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Introduction
Deep Learning models have made incredible progress in discriminative tasks. This has 
been fueled by the advancement of deep network architectures, powerful computation, 
and access to big data. Deep neural networks have been successfully applied to Com-
puter Vision tasks such as image classification, object detection, and image segmenta-
tion thanks to the development of convolutional neural networks (CNNs). These neural 
networks utilize parameterized, sparsely connected kernels which preserve the spatial 
characteristics of images. Convolutional layers sequentially downsample the spatial 
resolution of images while expanding the depth of their feature maps. This series of 
convolutional transformations can create much lower-dimensional and more useful rep-
resentations of images than what could possibly be hand-crafted. The success of CNNs 
has spiked interest and optimism in applying Deep Learning to Computer Vision tasks.
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There are many branches of study that hope to improve current benchmarks by apply-
ing deep convolutional networks to Computer Vision tasks. Improving the generaliza-
tion ability of these models is one of the most difficult challenges. Generalizability refers 
to the performance difference of a model when evaluated on previously seen data (train-
ing data) versus data it has never seen before (testing data). Models with poor general-
izability have overfitted the training data. One way to discover overfitting is to plot the 
training and validation accuracy at each epoch during training. The graph below depicts 
what overfitting might look like when visualizing these accuracies over training epochs 
(Fig. 1).

To build useful Deep Learning models, the validation error must continue to decrease 
with the training error. Data Augmentation is a very powerful method of achieving this. 
The augmented data will represent a more comprehensive set of possible data points, 
thus minimizing the distance between the training and validation set, as well as any 
future testing sets.

Data Augmentation, the focus of this survey, is not the only technique that has been 
developed to reduce overfitting. The following few paragraphs will introduce other solu-
tions available to avoid overfitting in Deep Learning models. This listing is intended to 
give readers a broader understanding of the context of Data Augmentation.

Many other strategies for increasing generalization performance focus on the model’s 
architecture itself. This has led to a sequence of progressively more complex architec-
tures from AlexNet [1] to VGG-16 [2], ResNet [3], Inception-V3 [4], and DenseNet [5]. 
Functional solutions such as dropout regularization, batch normalization, transfer learn-
ing, and pretraining have been developed to try to extend Deep Learning for application 
on smaller datasets. A brief description of these overfitting solutions is provided below. 
A complete survey of regularization methods in Deep Learning has been compiled by 
Kukacka et  al. [6]. Knowledge of these overfitting solutions will inform readers about 
other existing tools, thus framing the high-level context of Data Augmentation and Deep 
Learning.

•	 Dropout [7] is a regularization technique that zeros out the activation values of ran-
domly chosen neurons during training. This constraint forces the network to learn 
more robust features rather than relying on the predictive capability of a small subset 
of neurons in the network. Tompson et  al. [8] extended this idea to convolutional 

Fig. 1  The plot on the left shows an inflection point where the validation error starts to increase as the 
training rate continues to decrease. The increased training has caused the model to overfit to the training 
data and perform poorly on the testing set relative to the training set. In contrast, the plot on the right shows 
a model with the desired relationship between training and testing error
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networks with Spatial Dropout, which drops out entire feature maps rather than 
individual neurons.

•	 Batch normalization [9] is another regularization technique that normalizes the set 
of activations in a layer. Normalization works by subtracting the batch mean from 
each activation and dividing by the batch standard deviation. This normalization 
technique, along with standardization, is a standard technique in the preprocessing 
of pixel values.

•	 Transfer Learning [10, 11] is another interesting paradigm to prevent overfitting. 
Transfer Learning works by training a network on a big dataset such as ImageNet 
[12] and then using those weights as the initial weights in a new classification task. 
Typically, just the weights in convolutional layers are copied, rather than the entire 
network including fully-connected layers. This is very effective since many image 
datasets share low-level spatial characteristics that are better learned with big data. 
Understanding the relationship between transferred data domains is an ongoing 
research task [13]. Yosinski et al. [14] find that transferability is negatively affected 
primarily by the specialization of higher layer neurons and difficulties with splitting 
co-adapted neurons.

•	 Pretraining [15] is conceptually very similar to transfer learning. In Pretraining, the 
network architecture is defined and then trained on a big dataset such as ImageNet 
[12]. This differs from Transfer Learning because in Transfer Learning, the network 
architecture such as VGG-16 [2] or ResNet [3] must be transferred as well as the 
weights. Pretraining enables the initialization of weights using big datasets, while still 
enabling flexibility in network architecture design.

•	 One-shot and Zero-shot learning [16, 17] algorithms represent another paradigm for 
building models with extremely limited data. One-shot learning is commonly used 
in facial recognition applications [18]. An approach to one-shot learning is the use of 
siamese networks [19] that learn a distance function such that image classification is 
possible even if the network has only been trained on one or a few instances. Another 
very popular approach to one-shot learning is the use of memory-augmented net-
works [20]. Zero-shot learning is a more extreme paradigm in which a network uses 
input and output vector embeddings such as Word2Vec [21] or GloVe [22] to classify 
images based on descriptive attributes.

In contrast to the techniques mentioned above, Data Augmentation approaches 
overfitting from the root of the problem, the training dataset. This is done under the 
assumption that more information can be extracted from the original dataset through 
augmentations. These augmentations artificially inflate the training dataset size by 
either data warping or oversampling. Data warping augmentations transform exist-
ing images such that their label is preserved. This encompasses augmentations such as 
geometric and color transformations, random erasing, adversarial training, and neural 
style transfer. Oversampling augmentations create synthetic instances and add them to 
the training set. This includes mixing images, feature space augmentations, and genera-
tive adversarial networks (GANs). Oversampling and Data Warping augmentations do 
not form a mutually exclusive dichotomy. For example, GAN samples can be stacked 
with random cropping to further inflate the dataset. Decisions around final dataset size, 
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test-time augmentation, curriculum learning, and the impact of resolution are covered 
in this survey under the “Design considerations for image Data Augmentation” section. 
Descriptions of individual augmentation techniques will be enumerated in the “Image 
Data Augmentation techniques” section. A quick taxonomy of the Data Augmentations 
is depicted below in Fig. 2.

Before discussing image augmentation techniques, it is useful to frame the context of 
the problem and consider what makes image recognition such a difficult task in the first 
place. In classic discriminative examples such as cat versus dog, the image recognition 
software must overcome issues of viewpoint, lighting, occlusion, background, scale, and 
more. The task of Data Augmentation is to bake these translational invariances into the 
dataset such that the resulting models will perform well despite these challenges.

It is a generally accepted notion that bigger datasets result in better Deep Learning 
models [23, 24]. However, assembling enormous datasets can be a very daunting task 
due to the manual effort of collecting and labeling data. Limited datasets is an especially 
prevalent challenge in medical image analysis. Given big data, deep convolutional net-
works have been shown to be very powerful for medical image analysis tasks such as skin 
lesion classification as demonstrated by Esteva et al. [25]. This has inspired the use of 
CNNs on medical image analysis tasks [26] such as liver lesion classification, brain scan 
analysis, continued research in skin lesion classification, and more. Many of the images 
studied are derived from computerized tomography (CT) and magnetic resonance imag-
ing (MRI) scans, both of which are expensive and labor-intensive to collect. It is espe-
cially difficult to build big medical image datasets due to the rarity of diseases, patient 

Fig. 2  A taxonomy of image data augmentations covered; the colored lines in the figure depict which data 
augmentation method the corresponding meta-learning scheme uses, for example, meta-learning using 
Neural Style Transfer is covered in neural augmentation [36]
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privacy, the requirement of medical experts for labeling, and the expense and manual 
effort needed to conduct medical imaging processes. These obstacles have led to many 
studies on image Data Augmentation, especially GAN-based oversampling, from the 
application perspective of medical image classification.

Many studies on the effectiveness of Data Augmentation utilize popular academic 
image datasets to benchmark results. These datasets include MNIST hand written digit 
recognition, CIFAR-10/100, ImageNet, tiny-imagenet-200, SVHN (street view house 
numbers), Caltech-101/256, MIT places, MIT-Adobe 5K dataset, Pascal VOC, and Stan-
ford Cars. The datasets most frequently discussed are CIFAR-10, CIFAR-100, and Ima-
geNet. The expansion of open-source datasets has given researchers a wide variety of 
cases to compare performance results of Data Augmentation techniques. Most of these 
datasets such as ImageNet would be classified as big data. Many experiments constrain 
themselves to a subset of the dataset to simulate limited data problems.

In addition to our focus on limited datasets, we will also consider the problem of class 
imbalance and how Data Augmentation can be a useful oversampling solution. Class 
imbalance describes a dataset with a skewed ratio of majority to minority samples. Leevy 
et  al. [27] describe many of the existing solutions to high-class imbalance across data 
types. Our survey will show how class-balancing oversampling in image data can be 
done with Data Augmentation.

Many aspects of Deep Learning and neural network models draw comparisons with 
human intelligence. For example, a human intelligence anecdote of transfer learning is 
illustrated in learning music. If two people are trying to learn how to play the guitar, and 
one already knows how to play the piano, it seems likely that the piano-player will learn 
to play the guitar faster. Analogous to learning music, a model that can classify Ima-
geNet images will likely perform better on CIFAR-10 images than a model with random 
weights.

Data Augmentation is similar to imagination or dreaming. Humans imagine differ-
ent scenarios based on experience. Imagination helps us gain a better understanding 
of our world. Data Augmentation methods such as GANs and Neural Style Transfer 
can ‘imagine’ alterations to images such that they have a better understanding of them. 
The remainder of the paper is organized as follows: A brief “Background” is provided 
to give readers a historical context of Data Augmentation and Deep Learning. “Image 
Data Augmentation techniques” discusses each image augmentation technique in detail 
along with experimental results. “Design considerations for image Data Augmentation” 
discusses additional characteristics of augmentation such as test-time augmentation 
and the impact of image resolution. The paper concludes with a “Discussion” of the pre-
sented material, areas of “Future work”, and “Conclusion”.

Background
Image augmentation in the form of data warping can be found in LeNet-5 [28]. This 
was one of the first applications of CNNs on handwritten digit classification. Data 
augmentation has also been investigated in oversampling applications. Oversampling 
is a technique used to re-sample imbalanced class distributions such that the model 
is not overly biased towards labeling instances as the majority class type. Random 
Oversampling (ROS) is a naive approach which duplicates images randomly from the 
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minority class until a desired class ratio is achieved. Intelligent oversampling tech-
niques date back to SMOTE (Synthetic Minority Over-sampling Technique), which 
was developed by Chawla et al. [29]. SMOTE and the extension of Borderline-SMOTE 
[30] create new instances by interpolating new points from existing instances via 
k-Nearest Neighbors. The primary focus of this technique was to alleviate problems 
due to class imbalance, and SMOTE was primarily used for tabular and vector data.

The AlexNet CNN architecture developed by Krizhevsky et  al. [1] revolutionized 
image classification by applying convolutional networks to the ImageNet dataset. 
Data Augmentation is used in their experiments to increase the dataset size by a 
magnitude of 2048. This is done by randomly cropping 224 × 224 patches from the 
original images, flipping them horizontally, and changing the intensity of the RGB 
channels using PCA color augmentation. This Data Augmentation helped reduce 
overfitting when training a deep neural network. The authors claim that their aug-
mentations reduced the error rate of the model by over 1%.

Since then, GANs were introduced in 2014 [31], Neural Style Transfer [32] in 2015, 
and Neural Architecture Search (NAS) [33] in 2017. Various works on GAN exten-
sions such as DCGANs, CycleGANs and Progressively-Growing GANs [34] were pub-
lished in 2015, 2017, and 2017, respectively. Neural Style Transfer was sped up with 
the development of Perceptual Losses by Johnson et al. [35] in 2016. Applying meta-
learning concepts from NAS to Data Augmentation has become increasingly popular 
with works such as Neural Augmentation [36], Smart Augmentation [37], and Auto-
Augment [38] published in 2017, 2017, and 2018, respectively.

Applying Deep Learning to medical imaging has been a popular application for 
CNNs since they became so popular in 2012. Deep Learning and medical imaging 
became increasingly popular with the demonstration of dermatologist-level skin can-
cer detection by Esteva et al. [25] in 2017.

The use of GANs in medical imaging is well documented in a survey by Yi et  al. 
[39]. This survey covers the use of GANs in reconstruction such as CT denoising [40], 
accelerated magnetic resonance imaging [41], PET denoising [42], and the applica-
tion of super-resolution GANs in retinal vasculature segmentation [43]. Additionally, 
Yi et al. [39] cover the use of GAN image synthesis in medical imaging applications 
such as brain MRI synthesis [44, 45], lung cancer diagnosis [46], high-resolution skin 
lesion synthesis [47], and chest x-ray abnormality classification [48]. GAN-based 
image synthesis Data Augmentation was used by Frid-Adar et al. [49] in 2018 for liver 
lesion classification. This improved classification performance from 78.6% sensitiv-
ity and 88.4% specificity using classic augmentations to 85.7% sensitivity and 92.4% 
specificity using GAN-based Data Augmentation.

Most of the augmentations covered focus on improving Image Recognition mod-
els. Image Recognition is when a model predicts an output label such as ‘dog’ or ‘cat’ 
given an input image.

However, it is possible to extend results from image recognition to other Computer 
Vision tasks such as Object Detection led by the algorithms YOLO [50], R-CNN [51], 
fast R-CNN [52], and faster R-CNN [53] or Semantic Segmentation [54] including 
algorithms such as U-Net [55].
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Image Data Augmentation techniques
The earliest demonstrations showing the effectiveness of Data Augmentations come 
from simple transformations such as horizontal flipping, color space augmentations, and 
random cropping. These transformations encode many of the invariances discussed ear-
lier that present challenges to image recognition tasks. The augmentations listed in this 
survey are geometric transformations, color space transformations, kernel filters, mixing 
images, random erasing, feature space augmentation, adversarial training, GAN-based 
augmentation, neural style transfer, and meta-learning schemes. This section will explain 
how each augmentation algorithm works, report experimental results, and discuss dis-
advantages of the augmentation technique.

Data Augmentations based on basic image manipulations

Geometric transformations

This section describes different augmentations based on geometric transformations and 
many other image processing functions. The class of augmentations discussed below 
could be characterized by their ease of implementation. Understanding these trans-
formations will provide a useful base for further investigation into Data Augmentation 
techniques.

We will also describe the different geometric augmentations in the context of their 
‘safety’ of application. The safety of a Data Augmentation method refers to its likelihood 
of preserving the label post-transformation. For example, rotations and flips are gener-
ally safe on ImageNet challenges such as cat versus dog, but not safe for digit recogni-
tion tasks such as 6 versus 9. A non-label preserving transformation could potentially 
strengthen the model’s ability to output a response indicating that it is not confident 
about its prediction. However, achieving this would require refined labels [56] post-aug-
mentation. If the label of the image after a non-label preserving transformation is some-
thing like [0.5 0.5], the model could learn more robust confidence predictions. However, 
constructing refined labels for every non-safe Data Augmentation is a computationally 
expensive process.

Due to the challenge of constructing refined labels for post-augmented data, it is 
important to consider the ‘safety’ of an augmentation. This is somewhat domain depend-
ent, providing a challenge for developing generalizable augmentation policies, (see Auto-
Augment [38] for further exploration into finding generalizable augmentations). There 
is no image processing function that cannot result in a label changing transformation 
at some distortion magnitude. This demonstrates the data-specific design of augmen-
tations and the challenge of developing generalizable augmentation policies. This is an 
important consideration with respect to the geometric augmentations listed below.

Flipping

Horizontal axis flipping is much more common than flipping the vertical axis. This aug-
mentation is one of the easiest to implement and has proven useful on datasets such 
as CIFAR-10 and ImageNet. On datasets involving text recognition such as MNIST or 
SVHN, this is not a label-preserving transformation.
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Color space

Digital image data is usually encoded as a tensor of the dimension (height × width × color 
channels). Performing augmentations in the color channels space is another strategy 
that is very practical to implement. Very simple color augmentations include isolating 
a single color channel such as R, G, or B. An image can be quickly converted into its 
representation in one color channel by isolating that matrix and adding 2 zero matrices 
from the other color channels. Additionally, the RGB values can be easily manipulated 
with simple matrix operations to increase or decrease the brightness of the image. More 
advanced color augmentations come from deriving a color histogram describing the 
image. Changing the intensity values in these histograms results in lighting alterations 
such as what is used in photo editing applications.

Cropping

Cropping images can be used as a practical processing step for image data with mixed 
height and width dimensions by cropping a central patch of each image. Additionally, 
random cropping can also be used to provide an effect very similar to translations. 
The contrast between random cropping and translations is that cropping will reduce 
the size of the input such as (256,256) → (224, 224), whereas translations preserve the 
spatial dimensions of the image. Depending on the reduction threshold chosen for 
cropping, this might not be a label-preserving transformation.

Rotation

Rotation augmentations are done by rotating the image right or left on an axis 
between 1° and 359°. The safety of rotation augmentations is heavily determined by 
the rotation degree parameter. Slight rotations such as between 1 and 20 or − 1 to 
− 20 could be useful on digit recognition tasks such as MNIST, but as the rotation 
degree increases, the label of the data is no longer preserved post-transformation.

Translation

Shifting images left, right, up, or down can be a very useful transformation to avoid 
positional bias in the data. For example, if all the images in a dataset are centered, 
which is common in face recognition datasets, this would require the model to be 
tested on perfectly centered images as well. As the original image is translated in a 
direction, the remaining space can be filled with either a constant value such as 0 s or 
255 s, or it can be filled with random or Gaussian noise. This padding preserves the 
spatial dimensions of the image post-augmentation.

Noise injection

Noise injection consists of injecting a matrix of random values usually drawn from a 
Gaussian distribution. Noise injection is tested by Moreno-Barea et al. [57] on nine 
datasets from the UCI repository [58]. Adding noise to images can help CNNs learn 
more robust features.

Geometric transformations are very good solutions for positional biases present in 
the training data. There are many potential sources of bias that could separate the 
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distribution of the training data from the testing data. If positional biases are pre-
sent, such as in a facial recognition dataset where every face is perfectly centered in 
the frame, geometric transformations are a great solution. In addition to their pow-
erful ability to overcome positional biases, geometric transformations are also use-
ful because they are easily implemented. There are many imaging processing libraries 
that make operations such as horizontal flipping and rotation painless to get started 
with. Some of the disadvantages of geometric transformations include additional 
memory, transformation compute costs, and additional training time. Some geo-
metric transformations such as translation or random cropping must be manually 
observed to make sure they have not altered the label of the image. Finally, in many of 
the application domains covered such as medical image analysis, the biases distancing 
the training data from the testing data are more complex than positional and transla-
tional variances. Therefore, the scope of where and when geometric transformations 
can be applied is relatively limited.

Color space transformations

Image data is encoded into 3 stacked matrices, each of size height × width. These matri-
ces represent pixel values for an individual RGB color value. Lighting biases are amongst 
the most frequently occurring challenges to image recognition problems. Therefore, the 
effectiveness of color space transformations, also known as photometric transforma-
tions, is fairly intuitive to conceptualize. A quick fix to overly bright or dark images is to 
loop through the images and decrease or increase the pixel values by a constant value. 
Another quick color space manipulation is to splice out individual RGB color matrices. 
Another transformation consists of restricting pixel values to a certain min or max value. 
The intrinsic representation of color in digital images lends itself to many strategies of 
augmentation.

Color space transformations can also be derived from image-editing apps. An image’s 
pixel values in each RGB color channel is aggregated to form a color histogram. This his-
togram can be manipulated to apply filters that change the color space characteristics of 
an image.

There is a lot of freedom for creativity with color space augmentations. Altering the 
color distribution of images can be a great solution to lighting challenges faced by testing 
data (Figs. 3, 4).

Image datasets can be simplified in representation by converting the RGB matri-
ces into a single grayscale image. This results in smaller images, height × width × 1, 

Fig. 3  Examples of Color Augmentations provided by Mikolajczyk and Grochowski [72] in the domain of 
melanoma classification
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resulting in faster computation. However, this has been shown to reduce per-
formance accuracy. Chatifled et  al. [59] found a ~ 3% classification accuracy drop 
between grayscale and RGB images with their experiments on ImageNet [12] and 
the PASCAL [60] VOC dataset. In addition to RGB versus grayscale images, there 
are many other ways of representing digital color such as HSV (Hue, Saturation, and 
Value). Jurio et al. [61] explore the performance of Image Segmentation on many dif-
ferent color space representations from RGB to YUV, CMY, and HSV.

Similar to geometric transformations, a disadvantage of color space transforma-
tions is increased memory, transformation costs, and training time. Additionally, 
color transformations may discard important color information and thus are not 
always a label-preserving transformation. For example, when decreasing the pixel 
values of an image to simulate a darker environment, it may become impossible to 
see the objects in the image. Another indirect example of non-label preserving color 
transformations is in Image Sentiment Analysis [62]. In this application, CNNs try 
to visually predict the sentiment score of an image such as: highly negative, nega-
tive, neutral, positive, or highly positive. One indicator of a negative/highly negative 
image is the presence of blood. The dark red color of blood is a key component to 
distinguish blood from water or paint. If color space transforms repeatedly change 
the color space such that the model cannot recognize red blood from green paint, 
the model will perform poorly on Image Sentiment Analysis. In effect, color space 
transformations will eliminate color biases present in the dataset in favor of spa-
tial characteristics. However, for some tasks, color is a very important distinctive 
feature.

Fig. 4  Examples of color augmentations tested by Wu et al. [127]
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Geometric versus photometric transformations

Taylor and Nitschke [63] provide a comparative study on the effectiveness of geometric 
and photometric (color space) transformations. The geometric transformations stud-
ied were flipping, − 30° to 30° rotations, and cropping. The color space transformations 
studied were color jittering, (random color manipulation), edge enhancement, and PCA. 
They tested these augmentations with 4-fold cross-validation on the Caltech101 dataset 
filtered to 8421 images of size 256 × 256 (Table 1).

Kernel filters

Kernel filters are a very popular technique in image processing to sharpen and blur 
images. These filters work by sliding an n × n matrix across an image with either a Gauss-
ian blur filter, which will result in a blurrier image, or a high contrast vertical or hori-
zontal edge filter which will result in a sharper image along edges. Intuitively, blurring 
images for Data Augmentation could lead to higher resistance to motion blur during 
testing. Additionally, sharpening images for Data Augmentation could result in encapsu-
lating more details about objects of interest.

Sharpening and blurring are some of the classical ways of applying kernel filters to 
images. Kang et  al. [64] experiment with a unique kernel filter that randomly swaps 
the pixel values in an n × n sliding window. They call this augmentation technique 
PatchShuffle Regularization. Experimenting across different filter sizes and probabilities 
of shuffling the pixels at each step, they demonstrate the effectiveness of this by achiev-
ing a 5.66% error rate on CIFAR-10 compared to an error rate of 6.33% achieved with-
out the use of PatchShuffle Regularization. The hyperparameter settings that achieved 
this consisted of 2 × 2 filters and a 0.05 probability of swapping. These experiments were 
done using the ResNet [3] CNN architecture (Figs. 5, 6).

Kernel filters are a relatively unexplored area for Data Augmentation. A disadvantage 
of this technique is that it is very similar to the internal mechanisms of CNNs. CNNs 
have parametric kernels that learn the optimal way to represent images layer-by-layer. 
For example, something like PatchShuffle Regularization could be implemented with a 
convolution layer. This could be achieved by modifying the standard convolution layer 
parameters such that the padding parameters preserve spatial resolution and the sub-
sequent activation layer keeps pixel values between 0 and 255, in contrast to something 
like a sigmoid activation which maps pixels to values between 0 and 1. Therefore kernel 

Table 1  Results of Taylor and  Nitschke’s Data Augmentation experiments on  Caltech101 
[63]

Their results find that the cropping geometric transformation results in the most accurate classifier

The italic value denote high performance according to the comparative metrics

Top-1 accuracy (%) Top-5 accuracy (%)

Baseline 48.13 ± 0.42 64.50 ± 0.65

Flipping 49.73 ± 1.13 67.36 ± 138

Rotating 50.80 ± 0.63 69.41 ± 0.48

Cropping 61.95 + 1.01 79.10 ± 0.80

Color Jittering 49.57 ± 0.53 67.18 ± 0.42

Edge Enhancement 49.29 + 1.16 66.49 + 0.84

Fancy PCA 49.41 ± 0.84 67.54 ± 1.01
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filters can be better implemented as a layer of the network rather than as an addition to 
the dataset through Data Augmentation.

Mixing images

Mixing images together by averaging their pixel values is a very counterintuitive 
approach to Data Augmentation. The images produced by doing this will not look like a 
useful transformation to a human observer. However, Ionue [65] demonstrated how the 
pairing of samples could be developed into an effective augmentation strategy. In this 
experiment, two images are randomly cropped from 256 × 256 to 224 × 224 and ran-
domly flipped horizontally. These images are then mixed by averaging the pixel values 
for each of the RGB channels. This results in a mixed image which is used to train a clas-
sification model. The label assigned to the new image is the same as the first randomly 
selected image (Fig. 7).

On the CIFAR-10 dataset, Ionue reported a reduction in error rate from 8.22 to 6.93% 
when using the SamplePairing Data Augmentation technique. The researcher found 
even better results when testing a reduced size dataset, reducing CIFAR-10 to 1000 total 
samples with 100 in each class. With the reduced size dataset, SamplePairing resulted in 
an error rate reduction from 43.1 to 31.0%. The reduced CIFAR-10 results demonstrate 
the usefulness of the SamplePairing technique in limited data applications (Fig. 8).

Another detail found in the study is that better results were obtained when mixing 
images from the entire training set rather than from instances exclusively belonging 
to the same class. Starting from a training set of size N, SamplePairing produces a 
dataset of size N2 + N. In addition, Sample Pairing can be stacked on top of other 
augmentation techniques. For example, if using the augmentations demonstrated in 

Fig. 5  Examples of applying the PatchShuffle regularization technique [64]

Fig. 6  Pixels in a n × n window are randomly shifted with a probability parameter p
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the AlexNet paper by Krizhevsky et al. [1], the 2048 × dataset increase can be further 
expanded to (2048 × N)2.

The concept of mixing images in an unintuitive way was further investigated by 
Summers and Dinneen [66]. They looked at using non-linear methods to combine 
images into new training instances. All of the methods they used resulted in better 
performance compared to the baseline models (Fig. 9).

Amongst these non-linear augmentations tested, the best technique resulted in a 
reduction from 5.4 to 3.8% error on CIFAR-10 and 23.6% to 19.7% on CIFAR-100. 
In like manner, Liang et  al. [67] used GANs to produce mixed images. They found 
that the inclusion of mixed images in the training data reduced training time and 
increased the diversity of GAN-samples. Takahashi and Matsubara [68] experiment 

Fig. 7  SamplePairing augmentation strategy [65]

Fig. 8  Results on the reduced CIFAR-10 dataset. Experimental results demonstrated with respect to sampling 
pools for image mixing [65]
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with another approach to mixing images that randomly crops images and concate-
nates the croppings together to form new images as depicted below. The results of 
their technique, as well as SamplePairing and mixup augmentation, demonstrate 
the sometimes unreasonable effectiveness of big data with Deep Learning models 
(Fig. 10).

An obvious disadvantage of this technique is that it makes little sense from a human 
perspective. The performance boost found from mixing images is very difficult to 
understand or explain. One possible explanation for this is that the increased dataset 
size results in more robust representations of low-level characteristics such as lines and 
edges. Testing the performance of this in comparisons to transfer learning and pretrain-
ing methods is an interesting area for future work. Transfer learning and pretraining are 
other techniques that learn low-level characteristics in CNNs. Additionally, it will be 

Fig. 9  Non-linearly mixing images [66]

Fig. 10  Mixing images through random image cropping and patching [68]
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interesting to see how the performance changes if we partition the training data such 
that the first 100 epochs are trained with original and mixed images and the last 50 with 
original images only. These kinds of strategies are discussed further in Design Consid-
erations of Data Augmentation with respect to curriculum learning [69]. Additionally, 
the paper will cover a meta-learning technique developed by Lemley et al. [37] that uses 
a neural network to learn an optimal mixing of images.

Random erasing

Random erasing [70] is another interesting Data Augmentation technique developed 
by Zhong et al. Inspired by the mechanisms of dropout regularization, random erasing 
can be seen as analogous to dropout except in the input data space rather than embed-
ded into the network architecture. This technique was specifically designed to combat 
image recognition challenges due to occlusion. Occlusion refers to when some parts of 
the object are unclear. Random erasing will stop this by forcing the model to learn more 
descriptive features about an image, preventing it from overfitting to a certain visual fea-
ture in the image. Aside from the visual challenge of occlusion, in particular, random 
erasing is a promising technique to guarantee a network pays attention to the entire 
image, rather than just a subset of it.

Random erasing works by randomly selecting an n × m patch of an image and masking 
it with either 0 s, 255 s, mean pixel values, or random values. On the CIFAR-10 dataset 
this resulted in an error rate reduction from 5.17 to 4.31%. The best patch fill method 
was found to be random values. The fill method and size of the masks are the only 
parameters that need to be hand-designed during implementation (Figs. 11, 12).

Random erasing is a Data Augmentation method that seeks to directly prevent overfit-
ting by altering the input space. By removing certain input patches, the model is forced 
to find other descriptive characteristics. This augmentation method can also be stacked 
on top of other augmentation techniques such as horizontal flipping or color filters. Ran-
dom erasing produced one of the highest accuracies on the CIFAR-10 dataset. DeVries 
and Taylor [71] conducted a similar study called Cutout Regularization. Like the random 
erasing study, they experimented with randomly masking regions of the image (Table 2).

Mikolajcyzk and Grochowski [72] presented an interesting idea to combine random 
erasing with GANs designed for image inpainting. Image inpainting describes the task of 

Fig. 11  Example of random erasing on image recognition tasks [70]
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filling in a missing piece of an image. Using a diverse collection of GAN inpainters, the 
random erasing augmentation could seed very interesting extrapolations. It will be inter-
esting to see if better results can be achieved by erasing different shaped patches such 
as circles rather than n × m rectangles. An extension of this will be to parameterize the 
geometries of random erased patches and learn an optimal erasing configuration.

A disadvantage to random erasing is that it will not always be a label-preserving trans-
formation. In handwritten digit recognition, if the top part of an ‘8’ is randomly cropped 
out, it is not any different from a ‘6’. In many fine-grained tasks such as the Stanford Cars 
dataset [73], randomly erasing sections of the image (logo, etc.) may make the car brand 
unrecognizable. Therefore, some manual intervention may be necessary depending on 
the dataset and task.

A note on combining augmentations

Of the augmentations discussed, geometric transformations, color space transforma-
tions, kernel filters, mixing images, and random erasing, nearly all of these transforma-
tions come with an associated distortion magnitude parameter as well. This parameter 
encodes the distortional difference between a 45° rotation and a 30° rotation. With a 
large list of potential augmentations and a mostly continuous space of magnitudes, it is 
easy to conceptualize the enormous size of the augmentation search space. Combining 
augmentations such as cropping, flipping, color shifts, and random erasing can result in 

Fig. 12  Example of random erasing on object detection tasks [70]

Table 2  Results of  Cutout Regularization [104], plus  denotes using traditional 
augmentation methods, horizontal flipping and cropping

A 2.56% error rate is obtained on CIFAR-10 using cutout and traditional augmentation methods

The italic value denote high performance according to the comparative metrics

Method C10 C10+ C100 C100+ SVHN

ResNetl8 [5] 10.63 ± 0.26 4.72 ± 0.21 36.68 ± 0.57 22.46 ± 0.31 –

ResNet18 + cutout 9.31 ± 0.18 3.99 ± 0.13 34.98 ± 0.29 21.96 ± 0.24 –

WideResNet [21] 6.97 ± 0.22 3.87 ± 0.08 26.06 ± 0.22 18.8 ± 0.08 1.60 ± 0.05

WideResNet + cutout 5.54 ± 0.08 3.08 ± 0.16 23.94 ± 0.15 18.41 ± 0.27 1.30 ± 0.03

Shake-shake regularization [4] – 2.86 – 15.85 –

Shake-shake regularization + cutout – 2.56 ± 0.07 – 15.20 ± 0.21 –
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massively inflated dataset sizes. However, this is not guaranteed to be advantageous. In 
domains with very limited data, this could result in further overfitting. Therefore, it is 
important to consider search algorithms for deriving an optimal subset of augmented 
data to train Deep Learning models with. More on this topic will be discussed in Design 
Considerations of Data Augmentation.

Data Augmentations based on Deep Learning

Feature space augmentation

All of the augmentation methods discussed above are applied to images in the input 
space. Neural networks are incredibly powerful at mapping high-dimensional inputs into 
lower-dimensional representations. These networks can map images to binary classes 
or to n × 1 vectors in flattened layers. The sequential processing of neural networks can 
be manipulated such that the intermediate representations can be separated from the 
network as a whole. The lower-dimensional representations of image data in fully-con-
nected layers can be extracted and isolated. Konno and Iwazume [74] find a performance 
boost on CIFAR-100 from 66 to 73% accuracy by manipulating the modularity of neural 
networks to isolate and refine individual layers after training. Lower-dimensional repre-
sentations found in high-level layers of a CNN are known as the feature space. DeVries 
and Taylor [75] presented an interesting paper discussing augmentation in this feature 
space. This opens up opportunities for many vector operations for Data Augmentation.

SMOTE is a popular augmentation used to alleviate problems with class imbalance. 
This technique is applied to the feature space by joining the k nearest neighbors to form 
new instances. DeVries and Taylor discuss adding noise, interpolating, and extrapolating 
as common forms of feature space augmentation (Figs. 13, 14).

Fig. 13  Architecture diagram of the feature space augmentation framework presented by DeVries and Taylor 
[75]

Fig. 14  Examples of interpolated instances in the feature space on the handwritten ‘@’ character [75]
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The use of auto-encoders is especially useful for performing feature space augmen-
tations on data. Autoencoders work by having one half of the network, the encoder, 
map images into low-dimensional vector representations such that the other half of the 
network, the decoder, can reconstruct these vectors back into the original image. This 
encoded representation is used for feature space augmentation.

DeVries and Taylor [75] tested their feature space augmentation technique by extrapo-
lating between the 3 nearest neighbors per sample to generate new data and compared 
their results against extrapolating in the input space and using affine transformations in 
the input space (Table 3).

Feature space augmentations can be implemented with auto-encoders if it is necessary 
to reconstruct the new instances back into input space. It is also possible to do feature 
space augmentation solely by isolating vector representations from a CNN. This is done 
by cutting off the output layer of the network, such that the output is a low-dimensional 
vector rather than a class label. Vector representations are then found by training a CNN 
and then passing the training set through the truncated CNN. These vector representa-
tions can be used to train any machine learning model from Naive Bayes, Support Vec-
tor Machine, or back to a fully-connected multilayer network. The effectiveness of this 
technique is a subject for future work.

A disadvantage of feature space augmentation is that it is very difficult to interpret the 
vector data. It is possible to recover the new vectors into images using an auto-encoder 
network; however, this requires copying the entire encoding part of the CNN being 
trained. For deep CNNs, this results in massive auto-encoders which are very difficult 
and time-consuming to train. Finally, Wong et  al. [76] find that when it is possible to 
transform images in the data-space, data-space augmentation will outperform feature 
space augmentation.

Adversarial training

One of the solutions to search the space of possible augmentations is adversarial 
training. Adversarial training is a framework for using two or more networks with 
contrasting objectives encoded in their loss functions. This section will discuss using 
adversarial training as a search algorithm as well as the phenomenon of adversarial 
attacking. Adversarial attacking consists of a rival network that learns augmentations 
to images that result in misclassifications in its rival classification network. These 
adversarial attacks, constrained to noise injections, have been surprisingly successful 
from the perspective of the adversarial network. This is surprising because it com-
pletely defies intuition about how these models represent images. The adversarial 

Table 3  Performance results of the experiment with feature vs. input space extrapolation 
on MNIST and CIFAR-10 [75]

The italic value denote high performance according to the comparative metrics

Model MNIST CIFAR-10

Baseline 1.093 ± 0.057 30.65 ± 0.27

Baseline + input space affine transformations 1.477 ± 0.068 –

Baseline + input space extrapolation 1.010 ± 0.065 –

Baseline + feature space extrapolation 0.950 ± 0.036 29.24 ± 0.27
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attacks demonstrate that representations of images are much less robust than what 
might have been expected. This is well demonstrated by Moosavi-Dezfooli et al. [77] 
using DeepFool, a network that finds the minimum possible noise injection needed 
to cause a misclassification with high confidence. Su et al. [78] show that 70.97% of 
images can be misclassified by changing just one pixel. Zajac et  al. [79] cause mis-
classifications with adversarial attacks limited to the border of images. The success of 
adversarial attacks is especially exaggerated as the resolution of images increases.

Adversarial attacking can be targeted or untargeted, referring to the deliberation 
in which the adversarial network is trying to cause misclassifications. Adversarial 
attacks can help to illustrate weak decision boundaries better than standard classifica-
tion metrics can.

In addition to serving as an evaluation metric, defense to adversarial attacks, adver-
sarial training can be an effective method for searching for augmentations.

By constraining the set of augmentations and distortions available to an adversarial 
network, it can learn to produce augmentations that result in misclassifications, thus 
forming an effective search algorithm. These augmentations are valuable for strength-
ening weak spots in the classification model. Therefore, adversarial training can be 
an effective search technique for Data Augmentation. This is in heavy contrast to the 
traditional augmentation techniques described previously. Adversarial augmentations 
may not represent examples likely to occur in the test set, but they can improve weak 
spots in the learned decision boundary.

Engstrom et  al. [80] showed that simple transformations such as rotations and 
translations can easily cause misclassifications by deep CNN models. The worst out 
of the random transformations reduced the accuracy of MNIST by 26%, CIFAR10 by 
72% and ImageNet (Top 1) by 28%. Goodfellow et al. [81] generate adversarial exam-
ples to improve performance on the MNIST classification task. Using a technique for 
generating adversarial examples known as the “fast gradient sign method”, a maxout 
network [82] misclassified 89.4% of adversarial examples with an average confidence 
of 97.6%. This test is done on the MNIST dataset. With adversarial training, the error 
rate of adversarial examples fell from 89.4% to 17.9% (Fig. 15).

Li et al. [83] experiment with a novel adversarial training approach and compare the 
performance on original testing data and adversarial examples. The results displayed 

Fig. 15  Adversarial misclassification example [81]
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below show how anticipation of adversarial attacks in the training process can dramati-
cally reduce the success of attacks.

As shown in Table 4, the adversarial training in their experiment did not improve the 
test accuracy. However, it does significantly improve the test accuracy of adversarial 
examples. Adversarial defense is a very interesting subject for evaluating security and 
robustness of Deep Learning models. Improving on the Fast Gradient Sign Method, 
DeepFool, developed by Moosavi-Dezfooli et al. [77], uses a neural network to find the 
smallest possible noise perturbation that causes misclassifications.

Another interesting framework that could be used in an adversarial training context is 
to have an adversary change the labels of training data. Xie et al. [84] presented Distur-
bLabel, a regularization technique that randomly replaces labels at each iteration. This 
is a rare example of adding noise to the loss layer, whereas most of the other augmenta-
tion methods discussed add noise into the input or hidden representation layers. On the 
MNIST dataset with LeNet [28] CNN architecture, DisturbLabel produced a 0.32% error 
rate compared to a baseline error rate of 0.39%. DisturbLabel combined with Dropout 
Regularization produced a 0.28% error rate compared to the 0.39% baseline. To translate 
this to the context of adversarial training, one network takes in the classifier’s training 
data as input and learns which labels to flip to maximize the error rate of the classifica-
tion network.

The effectiveness of adversarial training in the form of noise or augmentation search is 
still a relatively new concept that has not been widely tested and understood. Adversarial 
search to add noise has been shown to improve performance on adversarial examples, 
but it is unclear if this is useful for the objective of reducing overfitting. Future work 
seeks to expand on the relationship between resistance to adversarial attacks and actual 
performance on test datasets.

GAN‑based Data Augmentation

Another exciting strategy for Data Augmentation is generative modeling. Genera-
tive modeling refers to the practice of creating artificial instances from a dataset such 
that they retain similar characteristics to the original set. The principles of adversarial 
training discussed above have led to the very interesting and massively popular genera-
tive modeling framework known as GANs. Bowles et al. [85] describe GANs as a way 
to “unlock” additional information from a dataset. GANs are not the only generative 

Table 4  Test accuracies showing the  impact of  adversarial training, clean refers 
to  the  original testing data, FGSM refers to  adversary examples derived from  Fast 
Gradient Sign Method and  PGD refers to  adversarial examples derived from  Projected 
Gradient Descent [83]

Models MNIST CIFAR-10

Clean FGSM PGD Clean FGSM PGD

Standard 0.9939 0.0922 0 0.9306 0.5524 0.0256

Adversarially trained 0.9932 0.9492 0.0612 0.8755 0.8526 0.1043

Our method 0.9903 0.9713 0.9171 0.8714 0.6514 0.3440
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modeling technique that exists; however they are dramatically leading the way in com-
putation speed and quality of results.

Another useful strategy for generative modeling worth mentioning is variational 
auto-encoders. The GAN framework can be extended to improve the quality of samples 
produced with variational auto-encoders [86]. Variational auto-encoders learn a low-
dimensional representation of data points. In the image domain, this translates an image 
tensor of size height × width × color channels down into a vector of size n × 1, identi-
cal to what was discussed with respect to feature space augmentation. Low-dimensional 
constraints in vector representations will result in a poorer representation, although 
these constraints are better for visualization using methods such as t-SNE [87]. Imag-
ine a vector representation of size 5 × 1 created by an autoencoder. These autoencoders 
can take in a distribution of labeled data and map them into this space. These classes 
could include ‘head turned left’, ‘centered head’, and ‘head turned right’. The auto-encoder 
learns a low-dimensional representation of these data points such that vector operations 
such as adding and subtracting can be used to simulate a front view-3D rotation of a new 
instance. Variational auto-encoder outputs can be further improved by inputting them 
into GANs [31]. Additionally, a similar vector manipulation process can be done on the 
noise vector inputs to GANs through the use of Bidirectional GANs [88].

The impressive performance of GANs has resulted in increased attention on how they 
can be applied to the task of Data Augmentation. These networks have the ability to gen-
erate new training data that results in better performing classification models. The GAN 
architecture first proposed by Ian Goodfellow [31] is a framework for generative mode-
ling through adversarial training. The best anecdote for understanding GANs is the anal-
ogy of a cop and a counterfeiter. The counterfeiter (generator network) takes in some 
form of input. This could be a random vector, another image, text, and many more. The 
counterfeiter learns to produce money such that the cop (discriminator network) cannot 
tell if the money is real or fake. The real or fake dichotomy is analogous to whether or 
not the generated instance is from the training set or if it was created by the generator 
network (Fig. 16).

The counterfeiter versus robber analogy is a seamless bridge to understand GANs 
in the context of network intrusion detection. Lin et al. [89] use a generator network 
to learn how to fool a black-box detection system. This highlights one of the most 
interesting characteristics of GANs. Analysis tools derived from game theory such as 
minimax strategy and the Nash Equilibrium [90] suggest that the generator will even-
tually fool the discriminator. The success of the generator to overcome the discrimi-
nator makes it very powerful for generative modeling. GANs are the most promising 
generative modeling technique for use in Data Augmentation.

Fig. 16  Illustration of GAN concept provided by Mikolajczyk and Grochowski [72]
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The vanilla GAN architecture uses multilayer perceptron networks in the gen-
erator and discriminator networks. This is able to produce acceptable images on 
a simple image dataset such as the MNIST handwritten digits. However, it fails 
to produce quality results for higher resolution, more complicated datasets. In 
the MNIST dataset, each image is only 28 × 28 × 1 for a total of 784 pixels. GANs 
applied to the MNIST data are able to produce convincing results. However, MNIST 
images are far less challenging than other image datasets due to low intra-class vari-
ance and resolution, to name a couple differences of many. This is in heavy contrast 
with other datasets studied in most academic Computer Vision papers such as Ima-
geNet or CIFAR-10. For immediate reference, an ImageNet image is of resolution 
256 × 256 × 3, totaling 196,608 pixels, a 250× increase in pixel count compared with 
MNIST.

Many research papers have been published that modify the GAN framework 
through different network architectures, loss functions, evolutionary methods, and 
many more. This research has significantly improved the quality of samples created by 
GANs. There have been many new architectures proposed for expanding on the con-
cept of GANs and producing higher resolution output images, many of which are out 
of the scope of this paper. Amongst these new architectures, DCGANs, Progressively 
Growing GANs, CycleGANs, and Conditional GANs seem to have the most applica-
tion potential in Data Augmentation.

The DCGAN [91] architecture was proposed to expand on the internal complex-
ity of the generator and discriminator networks. This architecture uses CNNs for 
the generator and discriminator networks rather than multilayer perceptrons. The 
DCGAN was tested to generate results on the LSUN interior bedroom image data-
set, each image being 64 × 64 × 3, for a total of 12,288 pixels, (compared to 784 in 
MNIST). The idea behind DCGAN is to increase the complexity of the generator 
network to project the input into a high dimensional tensor and then add decon-
volutional layers to go from the projected tensor to an output image. These decon-
volutional layers will expand on the spatial dimensions, for example, going from 
14 × 14 × 6 to 28 × 28 × 1, whereas a convolutional layer will decrease the spatial 
dimensions such as going from 14 × 14 × 32 to 7 × 7 × 64. The DCGAN architecture 
presents a strategy for using convolutional layers in the GAN framework to produce 
higher resolution images (Figs. 17, 18).

Fig. 17  DCGAN, generator architecture presented by Radford et al. [91]
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Frid-Adar et  al. [49] tested the effectiveness of using DCGANs to generate liver 
lesion medical images. They use the architecture pictured above to generate 64 × 64 × 1 
size images of liver lesion CT scans. Their original dataset contains 182 CT scans, (53 
Cysts, 64 Metastases, and 65 Hemangiomas). After using classical augmentations to 
achieve 78.6% sensitivity and 88.4% specificity, they observed an increase to 85.7% sen-
sitivity and 92.4% specificity once they added the DCGAN-generated samples.

Another architecture of interest is known as Progressively Growing GANs [34]. This 
architecture trains a series of networks with progressive resolution complexity. These 
resolutions range from 4 × 4 to 8 × 8 and so on until outputs of size 1024 × 1024 are 
achieved. This is built on the concept that GANs can accept images as input as well 
as random vectors. Therefore, the series of GANs work by passing samples from a 
lower resolution GAN up to higher-resolution GANs. This has produced very amaz-
ing results on facial images.

In addition to improving the resolution size of GANs, another interesting architecture 
that increases the quality of outputs is the CycleGAN [92] proposed by Zhu et al. Cycle-
GAN introduces an additional Cycle-Consistency loss function to help stabilize GAN 
training. This is applied to image-to-image translation. Neural Style Transfer [32], dis-
cussed further in the section below, learns a single image to single image translation. 
However, CycleGAN learns to translate from a domain of images to another domain, 
such as horses to zebras. This is implemented via forward and backward consistency loss 
functions. A generator takes in images of horses and learns to map them to zebras such 
that the discriminator cannot tell if they were originally a part of the zebra set or not, as 
discussed above. After this, the generated zebras from horse images are passed through 
a network which translates them back into horses. A second discriminator determines 
if this re-translated image belongs to the horse set or not. Both of these discriminator 
losses are aggregated to form the cycle-consistency loss.

The use of CycleGANs was tested by Zhu et  al. [93] in the task of Emotion Clas-
sification. Using the emotion recognition dataset, FER2013 [94], Facial Expression 
Recognition Database, they build a CNN classifier to recognize 7 different emotions: 
angry, disgust, fear, happy, sad, surprise, and neutral. These classes are imbalanced 
and the CycleGAN is used as a method of intelligent oversampling.

CycleGANs learned an unpaired image-to-image translation between domains. An 
example of the domains in this problem is neutral to disgust. The CycleGAN learns to 
translate an image representing a neutral image into an image representing the dis-
gust emotion (Figs. 19, 20).

Fig. 18  Complete DCGAN architecture used by Frid-Adar et al. [49] to generate liver lesion images
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Using CycleGANs to translate images from the other 7 classes into the minority 
classes was very effective in improving the performance of the CNN model on emo-
tion recognition. Employing these techniquess, accuracy improved 5–10%. To further 
understand the effectiveness of adding GAN-generated instances, a t-SNE visualiza-
tion is used. t-SNE [87] is a visualization technique that learns to map between high-
dimensional vectors into a low-dimensional space to facilitate the visualization of 
decision boundaries (Fig. 21).

Another interesting GAN architecture for use in Data Augmentation is Conditional 
GANs [95]. Conditional GANs add a conditional vector to both the generator and the 
discriminator in order to alleviate problems with mode collapse. In addition to inputting 
a random vector z to the generator, Conditional GANs also input a y vector which could 
be something like a one-hot encoded class label, e.g. [0 0 0 1 0]. This class label targets a 
specific class for the generator and the discriminator (Fig. 22).

Fig. 19  Some examples of synthetic data created with CycleGANs for emotion classification

Fig. 20  Architecture overview: G and F consist of two separate GANs composing the CycleGAN. Two images 
are taken from the reference and target class and used to generate new data in the target class
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Lucic et  al. [96] sought out to compare newly developed GAN loss functions. They 
conducted a series of tests that determined most loss functions can reach similar scores 
with enough hyperparameter optimization and random restarts. This suggests that 
increased computational power is a more promising area of focus than algorithmic 
changes in the generator versus discriminator loss function.

Most of the research done in applying GANs to Data Augmentation and reporting 
the resulting classification performance has been done in biomedical image analysis 

Fig. 21  t-SNE visualization demonstrating the improved decision boundaries when using 
CycleGAN-generated samples. a original CNN model, b adding GAN-generated disgust images, c adding 
GAN-generated sad images, d adding both GAN-generated disgust and sad images [93]

Fig. 22  Illustration from Mirza and Osindero [95] showing how the conditional y vector is integrated into the 
GAN framework
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[39]. These papers have shown improved classification boundaries derived from train-
ing with real and generated data from GAN models. In addition, some papers measure 
the quality of GAN outputs by a visual Turing test. In these tests, the study asks two 
experts to distinguish between real and artificial images in medical image tasks such 
as skin lesion classification and liver cancer detection. Table 5 shows that the first and 
second experts were only able to correctly label 62.5% and 58.6% of the GAN-gener-
ated liver lesion images as fake. Labeling images as fake refers to their origin coming 
from the generator rather than an actual liver lesion image (Table 6; Fig. 23).

Table 5  Results of ‘Visual Turing Test’ on DCGAN-generated liver lesion images presented 
by Frid-Adar et al. [139]

Classification accuracy Is ROI real?

Real (%) Synthetic (%) Total score Total score

Expert 1 78 77.5 235\302 = 77.8% 189\302 = 62.5%

Expert 2 69.2 69.2 209\302 = 69.2% 177\302 = 58.6%

Table 6  Results of ‘Visual Turing Test’ on  different DCGAN- and WGAN [104]—generated 
brain tumor MR images presented by Han et al. [140]

Accuracy (%) Real 
selected 
as real

Real as synt Synt as real Synt as synt

T1 (DCGAN, 128 × 128) 70 26 24 6 44

Tlc (DCGAN, 128 × 128) 71 24 26 3 47

T2 (DCGAN, 128 × 128) 64 22 28 8 42

FLAIR (DCGAN, 128 × 128) 54 12 38 8 42

Concat (DCGAN, 128 × 128) 77 34 16 7 43

Concat (DCGAN, 64 × 64) 54 13 37 9 41

T1 (WGAN, 128 × 128) 64 20 30 6 44

Tlc (WGAN, 128 × 128) 55 13 37 8 42

T2 (WGAN, 128 × 128) 58 19 31 11 39

FLAIR (WGAN, 128 × 128) 62 16 34 4 46

Concat (WGAN, 128 × 128) 66 31 19 15 35

Concat (WGAN, 64 × 64) 53 18 32 15 35

Fig. 23  Trends in applying GANs to medical image analysis [39]
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GAN samples can be used as an oversampling technique to solve problems with class 
imbalance. Lim et al. [97] show how GAN samples can be used for unsupervised anom-
aly detection. By oversampling rare normal samples, which are samples that occur with 
small probability, GANs are able to reduce the false positive rate of anomaly detection. 
They do this using the Adversarial Autoencoder framework proposed by Makhzani et al. 
[98] (Fig. 24).

As exciting as the potential of GANs is, it is very difficult to get high-resolution out-
puts from the current cutting-edge architectures. Increasing the output size of the 
images produced by the generator will likely cause training instability and non-conver-
gence. Another drawback of GANs is that they require a substantial amount of data to 
train. Thus, depending on how limited the initial dataset is, GANs may not be a practical 
solution. Salimans et al. [99] provide a more complete description of the problems with 
training GANs.

Neural Style Transfer

Neural Style Transfer [32] is one of the flashiest demonstrations of Deep Learning 
capabilities. The general idea is to manipulate the representations of images created in 
CNNs. Neural Style Transfer is probably best known for its artistic applications, but it 
also serves as a great tool for Data Augmentation. The algorithm works by manipulat-
ing the sequential representations across a CNN such that the style of one image can be 
transferred to another while preserving its original content. A more detailed explanation 
of the gram matrix operation powering Neural Style Transfer can be found by Li et al. 
[100] (Fig. 25).

It is important to also recognize an advancement of the original algorithm from Gatys 
et al. known as Fast Style Transfer [35]. This algorithm extends the loss function from 
a per-pixel loss to a perceptual loss and uses a feed-forward network to stylize images. 
This perceptual loss is reasoned about through the use of another pre-trained net. The 
use of perceptual loss over per-pixel loss has also shown great promise in the applica-
tion of super-resolution [101] as well as style transfer. This loss function enhancement 
enables style transfer to run much faster, increasing interest in practical applications. 
Additionally, Ulyanov et al. [102] find that replacing batch normalization with instance 
normalization results in a significant improvement for fast stylization (Fig. 26).

For the purpose of Data Augmentation, this is somewhat analogous to color space 
lighting transformations. Neural Style Transfer extends lighting variations and enables 
the encoding of different texture and artistic styles as well. This leaves practitioners of 
Data Augmentation with the decision of which styles to sample from when deriving new 
images via Neural Style Transfer.

Choosing which styles to sample from can be a challenging task. For applica-
tions such as self-driving cars it is fairly intuitive to think of transferring training 

Fig. 24  Adversarial autoencoder framework used in DOPING [97]
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data into a night-to-day scale, winter-to-summer, or rainy-to-sunny scale. However, 
in other application domains, the set of styles to transfer into is not so obvious. For 
ease of implementation, data augmentation via Neural Style Transfer could be done 
by selecting a set of k styles and applying them to all images in the training set. The 
work of Style Augmentation [103], avoids introducing a new form of style bias into 
the dataset by deriving styles at random from a distribution of 79,433 artistic images. 
Transferring style in training data has been tested on the transition from simulated 
environments to the real-world. This is very useful for robotic manipulation tasks 
using Reinforcement Learning because of potential damages to hardware when train-
ing in the real-world. Many constraints such as low-fidelity cameras cause these 
models to generalize poorly when trained in physics simulations and deployed in the 
real-world.

Tobin et al. [104] explore the effectiveness of using different styles in training simula-
tion and achieve within 1.5 cm accuracy in the real-world on the task of object localiza-
tion. Their experiments randomize the position and texture of the objects to be detected 

Fig. 25  Illustration of style and content reconstructions in Neural Style Transfer [32]

Fig. 26  Illustration of the Fast neural style algorithm by Johnson et al. [35]
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on the table in the simulation, as well as the texture, lighting, number of lights, and ran-
dom noise in the background. They found that with enough variability in the training 
data style, the real-world simply appears as another variation to the model. Interestingly, 
they found that diversity in styles was more effective than simulating in as realistic of an 
environment as possible. This is in contrast to the work of Shrivastava et al. [105] who 
used GANs to make their simulated data as realistic as possible (Fig. 27).

Using simulated data to build Computer Vision models has been heavily investigated. 
One example of this is from Richter et al. [106]. They use computer graphics from mod-
ern open-world games such as Grand Theft Auto to produce semantic segmentation 
datasets. The authors highlight anecdotes of the manual annotation costs required to 
build these pixel-level datasets. They mention the CamVid dataset [107] requires 60 min 
per image to manually annotate, and the Cityscapes dataset [108] requires 90 min per 
image. This high labor and time cost motivates the use and development of synthetic 
datasets. Neural Style Transfer is a very interesting strategy to improve the generaliza-
tion ability of simulated datasets.

A disadvantage of Neural Style Transfer Data Augmentation is the effort required to 
select styles to transfer images into. If the style set is too small, further biases could be 
introduced into the dataset. Trying to replicate the experiments of Tobin et al. [104] will 
require a massive amount of additional memory and compute to transform and store 
79,433 new images from each image. The original algorithm proposed by Gatys et  al. 
[32] has a very slow running time and is therefore not practical for Data Augmentation. 
The algorithm developed by Johnson et al. [35] is much faster, but limits transfer to a 
pre-trained set of styles.

Meta learning Data Augmentations

The concept of meta-learning in Deep Learning research generally refers to the concept 
of optimizing neural networks with neural networks. This approach has become very 
popular since the publication of NAS [33] from Zoph and Le. Real et al. [109, 110] also 

Fig. 27  Examples of different styles simulated by Tobin et al. [104]
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show the effectiveness of evolutionary algorithms for architecture search. Salimans et al. 
[111] directly compare evolutionary strategies with Reinforcement Learning. Another 
interesting alternative to Reinforcement Learning is simple random search [112]. Uti-
lizing evolutionary and random search algorithms is an interesting area of future 
work, but the meta-learning schemes reviewed in this survey are all neural-network, 
gradient-based.

The history of Deep Learning advancement from feature engineering such as SIFT 
[113] and HOG [114] to architecture design such as AlexNet [1], VGGNet [2], and 
Inception-V3 [4], suggest that meta-architecture design is the next paradigm shift. 
NAS takes a novel approach to meta-learning architectures by using a recurrent net-
work trained with Reinforcement Learning to design architectures that result in the 
best accuracy. On the CIFAR-10 dataset, this achieved an error rate of 3.65 (Fig. 28).

This section will introduce three experiments using meta-learning for Data Aug-
mentation. These methods use a prepended neural network to learn Data Augmenta-
tions via mixing images, Neural Style Transfer, and geometric transformations.

Neural augmentation  The Neural Style Transfer algorithm requires two parameters 
for the weights of the style and content loss. Perez and Wang [36] presented an algo-
rithm to meta-learn a Neural Style Transfer strategy called Neural Augmentation. The 
Neural Augmentation approach takes in two random images from the same class. The 
prepended augmentation net maps them into a new image through a CNN with 5 
layers, each with 16 channels, 3 × 3 filters, and ReLU activation functions. The image 
outputted from the augmentation is then transformed with another random image via 
Neural Style Transfer. This style transfer is carried out via the CycleGAN [92] exten-
sion of the GAN [31] framework. These images are then fed into a classification model 
and the error from the classification model is backpropagated to update the Neural 
Augmentation net. The Neural Augmentation network uses this error to learn the opti-
mal weighting for content and style images between different images as well as the 
mapping between images in the CNN (Fig. 29).

Perez and Wang tested their algorithm on the MNIST and Tiny-imagenet-200 data-
sets on binary classification tasks such as cat versus dog. The Tiny-imagenet-200 
dataset is used to simulate limited data. The Tiny-imagenet-200 dataset contains 
only 500 images in each of the classes, with 100 set aside for validation. This problem 

Fig. 28  Concept behind Neural Architecture Search [33]
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limits this dataset to 2 classes. Thus there are only 800 images for training. Each of 
the Tiny-imagenet-200 images is 64 × 64 × 3, and the MNIST images are 28 × 28 × 1. 
The experiment compares their proposed Neural Augmentation [36] approach with 
traditional augmentation techniques such as cropping and rotation, as well as with 
a style transfer approach with a predetermined set of styles such as Night/Day and 
Winter/Summer.

The traditional baseline study transformed images by choosing an augmentation 
from a set (shifted, zoomed in/out, rotated, flipped, distorted, or shaded with a hue). 
This was repeated to increase the dataset size from N to 2 N. The GAN style transfer 
baseline uses 6 different styles to transform images (Cezanne, Enhance, Monet, Uki-
yoe, Van Gogh and Winter). The Neural Augmentation techniques tested consist of 
three levels based on the design of the loss function for the augmentation net (Con-
tent loss, Style loss via gram matrix, and no loss computer at this layer). All experi-
ments are tested with a convolutional network consisting of 3 convolutional layers 
each followed by max pooling and batch normalization, followed by 2 fully-connected 
layers. Each experiment runs for 40 epochs at a learning rate of 0.0001 with the Adam 
optimization technique (Table 7).

The results of the experiment are very promising. The Neural Augmentation tech-
nique performs significantly better on the Dogs versus Goldfish study and only 
slightly worse on Dogs versus Cats. The technique does not have any impact on the 
MNIST problem. The paper suggests that the likely best strategy would be to combine 
the traditional augmentations and the Neural Augmentations.

Smart Augmentation  The Smart Augmentation [37] approach utilizes a similar con-
cept as the Neural Augmentation technique presented above. However, the combina-
tion of images is derived exclusively from the learned parameters of a prepended CNN, 
rather than using the Neural Style Transfer algorithm.

Smart Augmentation is another approach to meta-learning augmentations. This is 
done by having two networks, Network-A and Network-B. Network-A is an augmen-
tation network that takes in two or more input images and maps them into a new 
image or images to train Network-B. The change in the error rate in Network-B is then 

Fig. 29  Illustration of augmentation network [36]
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backpropagated to update Network-A. Additionally another loss function is incorpo-
rated into Network-A to ensure that its outputs are similar to others within the class. 
Network-A uses a series of convolutional layers to produce the augmented image. The 
conceptual framework of Network-A can be expanded to use several Networks trained 
in parallel. Multiple Network-As could be very useful for learning class-specific aug-
mentations via meta-learning (Fig. 30).

Smart Augmentation is similar to SamplePairing [65] or mixed-examples in the sense 
that a combination of existing examples produces new ones. However, the mechanism of 
Smart Augmentation is much more sophisticated, using an adaptive CNN to derive new 
images rather than averaging pixels or hand-engineered image combinations.

The Smart Augmentation technique was tested on the task of gender recognition. 
On the Feret dataset, accuracy improved from 83.52 to 88.46%. The audience dataset 
responded with an improvement of 70.02% to 76.06%. Most interestingly, results from 
another face dataset increased from 88.15 to 95.66%. This was compared with traditional 
augmentation techniques which increased the accuracy from 88.15 to 89.08%. Addition-
ally, this experiment derived the same accuracy when using two Network-As in the aug-
mentation framework as was found with one Network-A. This experiment demonstrates 

Table 7  Results comparing augmentations [36]

Quantitative results on dogs vs. goldfish

Dogs vs goldfish

Augmentation Val. acc.

None 0.855

Traditional 0.890

GANs 0.865

Neural + no loss 0.915

Neural + content loss 0.900

Neural + style 0.890

Control 0.840

Quantitative results on dogs vs cats

Dogs vs cat

Augmentation Val. acc.

None 0.705

Traditional 0.775

GANs 0.720

Neural + no loss 0.765

Neural + content loss 0.770

Neural + style 0.740

Control 0.710

MNIST 0′s and 8′s

Augmentation Val. acc.

None 0.972

Neural + no loss 0.975

Neural + content loss 0.968
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the significant performance increase with the Smart Augmentation meta-learning strat-
egy (Fig. 31).

AutoAugment  AutoAugment [38], developed by Cubuk et  al., is a much different 
approach to meta-learning than Neural Augmentation or Smart Augmentation. Auto-
Augment is a Reinforcement Learning algorithm [115] that searches for an optimal 
augmentation policy amongst a constrained set of geometric transformations with mis-
cellaneous levels of distortions. For example, ‘translateX 20 pixels’ could be one of the 
transformations in the search space (Table 8).

In Reinforcement Learning algorithms, a policy is analogous to the strategy of the 
learning algorithm. This policy determines what actions to take at given states to achieve 
some goal. The AutoAugment approach learns a policy which consists of many sub-
policies, each sub-policy consisting of an image transformation and a magnitude of 
transformation. Reinforcement Learning is thus used as a discrete search algorithm of 
augmentations. The authors also suggest that evolutionary algorithms or random search 
would be effective search algorithms as well.

AutoAugment found policies which achieved a 1.48% error rate on CIFAR-10. Auto-
Augment also achieved an 83.54% Top-1 accuracy on the ImageNet dataset. Very inter-
estingly as well, the policies learned on the ImageNet dataset were successful when 
transferred to the Stanford Cars and FGVC Aircraft image recognition tasks. In this 
case, the ImageNet policy applied to these other datasets reduced error rates by 1.16% 
and 1.76% respectively.

Geng et al. [116] expanded on AutoAugment by replacing the Reinforcement Learning 
search algorithm with Augmented Random Search (ARS) [112]. The authors point out 
that the sub-policies learned from AutoAugment are inherently flawed because of the 
discrete search space. They convert the probability and magnitude of augmentations into 
a continuous space and search for sub-policies with ARS. With this, they achieve lower 
error rates on CIFAR-10, CIFAR-100, and ImageNet (Table 9).

Minh et  al. [117] also experimented with using Reinforcement Learning [115] to 
search for Data Augmentations. They further explore the effectiveness of learning trans-
formations for individual instances rather than the entire dataset. They find classifica-
tion accuracy differences of 70.18% versus 74.42% on the CIFAR-10 dataset and 74.61% 
versus 80.35% on the problem of classifying dogs versus cats. Further, they explore the 
robustness of classifiers with respect to test-time augmentation and find that the model 

Fig. 31  On the gender recognition task, the image to the left is an example of an instance produced by 
Network-A in Smart Augmentation given the right images as input [37]
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trained with Reinforcement Learning augmentation search performs much better. On 
the CIFAR-10 dataset this results in 50.99% versus 70.06% accuracy when the models are 
evaluated on augmented test data.

A disadvantage to meta-learning is that it is a relatively new concept and has not been 
heavily tested. Additionally, meta-learning schemes can be difficult and time-consuming 
to implement. Practitioners of meta-learning will have to solve problems primarily with 
vanishing gradients [118], amongst others, to train these networks.

Table 8  AutoAugment augmentation policy found on the reduced CIFAR-10 dataset [38]

Operation 1 Operation 2

Sub-policy 0 (Invert,0.1,7) (Contrast,0.2,6)

Sub-policy 1 (Rotate,0.7,2) (TranslateX,0.3,9)

Sub-policy 2 (Sharpness,0.8,1) (Sharpness,0.9,3)

Sub-policy 3 (ShearY,0.5,8) (TranslateY,0.7,9)

Sub-policy 4 (AutoContrast,0.5,8) (Equalize,0.9,2)

Sub-policy 5 (ShearY,0.2,7) (Posterize,0.3,7)

Sub-policy 6 (Color,0.4,3) (Brightness,0.6,7)

Sub-policy 7 (Sharpness,0.3,9) (Brightness,0.7,9)

Sub-policy 8 (Equalize,0.6,5) (Equalize,0.5,1)

Sub-policy 9 (Contrast,0.6,7) (Sharpness,0.6,5)

Sub-policy 10 (Color,0.7,7) (TranslateX,0.5,8)

Sub-policy 11 (Equalize,0.3,7) (AutoContrast,0.4,8)

Sub-policy 12 (TranslateY,0.4,3) (Sharpness,0.2,6)

Sub-policy 13 (Brightness,0.9,6) (Color,0.2,8)

Sub-policy 14 (Solarize,0.5,2) (Invert,0.0,3)

Sub-policy 15 (Equalize,0.2,0) (AutoContrast,0.6,0)

Sub-policy 16 (Equalize,0.2,8) (Equalize,0.6,4)

Sub-policy 17 (Color,0.9,9) (Equalize,0.6,6)

Sub-policy 18 (AutoContrast,0.8,4) (Solarize,0.2,8)

Sub-policy 19 (Brightness,0.1,3) (Color,0.7,0)

Sub-policy 20 (Solarize,0.4,5) (AutoContrast,0.9,3)

Sub-policy 21 (TranslateY,0.9,9) (TranslateY,0.7,9)

Sub-policy 22 (AutoContrast,0.9,2) (Solarize,0.8,3)

Sub-policy 23 (Equalize,0.8,8) (Invert,0.1,3)

Sub-policy 24 (TranslateY,0.7,9) (AutoContrast,0.9,1)

Table 9  The performance of ARS on continuous space vs. AutoAugment on discrete space 
[116]

Model AutoAugment ARS-Aug

Wide-ResNet-28-10 2.68 2.33

Shake-Shake (26 2 × 32 days) 2.47 2.14

Shake-Shake (26 2 × 96 days) 1.99 1.68

Shake-Shake (26 2 × 112 days) 1.89 1.59

AmoebaNet-B (6,128) 1.75 1.49

PyramidNet + ShakeDrop 1.48 1.26
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Comparing Augmentations

As shown throughout “Design considerations for image Data Augmentation” section, 
possibilities for Data Augmentation. However, there are not many comparative studies 
that show the performance differences of these different augmentations. One such study 
was conducted by Shijie et al. [119] which compared GANs, WGANs, flipping, cropping, 
shifting, PCA jittering, color jittering, adding noise, rotation, and some combinations on 
the CIFAR-10 and ImageNet datasets. Additionally, the comparative study ranged across 
dataset sizes with the small set consisting of 2  k samples with 200 in each class, tthe 
medium set consisting of 10 k samples with 1 k in each class, and the large set consist-
ing of 50 k samples with 5 k in each class. They also tested with 3 levels of augmentation, 
no augmentation, original plus same size of generated samples, and original plus double 
size of generated samples. They found that cropping, flipping, WGAN, and rotation gen-
erally performed better than others. The combinations of flipping + cropping and flip-
ping + WGAN were the best overall, improving classification performance on CIFAR-10 
by + 3% and + 3.5%, respectively.

Design considerations for image Data Augmentation
This section will briefly describe some additional design decisions with respect to Data 
Augmentation techniques on image data.

Test‑time augmentation

In addition to augmenting training data, many research reports have shown the effec-
tiveness of augmenting data at test-time as well. This can be seen as analogous to ensem-
ble learning techniques in the data space. By taking a test image and augmenting it in the 
same way as the training images, a more robust prediction can be derived. This comes 
at a computational cost depending on the augmentations performed, and it can restrict 
the speed of the model. This could be a very costly bottleneck in models that require 
real-time prediction. However, test-time augmentation is a promising practice for appli-
cations such as medical image diagnosis. Radosavovic et al. [120] denote test-time aug-
mentation as data distillation to describe the use of ensembled predictions to get a better 
representation of the image.

Wang et al. [121] sought out to develop a mathematical framework to formulate test-
time augmentation. Testing their test-time augmentation scheme on medical image 
segmentation, they found that it outperformed the single-prediction baseline and drop-
out-based multiple predictions. They also found better uncertainty estimation when 
using test-time augmentation, reducing highly confident but incorrect predictions. 
Their test-time augmentation method uses a Monte Carlo simulation in order to obtain 
parameters for different augmentations such as flipping, scaling, rotation, and transla-
tions, as well as noise injections.

Test-time augmentation can be found in the Alexnet paper [1], which applies CNNs 
to the ImageNet dataset. In their experiments, they average the predictions on ten ran-
domly cropped patches. These patches consist of one extracted from the center, four 
corner croppings, and the equivalent regions on the horizontally flipped images. These 
predictions are averaged to form the final output. He et al. [3] use the same 10-crop test-
ing procedure to evaluate their ResNet CNN architecture (Fig. 32).
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Perez et al. [122] present a study on the effectiveness of test-time augmentation with 
many augmentation techniques. These augmentations tested include color augmen-
tation, rotation, shearing, scaling, flipping, random cropping, random erasing, elastic, 
mixing, and combinations between the techniques. Table  9 shows the higher perfor-
mance achieved when augmenting test images as well as training images. Matsunaga 
et al. [123] also demonstrate the effectiveness of test-time augmentation on skin lesion 
classification, using geometric transformations such as rotation, translation, scaling, and 
flipping.

The impact of test-time augmentation on classification accuracy is another mechanism 
for measuring the robustness of a classifier. A robust classifier is thus defined as having a 
low variance in predictions across augmentations. For example, a prediction of an image 
should not be much different when that same image is rotated 20°. In their experiments 
searching for augmentations with Reinforcement Learning, Minh et  al. [117] measure 
robustness by distorting test images with a 50% probability and contrasting the accu-
racy on un-augmented data with the augmented data. In this study, the performance of 
the baseline model decreases from 74.61 to 66.87% when evaluated on augmented test 
images.

Some classification models lie on the fence in terms of their necessity for speed. This 
suggests promise in developing methods that incrementally upgrade the confidence 
of prediction. This could be done by first outputting a prediction with little or no test-
time augmentation and then incrementally adding test-time augmentations to increase 
the confidence of the prediction. Different Computer Vision tasks require certain con-
straints on the test-time augmentations that can be used. For example, image recogni-
tion can easily aggregate predictions across warped images. However, it is difficult to 
aggregate predictions on geometrically transformed images in object detection and 
semantic segmentation.

Curriculum learning

Aside from the study of Data Augmentation, many researchers have been interested 
in trying to find a strategy for selecting training data that beats random selection. In 
the context of Data Augmentation, research has been published investigating the rela-
tionship between original and augmented data across training epochs. Some research 

Fig. 32  Impact of test-time data augmentation for skin lesion classification [122]
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suggests that it is best to initially train with the original data only and then finish training 
with the original and augmented data, although there is no clear consensus.

In the SamplePairing [65] study, one epoch on ImageNet and 100 epochs on other 
datasets are completed without SamplePairing before mixed image data is added to the 
training. Once the SamplePairing images are added to the training set, they run in cycles 
between 8:2 epochs, 8 with SamplePairing images, 2 without. Jaderberg et al. [124] train 
exclusively with synthetic data for natural scene text recognition. The synthetic data 
produced the training data by enumerating through different fonts and augmentations. 
This produced sets of training images for size 50 k and 90 k lexicons. Mikolajczyk and 
Grochowski [72] draw comparisons from transfer learning. They suggest that training on 
augmented data to learn the initial weights of a deep convolutional network is similar to 
transferring weights trained on other datasets such as ImageNet. These weights are then 
fine-tuned only with the original training data.

Curriculum learning decisions are especially important for One-Shot Learning sys-
tems such as FaceNet, presented by Schroff et  al. [125]. It is important to find faces 
which are somewhat similar to the new face such that the learned distance function is 
actually useful. In this sense, the concept of curriculum learning shares many similarities 
with adversarial search algorithms or learning only on hard examples.

Curriculum learning, a term originally coined by Bengio et al. [126], is an applicable 
concept for all Deep Learning models, not just those constrained with limited data. Plot-
ting out training accuracy over time across different initial training subsets could help 
reveal patterns in the data that dramatically speed up training time. Data Augmentation 
constructs massively inflated training from combinations such as flipping, translating, 
and randomly erasing. It is highly likely that a subset exists in this set such that training 
will be faster and more accurate.

Resolution impact

Another interesting discussion about Data Augmentation in images is the impact of res-
olution. Higher resolution images such as HD (1920 × 1080 × 3) or 4 K (3840 × 2160 × 3) 
require much more processing and memory to train deep CNNs. However, it seems 
intuitive that next-generation models would be trained on higher resolution images. 
Many current models downsample images from their original resolution to make the 
classification problem computationally more feasible. However, sometimes this down-
sampling causes information loss within the image, making image recognition more dif-
ficult (Table 10).

It is interesting to investigate the nature of this downsampling and resulting perfor-
mance comparison. Wu et al. [127] compare the tradeoff between accuracy and speed 

Table 10  Comparison of resolution across three very popular open-source image datasets

Dataset Resolution

MNIST handwritten digits 28 × 28 × 1

CIFAR-10/100 32 × 32 × 3

ImageNet 256 × 256 × 3
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when downsampling images to different resolutions. The researchers found that com-
posing an ensemble of models trained with high and low-resolution images performed 
better than any one model individually. This ensemble prediction is found by averag-
ing the softmax predictions. The models trained on 256 × 256 images and 512 × 512 
images achieve 7.96% and 7.42% top-5 error rates, respectively. When aggregated they 
achieved a lower top-5 error rate of 6.97%. Therefore, different downsampled images can 
be viewed as another Data Augmentation scheme (Fig. 33).

With the advance of Super-Resolution Convolutional Neural Networks presented by 
Chong et  al. [128] or SRGANs, Super-Resolution Generative Adversarial Networks, 
presented by Ledig et al. [129], it is interesting to consider if upsampling images to an 
even higher resolution would result in better models. Quality upsampling on CIFAR-10 
images from even 32 × 32 × 3 to 64 × 64 × 3 could lead to better and more robust image 
classifiers.

Resolution is also a very important topic with GANs. Producing high resolution out-
puts from GANs is very difficult due to issues with training stability and mode collapse. 
Many of the newer GAN architectures such as StackGAN [130] and Progressively-Grow-
ing GANs [34] are designed to produce higher resolution images. In addition to these 
architectures, the use of super-resolution networks such as SRGAN could be an effective 
technique for improving the quality of outputs from a DCGAN [91] model. Once it is 
practical to produce high resolution outputs from GAN samples, these outputs will be 
very useful for Data Augmentation.

Final dataset size

A necessary component of Data Augmentation is the determination of the final data-
set size. For example, if all images are horizontally flipped and added to the dataset, 
the resulting dataset size changes from N to 2N. One of the main considerations with 
respect to final dataset size is the additional memory and compute constraints associ-
ated with augmenting data. Practitioners have the choice between using generators 
which transform data on the fly during training or transforming the data beforehand and 

Fig. 33  Classifications of the Image to the right by different resolution models trained by Wu et al. [127]
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storing it in memory. Transforming data on the fly can save memory, but will result in 
slower training. Storing datasets in memory can be extremely problematic depending on 
how heavily the dataset size has been inflated. Storing augmented datasets in memory is 
especially problematic when augmenting big data. This decision is generally categorized 
as online or offline data augmentation, (with online augmentation referring to on the 
fly augmentations and offline augmentation referring to editing and storing data on the 
disk).

In the design of a massively distributed training system, Chilimbi et al. [131] augment 
images before training to speed up image serving. By augmenting images in advance, the 
distributed system is able to request and pre-cache training batches. Augmentations can 
also be built into the computational graph used to construct Deep Learning models and 
facilitate fast differentiation. These augmentations process images immediately after the 
input image tensor.

Additionally, it is also interesting to explore a subset of the inflated data that will result 
in higher or similar performance to the entire training set. This is a similar concept to 
curriculum learning, since the central idea is to find an optimal ordering of training data. 
This idea is also very related to final dataset size and the considerations of transforma-
tion compute and available memory for storing augmented images.

Alleviating class imbalance with Data Augmentation

Class imbalance is a common problem in which a dataset is primarily composed of 
examples from one class. This could manifest itself in a binary classification problem 
such that there is a clear majority-minority class distinction, or in multi-class classifi-
cation in which there is one or multiple majority classes and one or multiple minority 
classes. Imbalanced datasets are harmful because they bias models towards majority 
class predictions. Imbalanced datasets also render accuracy as a deceitful performance 
metric. Buda et al. [132] provide a systematic study specifically investigating the impact 
of imbalanced data in CNNs processing image data. Leevy et al. [27] cover many Data-
level and Algorithm-level solutions to class imbalance in big data in general. Data 
Augmentation falls under a Data-level solution to class imbalance and there are many 
different strategies for implementation.

A naive solution to oversampling with Data Augmentation would be a simple random 
oversampling with small geometric transformations such as a 30° rotation. Other sim-
ple image manipulations such as color augmentations, mixing images, kernel filters, and 
random erasing can also be extended to oversample data in the same manner as geo-
metric augmentations. This can be useful for ease of implementation and quick exper-
imentation with different class ratios. One problem of oversampling with basic image 
transformations is that it could cause overfitting on the minority class which is being 
oversampled. The biases present in the minority class are more prevalent post-sampling 
with these techniques.

Oversampling methods based on Deep Learning such as adversarial training, Neu-
ral Style Transfer, GANs, and meta-learning schemes can also be used as a more intel-
ligent oversampling strategy. Neural Style Transfer is an interesting way to create new 
images. These new images can be created either through extrapolating style with a for-
eign style or by interpolating styles amongst instances within the dataset. Using GANs 
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to oversample data could be another effective way to increase the minority class size 
while preserving the extrinsic distribution. Oversampling with GANs can be done using 
the entire minority class as “real” examples, or by using subsets of the minority class as 
inputs to GANs. The use of evolutionary sampling [133] to find these subsets to input to 
GANs for class sampling is a promising area for future work.

Discussion
The interesting ways to augment image data fall into two general categories: data warp-
ing and oversampling. Many of these augmentations elucidate how an image classifier 
can be improved, while others do not. It is easy to explain the benefit of horizontal flip-
ping or random cropping. However, it is not clear why mixing pixels or entire images 
together such as in PatchShuffle regularization or SamplePairing is so effective. Addi-
tionally, it is difficult to interpret the representations learned by neural networks for 
GAN-based augmentation, variational auto-encoders, and meta-learning. CNN visuali-
zation has been led by Yosinski et al. [134] with their deep visualization method. Hav-
ing a human-level understanding of convolutional networks features could greatly help 
guide the augmentation process.

Manipulating the representation power of neural networks is being used in many 
interesting ways to further the advancement of augmentation techniques. Traditional 
hand-crafted augmentation techniques such as cropping, flipping, and altering the color 
space are being extended with the use of GANs, Neural Style Transfer, and meta-learn-
ing search algorithms.

Image-to-image translation has many potential uses in Data Augmentation. Neural 
Style Transfer uses neural layers to translate images into new styles. This technique not 
only utilizes neural representations to separate ‘style’ and ‘content’ from images, but also 
uses neural transformations to transfer the style of one image into another. Neural Style 
Transfer is a much more powerful augmentation technique than traditional color space 
augmentations, but even these methods can be combined together.

An interesting characteristic of these augmentation methods is their ability to be com-
bined together. For example, the random erasing technique can be stacked on top of any 
of these augmentation methods. The GAN framework possesses an intrinsic property 
of recursion which is very interesting. Samples taken from GANs can be augmented 
with traditional augmentations such as lighting filters, or even used in neural network 
augmentation strategies such as Smart Augmentation or Neural Augmentation to cre-
ate even more samples. These samples can be fed into further GANs and dramatically 
increase the size of the original dataset. The extensibility of the GAN framework is 
amongst many reasons they are so interesting to Deep Learning researchers.

Test-time augmentation is analogous to ensemble learning in the data space. Instead 
of aggregating the predictions of different learning algorithms, we aggregate predictions 
across augmented images. We can even extend the solution algorithm to parameterize 
prediction weights from different augmentations. This seems like a good solution for sys-
tems concerned with achieving very high performance scores, more so than prediction 
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speed. Determining the effectiveness of test-time augmentation by primarily exploring 
test-time geometric transformations and Neural Style Transfer, is an area of future work.

An interesting question for practical Data Augmentation is how to determine post-
augmented dataset size. There is no consensus as to which ratio of original to final 
dataset size will result in the best performing model. However, imagine using color aug-
mentations exclusively. If the initial training dataset consists of 50 dogs and 50 cats, and 
each image is augmented with 100 color filters to produce 5000 dogs and 5000 cats, this 
dataset will be heavily biased towards the spatial characteristics of the original 50 dogs 
and 50 cats. This over-extensive color-augmented data will cause a deep model to overfit 
even worse than the original. From this anecdote, we can conceptualize the existence of 
an optimal size for post-augmented data.

Additionally, there is no consensus about the best strategy for combining data warping 
and oversampling techniques. One important consideration is the intrinsic bias in the 
initial, limited dataset. There are no existing augmentation techniques that can correct a 
dataset that has very poor diversity with respect to the testing data. All these augmenta-
tion algorithms perform best under the assumption that the training data and testing 
data are both drawn from the same distribution. If this is not true, it is very unlikely that 
these methods will be useful.

Future work
Future work in Data Augmentation will be focused on many different areas such as 
establishing a taxonomy of augmentation techniques, improving the quality of GAN 
samples, learning new ways to combine meta-learning and Data Augmentation, discov-
ering relationships between Data Augmentation and classifier architecture, and extend-
ing these principles to other data types. We are interested in seeing how the time-series 
component in video data impacts the use of static image augmentation techniques. Data 
Augmentation is not limited to the image domain and can be useful for text, bioinfor-
matics, tabular records, and many more.

Our future work intends to explore performance benchmarks across geometric and 
color space augmentations across several datasets from different image recognition 
tasks. These datasets will be constrained in size to test the effectiveness with respect to 
limited data problems. Zhang et al. [135] test their novel GAN augmentation technique 
on the SVHN dataset across 50, 80, 100, 200, and 500 training instances. Similar to this 
work, we will look to further establish benchmarks for different levels of limited data.

Improving the quality of GAN samples and testing their effectiveness on a wide range 
of datasets is another very important area for future work. We would like to further 
explore the combinatorics of GAN samples with other augmentation techniques such as 
applying a range of style transfers to GAN-generated samples.

Super-resolution networks through the use of SRCNNs, Super-Resolution Convolu-
tional Neural Networks, and SRGANs are also very interesting areas for future work 
in Data Augmentation. We want to explore the performance differences across archi-
tectures with upsampled images such as expanding CIFAR-10 images from 32 × 32 to 
64 × 64 to 128 × 128 and so on. One of the primary difficulties with GAN samples is try-
ing to achieve high-resolution outputs. Therefore, it will be interesting to see how we 
can use super-resolution networks to achieve high-resolution such as DCGAN samples 
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inputted into an SRCNN or SRGAN. The result of this strategy will be compared with 
the performance of the Progressively Growing GAN architecture.

Test-time augmentation has the potential to make a massive difference in Computer 
Vision performance and has not been heavily explored. We want to establish bench-
marks for different ensembles of test-time augmentations and investigate the solution 
algorithms used. Currently, majority voting seems to be the dominant solution algo-
rithm for test-time augmentation. It seems highly likely that test-time augmentation 
can be further improved if the weight of each augmented images prediction is further 
parameterized and learned. Additionally, we will explore the effectiveness of test-time 
augmentation on object detection, comparing color space augmentations and the Neural 
Style Transfer algorithm.

Meta-learning GAN architectures is another exciting area of interest. Using Reinforce-
ment Learning algorithms such as NAS on the generator and discriminator architectures 
seem very promising. Another interesting area of further research is to use an evolu-
tionary approach to speed up the training of GANs through parallelization and cluster 
computing.

Another important area of future work for practical integration of Data Augmentation 
into Deep Learning workflows is the development of software tools. Similar to how the 
Tensorflow [136] system automates the back-end processes of gradient-descent learn-
ing, Data Augmentation libraries will automate preprocessing functions. The Keras [137] 
library provides an ImageDataGenerator class that greatly facilitates the implementa-
tion of geometric augmentations. Buslaev et  al. presented another augmentation tool 
they called Albumentations [138]. The development of Neural Style Transfer, adversar-
ial training, GANs, and meta-learning APIs will help engineers utilize the performance 
power of advanced Data Augmentation techniques much faster and more easily.

Conclusion
This survey presents a series of Data Augmentation solutions to the problem of overfit-
ting in Deep Learning models due to limited data. Deep Learning models rely on big 
data to avoid overfitting. Artificially inflating datasets using the methods discussed in 
this survey achieves the benefit of big data in the limited data domain. Data Augmen-
tation is a very useful technique for constructing better datasets. Many augmentations 
have been proposed which can generally be classified as either a data warping or over-
sampling technique.

The future of Data Augmentation is very bright. The use of search algorithms com-
bining data warping and oversampling methods has enormous potential. The layered 
architecture of deep neural networks presents many opportunities for Data Augmen-
tation. Most of the augmentations surveyed operate in the input layer. However, some 
are derived from hidden layer representations, and one method, DisturbLabel [28], is 
even manifested in the output layer. The space of intermediate representations and the 
label space are under-explored areas of Data Augmentation with interesting results. This 
survey focuses on applications for image data, although many of these techniques and 
concepts can be expanded to other data domains.

Data Augmentation cannot overcome all biases present in a small dataset. For exam-
ple, in a dog breed classification task, if there are only bulldogs and no instances of 
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golden retrievers, no augmentation method discussed, from SamplePairing to AutoAug-
ment to GANs, will create a golden retriever. However, several forms of biases such as 
lighting, occlusion, scale, background, and many more are preventable or at least dra-
matically lessened with Data Augmentation. Overfitting is generally not as much of an 
issue with access to big data. Data Augmentation prevents overfitting by modifying lim-
ited datasets to possess the characteristics of big data.
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