed-
ding methods. Meta-data represents network’s flow that indicates the actual unnoticeable
interactions that may take place between any two nodes in the network. Capturing net-
work’s flow can significantly improve that preservation of network global structure, in
particular.

To summarize, our contributions are:

1. Flow-based Formulation. We propose a graph embedding approach that robustly
preserves local and global structure by leveraging the notion of network flow to
produce approximate but high-quality SE subgraphs between pairs of non-adjacent
nodes in undirected and (un)weighted large-scale graphs. We use the formed SE
subgraphs to identify the node neighborhoods and not restrict ourselves just to
one- or two-hop neighbors.

2. Algorithm for Stable Representations. Contrary to all state-of-the-art methods,
which involve randomness, reflected on the embeddings and their quality, our
proposed SUbgraph Robust REpresentAtion Learning method, SURREAL!,
produces consistent embeddings across independent runs.

3. Experiments. We extensively evaluate SURREAL empirically, and we demonstrate
that it outperforms the state-of-the-art algorithms in two aspects. (1) Effectiveness:

Al-Sayouri et al. Applied Network Science (2019) 4:88 Page 3 of 20

SURREAL outperforms state-of-the-art algorithms by up to 36.85% on multi-label
classification problem, and (2) Robustness: in contrast to baseline methods,
SURREAL is stable across different runs on the same dataset.

Related work

Representation Learning. Recent work in network representation learning has been
largely motivated by the new progress in natural language processing (NLP) domain
(Mikolov et al. 2013; Le and Mikolov 2014; Mikolov et al. 2013), due to the existing
analogy among the two fields, where a network is represented as a document. One
of the NLP leading advancements is rooted to the SkipGram model (Mikolov et al.
2013), due to its efficiency in scaling to large-scale networks. However, merely adopt-
ing the SkipGram model for graph representation learning seems to be insufficient in
capturing local and global connections (Perozzi et al. 2014; Tang et al. 2015; Grover
and Leskovec 2016), because of the sophisticated connectivity patterns emerge in real-
world networks, but not in text corpora. Specifically, DeepWalk (Perozzi et al. 2014;
Perozzi et al. 2016), for instance, employ small truncated random walks to approx-
imate the neighborhood of a node in a graph. LINE (Tang et al. 2015) proposes to
preserve the network local and global structure using first- and second-order prox-
imities (Zhang et al. 2017; Goyal and Ferrara 2017), respectively. However, using the
second-order proximity allows to preserve network structure only up to 2-hop neigh-
bors. To the contrary, SURREAL is able to preserve more general global structure,
since there is no pre-specified number of hops examined. Another approach, node2vec
(Grover and Leskovec 2016), proposes to preserve homophily and structural equiv-
alence using biased random walks. Recently, graph convolutional network (GCN)
methods (Chen et al. 2018; Hamilton et al. 2017) are developed to learn network rep-
resentations. Unlike these works, we propose to effectively and robustly learn node

representations.

Proximity Subgraphs. There is a significant body of work addressing the problem of
finding the relationships between a set of given nodes in a network. For instance, (Akoglu
et al. 2013) finds simple pathways between a small set of marked nodes by leveraging
the Minimum Description Length principle, while (Tong and Faloutsos 2006) defines the
center-piece subgraph problem as finding the most central node with strong connections
to a small set of input nodes. The work on connection subgraphs (Faloutsos et al. 2004),
which capture proximity among any two non-adjacent nodes in arbitrary undirected and
(un)weighted graphs, leverage the analogy with electrical circuits. Proximity subgraphs
have also been employed for graph visualization (Rodrigues Jr. et al. 2006). Our work is
the first to explore and extend connection subgraphs to define appropriate neighborhoods

for representation learning.

Problem formulation

Preliminary definition

Information Network. An information network is defined as a graph G = (V, £), where
V represents the set of nodes connected together by a set of edges £. The weight of an
edge (u,v) € £, Wy, indicates the strength of the connection between nodes « and v. In
Table 1, we list the symbols and definitions used throughout the paper.

Al-Sayouri et al. Applied Network Science (2019) 4:88 Page 4 of 20

Problem definition
Learning Large-scale Network Representations. Given a large-scale (un)weighted and
undirected graph; G = (V, &), with |V| = #n nodes and |£| = m edges, the prob-
lem of learning node representations seeks to preserve the network structure (e.g., local,
global) while mapping each node v € V from a high-dimensional feature space to a low-
dimensional feature space R? using a mapping function, fg: V — R?, where d <« [V|.
Since learning node representations aims to preserve network structure, state-of-the-art
methods have employed various proximity metrics, such as first-order proximity (Goyal
and Ferrara 2017; Zhang et al. 2017) that strives to preserve network local connections,
and second-order proximity (Goyal and Ferrara 2017; Zhang et al. 2017) that aims to
capture network global structure at a maximum distance of 2-hop neighbor from a given node.
Nevertheless, since a small percentage of a network’s nodes are explicitly connected
using first-order connections, and the large majority of network nodes are linked together
via higher-order connections (e.g., second-order or higher), first- and second-order
proximitiy are insufficient to effectively capture network structure, we propose to solve
the following problem:

Given a (un)weighted and undirected graph G(V, E) with n nodes and m edges,
and by using SE subgraphs,

Jointly Learn local and global network structure, and

Generate node representations.

We describe our proposed method, SURREAL, in detail next.
Table 1 Symbols and definitions

Symbol Definition

G=W, &) (Un)weighted and undirected graph

V.IVI=n Set and number of vertices (nodes), respectively

ENEl=m Set and number of links (edges), respectively

G Modified graph after adding node z

N (u) Set of direct neighbors of node w, i.e, nodes connected to
Ng(u) Expanded neighborhood of node u

Ng(u) Refined neighborhood of node u

EX Set of expanded nodes that will form Ng(w) (initialized to {u})
P Set of pending nodes, initialized to u's neighbors, N'(u)

W oww Weight of an edge (u,v) € £

Vau Voltage of node u

deg(u) Weighted degree of node u

fa Mapping function

f(u) Feature representation of node

D (u,v) Distance between nodes » and v

C(v,w) Weight/Conductance of the edge connecting nodes v and w
I(s,t) Current flows between nodes s and ¢ in the Ng(w)
Pr(Ng(u)| f(u) Probability of observing the refined neighborhood of w given its feature representation
d Dimensionality of learned representation

o Scalar; penalty parameter

MAXe, MAXg Desired size of Ng(u) and Ng(u), respectively

z Universal sink node

c Nearest common neighbor of non-neighboring nodes « and v
w A node that belongs to Ng(u)

R Set of real numbers

NLP Natural language processing

CBOW Continuous bag of words

SE Spatio-electric

Al-Sayouri et al. Applied Network Science (2019) 4:88 Page 5 of 20

Proposed method: SURREAL

In this section, we describe our proposed method, SURREAL, a deterministic algorithm
that is capable of preserving local and global—beyond two hops—connectivity patterns.
It consists of two main steps: (1) Neighborhood definition via SE subgraphs (3), which
consists of neighborhood expansion and refinement phases, and (2) Node representation
vector update (3). Since our method is deterministic, it can be applied to multi-graph
problems, unlike previous works (Perozzi et al. 2014; Grover and Leskovec 2016; Perozzi
et al. 2016) that employ random processes, such as random walks.

Step 1: neighborhood definition
The heart of learning node representations is to obtain representative node neighbor-
hoods, which preserve local and global connections simultaneously. We propose to define
node neighborhoods by leveraging the analogy between graphs and electrical circuits.
Specifically, we introduce the idea of spatio-electric (SE) subgraphs, which are defined as
proximity subgraphs that capture network structuer and formed on spatial and electri-
cal bases. In particular, for a given node, we first expand its neighborhood on a distance
basis to form the expanded subgraph. We afterward, refine the expanded subgraph on an
electrical current (network flow) basis to ultimately generate the refined subgraph that
represents the node neighborhood. We primarily summarize the benefit of using SE sub-
graphs in two points: (1) They render our method capable to better preserve network
global structure—beyond two hops; and (2) Unlike baseline methods that employ ran-
dom processes (e.g., random walks) for neighborhood generation, the use of SE subgraphs
leads to generate robust neighborhoods, and thus robust representations across different
runs on the same dataset.

The neighborhood definition step consists of two phases: (A) Neighborhood expansion, and
(B) Neighborhood refinement. We describe each phase next, and give an illustration in Fig. 1.

Phase A: neighborhood expansion - Ng(u)

Given a node u, we propose to gradually expand its neighborhood on a distance basis.
Specifically, we employ the analogy with electrical circuits in order to capture the dis-
tances between u and the other nodes in the network, and then leverage these distances
to guide its neighborhood expansion. This phase refers to the spatial part of the SE
subgraphs formation process.

Fig. 1 A description of SURREAL algorithm neighborhood definition step main phases: (a) Neighborhood
expansion of node u through n — hop neighbors to generate Ng(u) on distance basis. Node z indicates the
grounded universal sink node. (b) Neighborhood refinement of Ng(u) to generate Ng(u) on current basis

Al-Sayouri et al. Applied Network Science (2019) 4:88 Page 6 of 20

Graph Construction. We first construct a modified network G’ from G by introducing
a universal sink node z (grounded, with voltage (V, = 0), and connect all the nodes
(except from u) to that, as shown in Fig. 1a. The newly added edges in G’ for every node
v € {V \ u} are weighted appropriately by the following weight or conductance (based
on the circuit analogy):

Cva=a Y Ca), (1)
xeN (v)\z

where C(v,x) is the weight or conductance of the edge connecting nodes v and x, N (v)
is the set of 1-hop neighbors of v, and @« > 0 is a scalar (set to 1 for unweighted
graphs).

In the modified network G/, the distance, or proximity, between the given node # and
every other node is defined as:

deg® (u)
D(u,v) = log C2(uy)’ forv e N(u).

2
logD(u, c) + D(c,v), for v ¢ N (u),and u,v € N (c). @

where deg(u) is the weighted degree of u (i.e., the sum of the weights of its incident
edges), and the distance for non-neighboring nodes u# and v is defined as the distance
from each one to their nearest common neighbor ¢ € V. During the neighborhood
expansion phase, the distance formula addresses the issue of high-degree nodes (e.g.,
hops) that are generally incidentally connected—unrelated—to a specific node in the
graph, but appear closer than low-degree nodes that may be truly connected—related—
to that node. Therefore, to downweigh the importance of paths through high-degree
nodes, and serve our aim to include proximal nodes during the expansion phase,
we significantly penalize the effect of high-degree nodes in the numerator using the
term C2(u, v).

Distance-based Expansion. After constructing the circuit-based graph, we leverage
it to expand u’s neighborhood. Let EX be the set of expanded nodes that will form the
expansion graph Ng(u) (initialized to {u}), and P be the set of pending nodes, initialized
to u’s neighbors, A/ (u). During the expansion process, we choose the closest node to
u (except for z), as defined by the distance function in Eq. 2. Intuitively, the closer the
expanded node v to the source node u, the less information flow we lose. Once a node
v is added to the expansion subgraph, we add its immediate neighbors to P, and we
repeat the process until we have |[EX| = MAXEg nodes, where MAXE is a user param-
eter that represents the desired size of expanded subgraph. We discuss the choice of
MAXE in “Experiments” section. We show the neighborhood expansion pseudocode in
Algorithm 1A. The procedure of computing the Ng(u) takes O()) time.

Al-Sayouri et al. Applied Network Science (2019) 4:88 Page 7 of 20

Algorithm 1: SURREAL Algorithm - Step 1
1 Phase A: Neighborhood Expansion

Input : Graph G(V,¢&)

u: node to expand

MAXE (default : 1200): max size of Ng(u)
Output: Ng(u): expanded neighborhood

Add grounded node z to G(V, &)
Connect all nodes u € V (except v and z) to z
Initialize EX = {u}
Initialize P= N(u) = {vi,v2,...,on}
while |EX| < MAXg do
minDist = oo
for p € P do

newDist = D(u,p) = Eq. (2)

if minDist > newDist then

| minDist = newDist

end
end
Add node(minDist) to EX
Remove node(minDist) from P
Add neighbors of node(minDist) to P

© 0 N O 0k W N

e =
ook W N H O

[
=]

end
Remove node z from G(V, €)
return Ng(u): subgraph of G induced on EX

Phase B: Neighborhood Refinement

Input : Ng(u)
MAXp (default : 800): max size of Np(u)
u : node to refine

Output: Ngr(u): refined neighborhood

21 Add node z to graph Ng(u)

22 Connect all nodes in Ng(u) (excl. u, z) to z

23 Initialize voltages V(u) =1 and V(z) =0

24 Initialize Ng(u) = { }

25 Calculate voltage & current for each u € Ng(u)
26 while |NR(U)‘ < MAXpg do

27 Add all the nodes along the path that

28 maximizes the current I(u,z) to Ng(u)

20 end

30 return Ng(u)

R R
© ® N

N
=]

Example 1 Figure 2 shows one example of generating Np(u) for an undirected,
unweighted graph G, in which the original edges have conductance (weight) equal to 1, and
the size of the expanded neighborhood is set to MAXg = 5. The conductances for the new
edges in G' (red-dotted lines), computed via Eq.1, are shown in Fig. 2a. Based on the dis-
tances between u and every other node, which are defined by Eq. 2 and shown in Fig. 2f, the
neighborhood of u is expanded on a distance basis.

Phase B: neighborhood refinement - Ng(u)

Since some nodes may appear close to the node we are expanding, and thus are included
in its neighborhood during the expansion phase, while being barely interacted (low net-
work flow), in this phase, we aim to refine the expanded neighborhood by removing
existing nodes that are less related using a refinement process. As shown in Fig. 1b, the
neighborhood refinement phase takes an expanded subgraph as an input and returns a
refined neighborhood subgraph as an output, which is free of spurious graph regions.
Unlike the previous phase that is based on distances, the refined subgraph is generated
on a network flow (current) basis. Therefore, this phase relates to the electrical part of
the SE subgraphs formation process. We show the neighborhood refinement pseudocode
in Algorithm 1B.

Al-Sayouri et al. Applied Network Science (2019) 4:88 Page 8 of 20

Input : G(V,E)
5
= Node Pair Distance(D)
3 2 Output : Ng(u)
(u,1) 0.95
Q@ (u,2) 0.95
z (u,3) 0.95
& = o (u,4) — (u,50) 4.91
! ® @ ® (u,51) 2.51
2 (u, 52) 2.51
i (e) (u,53) — (u, 56) 2.95
(a) (f) Distances between node
EX=u EX=u.1.2 EX=u 123 u and nodes 1-56.
P=1,2,3 P=3,...,52 P=4,....56
(Compute : Dy;, D2, Du3 ... Dyso| (Computc : Dys, ..., Dys2| (Compute : Dy, ..., Duse
Pick Min D = Dy Pick Min D = D,y [PickMinD = D Pick Min D = D51

Fig. 2 Neighborhood expansion example. (a) Represents the entire graph, where node u is the node to
expand. The number on each red-dotted line refers to an edge conductance. (b, ¢, d) and (e) Indicate the
expansion of node u by adding its nearest neighbors: 1, 2, 3,and 51, respectively, to form the expanded
neighborhood of node u, Ng(u). (f) Represents the computed distances between and its neighbors

In a nutshell, in this phase, we first link the nodes of the expansion subgraph Ng(u)
(except for node u) to the previously introduced grounded node z. Then, we create
the refined neighborhood subgraph by adding end-to-end paths from node z to node
u one at a time, in decreasing order of total current. The underlying intuition of the
refinement phase is to maximize the current that reaches to node z from the source node
u. By maximizing the current, we maximize the information flow between the source
node # and node z, which ultimately serves our goal of including proximal nodes to
the source node u in its Nr(x). The process stops when the maximum predetermined
refined subgraph size, [Nr(u)| = MAXg, is reached. We discuss the choice of MAXy in
“Experiments” section. Each time a path is added to the refined subgraph, only the nodes
that are not already included in the subgraph are added. We use dynamic programming
to implement our refinement process, which is like a depth first search (DFS) approach
with a slight modification.

To that end, we need to calculate the current I flows between any pair of neighbors in
the expanded subgraph. In our context, I indicates the meta-data or network flow. We
compute the current / flow from source node s to target node ¢ using Ohm’s law:

I(s,t) = C(s,1)-[V() = V()] 3)

where the V(s) > V(¢) are the voltages of s and ¢, satisfying the downhill constraint (oth-
erwise, there would be current flows in the opposite direction). In order to guarantee this
satisfaction, we need to sort the subgraph’s nodes in a descending order, based on their
calculated voltage values, before we start current computations. The voltage of a node
s € Vis defined as:

V)-CGs,
Zve/\/z(s) C((Svi)i(s V), V nodes s # u, z.

Vis)=11, s=u. (4)

0, s=z.

where C(s, v) is the conductance or weight of the edge between nodes s and v, as defined in
Eq. 1.

Example 2 Given the expanded neighborhood NE(u) in Example 1, the second phase of
SURREAL gradually refines it on a current basis, as shown in Fig. 3. We first compute the
voltages by solving the linear system in Eq. 4, and include them in the nodes of (b). Then,

Al-Sayouri et al. Applied Network Science (2019) 4:88 Page 9 of 20

0385 Total current flow in paths
Input : Ng(u) Output : Nr(u) between u and z in Ny (1)

7 ® ® 3 . Path Total Current
‘; — = 7 u—r 11—z 1.94
2 e 08! = = 2 2 1.44
1 0.11 5 083 U=rrh & .
- u— 3— 2z 1.68

u— 2— 51—z 1.00

(@ (b) (© (@) ®

Fig. 3 Neighborhood refinement example. (a) Represents the expanded neighborhood of node u, Ng(u).
The number on each red-dotted line refers to an edge conductance. (b) Indicates the nodes’ voltages (the
numbers shown inside nodes) and currents flow through edges (reveal on the red-dotted lines)
computations. (€) and (d) Indicate the refinement of node u by adding the neighbors: node 1 and 3 that
maximizes the current flows from node u to node z to form the refined neighborhood of node u, Ng(u). ()
Refers to the computation of total current flows through each possible path between nodes u and z

the current flow of each edge connecting nodes in the expanded neighborhood N (u) is
computed using Eq.3 such that the downbhill constraint’ is satisfied (current flowing from
high to low voltage), as shown over the red-dotted edges in (b). Given the current values,
we enumerate all possible paths between nodes u and z, and give their total current flows
in (f). The paths are then added in descending order of total current into Ng(u) until the
stopping criterion is satisfied. In (c), we show the first such path. Finally, (d) gives the final
neighborhood for MAXg = 3.

Remarks

(1) Need for SE Subgraphs. The notion of SE subgraphs is beneficial in our setting, since
they allow us to: (1) Better control the search space, as we robustly generate node neigh-
borhoods on distance and current bases without limiting ourselves to K-hop neighbors;
(2) Benefit from the actual flow, meta-data, that is being neglected by state-of-the-art
methods; (3) Exploit the strength of weak ties; (4) Avoid introducing randomness caused
by random/biased walks; (5) Address the issue of high-degree nodes, that is, a node with
a high-degree distribution has a low chance to be included in the SE subgraph, as a pair of
nodes might be incidentally connected through a high-degree node; and (6) Better handle
non-adjacent nodes that are ubiquitous in real-world large-scale graphs.

(2) SURREAL neighborhood vs. context in baseline methods. Unlike existing rep-
resentation learning methods: (1) We preserve the local and global structure of network
by accounting for the immediate neighbors and neighbors at increasing distances of the
source node u to identify its neighborhood; (2) We generate neighborhoods on distance
and network flow bases; (3) We address the issue of high-node degree distribution; (4) We
concurrently identify neighborhoods while maximizing proximity among non-adjacent
nodes, which are abundant in real-world networks; and (5) We design our algorithm such
that it yields consistent stable representations that suite single and multi-graph problems.

(3) SURREAL vs. connection subgraph algorithm (Faloutsos et al. 2004). It is impor-
tant to note that the computations of “current” (in SURREAL) and “delivered current”
(in (Faloutsos et al. 2004)) are different. The computation of current is not as informative
as delivered current, but is more efficient. The use of delivered current was not a major
struggle in (Faloutsos et al. 2004), because that algorithm only processes one subgraph.
However, we find that it is problematic for generating multiple neighborhoods due to: (1)
The large size of the expanded subgraph, |[Ng(u)|; (2) The large size of refined subgraph,
INR(t)| (order of 800), compared to the display generation subgraph size capped at 30

Al-Sayouri et al. Applied Network Science (2019) 4:88 Page 10 of 20

nodes; and (3) The extremely large number of subgraphs (equal to the number of nodes
|V| = n) that need to be processed, to ultimately generate node neighborhoods.

(4) Computational complexity. The overall computational complexity of SURREAL is
oV?).

Step 2: node representation vector update

After identifying node neighborhoods in a graph, we aim to learn node representa-
tions via the standard SkipGram model (Mikolov et al. 2013). However, since SURREAL
yields completely deterministic representations, we avoid the randomness implied by the
SkipGram model by using the same random seed every time we employ it. The SkipGram
objective maximizes the log-probability of observing the neighborhood generated during
the neighborhood definition step, given each node’s feature representation:

max Y _ log(Pr(Ng(u) | f(w)), (5)
f ueV
where Ng(u) is the refined neighborhood of node u, and f () is its feature representation.
Following common practice, we make the maximum likelihood optimization tractable by
making two assumptions:

Assumption 1 — Conditional independence. We assume that for node u, the likeli-
hood of observing a neighboring node is completely independent of observing any other
neighboring node, given node u’s feature representation, f(1):

Pr(Ng@) | fw) =] Prowl|f) (6)

WENR (u)
where w represents any node that belongs to node u’s refined neighborhood.

Assumption 2 — Symmetry in feature space. The source node u and any node w in its
refined neighborhood Ng (i), have a symmetrical impact on each other in the continuous
feature space. Therefore, the conditional probability, Pr(w | f(u)), is modeled using the
softmax function:

exp(f(w) - f (u))
Y ovev exp(f) - f(w))

Based on the above two assumptions, we can simplify the objective in Eq. 5 as follows:

Pr(w | f(u)) = 7)

max Z |: — logZ exp(f(v) - f(w)) + Z fw) -f(u):| (8)
f e vev WENR(u)

We note that performing such calculations for each node in large-scale graphs is com-
putationally expensive. Therefore, we approximate the function using negative sampling
(Mikolov et al. 2013). We optimize the objective shown in Eq. 8 using stochastic gradient
descent.

Experiments

In this section, we aim to answer the following questions:

(Q1) How does SURREAL perform in multi-label classification compared to baseline rep-
resentation learning approaches? (Q2) How stable are the representations that SURREAL
and baseline methods learn? (Q3) How sensitive is SURREAL to its hyperparameters?

Al-Sayouri et al. Applied Network Science (2019) 4:88 Page 11 of 20

Table 2 A brief description of evaluation datasets

Dataset # Nodes # Edges # Labels Network Type
PPI (Grover and Leskovec 2016) 3,890 76,584 50 Biological
Wikipedia (Grover and Leskovec 2016) 4,777 184,812 40 Language
BlogCatalog (Grover and Leskovec 2016) 10,312 333,983 39 Social
CiteSeer (Tang et al. 2015) 3,312 4,660 6 Citation
Flickr (Mislove et al. 2007) 80,513 5,899,882 195 Social
Youtube (Mislove et al. 2007) 1,138,499 2,990,443 47 Social

Before we answer these questions, we provide an overview of the datasets, and the
baseline representation learning algorithms that we use in our evaluation.

Datasets. To showcase the generalization capability of SURREAL over distinct
domains, we use a variety of datasets, which we briefly describe in Table 2.

Baseline Algorithms. We compare SURREAL with three state-of-the-art baselines:
DeepWalk (Perozzi et al. 2014), node2vec (Grover and Leskovec 2016), and Walklets
(Perozzi et al. 2016). The reason why we choose these state-of-the-art methods is the ran-
dom way they adopt for neighborhood definition using random walks. On the contrary,
in SURREAL, we follow a completely deterministic manner, which makes our method
applicable for single and multi-graph problems. For all of the methods, we set the number
of walks per node to 10, walk length to 80, the neighborhood size to 10, and number of
dimensions of the feature representation d = 128. For node2vec, we set the return param-
eter p = 1, and the in-out parameter ¢ = 1, in order to capture the homophily, and the
structural equivalence connectivity patterns, respectively. For Walklets, we set the feature

representation scale, S = 2, which captures the relationships captured at scale 2.

Experimental Setup. For SURREAL parameter settings, we set the expansion neigh-
borhood subgraph size [Ng(#)| = 1200. In order to compare with the baseline methods,
we set the refinement neighborhood subgraph size, |[Nr(#)| = 800, and the number
of dimensions of the feature representation, d = 128, in line with the values used for
DeepWalk, node2vec, and Walklets.

Q1. Multi-label classification

Setup. Multi-label classification is a single-graph canonical task, where each node in a
graph is assigned a single or multiple labels from a finite set £. We input the learned node
representations to a one-vs-rest logistic regression classifier with L2 regularization. We
repeat our experiments 10 times and report the mean Micro-F1 score results. We omit the

Table 3 Micro-F1 scores for multi-label classification on PPI, Wikipedia, and CiteSeer datasets

Algorithm PPI Wikipedia CiteSeer

10% 50% 90% 10% 50% 90% 10% 50% 90%
DeepWalk 12.35 18.23 20.39 42.33 44.57 46.19 46.56 52.01 53.32
node2vec 16.19 20.64 21.75 44.38 48.37 48.85 50.92 5249 56.72
Walklets 16.07 21.44 22.10 43.69 44.68 45.17 47.89 52.73 54.83
SURREAL 16.91 21.71 23.97 45.68 48.10 49.90 48.80 53.36 57.12
G.O. DWalk 36.85 19.08 17.55 7.90 7.91 8.03 4.80 2.59 7.13
G.O. N2vec 4.41 5.16 10.19 2.92 - 2.14 - 1.63 0.70
G.O. Walk 5.19 1.23 8.47 4.53 7.64 10.48 1.87 1.18 4.17

Bolded numbers represent the best performance. By “G.0." we denote “gain over”

Al-Sayouri et al. Applied Network Science (2019) 4:88 Page 12 of 20

Table 4 Micro-F1 scores for multi-label classification on BlogCatalog, Flickr, and Youtube datasets
Algorithm BlogCatalog Flickr Youtube

10% 50% 90% 10% 50% 90% 10% 50% 90%
DeepWalk 30.12 34.28 34.83 37.70 39.62 42.36 40.62 42.09 43.77
node2vec 34.53 36.94 37.99 38.90 41.39 43.91 41.53 43.12 44.45
Walklets 26.90 29.09 30.41 38.32 40.58 42.62 41.15 42.97 43.89
SURREAL 31.02 34.85 36.42 38.98 42.31 44.26 41.94 43.76 45.26
G.O. DWalk 3.00 1.63 4.55 3.40 6.79 4.49 3.25 3.97 3.40
G.O. N2vec - - - 0.21 2.22 0.80 0.10 1.48 1.82
G.O. Walk 15.27 19.80 19.75 1.72 4.26 3.85 1.92 1.84 3.12

Bolded numbers represent the best performance. By “G.0.” we denote “gain over”

results of other evaluation metrics—i.e., Macro-F1 score, because they follow the exact
same trend. It is worth mentioning that multi-label classification is a challenging task,
especially when the finite set of labels £ is large, or the fraction of labeled vertices is small
(Rossi et al. 2017).

Results. In Tables 3 and 4, we demonstrate the performance of SURREAL algorithm
and compare it to the three representation learning state-of-the-art methods. Our results
are statistically significant with a p-value < 0.02. Overall, SURREAL outperforms or is
competitive with the baseline methods, while also having the benefit of generalizing to
the multi-network problems that the other methods fail to address. Below we discuss the
experimental results by dataset.

PPI: It is remarkable that using various percentages of labeled nodes, SURREAL out-
performs all the baselines. For instance, SURREAL is more effective than DeepWalk by
36.85% when the labeled nodes are sparse (10%), 19.08% for 50% of labeled nodes, and
17.55% when the percentage of labeled nodes is 90%.

Wikipedia: We observe that SURREAL outperforms the three baseline algorithms by
up to 10.48% when using 90% of labeled nodes. In the only case where SURREAL does
not beat node2vec, it is ranked second.

BlogCatalog: We observe that SURREAL has a comparable or better performance than
DeepWalk and Walklets for various percentages of labeled nodes. Specifically, it outper-
forms DeepWalk by up to 4.55% and Walklets by up to 19.75%, when the percentage of
labeled nodes is 90%. For more labeled nodes, SURREAL achieves similar performance to
node2vec.

CiteSeer: Similar to Wikipedia, SURREAL outperforms the state-of-the-art algorithms,
and achieves a maximum gain of 7.13% with 90% of labeled nodes.

Flickr: We perceive that SURREAL outperforms the other three baselines by up to
6.79%, when using 50% of labeled nodes.

Youtube: We observe that SURREAL outperforms baseline methods, and achieves a
maximum gain of 3.97% with 50% of labeled nodes.

Discussion: From the results, it is evident that SURREAL mostly outperforms the
baseline techniques on PPI, Wikipedia, CiteSeer, Flickr, and Youtube networks, with
exceptions, where SURREAL was very close to the best method. This can be rooted in
the fact that SURREAL is more capable in preserving the global structure in such net-
works. On the other hand, although SURREAL has a very comparable performance with
node2vec on BlogCatalog dataset, it might be that the 2" order biased random walks

Al-Sayouri et al. Applied Network Science (2019) 4:88 Page 13 of 20

of node2vec are slightly more capable in preserving the homophily, and the structural
equivalence connectivity patterns in BlogCatalog network.

Q2. Representation learning stability

Setup. Surveying the existing node representation learning methods, we perceive that
the tasks for which such algorithms are being evaluated on are limited to single-graph
related tasks—i.e., prediction, recommendation, node classification, and visualization.
Since many tasks involve multiple networks (e.g., graph similarity (Koutra et al. 2013),
graph alignment (Bayati et al. 2009), temporal graph anomaly detection (Koutra et al.
2013), brain network analysis for a group of subjects (Fallani et al. 2014)), we seek to
examine the applicability of representations learning approaches to multi-network set-
tings. Heimann and Koutra Heimann and Koutra (2017) states that existing embedding
algorithms are inappropriate for multi-graph problems, and attributes this to the fact that
different runs of any method yield different representations every time the technique is
run even if the same dataset is used. To that end, SURREAL is fully deterministic, with
the goal of achieving stable and robust outcomes. We evaluate SURREAL's stability by
verifying the similarity of the learned vectors across different independent runs of the
methods.

Results. Figure 4 shows the embeddings of two different runs of each approach against
each other for a randomly selected set of nodes. For d = 128, we visualize the results
for three randomly selected dimensions of node2vec, DeepWalk, and Walklets. To avoid
drawing a biased conclusion, we repeat the same experiment multiple times using differ-
ent sets of randomly selected dimensions for the three baseline methods and the same
observation holds. For SURREAL, we intentionally choose the same three dimensions
randomly selected for each of the baseline methods. In the interest of space, we only show
the visualization results of SURREAL using the same three dimensions (39,55,111) used
for Walklets method. The results are equivalent for all the dimensions. If all points fall
on (or close to) the diagonal, this indicates stability, which is a desirable attribute of a
robust graph embedding. Figure 4a—c show that, as expected node2vec, DeepWalk, and
Walklets, suffer from significant variation across runs. To the contrary, Fig. 4d shows that
SURREAL obtain perfectly consistent embeddings across runs, and thus it is robust.

Q3. Parameter sensitivity
For sensitivity analysis, we use the Wikipedia dataset with 50% labeled nodes. We perform
the following three experiments:

Size of the expansion neighborhood subgraph |Ng(u)|. First; we demonstrate the
impact of varying the size of the expanded neighborhood, |Ng(u)|, in a multi-label classi-
fication problem. Therefore, we run SURREAL by varying the size of Ng(u) from 600 to
1800 nodes in 200 increments. We limit the size of the refined neighborhood, |Nr(x)| =
400. Figure 5a shows the Micro-F1 score results. We observe that by increasing the size of
NE(u), the corresponding Micro-F1 score increases up to a certain limit (|Ng(z)| = 1000),
while it starts to decrease afterwards. This can be attributed to the fact that enlarging
the Ng(u) to more than 1000 introduces noise to the generated neighborhood, which
ultimately compromises the performance.

Size of the refinement neighborhood subgraph |Ny(u)|. Fixing the size of expanded
neighborhood, |[Ng(x#)] = 1200, we now examine the impact of altering the size of

Al-Sayouri et al. Applied Network Science (2019) 4:88
50 Dim 2.1 50 Dim 48 50 Dim 68 ,
40 I 40) 40 . e
1 N SR
W= o s .n .
~ 30 - -/ . ~ 30 H . 30 s C R
c " £ " . c - " c . r -
2 wam e VL El S 2 . -
204, T By . 20 "
L L SR] s
10 o " 10 . .10
0 - 0 0
0 10 20 30 40 50 0 10 20 30 40 50 10 20 30 40 50
Run 1 Run 1 Run 1
(@)
50 Dim 5 § 50 Dim 29 50 Dim 120
40 e 40 T 40 G
= il " - a
- . |] .
~ 30 =/ " ~ 30 1 "_-T':' " ~ 30 . . ."ll
: 7att. < " s R I
& 5o ; K & 50 - Z 50 . 1
. = 1 e L L
10 "o 10 10 = n
R | . .
0 0 0
0 10 20 30 40 50 0 10 20 30 40 50 10 20 30 40 50
Run 1 Run 1 Run 1
(b)
50 Dim 39 § 50 D.Im 55 50 Dim 111 B,
40 - 40 " e 40
. .y =
30 4 T R Y} - Ll S 30 L
c P ay ! c -- " c o
2 - PR | 2 . = . E .- .,
20 N i .-d . . - 20 . = N N 20 == .
LN T ey Wle, g St
. = - 7 A R | ' ' -
10 Sy 10 " " 10 . .
0 0¥ —= 0
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
Run 1 Run 1 Run 1
(©)
50 Dim 39 50 Dim 55 50 Dim 111
40 40 40
~ 30 ~ 30 n 30
c c f=s
3 3 3
“ 20 =20 =20
10 10 10
0 0 0
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
Run 1 Run 1 Run 1
(d)
Fig. 4 PPI dataset: Comparison of embeddings per dimension for a random sample of 100 nodes. Node2vec,
DeepWalk, Walklets, and SURREAL are run two times. The x-axis represents first run representations values,
and the y-axis represents second run representations values. Three dimensions are selected randomly for
each algorithm. The SURREAL-based representations are robust across runs (perfectly fall on a straight line
y = x), which is not the case for node2vec, DeepWalk, and Walklets. The results are consistent for all the
datasets. (@) Node2vec. Dimensions from left: 21, 48, 68 (b) DeepWalk. Dimensions from left: 5, 29, 120 (c)
Walklets. Dimensions from left: 39, 55, 111 (d) SURREAL. Dimensions from left: 39, 55, 111

Page 14 of 20

Al-Sayouri et al. Applied Network Science (2019) 4:88 Page 15 of 20

N
-3

2]
Y
B
©

IS

[
a
=]

IS
)

47

N
(=2}
Micro-F1 score

Micro-F1 score
IS >
@ i
Micro-F1 score
IS
)

&
>

»

NU’!
EN

42 5
500 1000 1500 2000 427500 400 600 800 1000 1200 6 8 10

Neighborhood expansion subgraph size Ng(u) ighborhood i graph size Ng(u) log,(d)
(a) (b) (0

Fig. 5 Performance sensitivity analysis of SURREAL. (@) Expansion process for [Ng(u)| > |Ng(u)| = 400. By
increasing the size of Ng(u), the corresponding Micro-F1 score decreases (b) Refinement process for
INr(U)| < [Ng(u)| = 1200. By increasing the size of Ng(u), the corresponding Micro-F1 score increases (c)
Vary /og‘zj from 4-9. Micro-F1 score increases up to /ogg = 7,and then it starts to decrease

the refined neighborhood, |[Ng(x)|, in a multi-label classification problem. For that, we
run SURREAL, while varying the size of [Ng(u)| from 200 to 1200 nodes in 200 incre-
ments. Figure 5b shows the Micro-F1 results. We observe that increasing the |[Ng(u)|
is accompanied by an increase in the Micro-F1 score. This is rooted in the fact that
enlarging the |Ng(u)| includes more useful information in the refined neighborhoods,
which SkipGram model (Mikolov et al. 2013) leverages to learn and update the node
representations.

Number of dimensions d. Fixing the sizes of the expanded subgraph, |Ng ()| = 1200,
and the refined subgraph, |Ng(x)| = 800, we demonstrate the impact of varying the rep-
resentation number of dimensions, d, in a multi-label classification problem. For that, we
run SURREAL, while varying log, d from 4 to 9. Figure 5c shows the Micro-F1 results.

(5]
—

H
T

Time/node (sec)
w

N
———

Neighborhood Expansion Neighborhood Refinement
Neighborhood definition phase

Fig. 6 Runtime analysis of SURREAL's neighborhood expansion and refinement phases, per node, of
Wikipedia dataset. The |[Ng(u)| = 1,200 and |Ng(u) = 800|. The refinement process represents a bottleneck
that renders SURREAL less efficient

Al-Sayouri et al. Applied Network Science (2019) 4:88 Page 16 of 20

We note that the Micro-F1 score constantly increases by increasing log, d up to 7, which
corresponds to d = 128, while it starts to drop afterwards. We root this in the fact
that using higher number of dimensions could introduce unrelated dimensions to the
representation space, which eventually impacts the performance.

Runtime analysis

To test for scalability, we run SURREAL’s neighborhood definition step two phases: (1)
Neighborhood expansion; and (2) Neighborhood refinement, and the corresponding run-
time per node is reported (Fig. 6). For runtime analysis, we set the expanded subgraph
size |Ng(u)| = 1,200, the refinement subgraph size [Ng(x)| = 800, and the representa-
tion dimensionality d = 128. We observe that in order to expand and refine a single node,
SURREAL takes 3.2 and 6.9 seconds, respectively. Apparently, the refinement neigh-
borhood phase represents a bottleneck that renders SURREAL less efficient. Therefore,
SURREAL is optimized as shown in “SURREAL’s optimization” section.

SURREAL's optimization

In order to speedup SURREAL, the concept of graph summarization (Liu et al. 2018),
where SURREAL can more efficiently handle large-scale graphs, is used. The abundance
use of summarization concept is attributed to its capability of preserving and identi-
fying the network structure and the meaning in data. Therefore, a compression-based
summarization method (Stanley et al. 2018) is employed to summarize the networks
utilized to evaluate the SURREAL method. This technique operates on a static and
homogeneous—one entity and one link type—input graph. Further, it is defined as
a grouping or aggregation-based method, because it employs a clustering technique
to split a given graph G into multiple clusters, which afterward, map each densely-
connected cluster into a supernode. The resultant summary graph is: (1) A supergraph
that comprises supernodes and superedges connecting the supernodes together; (2) Flat,
as the original nodes are simply grouped into several supernodes, on the same level of
abstraction; and (3) Non-overlapping, where each node in the original graph is assigned
to a single supernode in the summary graph. The problem of graph summarization is
defined as follows:

Given a (un)weighted, undirected, static, and homogeneous graph G(V, &)
with n nodes and m edges,
Find a summary graph: supergraph, to concisely depict the given graph.

The reasons why we choose (Stanley et al. 2018) as a graph summarization method
are: (1) To decrease the runtime of SURREAL, especially for large-scale graphs;
(2) Its ability to generate a small summary graph comparing to the original input
large-scale graph, therefore, feeding the resultant summary graph into SURREAL
would generate near-robust representations that resemble the ones generated using
the original graph using SURREAL—the representations of each sueprnode and the
nodes belong to it are identical;—(3) It accounts for network connectivity patterns
while defining the supernodes that would ultimately serve as communities; (4) As
this method is devoted for community detection purposes, the generated commu-
nities using the summarization method are consistent with the communities gen-

erated using the original network; (5) It is an unsupervised method, which aligns

Al-Sayouri et al. Applied Network Science (2019) 4:88 Page 17 of 20

0.420
0.415- 0.413% 3
o y 0.4130 1
S
]
o
]
N]
o 0.410 - -
o
S
2
=
0.405- T
0.4033
0.400 ‘ ‘ ‘
1000 1500 2000 2500
Number of super nodes
Fig. 7 SURREAL's Performance with respect to various numbers of supernodes of supergraph summary
method for Wekipedia dataset. No significant growth or drop in performance while increasing the number of
supernodes

with the robustness nature of SURREAL; and (6) It is categorized as a network
pre-processing compression-based technique, where the entire set of nodes exists
in the original graph is included in the summary graph, and agglomerated into
supernodes.

As the number of supernodes is a user-defined parameter in (Stanley et al. 2018), we
perform an experiment to report the SURREAL’s performance with respect to different

0.52
0.50- 1
o 0.48 1
3
» 0.46- 1
-
‘T
© 0.44 .
L2
=
0.42 1
0.40- 1
0-38 1 1 1 1 1 1
0 200 400 600 3800 1000 1200 1400
Neighborhood refinement subgraph size Ng(u)
-~ Entire graph Supergraph
Fig. 8 Performance comparison of SURREAL using two input graphs: entire graph and supergraph. The
experiment is conducted using Wikipedia dataset. The [Nz(u)| is varied from 200 to 1,200, while
[Ng(u)| = 1,200 and d = 128. The performance degrades when using the supergraph instead of entire
graph as an input graph

Al-Sayouri et al. Applied Network Science (2019) 4:88 Page 18 of 20

8-
o 6
w .
2 |
(] L
Q4
£ |
)
E
h -
20
0
200 400 600 800 1000 1200
Neighborhood refinement subgraph size Ngr (u)
Fig. 9 Runtime analysis for different refinement subgraph sizes when using supergraph as an input graph to
SURREAL. The |Ng(u)| is varied from 200 to 1,200, while |[Ng(u)| and d are set to 1,200 and 128, respectively

numbers of supernodes. The average Micro-F1 score is reported for Wikipedia dataset by
altering the number of supernodes from 1200 to 2400 in 200 increments. Figure 7 shows
that there is no significant increase or drop in performance when increasing the num-
ber of supernodes. Therefore, having 1,200 supernodes can optimize SURREAL, since
setting the number of supernodes similar to the expanded subgraph size |Ng(u)| will
tremendously diminish the runtime of the expansion phase.

Due to the performance-efficiency trade-off, we perform an experiment using two input
graphs: (1) The entire graph; and (2) The supergraph with 1,200 supernodes. We feed
the input graph to SURREAL and report the average Micro-F1 score. We use Wikipedia
dataset. We vary |[Ngr(u)| from 200 to 1,200, while setting |[Ng(#)| = 1,200 and d = 128.

Time/node (sec)
N

T T

0.004
Entire graph Supergraph

Neighborhood expansion process

Fig. 10 Runtime analysis of neighborhood expansion process. SURREAL default settings are used:
INe(u)| = 1,200, [Ng(u)| = 800,and d = 128

Al-Sayouri et al. Applied Network Science (2019) 4:88 Page 19 of 20

Figure 8 shows that: (1) Increasing the |Ng(u)| augments the difference in performance
between the two input graphs, therefore, no significant difference is captured when using
small values of [Nr(u)|; (2) There is a drop in performance when using a supergraph
(green line) instead of the entire graph (red line) as an input graph, which confirms the
performance-efficiency trade-off; and (3) The performance is more consistent when using
the supergraph as an input graph.

As no significant change in performance captured when when using the supergraph and
varying the refinement neighborhood subgraph size [N ()|, we perform an experiment
and report the runtime using supergraph as an input graph. We alter |Ng(«)| from 200 to
1,200, while setting |[Ng(#)| = 1,200 and d = 128. Figure 9 shows that enlarging [Ng(u)|
is accompanied with a corresponding increase in runtime. Similar to observing the run-
time of various refinement neighborhood subgraph sizes, we conduct another experiment
to capture the expansion process runtime by setting [Ng(x)| = 1,200, [Nr(x)| = 800,
and d = 128. Figure 10 shows that when feeding the entire graph to SURREAL, it takes
3.2 s to expand a single node, while 0.0004 second when feeding a supergraph with 1,200
supernodes. That is, expanding a node that belongs to a supergraph is much faster than
expanding a node in a full graph. Therefore, Figs. 9 and 10 confirm that although accom-
panied with a modest drop in performance, leveraging graph summarization concept
greatly impacts SURREAL efficiency.

Conclusion

We propose a novel and stable representation learning algorithm; SURREAL, using SE
subgraphs. In contrast to representation learning baseline algorithms, SURREAL gener-
ates entirely deterministic representations, which makes it more appealing for single- and
multi-graph problems. We empirically demonstrate SURREALS efficacy and stability over
state-of-the-art approaches. Experiments show that SURREAL is more or as effective as
baselines, and is completely stable. As SURREAL is less scalable comparing to baseline
techniques, we optimize SURREAL using the concept of graph summarization, where a
compression-based method is employed. In our future work, we will address the inter-
pretability aspect that is not well-examined in the representation learning literature. We
will also address the issue of embedding update, especially for a recently-joined node that
has no evident connections. This problem is very related to the “cold-start” problem in the
recommendation systems, where a new user joins the system and we seek external infor-
mation for this user, in order to properly compute his profile. Similarly, we will explore
different forms of external context and meta-data for the recently-joined nodes, which
can help us address connection sparsity.

Acknowledgements
Not applicable.

Authors’ contributions
SA proposed, implemented, and evaluated the method. DK, EP, and SL improved the proposed method, suggested
some of the evaluation experiments, and reviewed the manuscript. All authors read and approved the final manuscript.

Funding
Not applicable.

Availability of data and materials

The BlogCatalog, PPI, and Wikipedia datasets used for evaluation during the current study are available on SNAP, [https://
snap.stanford.edu/node2vec/#datasets]. The CiteSeer dataset used for evaluation during the current study is available on
GitHub, [https://github.com/thunlp/TADW]. The Flickr and Youtube datasets used for evaluation during the current
study are available on Online Social Networks Research, [http://socialnetworks.mpi-sws.org/data-imc2007.html].

https://snap.stanford.edu/node2vec/#datasets
https://snap.stanford.edu/node2vec/#datasets
https://github.com/thunlp/TADW
http://socialnetworks.mpi-sws.org/data-imc2007.html

Al-Sayouri et al. Applied Network Science (2019) 4:88 Page 20 of 20

Competing interests
The authors declare that they have no competing interests.

Author details

!Systems Science and Industrial Engineering Department, Binghamton University, 4400 Vestal Pkwy E, 13902
Binghamton, NY, United States. 2Computer Science and Engineering Department, University of Michigan, 500 S State St,
48109 Ann Arbor, United States. 3Computer Science and Engineering Department, University of California, Riverside, 446
N Campus Dr, 92507 Riverside, United States.

Received: 13 March 2019 Accepted: 19 June 2019
Published online: 23 October 2019

References

Akoglu L, Chau DH, Vreeken J, Tatti N, Tong H, Faloutsos C (2013) Mining Connection Pathways for Marked Nodes in Large
Graphs. In: Proceedings of the 2013 SIAM International Conference on Data Mining. Society for Industrial and Applied
Mathematics, Austin. pp 37-45

Bayati M, Gerritsen M, Gleich DF, Saberi A, Wang Y (2009) Algorithms for large, sparse network alignment problems. In:
Data Mining, 2009. ICDM'09. Ninth IEEE International Conference On. IEEE, Miami. pp 705-710

Bengio Y, Courville A, Vincent P (2013) Representation learning: A review and new perspectives. IEEE Trans. Pattern Anal.
Mach Intell 35(8):1798-1828

Bhagat S, Cormode G, Muthukrishnan S (2011) Node classification in social networks. In: Social Network Data Analytics.
Springer, Boston. pp 115-148

Chen J,MaT, Xiao C (2018) Fastgcn: fast learning with graph convolutional networks via importance sampling. arXiv
preprint. arXiv:1801.10247

Fallani FDV, Richiardi J, Chavez M, Achard S (2014) Graph analysis of functional brain networks: practical issues in
translational neuroscience. Phil Trans R Soc B 369(1653):20130521

Faloutsos C, McCurley KS, Tomkins A (2004) Fast discovery of connection subgraphs. In: Proceedings of the Tenth ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, Seattle. pp 118-127

Goyal P, Ferrara E (2017) Graph embedding techniques, applications, and performance: A survey. arXiv preprint.
arXiv:1705.02801

Grover A, Leskovec J (2016) node2vec: Scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. ACM, San Francisco. pp 855-864

Hamilton W, Ying Z, Leskovec J (2017) Inductive representation learning on large graphs. In: Advances in Neural
Information Processing Systems. Neural Information Processing Systems, Long Beach. pp 1024-1034

Heimann M, Koutra D (2017) On generalizing neural node embedding methods to multi-network problems. In: ACM
SIGKDD International Worshop on Mining and Learning with Graphs (MLG). ACM, Halifax, Nova Scotia

Heimann M, Shen H, Koutra D (2018) Node Representation Learning for Multiple Networks: The Case of Graph Alignment.
ArXiv e-prints. 1802.06257

Koutra D, Vogelstein JT, Faloutsos C (2013) Deltacon: A principled massive-graph similarity function. In: Proceedings of
the 2013 SIAM International Conference on Data Mining. SIAM, Austin. pp 162-170

Le Q, Mikolov T (2014) Distributed representations of sentences and documents. In: Proceedings of the 31st International
Conference on Machine Learning (ICML-14). JMLR: W&CP, Beijing. pp 1188-1196

Liben-Nowell D, Kleinberg J (2007) The link-prediction problem for social networks. J Assoc. Inf. Sci. Technol
58(7):1019-1031

Liu Y, Safavi T, Dighe A, Koutra D (2018) Graph summarization methods and applications: A survey. ACM Comput Surv
(CSUR) 51(3):62

Mikolov T, Chen K, Corrado G, Dean J (2013) Efficient estimation of word representations in vector space. arXiv preprint.
arXiv:1301.3781

Mikolov T, Sutskever |, Chen K, Corrado GS, Dean J (2013) Distributed representations of words and phrases and their
compositionality. In: Advances in Neural Information Processing Systems. pp 3111-3119

Mislove A, Marcon M, Gummadi KP, Druschel P, Bhattacharjee B (2007) Measurement and Analysis of Online Social
Networks. In: Proceedings of the 5th ACM/Usenix Internet Measurement Conference (IMC'07), San Diego

Perozzi B, Al-Rfou R, Skiena S (2014) Deepwalk: Online learning of social representations. In: Proceedings of the 20th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. pp 701-710

Perozzi B, Kulkarni V, Skiena S (2016) Walklets: Multiscale graph embeddings for interpretable network classification. arXiv
preprint. arXiv:1605.02115. New York

Rodrigues Jr. JF, Tong H, Traina AJM, Faloutsos C, Leskovec J (2006) Gmine: A system for scalable, interactive graph
visualization and mining. In: Proceedings of the 32Nd International Conference on Very Large Data Bases. VLDB '06.
VLDB Endowment, Seoul. pp 1195-1198

Rossi RA, Zhou R, Ahmed NK (2017) Deep feature learning for graphs. arXiv preprint. arXiv:1704.08829

Stanley N, Kwitt R, Niethammer M, Mucha PJ (2018) Compressing networks with super nodes. Sci Rep 8(1):10892

Tang J, Qu M, Wang M, Zhang M, Yan J, Mei Q (2015) Line: Large-scale information network embedding. In: Proceedings
of the 24th International Conference on World Wide Web. ACM, Florence. pp 1067-1077

Tong H, Faloutsos C (2006) Center-piece subgraphs: Problem definition and fast solutions. In: Proceedings of the 12th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, Philadelphia. pp 404-413

Yu X, Ren X, Sun'Y, Gu Q, Sturt B, Khandelwal U, Norick B, Han J (2014) Personalized entity recommendation: A
heterogeneous information network approach. In: Proceedings of the 7th ACM International Conference on Web
Search and Data Mining. ACM, New York. pp 283-292

Zhang D, Yin J, Zhu X, Zhang C (2017) Network representation learning: A survey. arXiv preprint. arXiv:1801.05852

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

http://arxiv.org/abs/1802.06257

	Abstract
	Keywords

	Introduction
	Related work
	Problem formulation
	Preliminary definition
	Problem definition

	Proposed method: SURREAL
	Step 1: neighborhood definition
	Phase A: neighborhood expansion - NE(u)
	Phase B: neighborhood refinement - NR(u)
	Remarks

	Step 2: node representation vector update

	Experiments
	Q1. Multi-label classification
	Q2. Representation learning stability
	Q3. Parameter sensitivity

	Runtime analysis
	SURREAL's optimization
	Conclusion
	Acknowledgements
	Authors' contributions
	Funding
	Availability of data and materials
	Competing interests
	Author details
	References
	Publisher's Note

