
Review
Data and Power Efficient Intelligence
with Neuromorphic Learning Machines
Emre O. Neftci1,2,*
1Department of Cognitive
Sciences, UC Irvine, Irvine, CA
92697-5100, USA

2Department of Computer
Science, UC Irvine, Irvine, CA
92697-5100, USA

*Correspondence:
eneftci@uci.edu

https://doi.org/10.1016/j.isci.
2018.06.010
The success of deep networks and recent industry involvement in brain-inspired computing is igniting

a widespread interest in neuromorphic hardware that emulates the biological processes of the brain

on an electronic substrate. This review explores interdisciplinary approaches anchored in machine

learning theory that enable the applicability of neuromorphic technologies to real-world, human-

centric tasks. We find that (1) recent work in binary deep networks and approximate gradient descent

learning are strikingly compatible with a neuromorphic substrate; (2) where real-time adaptability and

autonomy are necessary, neuromorphic technologies can achieve significant advantages over main-

stream ones; and (3) challenges in memory technologies, compounded by a tradition of bottom-up ap-

proaches in the field, block the road to major breakthroughs. We suggest that a neuromorphic

learning framework, tuned specifically for the spatial and temporal constraints of the neuromorphic

substrate, will help guiding hardware algorithm co-design and deploying neuromorphic hardware

for proactive learning of real-world data.

INTRODUCTION

The harnessing of future big data for societal and economical advances demands an unprecedented

amount of computing resources. The difficulties in scaling current computing technologies to meet such

demands, combined with a looming end of Moore’s law, is spurring widespread interest in novel scalable

computing paradigms. One such paradigm is neuromorphic engineering, which strives to reproduce in

hardware the brain’s cognitive and adaptive abilities by mimicking its architectural and dynamical proper-

ties (Mead, 1990). The adaptivity, efficiency, and largely unsurpassed performance of the brain at solving

complex cognitive tasks has been a continuing inspiration for designing computing systems (von Neu-

mann, 1958). Although the reasons for the extraordinary robustness, efficiency, and adaptivity of brains

are puzzling, their style of computation, supported by massively parallel and self-organizing neural archi-

tectures that are fundamentally different from that used in conventional computers, is believed to be a key

piece of the puzzle (Douglas and Martin, 2004).

The foundational insight of neuromorphic engineering is that the current-voltage dependence in ion chan-

nels and transistors operated in the sub-threshold regime are both exponential (Mead, 1990), owing to the

same diffusion law governing the transport of their respective carriers. This similarity implies that electronic

and biological substrates share constraints on communication, power, and reliability. Thus, neuromorphic

hardware designed along these principles has the potential to translate advances in neuroscience research

into ultra-low-power computing technologies targeted at producing cognitive function (Indiveri and Liu,

2015). This hardware can in turn be employed as a tool to investigate the organizational principles of the

brain by accelerating existing neural simulations (Zenke and Gerstner, 2014) or by analyzing the qualities

of the constructed hardware (Cauwenberghs, 2013). Since its inception in the early 1990s, the interest in

neuromorphic engineering is rising rapidly (Schuman et al., 2017), and neuromorphic engineering now ex-

tends to a wide gamut of software and hardware efforts (Schuman et al., 2017) dedicated at simulating or

emulating neural network dynamics.

Efforts in neuromorphic engineering resulted in many successful devices (Indiveri et al., 2011). These range

frommixed signal (Benjamin et al., 2014; Chicca et al., 2013; Park et al., 2014; Schemmel et al., 2010) systems

that emulate the dynamics of spiking neural network models in very-large-scale integration (VLSI) to digital

systems (Merolla et al., 2014; Davies et al., 2018; Furber et al., 2014) dedicated at simulating the dynamics of

spiking networks on a dedicated digital architecture. Neuromorphic systems have been successfully

demonstrated in pattern recognition, decision-making, and navigation tasks (Qiao et al., 2015; Srinivasa

and Cho, 2014; Neftci et al., 2013; Serrano-Gotarredona et al., 2009; Schmuker et al., 2014; Esser et al.,

2016; Moradi et al., 2018; Blum et al., 2017). Recently, the neuromorphic engineering community has
52 iScience 5, 52–68, July 27, 2018 ª 2018 The Author.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

mailto:eneftci@uci.edu
https://doi.org/10.1016/j.isci.2018.06.010
https://doi.org/10.1016/j.isci.2018.06.010
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2018.06.010&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


started to dedicate significant effort in embedding synaptic plasticity in their hardware for emulating the

adaptive capabilities of the brain (Azghadi et al., 2014).

At the system level, neurons in the adult brain communicate principally through sparse, all-or-none events

in continuous time (Gerstner and Kistler, 2002). All other internal states such as neurotransmitter concen-

trations, synaptic states, and membrane potentials are local to the neuron. Such an architecture is highly

scalable, thanks to sparse interprocess communication. However, harnessing neuromorphic hardware to

solve real-world problems in a reliable fashion proved to be extremely challenging. This is because they

require computational strategies that can operate robustly on local information and sparse global commu-

nication. Understanding the mechanisms of brain function and devising models and algorithms that oper-

ate under such conditions is the key endeavor of computational neuroscience modeling (Sompolinsky,

2014). Although technologies for imaging the brain and analyzing the resulting data are progressing

rapidly, the understanding of its organizing principles is still largely incomplete. Our limited understanding

of which brain mechanisms are necessary to achieve cognitive function weakens the technological pros-

pects of the traditional bottom-up ‘‘brain-as-a-blueprint’’ approach to neuromorphic engineering. On

the other hand, machine learning and deep learning provide relatively well-understood principles for solv-

ing problems of practical interest, with the caveat that most state-of-the-art machine learning algorithms

rely on information that is not local to the computational building blocks of a neural substrate.

In this article, we introduce neuromorphic learningmachines as a middle-ground solution between the bot-

tom-up and top-down approaches by reconciling the architecture and dynamics of a neural substrate with

the organizing principles of machine learning. This ‘‘middle-in’’ approach is consistent in spirit toMarr’s line

of inquiry, which strives to study a problem at the levels of theory, algorithm, and hardware (Marr, 1982). As

such, our discussion will apply to the more modern and general sense of the term neuromorphic, i.e., that

the machines compute with neuron-like units using local information. We will explore the benefits of

viewing neuromorphic engineering through the lens of recent advances in artificial neural network and ma-

chine learning, i.e., to which extent will these algorithms guide us in neuromorphic hardware design, and

what advantages would accrue from such hardware? Through this discussion, we aim to dispel some of the

perceived differences and similarities between biologically inspired neural networks and artificial neural

networks and provide engineers guidelines for increasing the technological impact of their neuromorphic

hardware. In so doing, this review will outline the nature of possible bridges from neurobiology to machine

learning and describe modern tools for investigating such bridges.
EMBEDDED LEARNING TO SOLVE THE CHALLENGES OF PROGRAMMING

NEUROMORPHIC HARDWARE

Despite the demonstrated scalability of the technology in analog (Moradi et al., 2018; Park et al., 2014;

Schemmel et al., 2010) and digital (Merolla et al., 2014; Davies et al., 2018) technologies, achievements

in the field remain modest in both breadth of application and scale compared with the state of the art.

This is mainly because the concepts andmethods for installing the dynamics necessary to express cognitive

behaviors on these substrates are still in the early stages of development.

In the mixed signal domain, this problem is compounded by the technical difficulty of mapping the param-

eters of synapse and neuron models onto the underlying neuromorphic hardware (Neftci et al., 2011). In

fact, hardware parameters adjusting the behavior of circuits are currents and voltages that do not have a

trivial correspondence with the parameter types and values used in the computational models. Finally,

the realities of circuit design, such as fabrication variability (device mismatch), operating noise, and limited

dynamical range, add to the aforementioned difficulties. Early work solved the programming and device

variability problem using iterative calibration of the neural building blocks (e.g., synapses, neurons, or pop-

ulations of neurons) to reach desired dynamical behaviors. Calibration was demonstrated by fitting neural

mean-field models expressed in terms of the underlying transistor dynamics (Neftci et al., 2011) and adapt-

ing connection probabilities such that the effect of fabrication mismatch is minimized (Neftci and Indiveri,

2010), iterative parameter search using neural measurement protocols (Bruederle et al., 2011), linear

regression of encoders and decoders (Dethier et al., 2011) and spike-basedmaximum likelihood estimation

(Russell et al., 2010). The calibrated building blocks can then be composed for synthesizing task-relevant

computations (Neftci et al., 2013). These calibration procedures are costly, both in terms of external re-

sources required to carry them out and device-specific engineering efforts. Owing to these difficulties,

deterministic digital technologies are often preferred over mixed signal or analog ones. However,
iScience 5, 52–68, July 27, 2018 53



Box 1. Spatial and Temporal Locality in Neural Networks

Locality is tightly dictated by the computational substrate and characterized by the set variables available to the

processing elements, in one place. Many computations require more information than that available to neural pro-

cessing elements. Such information can be non-local (it is available elsewhere) or global (it is shared among all

processing elements).

To illustrate the concept of locality, we assume two neurons, A and B, and would like neuron A to implement some

function on domain D defined as:

D =DlocWDnloc ;
where Dloc =

�
wBA; S

AðtÞ; uAðtÞ
�
and Dnloc =

�
SBðt � TÞ;uB

�
:

Here, SB(t�T) refers to the output of neuron B T seconds ago, uA, uB are the respective membrane potentials, andwBA

is the synaptic weight from B to A. Variables under Dloc are directly available to neuron A and are thus local to it.

On the other hand, variable SB(t�T) is temporally non-local and uB is spatially non-local to neuron A. Spatially global

signals are often required for learning on practical tasks and even commonplace in the brain in the form of neuro-

modulation. Non-local information can be transmitted through special structures, for example, dedicated encoders

and decoders for uB and a form of workingmemory for SB(t�T). An important challenge of neuromorphic computing is

to map behaviorally relevant inference and learning on functions of D while minimizing the cost of communicating

Dnloc. The suitability of a computation to a neural substrate can be quantified by the amount of information that must

be communicated.
calibration procedures can be viewed as a form of learning, in the sense that the neural parameters are

modified on the basis of measured error using a separate computer (Friedmann et al., 2017). A natural elab-

oration on this idea is to perform this learning in tandem with the learning of higher-level, task objectives.

Machine learning methods for automated data analysis are particularly well suited to this task, thanks to

their general-purpose, modular, and potentially fault-tolerant nature. As such, learning of the task can

tighten the programmability gap between mixed signal and digital neuromorphic hardware.

Consequently, several studies employed machine learning and deep learning to synthesize spiking neural

networks solving machine learning benchmark tasks in software (O’Connor et al., 2013; Cao et al., 2015;

Hunsberger and Eliasmith, 2015; Diehl et al., 2015) and neuromorphic hardware (Schmuker et al., 2014;

Moradi et al., 2018; Esser et al., 2016). This is achieved by mapping pre-trained deep neural networks

onto spiking neural networks using a firing rate code. This approach can be improved by taking the precise

spike timing into consideration during training (Mostafa, 2016), as well as hardware constraints (Severa

et al., 2018; Esser et al., 2016). Following this idea, Esser et al. introduced energy-efficient deep neuromor-

phic networks, which create convolutional networks whose structure and parameters have been optimized

under the constraints of the hardware through regularization and rounding (Esser et al., 2016). These

approaches are described as ‘‘mapping techniques,’’ as they transfer fitted parameters from a highly

controllable system (the computer or dedicated accelerator) to a less controllable one (the neuromorphic

hardware). Although mapping techniques can leverage the highly optimized capabilities of existing ma-

chine learning frameworks (such as Caffe, Tensorflow, Theano, and Torch) and hardware (such as graphic

processing units [GPUs] or dedicated accelerators), they cannot support the fast and energy-efficient

learning in an online and incremental fashion as observed in animals.

For both parameter calibration and mapping techniques described earlier, an appealing solution is to

tightly embed the learning capabilities on the neuromorphic hardware, meaning provisioning learning cir-

cuits where computations take place. Beyond improving energy-related figures, embedded learning can

enable applications that are not practical with existing technologies, such as in learning ‘‘at-the-edge,’’

where access to remote computing resources is either not available or too slow or where data privacy is

paramount. The remaining of this article will discuss embedded learning in neuromorphic hardware and

propose avenues to address its key challenges.
EMBEDDED LEARNING RULES FOR RESOURCE-CONSTRAINED LEARNING

We argued that learning is an appealing approach for programming mixed-signal neuromorphic devices

and for learning at the edge. Generally speaking, the embedding of a learning algorithm implies data lo-

cality (Box 1), whereby only a subset of variables is available to the learning processes. Along these ideas,

we identify here research in learning machines as one that devises learning algorithms that take into
54 iScience 5, 52–68, July 27, 2018



account the dynamics and constraints that entail from the physical computing substrate. Research in

learning machines aims to provide key insights on the neural mechanisms necessary for learning and, in

some cases, guarantees on convergence through a rigorous mathematical description anchored in statis-

tical machine learning. The discovery of such mechanisms is significant from a technological perspective

because it would provide machine learning hardware that is extremely scalable and potentially implement-

able in a very-low-power fashion.

Such technology does not exist yet, and at least two challenges prevent its realization. First, the necessary

operations for learning are rarely expressible in a local fashion. Solving this challenge is currently of limited

interest to machine learning, as the field strives for mathematical optimality regardless of the computing

substrate. Second, unlike inference, learning often requires higher precision parameters to average out

noise and ambiguities in real-world data (Courbariaux et al., 2014), which presents challenges at all levels

of implementation, but particularly in memory. Memory technologies to support embedded learning

require reliability, density, and co-localization (CMOS compatibility). A technology that combines all three

properties still does not exist at practical scales.

Biological brains are prime examples of learning machines that solved these challenges. They evolved with

tight metabolic constraints and the need to adapt to new environments and changing bodies, sensors, and

actuators, as a result of development, gradual degradation, and wear and tear (Sterling and Laughlin,

2015). Indeed, several studies convincingly argue that evolutionary pressure optimized nervous systems

for both high metabolic efficiency and task accuracy. Sensory neurons adapt their responses to the regu-

larities in their environment to increase the amount of transmitted information (Simoncelli and Olshausen,

2001), and further studies suggest that neurons that fire sparsely could optimize memory and energy

(Olshausen and Field, 2004).

Can we take inspiration from biology to solve the challenges of embedded learning with neuromorphic

hardware? Can machine learning techniques guide us in building neuromorphic learning machines? In

the following paragraphs, we begin answering these questions around the relevant case of gradient

descent and back-propagation in neural networks and neuromorphic hardware.
Gradient-Based Learning in Neuromorphic Architectures

Many machine learning algorithms rely on the gradients of a loss function. In artificial neural networks, the

workhorse of learning is the gradient back-propagation (BP) algorithm (Box 2). The gradient BP rule relies

on the immediate availability of back-propagated errors represented with high-precision memory. In dig-

ital computers, the access to this information funnels through the von Neumann bottleneck, which dictates

the fundamental limits of the computing substrate.

In the context of deep neural networks, the spatial non-locality of learning can be characterized using a

concept of learning channel (Baldi and Sadowski, 2016), a special communication channel provisioned

to enable the learning of deep layers. The BP rule implies a learning channel that is optimal in the space

of possible learning algorithms, both in terms of expected improvement per step and the rate of learning

(defined as ‘‘the number of bits transmitted to each weight through the backward channel divided by the

number of operations required to compute/transmit this information per weight’’). A subsequent study

identified that the BP algorithm implies symmetries in the architecture, processing, states, and weights

(Baldi et al., 2017), which can lead to non-localities that are not compatible with a biologically inspired ar-

chitecture and thus prevent an efficient neuromorphic implementation.

Interestingly, approximations to the BP learning channel that break these symmetries can still learn deep

weights. One such family of algorithms are feedback alignment or random back-propagation (RBP) algo-

rithms (Lillicrap et al., 2016; Baldi et al., 2016). These are approximations to the gradient BP rule that side-

step the non-locality problem by replacing weights in the learning channel with random ones, leading to

remarkably little loss in classification performance on benchmark tasks (requirement [1] in Box 2). Although

a general theoretical understanding of RBP is still a subject of intense research, extended simulations of

linear networks show that, during learning, the network adjusts its feedforward weights such that they

align with the (random) feedback weights, which are effective in communicating gradients (Lillicrap

et al., 2016). Building on these findings, our recent results demonstrated event-driven random back-prop-

agation (eRBP), an asynchronous spike-driven adaptation of random BP using local synaptic plasticity rules
iScience 5, 52–68, July 27, 2018 55



Box 2. The Challenges of Gradient Back-Propagation in Neural Substrates

In the light of recent machine learning and deep learning advances, we examine the relevant case of gradient-based

learning and the BP algorithm. Suppose we would like to minimize the mean-squared cost function for one data

sample. The cost in a single layer neural network is L = ð1=2ÞPie
2
i ;with ei = ðyi � tiÞ, where ei is the error of output

neuron i, yi = r

�P
jwijxj

�
is the activity of the output neuron i with activation function r, x is the data sample, and ti is

the label associated with the data sample. The task of learning is to minimize this cost over the entire dataset. This can

be done efficiently using the gradient descent rule, which modifies the network parameters w in the direction

opposite to the gradient:

wij)wij � hDwij;where Dwij =
v

vwij
L= r0

 X
j

wijxj

!
eixj; (Equation 1)

and where h is a small learning rate. In deep networks, i.e., networks containing one or more hidden layers, the

weights of the hidden layer neurons are modified by back-propagating the errors from the prediction layer using the

chain rule. Using superscripts l = 0,.,N to denote the layer (0 is input, N is output):

v

vwl
ij

L= dliy
l�1
j ; where dli = r0

 X
j

wl
ijy

l
j

!X
k

dl + 1
k wl + 1

ki ; (Equation 2)

where the dNi = ei , as in Equation 1 and y0i = xi . This update rule is ubiquitous in deep learning (Rumelhart et al., 1987)

and known as the gradient back-propagation algorithm. As depicted earlier, learning is typically carried out in for-

ward passes (evaluation of the neural network activities) and backward passes (evaluation of ds). The computation of dli
requires knowledge of the forward weights; thus, gradient BP relies on the immediate availability of a symmetric

transpose of the network for computing the back-propagated errors. Often the access to this information funnels

through a von Neumann bottleneck, which dictates the fundamental limits of the computing substrate. Distributing

computations over multiple cores in GPUs is an effective solution to mitigate this problem, but even there the scal-

ability of gradient BP is limited by its data and memory-intensive operations (Zhu et al., 2016; Seide et al., 2014), and

more so in the case of fully connected networks (Seide et al., 2014). In addition, during training, large networks suffer

from layer-wise locking, whereby computations of the derivatives of a deep layer may remain idle until the error can

be computed at the top layer (Jaderberg et al., 2016). Such locking can be interpreted as a form of temporal non-

locality.

The exact implementation of BP on a neural substrate is even more challenging (Baldi et al., 2016; Lee et al., 2016;

Grossberg, 1987) because it requires (1) using synaptic weights that are identical to forward passes (symmetric

weights requirements, also known as the weight transport problem); (2) carrying out the operations involved in BP,

including multiplications with derivatives and activation functions; (3) propagating error signals with high, floating-

point precision; (4) alternating between forward and backward passes; (5) changing the sign of synaptic weights; and

(6) availability of targets (labels) (7) in the case of recurrent neural networks, an unfolded version of the network (as in

BP-through-time). The essence of these challenges is that BP requires precise linear and non-linear transformations

and information that is not local to the computational building blocks in a neural substrate, meaning that special

communication channels must be provisioned (Baldi and Sadowski, 2016).

56 iScience 5, 52–68, July 27, 2018



Figure 1. Supervised Deep Learning in Spiking Neurons

The event-driven Random Back-Propagation (eRBP) is an event-based synaptic plasticity learning rule for approximate BP in spiking neural networks.

(Left) The network performing eRBP consists of feedforward layers (H1,.,HN) for prediction and feedback layers for supervised training with labels (targets) L.

Full arrows indicate synaptic connections, thick full arrows indicate plastic synapses, and dashed arrows indicate synaptic plasticity modulation. In this

example, digits 7,2,1,0,4 were presented in sequence to the network, after transformation into spike trains (layer D). Neurons in the network indicated by

black circles were implemented as two-compartment spiking neurons. The first compartment follows the standard Integrate and Fire (I&F) dynamics,

whereas the second integrates top-down errors and is used to multiplicatively modulate the learning. The error is the difference between labels (L) and

predictions (P) and is implemented using a pair of neurons coding for positive error (blue) and negative error (red). Each hidden neuron receives inputs from a

random combination of the pair of error neurons to implement random BP. Output neurons receive inputs from the pair of error neurons in a one-to-one

fashion. (Middle) MNIST Classification error on the test set using a fully connected 784-100-10 network performed using limited precision states (8 bit fixed-

point weights 16 bits state components) and on GPU (TensorFlow, floating-point 32 bits). (Right) Efficiency of learning expressed in terms of the number of

operations necessary to reach a given accuracy is lower or equal in the spiking neural network (SynOps) compared with the artificial neural network (MACs).

At this small MNIST task, the spiking neural network required about three times more neurons than the artificial neural network to achieve the same accuracy

but the same number of respective operations. Figures adapted from Neftci et al. (2017) and Detorakis et al. (2017).
with the dynamics of spiking neurons (Neftci et al., 2017). The eRBP rule was tested on software simula-

tions of digital neuromorphic hardware (Detorakis et al., 2017), with fixed-width representations for neural

states and synaptic weights (Figure 1). Extended experimentations with eRBP show that the spiking nature

of neuromorphic hardware and the lack of complex non-linear computations at the neuron do not prevent

accurate learning on classification tasks (requirement [ii], [iii] in Box 2) and can operate continuously and

asynchronously without alternation of forward or backward passes (requirement [iv] in Box 2). Our results

showed that, up to moderate classification accuracies, digital neuromorphic hardware requires an equal or

fewer number of SynOps compared with MACs to reach a given accuracy for both networks (Figure 1,

right panel). Although a standard computer remains the architecture of choice if classification accuracy

on a stationary dataset is the target regardless of energy efficiency, neuromorphic hardware is a strong

contender if low-power learning on non-stationary data is the objective, since energy efficiency is

improved at least by a factor equal to the achieved Joule/MAC to Joule/SynOp ratio and learning is

on-going (Detorakis et al., 2017). Beyond BP and eRBP, there exist many plasticity rules highly relevant

to neuromorphic implementations and related to gradient-based machine learning algorithms, such as

contrastive divergence (Neftci et al., 2014) and independent component analysis (Isomura and Toyoizumi,

2016).

In all gradient-based learning rules, the continuous aspect of the learning is a particularly interesting

side effect of a neuromorphic implementation, because it can support online learning in the sense

that the inference model is updated sequentially, with each data sample. Furthermore, online stochastic

gradient descent can process more data samples than batch gradient descent (LeCun and Bottou, 2004)

while requiring less memory for implementation. Minibatch learning is the preferred choice in conven-

tional hardware because it minimizes the impact of communication overhead by sequencing a large

number of parallel operations. This overhead is caused by the architecture of the computer and the

large amounts of data transferred across the platform. When computations are local (as in neuromorphic

hardware), there is no such overhead and weight updates can be performed online without loss in

speed. In fact, our empirical observations confirm that spiking networks often require fewer iterations

of the dataset to reach the peak classification performance compared with the artificial neural network

trained with batch gradient descent (Neftci et al., 2016, 2017). This improved speed in learning is visible

in the middle panel of (Figure 1) and can directly translate into power reductions on dedicated

hardware.
iScience 5, 52–68, July 27, 2018 57



Thus, machine learning inspiration for neuromorphic learning machines can lead to successful results, at a

modest cost in accuracy. On the flip side, learning can become more efficient than a traditional implemen-

tation thanks to its inherently local and online operation. Although these conclusions may seem contradict-

ing the discussed optimality of BP, our arguments took power into account as opposed to information-

theoretic metrics only.

Data Efficient Learning

Despite the improved speed of learning, deep spiking neural networks operating in real time would require

hundreds of hours to reach classification accuracies on MNIST comparable with that of artificial neural net-

works (Neftci et al., 2017). Furthermore, most deep learning approaches require massive amounts of data

samples to learn. Assuming learning is performed with a stored dataset, the acceleration of the neural

network emulations is a possible solution to this problem. Such accelerations can be achieved with

time-accelerated hardware (Schemmel et al., 2010; Friedmann et al., 2017).

Another solution is to simplify the learning task by reducing the dimensionality of the data, the amount of

data, and the number of iterations necessary to reach a target goal. Given the constraints on metabolic

cost, it is plausible that brains evolved strategies that enable such reductions while keeping accuracy at

an acceptable level. Indeed, senses in all organisms are highly tuned to their natural environment and argu-

ably play an important role by strongly reducing the dimensionality of the sensory input (Olshausen and

Field, 2004), which in turn greatly simplifies the learning task. Interestingly, neuromorphic vision, audition,

and tactile sensors can play a similar role (Liu and Delbruck, 2010). Spurred by humans’ ability to learn on

prior knowledge, the search for data efficient algorithms has a long history in machine learning and cogni-

tive sciences (Tenenbaum et al., 2011). To promote rapid acquisition of knowledge and generalization

(Lake et al., 2017), some machine learning studies address the problem of transfer across tasks (Kansky

et al., 2017; Yosinski et al., 2014) and meta-learning or learning-to-learn (Schmidhuber, 1987; Hochreiter

et al., 2001; Andrychowicz et al., 2016). In colloquial terms, a computer can ‘‘teach’’ a learning machine

how to learn in a class of environments. These techniques can be applied, for example, to improve or

discover a learning algorithm (Andrychowicz et al., 2016) or optimize the parameters of synaptic plasticity

dynamics (Bengio et al., 1990; Rounds et al., 2016). Furthermore, meta-learning is argued to be a principled

approach to transfer learning, as the ability to generalize across a class of tasks implies transfer learning.

Although these methods are not yet fully established, they provide exciting new avenues into neuromor-

phic learning machines designed along machine learning principles.

SYNAPTIC PLASTICITY AND LEARNING IN NEUROMORPHIC HARDWARE

Following the more high-level discussion, we detail here the concepts behind efficient synapse modeling

and the state of the art of synapse and plasticity models employed in neuromorphic hardware.

Synapses are fundamental building blocks for computation and communication in biological neural networks.

Biological neurons are characterized by a large fan-in, often many thousands of synapses per neuron. To effi-

ciently implement the synaptic fan-in in hardware, it is common to leverage the linear summation property of

post-synaptic currents by emulating many synapses with a single linear temporal filter (Bartolozzi and Indiveri,

2007). Provided that synaptic parameters (such as weights) can be stored for each connection, this approach

requires only one filter per type of synapse (where the type can be characterized, for example, by different

time constants), leading to a complexity that scales proportionally to the number of neurons.

Synaptic plasticity can be viewed as dynamics over synaptic parameters and face similar scalability chal-

lenges. To maintain scalability, plasticity dynamics often use a strategy similar to linear summation, i.e.,

that the eligibility of synaptic weight updates can be computed using linear temporal filters. Spike-tim-

ing-dependent plasticity (STDP) with exponential learning windows (Figure 2) is a popular model with

such features, supported by empirical evidence (Bi and Poo, 1998; Sjöström et al., 2008) and compatible

with Hebbian learning (Gerstner and Kistler, 2002). Thanks to its simplicity, scalability, computational effi-

ciency and biological inspiration, nearly all neuromorphic learning hardware directly implement STDP (Pfeil

et al., 2012; Galluppi et al., 2014; Davies et al., 2018; Detorakis et al., 2017; Arthur and Boahen, 2006; Ven-

kataramani et al., 2014; Srinivasa and Cho, 2014; Dean et al., 2014). However, whether STDP or even point

synapses can capture the salient features of neural computation is being challenged on multiple fronts.

Experimental work argues that STDP alone cannot account for several observations in synaptic plasticity

(Shouval et al., 2010). Theoretical work advocates that synapses must involve complex internal dynamics
58 iScience 5, 52–68, July 27, 2018



Figure 2. Spike-Timing-Dependent Plasticity, Modulation, and Three-Factor Rule

The classical spike-timing dependent plasticity (STDP) rule modifies the synaptic strengths of connected pre- and post-synaptic neurons based on the spike

history in the following way: if a post-synaptic neuron generates action potential within a time interval after the pre-synaptic neuron has fired multiple spikes,

then the synaptic strength between these two neurons becomes stronger (causal updates, long-term potentiation [LTP]). On the other hand, if the post-

synaptic neuron fires multiple spikes before the pre-synaptic neuron generates action potentials within that time interval, then the synaptic strength

becomes weak (acausal updated, long-term depression [LTD]) (Bi and Poo, 1998; Sjöström et al., 2008). The learning window in this context refers to how

weights change as a function of the spike time difference (insets in the panels). Generalizations of STDP often involve custom neural windows and state-

dependent modulation of the updates.

The left plot shows an example of an online implementation of the classic STDP rule with nearest-neighbor interactions: DWðtÞ = spostðtÞXðtÞ + spreðtÞY ðtÞ,
where X(t) and Y(t) are traces representing presynaptic and postsynaptic spike history, respectively. Nearest neighbor interactions refer to the fact that the

weight update depends on the previous pre- or post-spike, respectively. The right plot is a modulated STDP rule corresponding to a type of three-factor rule:

DWMðtÞ = DWðtÞ,ModulationðtÞ, where the three factors are pre-synaptic activity, post-synaptic activity, and modulation. For illustration purposes, here the

modulation (green) is a random signal that multiplies the weight updates. In more practical examples, the modulation can represent reward (Florian, 2007) or

classification error (Neftci et al., 2017).
on multiple timescales to achieve extensive memory capacity (Lahiri and Ganguli, 2013). Furthermore, er-

ror-driven learning rules derived from first principles are not directly compatible with pairwise STDP (Pfister

et al., 2006). These observations are not in contradiction with the seminal work of Bi and Poo (1998), as

considerable variation in LTP and LTD is indeed observed.

In contrast to STDP, phenomenological synapse models provide a mechanistic model of the observed dy-

namics, for example, calcium dynamics (Graupner and Brunel, 2012; Shouval et al., 2002; Brader et al., 2007;

Abarbanel et al., 2002), and internal consolidation states for long-term memory (Benna and Fusi, 2015).

Phenomenological plasticity rules have provided inspiration to neuromorphic VLSI design of learning chips

(Huayaney et al., 2016; Qiao et al., 2015; Chicca et al., 2013). The implementation of phenomenological syn-

apses is appealing as it enables highly complex and continuous learning dynamics.

Unfortunately, the scalability of phenomenological synapse models remains challenging because every

synapse requires one or more dynamical states. A more scalable approach using current technology

can be achieved with so-called normative or top-down approaches. These approaches derive synaptic

plasticity requirements from computational principles while being compatible with a neural substrate.

They are potentially more scalable than phenomenological ones because only the computationally rele-

vant features are retained. Three-factor rules are examples of normative approaches to synaptic plasticity

(Urbanczik and Senn, 2014). The three factors involved are pre-synaptic activity, post-synaptic activity,

and a third factor, which can be modulation or another variable relevant to the learning task. Three-factor

rules have been shown to be compatible with a wide number of unsupervised, supervised, and reinforce-

ment learning paradigms (Urbanczik and Senn, 2014), and implementations can have scaling properties

comparable with that of STDP (Detorakis et al., 2017). Recent digital implementations of learning use

three-factor rules, where the third factor is a modulation term that depends on an internal synaptic state

(Davies et al., 2018) or postsynaptic neuron state (Detorakis et al., 2017). Our previously described

learning rule, eRBP, is equivalent to a three-factor rule where the third factor is a linear, random function

of classification error (Neftci et al., 2017). Within this normative approach, several promising extensions

to the random back-propagation rule underlying eRBP are possible by exploiting the temporal dynamics
iScience 5, 52–68, July 27, 2018 59



of spiking neurons and synapses to learn complex spatiotemporal patterns (Zenke and Ganguli, 2017)

and using local classifiers to prevent layer-wise locking and long-distance communication of errors (Mos-

tafa et al., 2017).
DISTILLING MACHINE LEARNING AND NEUROSCIENCE FOR NEUROMORPHIC

LEARNING MACHINES

We can now discuss how to synthesize neuromorphic learningmachines by combining the fields of machine

learning and neuroscience.

Two technological developments were instrumental to the recent successes of machine learning and deep

learning: (1) the advent of GPUs for general-purpose computation (Ciresxan et al., 2010) and (2) software so-

lutions. The simplicity with which complex problems could be prescribed in machine learning frameworks

allowed the utilization of dedicated vector/SIMD processors without having to write hardware-specific

code (e.g., CUDA). This is enabled by a library of equivalent native implementations of the necessary basic

operations and a computational graph of themathematical operations that can be optimized and automat-

ically differentiated.

This is a success scenario that would be extremely beneficial to reproduce with neuromorphic hardware. Based

onour experience in spiking neural networks, neuromorphic engineering, andmachine learning, this is possible,

provided that accuracy on static datasets is not the only objective and hardware is designedwithgradient-based

learning in mind. In the following, we outline the basic requirements for such a neuromorphic machine learning

software/hardware framework, namely, thematchingneural and synaptic dynamics under a class of target objec-

tive functions. Then we describe our envisioned neuromorphic machine learning framework.
Matching Neural and Synaptic Dynamics

Several computational models of the brain argue that computational optimality hinges on plasticity dy-

namics and neural dynamics being matched (Lengyel et al., 2005; Pfister et al., 2006; Brea et al., 2013).

Although such hypotheses help in guiding neuroscientific hypotheses and experiments, here we propose

to use this approach to synthesize neuromorphic learning machines that make optimal use of neural or syn-

aptic dynamics dictated by the hardware substrate. This approach is similar to how artificial neural networks

are trained, where weight update rules are derived from a task-relevant objective function, the network ar-

chitecture, and the neural activation function. The user-defined objective function, the neuron model, and

the plasticity model are as follows.

Objective Function

The user defines an objective function L(s, w) relevant to the task at hand (e.g., classification error, recon-

struction error, and free energy), where w are trainable parameters and s are neural inputs and outputs

(e.g., neural spikes, rates, and targets).

Neuron Model

We formulate a mathematical model of the neurons that provides a probabilistic description of the output

si. We assume that the conditional probability of si given the input s can be expressed as:

PðsijsÞ= rðuiðtÞÞ with uiðtÞ=
X
j

wij

�
e � sjðtÞ

�
+ h � siðtÞ; (Equation 3)

where ri is the stochastic intensity (the equivalent of the activation function in artificial neurons) and h and e

are kernels that reflect neural and synaptic dynamics, e.g., refractoriness, reset, and postsynaptic poten-

tials (Gerstner and Kistler, 2002). The neuron model Equation 3 is kept intentionally general to encompass

firing rate models and spiking models whose membrane potential is linear in the inputs. In a firing rate

description, s represents input rates. In a spiking neuron description, s represents spike trains, and the

neuron model is a type of Spike-Response Model (SRM) describing a class of integrate-and-fire (I&F)

neuron models (Gerstner and Kistler, 2002), and r represents the probability of spiking. In spiking neurons,

both kernels and stochastic intensity can be derived or estimated experimentally if the noiseless mem-

brane potential (ui(t)) can be measured at the times of the spike (Jolivet et al., 2006). This type of stochastic

neuron model drives numerous investigations in theoretical neuroscience and forms the starting point for
60 iScience 5, 52–68, July 27, 2018



other types of adapting spiking neural networks capable of efficient communication (Zambrano and Bohte,

2016). Although we assumed a continuous-time description, Equation 3 is also consistent with a discrete-

time description (Gerstner and Kistler, 2002).

Plasticity Model

Using gradient descent, the plasticity dynamics that minimize L are:

Dwijf
v

vwij
L=

vL
vsi

r0ðuiÞ vui

vwij
; (Equation 4)

which is a three-factor rule as discussed earlier.

These descriptions of objective function, neuron and plasticity model provide a clear framework for

understanding biologically inspired neural networks, named as a sub-class of artificial neural networks.

This sub-class is characterized by neurons that are potentially continuous-time, stochastic, and

binary, with inputs filtered via kernels h and e, and with strong constraints on data locality. We note

that all these assumptions apply to devices following the foundational approach by Mead and colleagues

(Mead, 1990) (e.g., Qiao et al., 2015; Benjamin et al., 2014), but other implementations may relax some or

all of these assumptions (e.g., Loihi, True North chips are discrete-time and stochasticity is

programmable).

The picture emerging from the earlier discussion is that spiking neural networks commonly implemented in

neuromorphic hardware are strikingly similar to binary neural networks, a well-studied class of deep neural

networks (Rastegari et al., 2016; Courbariaux et al., 2016). This fact is directly explored in some digital

spiking neural network implementations (Yin et al., 2017). Furthermore, the statefulness of the neurons

and the filtering of their inputs is consistent with recurrent neural networks, even when the network is of

the feedforward type. Through this recurrence, neurons of the type Equation 3 have the ability to retain

and operate on short temporal sequences.

The equivalence with artificial neural networks is interesting because several findings and ‘‘tricks of the

trade’’ of deep learningmay have a direct correspondence with biological neurons and synapses. Naturally,

not every aspect has a neural equivalent because the resulting dynamics may be non-local or too involved.

However, through this (in)compatibility, one can gain insight into the family of objective functions that a

proposed neuron model or synapse model can optimize over the sensory data and thus define the range

of solvable tasks for a given choice of neuromorphic hardware features. Consequently, we argue that

neuromorphic hardware-algorithm co-design can greatly benefit from matching neural and synapse

dynamics, possibly at the cost of biological plausibility.

We can now identify three different approaches in matching the objective, neuron and plasticity

models: (1) neuron dynamics assumed, derive plasticity dynamics; (2) plasticity dynamics assumed,

derive neural dynamics; (3) plasticity dynamics and neural dynamics assumed from neuroscience exper-

iments and modeling. The last approach corresponds to the ‘‘analysis by synthesis’’ approach, which

stems from the seminal work on neuromorphic engineering. In the goal of engineering the foundations

for neuromorphic learning machines, we illustrate approaches (1) and (2) through the two following

case studies.

Synaptic Plasticity Dynamics Matched to Neural Dynamics. Here we illustrate an error-triggered

learning rule obtained from a modification of the superspike algorithm proposed by Zenke and Ganguli

(2017). The neuron model follows a spiking version of Equation 3, where h = 0 (no refractoriness or reset)

and e is an exponential decay. This neuron model is similar to a current-based leaky I&F neuron but with

the reset operation omitted to simplify the learning rule. Superspike employs a surrogate gradient for

gradient descent of a van Rossum distance (VRD), i.e., a squared error function between output spike i

and the target y(t) convolved with kernel a:

L=VRDðy; sÞ= 1

2

Z T

0

dt

0
B@a � yðtÞ � a � sðtÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

errorðtÞ

1
CA

2

;

iScience 5, 52–68, July 27, 2018 61



Figure 3. Learning to Recognize Spike Trains with Local Synaptic Plasticity Rules

A spiking neuron trained with Equation 6 learns to fire at specific times (middle panel, vertical bars) of a Poisson input spike train stimulus (left panel)

presented over 500 epochs. The middle panel shows the membrane potential of the neuron at the end of the learning (epoch 500). Weight updates were

performed online, and the learning rate for each synapse was fixed. The right panel shows the van Rossum distance VRD during training.
the plasticity model in Equation 4 becomes:

Dwjf

Z T

0

dt errorðtÞ a��r0ðuðtÞÞ�e � sjðtÞ��: (Equation 5)

This rule is the basis of the superspike algorithm proposed by Zenke and Ganguli (2017) and can learn to

recognize and generate arbitrary patterns of spikes. It consists of three factors: a modulatory component

error =
vL
vs

, a pre-synaptic component (e*sj), and a post-synaptic component r0ðuÞ. Importantly, Equation 6

is not the classical STDP rule; rather, it is modulated by the error and is continuous in time. This is a direct

consequence of the normative approach applied to the continuous-time neural and synaptic dynamics

(encapsulated in e). Continuous-time weight updates can be computationally expensive, especially in

event-driven designs. A simple modification to this rule consists in triggering weight updates when the er-

ror is large. Mathematically, this corresponds to evaluating the integral at time points where the integrand

is potentially large:

Dwjy
X
t˛T

errorðtÞ a��r0ðuðtÞÞ�e � sjðtÞ��: (Equation 6)

For illustration purposes, we define T= ftj; j˛N
				errorðtjÞ		>Cg as error-triggered plasticity events, where C

is a fixed threshold. (Even through weight updates are event driven, we note that the pre- and post-synaptic

terms still involve continuous-time functions because of the nested temporal convolutions.). In Figure 3, we

produce an example that learns to recognize an arbitrary spike train, using a neuron model Equation 3 with

a logistic activation function, and a second order filter for e, reflecting neural and synaptic dynamics. This

example illustrates how synaptic plasticity rules can be derived, resulting in learning rules quite different

from STDP, in that neither pre- nor post-event trigger weight updates but task-relevant error events.

Related approaches for deriving plasticity rules were reported by Huh and Sejnowski (2017) and Anwani

and Rajendran (2015).

Neural Dynamics Matched to Synaptic Plasticity Dynamics. The converse approach consists in match-

ing the neuron model to a given plasticity model. To the best of our knowledge, this approach has not yet

been applied in this context. We illustrate this novel approach with the example of metal oxide memristors

biased with supra-threshold pulses (Serb et al., 2016). Memristors are a class of emerging nanodevices

that can exhibit persistent changes in their resistance when their two terminals are suitably biased. Their

low-power operation and potential scalability make them ideal candidates to overcome the memory-

related challenges of neuromorphic hardware. The conductance dynamics can be captured by the

following equation:

DgijfsiðtÞsjðtÞ � siðtÞs


agij + b

�
(Equation 7)

where s is the logistic function and a, b are parameters experimentally fitted to the memristor conductance

update dynamics (Serb et al., 2016). The first term of this update rule is consistent with the outer-product

incremental update (i.e., Hebbian), and the second term captures the non-linearity of the update. Owing to

this non-linearity, it is not directly compatible with gradient descent on standard artificial neurons.
62 iScience 5, 52–68, July 27, 2018



Figure 4. Learning with Neuron Models Matched to Memristor Update Rules

MNIST classification task in a 784-100-10 network, using three different models: matched neuron model with memristor

update rule (blue, Equation 8), sigmoidal neuron model with the memristor update rule (red, Equation 7), and standard

artificial neural network with exact gradient BP as baseline (black). The sigmoidal neuron resulting from ignoring the non-

linearity of the memristor performs poorly compared with the baseline.
However, when learning is modulated by the error and ð1� rðuiÞÞ, the conductance gradient of the

following neuron model is equal to Equation 7, making the memristor update rule and neuron model

compatible with the exact gradient descent:

rðuiÞ= sðuiÞ; with ui =bi +
1

a

X
j

��
awij + b

�
sj � S

�
awij + b

��
;

DgijferroriðtÞð1� rðuiÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
modulation

rðuiÞ


sj � s



agij + b

��
;

(Equation 8)

where bi is a trainable bias term and S is the softplus function (i.e., the integral of the sigmoid function).

The second term on the right-hand side, S(awij + b), can be sampled periodically and equates to a weight-

dependent bias. We note that the learning rule Equation 8 does not involve any temporal dynamics, so

one can simply use a discrete-time, rate-based version of Equation 3. To illustrate this approach, we simu-

late the neuron and plasticity rule on an MNIST classification task, using three different neuron models for

the hidden and output layers: (1) matched neuron model Equation 8 with memristor update rule Equa-

tion 7, (2) standard sigmoidal neuron with the memristor update rule, and (3) standard artificial neural

network with exact gradient BP as baseline (Figure 4). The results show that the standard neuron that ig-

nores the dependence of the update on the conductance performs poorly compared with the models

with matched neuron-plasticity updates (1 and 3).

Matching neural dynamics to synaptic dynamics is particularly interesting for working around nanodevice

non-idealities for networks with a large number of synapses, since the neuron model is augmented to work

around the synapse non-idealities.
A Neuromorphic Machine Learning Framework

Our discussion sets the stage for vertically integrated software foundations in neuromorphic learning algo-

rithms capable of solving complex cognitive tasks. Here we lay out our vision for a neuromorphic machine

learning framework and illustrate it using the foundations laid out earlier.

Machine learning frameworks often build a computational graph representing the mathematical opera-

tions of a program (Bergstra et al., 2010; Abadi et al., 2016). The workflow consists of first constructing

the inference subgraph, or equivalently, designing a neural network and objective function with some

knowledge of the hardware constraints (e.g., memory, speed, and host/device communication overhead),

and then synthesizing the gradient subgraph (i.e., the learning channel). For this, one must be able to

compute the gradients through the inference subgraph.
iScience 5, 52–68, July 27, 2018 63



In the case of neuromorphic hardware, the hardware represents a significant portion of the computational

graph. Thus, constructing the neural network is similar to building the inference subgraph, a fact that is

implicitly exploited in mapping techniques. On the other hand, constructing the gradient subgraph in

neuromorphic hardware is equivalent to building a learning channel and configuring the plasticity dy-

namics. The latter is achieved by following the above-mentioned guidelines to designing neuromorphic

hardware that enable gradient-based learning. In addition, the structure of the synthesized learning chan-

nel must verify the constraints of the hardware. Interestingly, in gradient-based learning, the structure of

this channel resembles the forward channel. In fact, in the case of BP, it is the symmetric transpose of the

forward channel. Following this argument, and because we assume an informed user constructs the for-

ward channel within hardware constraints, the learning channel will tend to be compatible with the hard-

ware constraints as well. Although hardware compatibility is not guaranteed, approximate (surrogate) de-

rivatives through feedback alignment (Lillicrap et al., 2016) or bootstrapped (Jaderberg et al., 2016)

feedback can sidestep hardware constraints with reasonably small impact on performance. Our vision is

that a community of users would contribute mathematical models of the forward and backward opera-

tions of the neuron (i.e., its gradient-matched dynamics) and different strategies for building learning

channels.

The systematic construction of the learning channel must be aware of the locality of the variables.

Defining the availability of each variable in a domain can be achieved through structured name hierar-

chies. Accessing variables across these domains would require dedicated communication channels, as

well as dedicated encoders and decoders. Such channels are routinely used in existing frameworks for

spiking neural networks such as the neural engineering framework (Eliasmith and Anderson, 2004) or

STICK (Lagorce et al., 2015). They incur a significant cost in neurons and communication, and algorithmic

advances should strive to reduce this communication as much as possible, while maintaining the learning

performance.

Figure 5 is an example of a computational graph that could be generated by our proposed framework cor-

responding to Figure 1. The figure illustrates a computational graph for a two-layer network optimizing

VRD with direct feedback alignment.

Nodes N represent neurons, and dN are their respective derivatives. For example, N can represent the

operation Equation 3, whereas its derivative, dN, can represent Equation 4. Dashed edges indicate

spiking channels, whereas full edges indicate real-valued channels. When full edges cross a domain

wall, e.g., the edges originating from the error node in Equation 4, a dedicated communication channel

must be provisioned. On a platform supporting only spike-based communication, this information must

be encoded in spikes. On the other hand, dashed edges crossing domains can be handled through effi-

cient address-event communication protocols, such as in hierarchical AER (HiAER) (Park et al., 2017). In

this example, the synthesized learning subgraph (red nodes and edges) is consistent with eRBP, via a

random matrix G0. The symmetric case similar to back-propagation can be obtained by replacing G0

with W1,u and routing the errors via dN1. This modification would involve different full edges crossing

the domain walls.

Similar to modern high-level machine learning frameworks and hardware, our envisioned library will allow

streamlining the construction of the learning channel in neuromorphic systems. Unlike traditional machine

learning frameworks, this will lay out sensorimotor streams, online learning, and target-dedicated neuro-

morphic hardware. Thus, this library will contribute a much needed compiler for learning high-level func-

tion on neuromorphic hardware.
CONCLUDING REMARKS

As Carver Mead suggested decades ago, neuromorphic engineering and its applications are held back by

our limited understanding of neural circuits’ organizing principles, and less so by difficulties in implemen-

tation. Interestingly, the foundations of current deep neural networks were laid out during the same period.

But at that time, computers could not scale to real problems such as visual recognition and natural lan-

guage processing tasks. Today, many machine learning and neural networks can solve some of those prob-

lems (LeCun et al., 2015). These successes provide renewed interest in taking inspiration from machine

learning to guide our understanding of the organizing principles in the brain and applying them to

neuromorphic hardware. Researchers at the interface of these fields highlight the possible benefits in
64 iScience 5, 52–68, July 27, 2018



Figure 5. Example Computational Graph of a Two-Layer Network Implementing Direct Feedback Alignment

Square nodes represent operations and circular nodes represent variables. Here, N and dN are nodes referring to the

neuron and its derivative. Nodes VRD and X correspond to van Rossum distance and multiplication, respectively. Dashed

edges communicate spikes, whereas full edges represent real values.
cross-fertilizing machine learning and neuroscience (Hassabis et al., 2017; Lake et al., 2017), in spite of a

strong cultural gap between the two fields. This cultural gap is understandable: brain-inspired models,

especially those based on spiking neuron models, severely restrict the breadth of computations during

learning and inference. With the advent of powerful graphical processing units and dedicated machine

learning accelerators, the brain-inspired approach to learning machines is often heavily criticized as being

misguided. These criticisms are relevant to bottom-up designs, or metrics purely based on absolute accu-

racy at standardized benchmarks. However, in cases in which real-time adaptability, autonomy, or privacy is

essential, learning must be performed closer to the sensors. In this situation, power becomes a key metric

and neuromorphic hardware co-designed with learning algorithms can have significant advantages.

Although the traditionally bottom-up approach of neuromorphic engineering is well justified for analysis-

by-synthesis research, widespread interest in this field will likely be driven by its technological and

economic prospects. In this review, we argued that the technological success of neuromorphic learning

machines is not compatible with a purely bottom-up approach using current technologies. With the close

analogies with machine learning, we hope to encourage aspiring and experienced neuromorphic hardware

engineers to carefully plan learning features by matching neural and synaptic dynamics under task relevant

objective functions. Although several challenges remain open in learning with spiking neurons and a soft-

ware platform for programming neuromorphic learning machine does not yet exist, we expect that match-

ing neural and synaptic dynamics will go a long way in rendering hardware efforts compatible with ongoing

algorithmic developments.

ACKNOWLEDGMENTS

This work was partly supported by the Intel Corporation, the National Science Foundation under grant

1652159, and by the Korean Institute of Science and Technology.
REFERENCES

Abadi, M., Agarwal, A., Barham, P., Brevdo, E.,
Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean,
J., Devin, M., et al. (2016). TensorFlow: a system
for large-scale machine learning. In 12th USENIX
Symposium on Operating Systems Design and
Implementation OSDI 16 (USENIX Association),
pp. 265–283.

Abarbanel, H., Huerta, R., and Rabinovich, M.
(2002). Dynamical model of long-term synaptic
plasticity. Proc. Natl. Acad. Sci. USA 99, 10132–
10137.

Andrychowicz, M., Denil, M., Gomez, S., Hoffman,
M.W., Pfau, D., Schaul, T., Shillingford, B., and de
Freitas, N. (2016). Learning to learn by gradient
descent by gradient descent. Adv. Neural Inf.
Process. Syst. 3981–3989.

Anwani, N., and Rajendran, B. (2015). NormAD-
normalized approximate descent based
supervised learning rule for spiking neurons. In
2015 International Joint Conference on
NeuralNetworks (IJCNN) (IEEE), pp. 1–8.

Arthur, J., and Boahen, K. (2006). Learning
in silicon: timing is everything. In Advances in
Neural Information Processing Systems 18, Y.
Weiss, B. Schölkopf, and J. Platt, eds. (MIT Press),
pp. 75–82.

Azghadi, R., Iannella, N., Al-Sarawi, S., Indiveri,
G., and Abbott, D. (2014). Spike-based synaptic
plasticity in silicon: design, implementation,
application, and challenges. Proc. IEEE 102,
717–737.

Baldi, P., and Sadowski, P. (2016). A theory of
local learning, the learning channel, and the
optimality of backpropagation. Neural Netw. 83,
51–74.

Baldi, P., Sadowski, P., and Lu, Z. (2016). Learning
in themachine: randombackpropagation and the
learning channel. arXiv, arXiv:1612.02734.

Baldi, P., Sadowski, P., and Lu, Z. (2017). Learning
in the machine: the symmetries of the deep
learning channel. Neural Netw. 95, 110–133.
iScience 5, 52–68, July 27, 2018 65

http://refhub.elsevier.com/S2589-0042(18)30086-5/sref1
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref1
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref1
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref1
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref1
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref1
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref1
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref2
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref2
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref2
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref2
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref3
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref3
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref3
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref3
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref3
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref4
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref4
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref4
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref4
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref4
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref5
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref5
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref5
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref5
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref5
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref6
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref6
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref6
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref6
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref6
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref7
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref7
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref7
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref7
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref8
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref8
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref8
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref9
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref9
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref9


Bartolozzi, C., and Indiveri, G. (2007). Synaptic
dynamics in analog VLSI. Neural Comput. 19,
2581–2603.

Bengio, Y., Bengio, S., and Cloutier, J. (1990).
Learning a Synaptic Learning Rule (Université de
Montréal, Département d’informatique et de
recherche opérationnelle).

Benjamin, B.V., Gao, P., McQuinn, E., Choudhary,
S., Chandrasekaran, A.R., Bussat, J., Alvarez-
Icaza, R., Arthur, J.V., Merolla, P., and Boahen, K.
(2014). Neurogrid: a mixed-analog-digital
multichip system for large-scale neural
simulations. Proc. IEEE 102, 699–716.

Benna, M.K., and Fusi, S. (2015). Computational
principles of biological memory. arXiv, arXiv:
1507.07580.

Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P.,
Pascanu, R., Desjardins, G., Turian, J., Warde-
Farley, D., and Bengio, Y. (2010). Theano: a CPU
and GPU math expression compiler in python. In
Proceedings of the 9th Python in Science
Conference, volume 4, pp. 3–10.

Bi, G.-Q., and Poo, M.-M. (1998). Synaptic
modifications in cultured hippocampal neurons:
dependence on spike timing, synaptic strength,
and postsynaptic cell type. J. Neurosci. 18,
10464–10472.

Blum, H., Dietmüller, A., Milde, M., Conradt, J.,
Indiveri, G., and Sandamirskaya, Y. (2017). A
neuromorphic controller for a robotic vehicle
equipped with a dynamic vision sensor. In
Proceedings of Robotics: Science and Systems.
https://doi.org/10.15607/RSS.2017.XIII.035.

Brader, J., Senn, W., and Fusi, S. (2007). Learning
real-world stimuli in a neural network with spike-
driven synaptic dynamics. Neural Comput. 19,
2881–2912.

Brea, J., Senn, W., and Pfister, J.-P. (2013).
Matching recall and storage in sequence learning
with spiking neural networks. J. Neurosci. 33,
9565–9575.

Bruederle, D., Petrovici, M., Vogginger, B.,
Ehrlich, M., Pfeil, T., Millner, S., Grübl, A., Wendt,
K., Müller, E., Schwartz, M.O., et al. (2011). A
comprehensive workflow for general-purpose
neural modeling with highly configurable
neuromorphic hardware systems. Biol. Cybern.
104, 263–296.

Cao, Y., Chen, Y., and Khosla, D. (2015). Spiking
deep convolutional neural networks for energy-
efficient object recognition. Int. J. Comput. Vis.
113, 54–66.

Cauwenberghs, G. (2013). Reverse engineering
the cognitive brain. Proc. Natl. Acad. Sci. USA
110, 15512–15513.

Chicca, E., Stefanini, F., and Indiveri, G. (2013).
Neuromorphic electronic circuits for building
autonomous cognitive systems. Proc. IEEE.

Ciresxan, D., Meier, U., Gambardella, L., and
Schmidhuber, J. (2010). Deep, big, simple neural
nets for handwritten digit recognition. Neural
Comput. 22, 3207–3220.

Courbariaux, M., Bengio, Y., and David, J.-P.
(2014). Low precision arithmetic for deep
learning. arXiv, arXiv:14s12.7024.
66 iScience 5, 52–68, July 27, 2018
Courbariaux, M., Hubara, I., Soudry, D., El-Yaniv,
R., and Bengio, Y. (2016). Binarized neural
networks: training deep neural networks with
weights and activations constrained to +1 or -1.
arXiv, arXiv:1602.02830.

Davies, M., Srinivasa, N., Lin, T.H., Chinya, G.,
Joshi, P., Lines, A., Wild, A., and Wang, H. (2018).
Loihi: a neuromorphic manycore processor with
on-chip learning. IEEE Micro. https://doi.org/10.
1109/MM.2018.112130359.

Dean, M.E., Schuman, C.D., and Birdwell, J.D.
(2014). Dynamic adaptive neural network array. In
Unconventional Computation and
NaturalComputation UCNC, O. Ibarra, L. Kari,
and S. Kopecki, eds. (Springer), pp. 129–141.

Dethier, J., Nuyujukian, P., Eliasmith, C., Stewart,
T., Elassaad, S., Shenoy, K., and Boahen, K. (2011).
A brain-machine interface operating with a
real-time spiking neural network control
algorithm. Adv. Neural Inf. Process. Syst. 2011,
2213–2221.

Detorakis, G., Sheik, S., Augustine, C., Paul, S.,
Pedroni, B.U., Dutt, N., Krichmar, J.,
Cauwenberghs, G., and Neftci, E. (2017). Neural
and synaptic array transceiver: a brain-inspired
computing framework for embedded learning.
arXiv, arXiv:1709.10205.

Diehl, P.U., Neil, D., Binas, J., Cook, M., Liu, S.-C.,
and Pfeiffer, M. (2015). Fast-classifying, high-
accuracy spiking deep networks through weight
and threshold balancing. In 2015 International
Joint Conference on NeuralNetworks (IJCNN)
(IEEE), pp. 1–8.

Douglas, R., and Martin, K. (2004). Neural circuits
of the neocortex. Annu. Rev. Neurosci. 27,
419–451.

Eliasmith, C., and Anderson, C. (2004). Neural
Engineering: Computation, Representation, and
Dynamics in Neurobiological Systems (MIT
Press).

Esser, S.K., Merolla, P.A., Arthur, J.V., Cassidy,
A.S., Appuswamy, R., Andreopoulos, A., Berg,
D.J., McKinstry, J.L., Melano, T., Barch, D.R., et al.
(2016). Convolutional networks for fast, energy-
efficient neuromorphic computing. Proc. Natl.
Acad. Sci. USA 113, 11441–11446.

Florian, R. (2007). Reinforcement learning
through modulation of spike-timing-dependent
synaptic plasticity. Neural Comput. 19, 1468–
1502.

Friedmann, S., Schemmel, J., Grübl, A., Hartel, A.,
Hock, M., and Meier, K. (2017). Demonstrating
hybrid learning in a flexible neuromorphic
hardware system. IEEE Trans. Biomed. Circuits
Syst. 11, 128–142.

Furber, S.B., Galluppi, F., Temple, S., and Plana,
L. (2014). The spinnaker project. Proc. IEEE 102,
652–665.

Galluppi, F., Lagorce, X., Stromatias, E., Pfeiffer,
M., Plana, L.A., Furber, S.B., and Benosman, R.B.
(2014). A framework for plasticity implementation
on the spinnaker neural architecture. Front.
Neurosci. 8, 429.

Gerstner, W., and Kistler, W. (2002). Spiking
Neuron Models. Single Neurons, Populations,
Plasticity (Cambridge University Press).
Graupner, M., and Brunel, N. (2012).
Calcium-based plasticity model explains
sensitivity of synaptic changes to spike
pattern, rate, and dendritic location. Proc. Natl.
Acad. Sci. USA. https://doi.org/10.1073/pnas.
1109359109.

Grossberg, S. (1987). Competitive learning: from
interactive activation to adaptive resonance.
Cogn. Sci. 11, 23–63.

Hassabis, D., Kumaran, D., Summerfield, C., and
Botvinick, M. (2017). Neuroscience-inspired
artificial intelligence. Neuron 95, 245–258.

Hochreiter, S., Younger, A.S., and Conwell, P.R.
(2001). Learning to learn using gradient descent.
In International Conference on Artificial Neural
Networks, G. Dorffner, H. Bischof, and K. Hornik,
eds. (Springer), pp. 87–94.

Huayaney, F.L.M., Nease, S., and Chicca, E.
(2016). Learning in silicon beyond STDP: a
neuromorphic implementation of multi-factor
synaptic plasticity with calcium-based dynamics.
IEEE Trans. Circuits Syst. I Regul. Pap. 63, 2189–
2199.

Huh, D., and Sejnowski, T.J. (2017). Gradient
descent for spiking neural networks. arXiv,
arXiv:1706.04698.

Hunsberger, E., and Eliasmith, C. (2015). Spiking
deep networks with lif neurons. arXiv,
arXiv:1510.08829.

Indiveri, G., and Liu, S.-C. (2015). Memory and
information processing in neuromorphic systems.
Proc. IEEE 103, 1379–1397.

Indiveri, G., Linares-Barranco, B., Hamilton, T.,
van Schaik, A., Etienne-Cummings, R., Delbruck,
T., Liu, S.-C., Dudek, P., Häfliger, P., Renaud, S.,
et al. (2011). Neuromorphic silicon neuron
circuits. Front. Neurosci. 5, 1–23.

Isomura, T., and Toyoizumi, T. (2016). A local
learning rule for independent component
analysis. Sci. Rep. 6, 28073.

Jaderberg, M., Czarnecki, W.M., Osindero, S.,
Vinyals, O., Graves, A., and Kavukcuoglu, K.
(2016). Decoupled neural interfaces using
synthetic gradients. arXiv, arXiv:1608.05343.

Jolivet, R., Rauch, A., Lüscher, H.-R., and
Gerstner, W. (2006). Predicting spike timing of
neocortical pyramidal neurons by simple
threshold models. J. Comput. Neurosci. 21,
35–49.

Kansky, K., Silver, T., Mély, D.A., Eldawy, M.,
Lázaro-Gredilla, M., Lou, X., Dorfman, N., Sidor,
S., Phoenix, S., and George, D. (2017). Schema
networks: zero-shot transfer with a generative
causal model of intuitive physics. arXiv,
arXiv:1706.04317.

Lagorce, X., Ieng, S.H., Clady, X., Pfeiffer, M., and
Benosman, R.B. (2015). Spatiotemporal features
for asynchronous event-based data. Front.
Neurosci. 9, https://doi.org/10.3389/fnins.2015.
00046.

Lahiri, S., and Ganguli, S. (2013). A memory
frontier for complex synapses. In Advances in
Neural Information Processing Systems 26, C.J.C.
Burges, L. Bottou, M. Welling, Z. Ghahramani,

http://refhub.elsevier.com/S2589-0042(18)30086-5/sref10
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref10
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref10
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref11
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref11
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref11
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref11
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref12
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref12
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref12
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref12
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref12
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref12
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref13
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref13
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref13
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref14
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref14
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref14
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref14
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref14
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref14
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref15
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref15
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref15
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref15
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref15
https://doi.org/10.15607/RSS.2017.XIII.035
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref17
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref17
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref17
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref17
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref18
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref18
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref18
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref18
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref19
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref19
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref19
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref19
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref19
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref19
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref19
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref20
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref20
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref20
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref20
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref21
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref21
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref21
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref22
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref22
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref22
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref23
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref23
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref23
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref23
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref23
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref24
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref24
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref24
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref25
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref25
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref25
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref25
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref25
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1109/MM.2018.112130359
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref27
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref27
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref27
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref27
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref27
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref28
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref28
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref28
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref28
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref28
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref28
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref29
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref29
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref29
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref29
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref29
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref29
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref30
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref30
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref30
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref30
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref30
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref30
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref31
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref31
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref31
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref32
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref32
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref32
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref32
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref33
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref33
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref33
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref33
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref33
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref33
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref34
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref34
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref34
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref34
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref35
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref35
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref35
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref35
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref35
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref36
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref36
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref36
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref37
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref37
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref37
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref37
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref37
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref38
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref38
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref38
https://doi.org/10.1073/pnas.1109359109
https://doi.org/10.1073/pnas.1109359109
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref40
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref40
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref40
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref41
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref41
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref41
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref42
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref42
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref42
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref42
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref42
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref43
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref43
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref43
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref43
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref43
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref43
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref44
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref44
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref44
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref45
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref45
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref45
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref46
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref46
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref46
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref47
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref47
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref47
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref47
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref47
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref48
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref48
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref48
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref49
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref49
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref49
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref49
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref50
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref50
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref50
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref50
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref50
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref51
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref51
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref51
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref51
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref51
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref51
https://doi.org/10.3389/fnins.2015.00046
https://doi.org/10.3389/fnins.2015.00046
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref53
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref53
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref53
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref53


and K.Q. Weinberger, eds. (Curran Associates,
Inc), pp. 1034–1042.

Lake, B.M., Ullman, T.D., Tenenbaum, J.B., and
Gershman, S.J. (2017). Building machines
that learn and think like people. Behav. Brain Sci.
40, e253.

LeCun, L.B.Y., and Bottou, L. (2004). Large
scale online learning. Adv. Neural Inf. Process.
Syst. 16, 217.

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep
learning. Nature 521, 436–444.

Lee, J.H., Delbruck, T., and Pfeiffer, M. (2016).
Training deep spiking neural networks using
backpropagation. Front. Neurosci. 10, 508.

Lengyel, M., Kwag, J., Paulsen, O., and Dayan, P.
(2005). Matching storage and recall: hippocampal
spike timing-dependent plasticity and phase
response curves. Nat. Neurosci. 8, 1677.

Lillicrap, T.P., Cownden, D., Tweed, D.B., and
Akerman, C.J. (2016). Random synaptic feedback
weights support error backpropagation for deep
learning. Nat. Commun. 7, 13276.

Liu, S.-C., and Delbruck, T. (2010). Neuromorphic
sensory systems. Curr. Opin. Neurobiol. 20,
288–295.

Marr, D. (1982). Vision: A Computational
Investigation (MIT Press).

Mead, C. (1990). Neuromorphic electronic
systems. Proc. IEEE 78, 1629–1636.

Merolla, P.A., Arthur, J.V., Alvarez-Icaza, R.,
Cassidy, A.S., Sawada, J., Akopyan, F., Jackson,
B.L., Imam, N., Guo, C., Nakamura, Y., et al.
(2014). A million spiking-neuron integrated circuit
with a scalable communication network and
interface. Science 345, 668–673.

Moradi, S., Qiao, N., Stefanini, F., and Indiveri, G.
(2018). A scalable multicore architecture with
heterogeneous memory structures for dynamic
neuromorphic asynchronous processors
(dynaps). IEEE Trans. Biomed. Circuits Syst.
https://doi.org/10.1109/TBCAS.2017.2759700.

Mostafa, H. (2016). Supervised learning based on
temporal coding in spiking neural networks.
arXiv, arXiv:1606.08165.

Mostafa, H., Ramesh, V., and Cauwenberghs, G.
(2017). Deep supervised learning using local
errors. arXiv, arXiv:1711.06756.

Neftci, E., and Indiveri, G. (2010). A device
mismatch compensation method for VLSI neural
networks. In Biomedical Circuits and Systems
Conference (BioCAS) (IEEE), pp. 262–265.

Neftci, E., Chicca, E., Indiveri, G., and Douglas, R.
(2011). A systematic method for configuring VLSI
networks of spiking neurons. Neural Comput. 23,
2457–2497.

Neftci, E., Binas, J., Rutishauser, U., Chicca, E.,
Indiveri, G., andDouglas, R.J. (2013). Synthesizing
cognition in neuromorphic electronic systems.
Proc. Natl. Acad. Sci. USA 110, E3468–E3476.

Neftci, E., Das, S., Pedroni, B., Kreutz-Delgado,
K., and Cauwenberghs, G. (2014). Event-driven
contrastive divergence for spiking neuromorphic
systems. Front. Neurosci. 7, https://doi.org/10.
3389/fnins.2013.00272.

Neftci, E.O., Augustine, C., Paul, S., and
Detorakis, G. (2017). Event-driven random back-
propagation: enabling neuromorphic deep
learning machines. Front. Neurosci. 11, 324.

Neftci, E.O., Pedroni, B.U., Joshi, S., Al-Shedivat,
M., and Cauwenberghs, G. (2016). Stochastic
synapses enable efficient brain-inspired learning
machines. Front. Neurosci. 10, https://doi.org/10.
3389/fnins.2016.00241.

O’Connor, P., Neil, D., Liu, S.-C., Delbruck, T., and
Pfeiffer, M. (2013). Real-time classification and
sensor fusion with a spiking deep belief network.
Front. Neurosci. 7, https://doi.org/10.3389/fnins.
2013.00178.

Olshausen, B., and Field, D. (2004). Sparse coding
of sensory inputs. Curr. Opin. Neurobiol. 14,
481–487.

Park, J., Ha, S., Yu, T., Neftci, E., and
Cauwenberghs, G.A. (2014). 65k-neuron 73-
mevents/s 22-pj/event asynchronous micro-
pipelined integrate-and-fire array transceiver. In
Biomedical Circuits and Systems Conference
(BioCAS) (IEEE).

Park, J., Yu, T., Joshi, S., Maier, C., and
Cauwenberghs, G. (2017). Hierarchical address
event routing for reconfigurable large-scale
neuromorphic systems. IEEE Trans. Neural Netw.
Learn. Syst. 28, 2408–2422.

Pfeil, T., Potjans, T.C., Schrader, S., Potjans, W.,
Schemmel, J., Diesmann,M., andMeier, K. (2012).
Is a 4-bit synaptic weight resolution enough? -
constraints on enabling spike-timing dependent
plasticity in neuromorphic hardware. Front.
Neurosci. 6, https://doi.org/10.3389/fnins.2012.
00090.

Pfister, J.-P., Toyoizumi, T., Barber, D., and
Gerstner, W. (2006). Optimal spike-timing-
dependent plasticity for precise action potential
firing in supervised learning. Neural Comput. 18,
1318–1348.

Qiao, N., Mostafa, H., Corradi, F., Osswald, M.,
Stefanini, F., Sumislawska, D., and Indiveri, G.
(2015). A reconfigurable on-line learning
spiking neuromorphic processor comprising
256 neurons and 128k synapses. Front. Neurosci.
9, 141.

Rastegari, M., Ordonez, V., Redmon, J., and
Farhadi, A. (2016). Xnor-net: imagenet
classification using binary convolutional neural
networks. In European Conference on Computer
Vision, B. Leibe, J. Matas, N. Sebe, and M.
Welling, eds. (Springer), pp. 525–542.

Rounds, E.L., Scott, E.O., Alexander, A.S., De
Jong, K.A., Nitz, D.A., and Krichmar, J.L. (2016).
An evolutionary framework for replicating
neurophysiological data with spiking neural
networks. In International Conference on Parallel
Problem Solving from Nature, J. Handl, E. Hart,
P.R. Lewis, M. López-Ibáñez, G. Ochoa, and B.
Paechter, eds. (Springer), pp. 537–547.

Rumelhart, D.E., and McClelland, J.L.; PDP
Research Group (1987). Parallel Distributed
Processing, volume 1 (MIT press).
Russell, A., Orchard, G., Dong, Y., Mihalas, S.,
Niebur, E., Tapson, J., and Etienne-Cummings, R.
(2010). Optimizationmethods for spiking neurons
and networks. IEEE Trans. Neural Netw. 21, 1950–
1962.

Schemmel, J., Brüderle, D., Grübl, A., Hock, M.,
Meier, K., and Millner, S. (2010). A wafer-scale
neuromorphic hardware system for large-scale
neural modeling. In Proceedings of 2010 IEEE
International Symposiumon Circuits and Systems
(IEEE), pp. 1947–1950.

Schmidhuber, J. (1987). Evolutionary principles in
self-referential learning, or on learning how to
learn: the meta-meta-. hook. PhD thesis
(Technische Universität München).

Schmuker, M., Pfeil, T., andNawrot, M.P. (2014). A
neuromorphic network for generic multivariate
data classification. Proc. Natl. Acad. Sci. USA 111,
2081–2086.

Schuman, C.D., Potok, T.E., Patton, R.M.,
Birdwell, J.D., Dean, M.E., Rose, G.S., and Plank,
J.S. (2017). A survey of neuromorphic computing
and neural networks in hardware. arXiv,
arXiv:1705.06963.

Seide, F., Fu, H., Droppo, J., Li, G., and Yu, D.
(2014). On parallelizability of stochastic
gradient descent for speech dnns. In Acoustics,
Speech and Signal Processing (ICASSP), 2014
IEEE International Conference on (IEEE),
pp. 235–239.

Serb, A., Bill, J., Khiat, A., Berdan, R., Legenstein,
R., and Prodromakis, T. (2016). Unsupervised
learning in probabilistic neural networks with
multi-state metal-oxide memristive synapses.
Nat. Commun. 7, 12611.

Serrano-Gotarredona, R., Oster, M., Lichtsteiner,
P., Linares-Barranco, A., Paz-Vicente, R., Gómez-
Rodriguez, F., Camunas-Mesa, L., Berner, R.,
Rivas-Perez, M., Delbruck, T., et al. (2009).
CAVIAR: a 45k neuron, 5M synapse, 12G
connects/s AER hardware sensory–processing–
learning–actuating system for high-speed visual
object recognition and tracking. IEEE Trans.
Neural Netw. 20, 1417–1438.

Severa, W.M., Vineyard, C.M., Dellana, R., and
Aimone, J.B. (2018). Whetstone: an accessible,
platform-independent method for training
spiking deep neural networks for neuromorphic
processors. In SysML Conference.

Shouval, H.Z., Bear, M.F., and Cooper, L.N.
(2002). A unified model of NMDA receptor-
dependent bidirectional synaptic plasticity. Proc.
Natl. Acad. Sci. USA 99, 10831–10836.

Shouval, H.Z., Wang, S.S.-H., and Wittenberg,
G.M. (2010). Spike timing dependent
plasticity: a consequence of more
fundamental learning rules. Front. Comput.
Neurosci. 4, 19.

Simoncelli, E.P., and Olshausen, B.A. (2001).
Natural image statistics and neural
representation. Annu. Rev. Neurosci. 24, 1193–
1216.

Sjöström, P.J., Rancz, E.A., Roth, A., and Häusser,
M. (2008). Dendritic excitability and synaptic
plasticity. Physiol. Rev. 88, 769–840.
iScience 5, 52–68, July 27, 2018 67

http://refhub.elsevier.com/S2589-0042(18)30086-5/sref53
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref53
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref54
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref54
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref54
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref54
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref55
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref55
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref55
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref56
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref56
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref57
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref57
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref57
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref58
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref58
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref58
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref58
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref59
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref59
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref59
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref59
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref60
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref60
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref60
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref61
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref61
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref62
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref62
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref63
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref63
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref63
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref63
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref63
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref63
https://doi.org/10.1109/TBCAS.2017.2759700
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref65
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref65
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref65
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref66
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref66
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref66
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref67
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref67
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref67
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref67
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref68
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref68
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref68
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref68
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref69
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref69
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref69
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref69
https://doi.org/10.3389/fnins.2013.00272
https://doi.org/10.3389/fnins.2013.00272
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref71
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref71
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref71
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref71
https://doi.org/10.3389/fnins.2016.00241
https://doi.org/10.3389/fnins.2016.00241
https://doi.org/10.3389/fnins.2013.00178
https://doi.org/10.3389/fnins.2013.00178
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref74
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref74
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref74
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref75
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref75
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref75
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref75
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref75
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref75
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref76
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref76
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref76
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref76
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref76
https://doi.org/10.3389/fnins.2012.00090
https://doi.org/10.3389/fnins.2012.00090
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref78
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref78
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref78
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref78
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref78
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref79
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref79
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref79
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref79
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref79
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref79
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref80
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref80
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref80
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref80
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref80
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref80
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref81
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref81
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref81
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref81
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref81
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref81
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref81
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref81
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref82
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref82
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref82
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref83
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref83
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref83
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref83
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref83
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref84
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref84
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref84
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref84
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref84
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref84
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref86
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref86
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref86
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref86
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref87
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref87
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref87
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref87
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref87
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref88
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref88
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref88
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref88
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref88
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref88
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref89
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref89
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref89
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref89
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref89
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref90
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref90
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref90
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref90
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref90
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref90
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref90
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref90
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref90
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref91
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref91
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref91
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref91
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref91
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref92
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref92
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref92
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref92
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref93
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref93
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref93
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref93
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref93
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref94
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref94
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref94
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref94
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref95
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref95
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref95


Sompolinsky, H. (2014). Computational
neuroscience: beyond the local circuit. Curr.
Opin. Neurobiol. 25, xiii–xviii.

Srinivasa, N., and Cho, Y. (2014). Unsupervised
discrimination of patterns in spiking neural
networks with excitatory and inhibitory synaptic
plasticity. Front. Comput. Neurosci. 8, 159.

Sterling, P., and Laughlin, S. (2015). Principles of
Neural Design (MIT Press).

Tenenbaum, J.B., Kemp, C., Griffiths, T.L., and
Goodman, N.D. (2011). How to grow a mind:
statistics, structure, and abstraction. Science 331,
1279–1285.

Urbanczik, R., and Senn, W. (2014). Learning by
the dendritic prediction of somatic spiking.
Neuron 81, 521–528.
68 iScience 5, 52–68, July 27, 2018
Venkataramani, S., Ranjan, A., Roy, K., and
Raghunathan, A. (2014). Axnn: energy-efficient
neuromorphic systems using approximate
computing. In 2014 IEEE/ACM International
Symposium on Low Power Electronics and
Design (ISLPED) (ACM), pp. 27–32.

von Neumann, J. (1958). The Computer and the
Brain (Yale University Press).

Yin, S., Venkataramanaiah, S.K., Chen, G.K.,
Krishnamurthy, R., Cao, Y., Chakrabarti, C., and
Seo, J.-S. (2017). Algorithm and hardware design
of discrete-time spiking neural networks based
on back propagation with binary activations.
arXiv, arXiv:1709.06206.

Yosinski, J., Clune, J., Bengio, Y., and Lipson, H.
(2014). How transferable are features in deep
neural networks? Adv. Neural Inf. Process. Syst.
3320–3328.
Zambrano, D., and Bohte, S.M. (2016). Fast and
efficient asynchronous neural computation with
adapting spiking neural networks. arXiv,
arXiv:1609.02053.

Zenke, F., and Ganguli, S. (2017). Superspike:
supervised learning in multi-layer spiking neural
networks. arXiv, arXiv:1705.11146.

Zenke, F., and Gerstner, W. (2014). Limits to high-
speed simulations of spiking neural networks
using general-purpose computers. Front.
Neuroinform. 8, 76.

Zhu, X., Awatramani, M., Rover, D., and
Zambreno, J. (2016). ONAC: optimal number of
active cores detector for energy efficient GPU
computing. In 2016 IEEE 34th International
Conference on Computer Design (ICCD) (IEEE),
pp. 512–519.

http://refhub.elsevier.com/S2589-0042(18)30086-5/sref96
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref96
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref96
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref97
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref97
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref97
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref97
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref98
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref98
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref99
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref99
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref99
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref99
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref100
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref100
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref100
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref101
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref101
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref101
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref101
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref101
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref101
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref102
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref102
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref103
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref103
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref103
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref103
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref103
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref103
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref104
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref104
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref104
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref104
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref105
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref105
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref105
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref105
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref106
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref106
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref106
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref107
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref107
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref107
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref107
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref108
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref108
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref108
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref108
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref108
http://refhub.elsevier.com/S2589-0042(18)30086-5/sref108

	Data and Power Efficient Intelligence with Neuromorphic Learning Machines
	Introduction
	Embedded Learning to Solve the Challenges of Programming Neuromorphic Hardware
	Embedded Learning Rules for Resource-Constrained Learning
	Gradient-Based Learning in Neuromorphic Architectures
	Data Efficient Learning

	Synaptic Plasticity and Learning in Neuromorphic Hardware
	Distilling Machine Learning and Neuroscience for Neuromorphic Learning Machines
	Matching Neural and Synaptic Dynamics
	Objective Function
	Neuron Model
	Plasticity Model
	Synaptic Plasticity Dynamics Matched to Neural Dynamics
	Neural Dynamics Matched to Synaptic Plasticity Dynamics


	A Neuromorphic Machine Learning Framework

	Concluding Remarks
	Acknowledgments
	References


