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Howwas your morning? Perhaps you woke up, did a
little online shopping while brewing your coffee,
posted some pictures on social media over breakfast,

glanced over the world news, drove to work, checked your
email, picked up your mail, and opened up your latest issue of
ACS Central Science. Pretty unremarkable, right? Maybe,
but in the few hours that you have been awake you have
most likely interacted with numerous instances of machine
learning algorithms ticking away just below the surface of
our everyday lives.
The term “machine learning” may be defined as algorithms

that allow computers to learn to perform tasks, identify rela-
tionships, and discern patterns without the need for humans
to provide the underlying instructions. Conventional algo-
rithms operate by sequentially executing a preprogrammed
set of rules to achieve a particular outcome. Machine learn-
ing algorithms, by contrast, are instead provided with a set
of examples by the user and train themselves to learn the rules
f rom the data. This powerful idea dates back to at least the
1950s, but has only been fully realized in recent years with
the advent of sufficiently large digital data sets over which
to perform trainingfor example, Google photo albums,
Amazon shopping lists, Netflix viewing historiesand suffi-
ciently powerful computer hardware and algorithms to
perform the trainingtypically powerful graphics cards
developed for the computer game industry that can be
hijacked to conduct machine learning. This paradigm has
revolutionized multiple domains of science and technology,
with different variants of machine learning dominating, and
in some cases enabling, multifarious applications such as
retail recommendation engines, facial detection and recogni-
tion, language translation, autonomous and assisted driving,
spam filtering, and character recognition. The success of
these algorithms may be largely attributed to their enormous
flexibility and power to extract patterns, correlations, and
structure from data. These features can be nonintuitive and
complicated functions that are difficult for humans to parse,
or exist as weak signals that are only discernible from large,
high-dimensional data sets that defy conventional analysis
techniques.

There remains a fundamental difference between artificial
and human intelligenceno machine has yet exhibited
generic human cognition, and for now, the Turing Test
remains intact1but machine performance in certain
specific tasks is unequivocally superhuman. A prominent
example is provided by Google’s Go-playing computer
program AlphaGo Zero. This program was provided only
with the rules of the ancient board game and learned to play
by playing games against itself in a form of reinforcement
learning.2 After just 3 days of training, AlphaGo Zero
roundly defeated the best previous best algorithm (AlphaGo
Lee) that had itself beaten the 18-time (human) world
champion Lee Sedol 100 games to 0.3 Remarkably, AlphaGo
Zero employed previously unknown strategies of play that
had never been discovered by human players over the 2500
year history of the game.

Machine learning is also advancing into many aspects of
scientific inquiry, and the chemical sciences stand in the
vanguard through the establishment of new tools and
paradigms with which to engage important problems in
molecular design, quantum chemistry, molecular structure
prediction, and organic synthesis. The power and potential
of these new techniques is hard to overestimate. In a twist
on Eugene Wigner’s famous 1960 paper The Unreasonable
Ef fectiveness of Mathematics in the Natural Sciences,4 Alon
Halevy, Peter Norvig, and Fernando Pereira assert that
instead of relying exclusively on the development of ever
more sophisticated and elegant theories we should “embrace
complexity and make use of the best ally that we have: the
unreasonable ef fectiveness of data”.5 All applications of
machine learning in chemical science essentially engage
this goal by learning to extract models, rules, and predictions
from data, but one approach stands out for its remarkable
power and flexibility in a diversity of problemsdeep neural
networks.

Artificial neural networks (ANNs) are a type of machine
learning algorithm whose structure and function is loosely
based on the architecture of the animal brain. Each artificial
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neuron represents a mathematical unit that receives, aggre-
gates, and operates on signals from a set of input neurons,
and passes the resulting signal onto a group of output neu-
rons. The connecting synapses between neurons amplify or
dampen the signals through adjustable weights. Usually the
neurons are arranged in layers, with the input layer accept-
ing a representation of the data to be analyzed, a number of
hidden layers performing the processing, and an output
layer presenting the result. The ANN learns by adjusting the
synapse weights to optimize its performance over a training
data set provided by the user. Once an ANN is trained and
its reliability confirmed on known but independent test data,
it can then be employed to make predictions. The flexibility
and power of ANNs can be traced to the universal approxi-
mation theorem,6 which, loosely stated, asserts that ANNs
with sufficiently many neurons can approximate essentially
any mathematical relation between the input and output
layers. An ANN is termed “deep” if it contains more than one
hidden layer, providing the network with multiple hierarchical
layers of abstraction within which to extract patterns and per-
form computation. The benefit of deep learning is the greater
compactness and flexibility per neuron as well as the emer-
gence of latent variables that can be manipulated by the net-
work and sometimes interpreted by human operators. Deep
learning has proven to be a powerful approach in a diversity
of applications, and there is now a plethora of different deep
neural network architecturesconvolutional, autoencoding,
recurrent, bidirectional, Siamese, and many moreeach
tailored to possess functionalities suited to particular tasks.
The present virtual issue presents a snapshot of some

current applications of machine learning in chemical science

with a focus on deep neural networks. The Research Articles
collected here report exciting progress in a diversity of pro-
blems by combining domain expertise with machine learn-
ing tools. Swamidass and co-workers employ convolutional
neural networks to predict molecular sites of biological reac-
tivity7 and epoxidation,8 and introduce novel network archi-
tectures to model nonlocal quantum chemical features.9

In the context of reaction prediction and engineering,
Aspuru-Guzik and co-workers10 and Green and Jensen and
co-workers11 use deep learning to predict the products of
organic reactions, Pande and co-workers use recurrent
neural networks for retrosynthetic reactant prediction,12 and
Zare and co-workers use deep reinforcement learning to
optimize reaction conditions.13 The problem of drug design
is engaged by Waller and co-workers employing recurrent
neural networks as generative models,14 by Aspuru-Guzik
and co-workers using encoder-decoder network architec-
tures,15 and by Pande and co-workers using a novel network
architecture to perform one-shot learning.16 Yang and Gao
and co-workers employ Bayesian learning and variational
optimization to determine the reaction coordinate for an
in-water (retro-)Claisen rearrangement,17 Pentelute and
co-workers use random forest classifiers to predict cell-
penetrating peptides to deliver therapeutics,18 and Aspuru-
Guzik and co-workers apply automatic differentiation to
compute derivatives in quantum chemical calculations.19

In Center Stage, Neil Savage interviews Alán Aspuru-Guzik
about quantum computing, machine learning, and open
access.20 In First Reactions Sánchez-Lengeling and Aspuru-
Guzik discuss how to train machines to possess chemical
intuition.21 In a triplet of Outlook articles, Aspuru-Guzik,
Lindh, and Reiher consider the future of computer simu-
lation in quantum chemistry,22 Ley and co-workers consider
technological advances in chemical synthesis,23 and Cronin
and co-workers consider new algorithms for robotic
chemical discovery.24

The banner successes of machine learning in chemical
sciencehigh-throughput molecular screening, drug design,
force-field developmentare attracting ever more research-
ers to apply these tools to ever more areas at an ever quick-
ening pace. What advances in this space might we anticipate
in the coming years?
From a technical perspective, the immediate frontiers in

machine learning likely lie in physics-aware artificial intelli-
gence (PAI) and explainable artificial intelligence (XAI).
As elegantly laid out in a recent DARPA announcement, the
development of AI technology may be considered as a series
of waves.25 The first wave lies in the past and concerned the
development of rule-based expert systems; the second wave

Featuring three Outlooks, 13 Research Articles and several
pieces of editorial content, the Deep Chemistry Virtual Issue
demonstrates the vibrant growth in deep and machine learning
in chemistry.
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is our present deployment of machine learning to learn rules
by statistical data analysis; the third wave is the future devel-
opment of PAI technologies that learn through explanatory
models with the relevant physics “baked in”. These PAI
technologies promise to deliver superior performance by con-
straining the model to adhere to physical laws (e.g., con-
servation equations, symmetries) and cope better with sparse
and/or noisy data. XAI concerns the development of
machine learning models that come equipped with human
comprehensible explanations of their predictions and
actions.26 Accurate predictive performance and ease of
interpretability frequently stand in conflict, and it is the goal
of XAI to marry the interpretability of simple older models
(e.g., multiple linear regression) with the power of more
complex but less scrutable modern approaches (e.g., deep
neural networks). Opaque high-performance models may be
adequate for many applications, but increasing model
complexity has given rise to an increasing need for the
machine to tell us how it got to the answer it did. Providing
this rationalization can be critical in ensuring that we do not
erroneously overextrapolate and can trust and substantiate
the model predictions. Comprehensible explanations can be
absolutely critical for particular tasks to ensure that we are
getting the right answer for the right reasons (e.g., medical
diagnosis), and it is unlikely that machine learning tools will
become an accepted tool in these domains until XAI
becomes sufficiently mature. Understanding how the
machines “think” may tell us how to better understand the
system at hand and maybe even teach us something about
human cognition, a position vociferously advocated for in
Douglas Hofstadter’s entreaty “Why conquer a task if there’s
no insight to be had from the victory?”.27 Engaging the goals
of PAI and XAI will likely involve the establishment of
fundamentally new machine learning models and architec-
tures as well as substantial retrofitting of existing techniques,
the development of novel model analysis protocols, and the
hierarchical nesting of machine learning models of varying
complexity.
From a cultural and educational standpoint, machine learn-

ing approaches will be democratized and made broadly
available through cheaper and more powerful graphics
processing unit (GPU) hardware, the development of user-
friendly software, and access to larger and more freely
available databases. Data science training will become more
tightly integrated into disciplinary training at the under-
graduate and graduate levels, and there will be a prolifer-
ation of master’s degree programs focusing on data science
and machine learning. Barriers will be broken down between
chemical science and data science through these curricular

changes, and also through workshops, conferences, and
hackathons designed to bring these communities together.
Ultimately, the boundary between disciplinary and data
science will become blurred. These trends will conspire to
make machine learning a ubiquitous and indispensable tool,
with artificial intelligence working side-by-side with human
practitioners akin to the role played by the slide rule,
scientific calculator, and personal computer in their own
ages. In their respective Outlook articles, Aspuru-Guzik,
Lindh, and Reiher posit a “Chemical Turing Test” wherein
communication with an artificial intelligence environment is
indistinguishable from communicating with an expert
chemist,22 and Cronin and co-workers consider the
potential for intelligent chemical robots with a real-time
feedback loop between computational data analysis and
automated experimentation.24 Perhaps it is not such a jump
to contemplate a future confluence of these advances to
produce intelligent robotic lab assistants that can teach
themselves particular aspects of chemistry to attain
superhuman performance in the mold of AlphaGo Zero?
Beyond the realm of chemical science, is it so far-fetched to
think of deep learning technologies helping lawyers to
argue, composers to score, philosophers to reason, and
artists to create? The age of machine learning in chemical
science is upon us and it will leave few areas of our discipline
untouched. This special collection highlights just the tip of
iceberg, and we can look forward to many exciting
innovations and developments in the years to come.
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