Enantioselective [3+3] Atroposelective Annulation Catalyzed by N-heterocyclic Carbenes

Zhao et al.

Supplementary Figures

Supplementary Figure 1. ¹H NMR Spectrum of 3aa

Supplementary Figure 2. ¹³C NMR Spectrum of 3aa

Supplementary Figure 3. ¹³C NMR Spectrum of 3aa

Supplementary Figure 4. HPLC Spectrum of racemic 3aa

Total

60356

100.000

100.000

2781267

Supplementary Figure 5. HPLC Spectrum of 3aa

15.0 17.5 20.0 22.5 25.0 27.5 30.0 32.5 2.5 5.0 7.5 10.0 12.5 35.0 37.5

Peak#	Ret. Time	Area	Height	Area%	Height%
1	25.756	2538794	66218	90.251	92.489
2	32.691	274241	5378	9.749	7.511
Total		2813035	71596	100.000	100.000

Supplementary Figure 6. ¹H NMR Spectrum of 3ab

Supplementary Figure 7. ¹³C NMR Spectrum of 3ab

Supplementary Figure 8. HPLC Spectrum of racemic 3ab

Total

1172559

100.000

100.000

37725347

Supplementary Figure 9. HPLC Spectrum of 3ab

Supplementary Figure 10. ¹H NMR Spectrum of 3ac

Supplementary Figure 11. ¹³C NMR Spectrum of 3ac

Supplementary Figure 12. HPLC Spectrum of racemic 3ac

Peak#	Ret. Time	Area	Height	Area%	Height%
1	20.928	4829699	165349	50.083	59.224
2	28.464	4813697	113844	49.917	40.776
Total		9643396	279193	100.000	100.000

Supplementary Figure 13. HPLC Spectrum of 3ac

Peak#	Ret. Time	Area	Height	Area%	Height%
1	20.706	13282557	432700	71.569	77.683
2	28.394	5276502	124307	28.431	22.317
Total		18559059	557007	100.000	100.000

Supplementary Figure 14. ¹H NMR Spectrum of 3ba

Supplementary Figure 15. ¹³C NMR Spectrum of 3ba

Supplementary Figure 16. HPLC Spectrum of racemic 3ba

Peak#	Ret. Time	Area	Height	Area%	Height%
1	15.640	4700329	202588	50.087	69.689
2	21.255	4684062	88115	49.913	30.311
Total		9384391	290703	100.000	100.000

Supplementary Figure 17. HPLC Spectrum of 3ba

Supplementary Figure 18. ¹H NMR Spectrum of 3ca

Supplementary Figure 19. ¹³C NMR Spectrum of 3ca

数据文件名:zcg-16-03-31-2.lcd 样品名:zcg-16-03-31-2 样品ID:zcg-16-03-31-2 1000 mAU 254nm,4nm 900 800-700-600 500 400-300-4.520 200-100-0.0 12.5 17.5 2.5 5.0 7.5 10.0 15.0 min Peak# Ret. Time Height Height% Area Area% 89.067 4850380 87.890 1 14.520 235835 2 28948 16.044 668331 12.110 10.933 Total 5518711 264783 100.000 100.000

Supplementary Figure 21. HPLC Spectrum of 3ca

Supplementary Figure 22. ¹H NMR Spectrum of 3da

Supplementary Figure 23. ¹³C NMR Spectrum of 3da

Supplementary Figure 24. HPLC Spectrum of racemic 3da

Supplementary Figure 25. HPLC Spectrum of 3da

Supplementary Figure 26. ¹H NMR Spectrum of 3ea

Supplementary Figure 27. ¹³C NMR Spectrum of 3ea

Supplementary Figure 28. HPLC Spectrum of racemic 3ea

Supplementary Figure 29. HPLC Spectrum of 3ea

Peak#	Ret. Time	Area	Height	Area%	Height%
1	15.891	29942799	1607886	93.062	94.601
2	19.034	2232152	91764	6.938	5.399
Total		32174951	1699649	100.000	100.000

Supplementary Figure 30. ¹H NMR Spectrum of 3fa

Supplementary Figure 31. ¹³C NMR Spectrum of 3fa

Supplementary Figure 32. HPLC Spectrum of racemic 3fa

Supplementary Figure 33. HPLC Spectrum of 3fa

Supplementary Figure 34. ¹H NMR Spectrum of 3ga

Supplementary Figure 35. ¹³C NMR Spectrum of 3ga
Supplementary Figure 36. HPLC Spectrum of racemic 3ga

Supplementary Figure 37. HPLC Spectrum of 3ga

Supplementary Figure 38. ¹H NMR Spectrum of 3gd

Supplementary Figure 39. ¹³C NMR Spectrum of 3gd

数据文件名:zcg-16-07-13-u-4.lcd 样品名:zcg-16-07-13-u-4 样品ID:zcg-16-07-13-u-4 1000 MAU 300nm,4nm 900 800-700-600 500 400-300-200-100-0 min 8.0 9.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 Peak# Ret. Time Height Height% Area Area% 1 108000 49.565 51.638 5.242 1509264 2 6.187 1535751 101147 50.435 48.362 Total 3045016 209147 100.000 100.000

Supplementary Figure 40. HPLC Spectrum of racemic 3gd

Supplementary Figure 41. HPLC Spectrum of 3gd

Supplementary Figure 42. ¹H NMR Spectrum of 3ge

Supplementary Figure 44. ¹³C NMR Spectrum of 3ge

Supplementary Figure 45. HPLC Spectrum of racemic 3ge

Supplementary Figure 47. ¹H NMR Spectrum of 3gf

Supplementary Figure 48. ¹³C NMR Spectrum of 3gf

Supplementary Figure 49. ¹³C NMR Spectrum of 3gf

Supplementary Figure 50. HPLC Spectrum of racemic 3gf

Supplementary Figure 51. HPLC Spectrum of 3gf

Supplementary Figure 52. ¹H NMR Spectrum of 3gg

Supplementary Figure 53. ¹³C NMR Spectrum of 3gg

Supplementary Figure 54. HPLC Spectrum of racemic 3gg

Supplementary Figure 55. HPLC Spectrum of 3gg

Supplementary Figure 57. ¹³C NMR Spectrum of 3gh

Supplementary Figure 58. ¹³C NMR Spectrum of 3gh

Supplementary Figure 59. HPLC Spectrum of racemic 3gh

Supplementary Figure 60. HPLC Spectrum of 3gh

Supplementary Figure 61. ¹H NMR Spectrum of 3gi

Supplementary Figure 62. ¹³C NMR Spectrum of 3gi

Supplementary Figure 63. HPLC Spectrum of racemic 3gi

Supplementary Figure 64. HPLC Spectrum of 3gi

Supplementary Figure 65. ¹H NMR Spectrum of 3gj

Supplementary Figure 67. HPLC Spectrum of racemic 3gj

Supplementary Figure 68. HPLC Spectrum of 3gj

Supplementary Figure 71. HPLC Spectrum of racemic 3gk

Supplementary Figure 72. HPLC Spectrum of 3gk

Supplementary Figure 73. ¹H NMR Spectrum of 3gl

Supplementary Figure 74. ¹³C NMR Spectrum of 3gl

Supplementary Figure 75. HPLC Spectrum of racemic 3gl

Supplementary Figure 76. HPLC Spectrum of 3gl

Supplementary Figure 78. ¹³C NMR Spectrum of 3gm

Supplementary Figure 79. HPLC Spectrum of racemic 3gm

Supplementary Figure 80. HPLC Spectrum of 3gm

Supplementary Figure 81. ¹H NMR Spectrum of 3gn

Supplementary Figure 82. ¹³C NMR Spectrum of 3gn

Supplementary Figure 83. HPLC Spectrum of racemic 3gn

Supplementary Figure 84. HPLC Spectrum of 3gn

Supplementary Figure 86. ¹H NMR Spectrum of 3go

Supplementary Figure 87. ¹³C NMR Spectrum of 3go

Supplementary Figure 88. HPLC Spectrum of racemic 3go

Supplementary Figure 89. HPLC Spectrum of 3go

Supplementary Figure 90. ¹H NMR Spectrum of 3gp

Supplementary Figure 91. ¹³C NMR Spectrum of 3gp

Supplementary Figure 92. HPLC Spectrum of racemic 3gp

Supplementary Figure 93. HPLC Spectrum of 3gp

Supplementary Figure 94. ¹H NMR Spectrum of 3gq

Supplementary Figure 96. HPLC Spectrum of racemic 3gq

Supplementary Figure 97. HPLC Spectrum of 3gq

Supplementary Figure 98. ¹H NMR Spectrum of 3gr

Supplementary Figure 99. ¹³C NMR Spectrum of 3gr

Supplementary Figure 100. HPLC Spectrum of racemic 3gr

Supplementary Figure 101. HPLC Spectrum of 3gr

Supplementary Figure 102. ¹H NMR Spectrum of 3gs

Supplementary Figure 103. ¹³C NMR Spectrum of 3gs

Supplementary Figure 104. HPLC Spectrum of racemic 3gs

数据文件名:ZCG-16-06-22-Q-2.lcd 样品名:ZCG-16-06-22-Q-2 样品ID:ZCG-16-06-22-Q-2 1000 mAU 254nm,4nm 900 800-700-600-500 400-300-200-100-0 10.0 min 9.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 Peak# Ret. Time Height% Area Height Area% 10767 1 7.098 87885 4.135 5.341 2 7.526 2037287 95.865 94.659 190826 Total 2125172 201593 100.000 100.000

Supplementary Figure 105. HPLC Spectrum of 3gs

Supplementary Figure 106. ¹H NMR Spectrum of 3gt

Supplementary Figure 107. ¹³C NMR Spectrum of 3gt
Supplementary Figure 108. ¹³C NMR Spectrum of 3gt

Supplementary Figure 109. HPLC Spectrum of racemic 3gt

Supplementary Figure 110. HPLC Spectrum of 3gt

Supplementary Figure 111. ¹H NMR Spectrum of 3au

Supplementary Figure 112. ¹³C NMR Spectrum of 3au

Supplementary Figure 113. HPLC Spectrum of racemic 3au

Supplementary Figure 114. HPLC Spectrum of 3au

Supplementary Figure 115. HPLC Spectrum of 3au after first crystallization

0.0 10.0 min 1.0 2.0 3.0 5.0 6.0 7.0 8.0 9.0 11.0 12.0 13.0 14.0 4.0

Peak#	Ret. Time	Area	Height	Area%	Height%
1	10.320	785169	55222	99.070	99.317
2	12.778	7372	380	0.930	0.683
Total		792541	55602	100.000	100.000

Supplementary Figure 116. ¹H NMR Spectrum of 4aa

Supplementary Figure 117. ¹³C NMR Spectrum of 4aa

÷ -8 -8 R - 5 -\$ -4 - 3 - 13 -3 -8 2 12 -8 - 8 -8 155 150 145 140 135 130 125 120 115 110 105 100 95

Supplementary Figure 120. HPLC Spectrum of 4aa

Peak#	Ret. Time	Area	Height	Area%	Height%
1	6.069	1516859	143429	32.858	38.353
2	7.720	3099564	230542	67.142	61.647
Total		4616423	373971	100.000	100.000

Supplementary Figure 121. ¹H NMR Spectrum of 11

Supplementary Figure 122. ¹³C NMR Spectrum of 11

Supplementary Figure 123. HPLC Spectrum of racemic 11

I Cakii	Ret. Time	Incu	mergin	7110070	Tiengint /0
1	5.307	6572017	741111	49.280	58.635
2	7.875	6764154	522830	50.720	41.365
Total		13336171	1263942	100.000	100.000

Supplementary Figure 124. HPLC Spectrum of 11

Peak#	Ret. Time	Area	Height	Area%	Height%
1	5.242	1812216	164708	33.294	42.258
2	7.778	3630915	225061	66.706	57.742
Total		5443130	389770	100.000	100.000

Supplementary Figure 126. ¹³C NMR Spectrum of 5aa

Supplementary Figure 127. ¹³C NMR Spectrum of 5aa

Supplementary Figure 128. ¹H NMR Spectrum of 6aa

Supplementary Figure 129. ¹³C NMR Spectrum of 6aa

Supplementary Figure 130. ¹³C NMR Spectrum of 6aa

Supplementary Figure 131. ¹H NMR Spectrum of 7

Supplementary Figure 132. ¹³C NMR Spectrum of 7

Supplementary Figure 134. HPLC Spectrum of racemic 7

Peak#	Ret. Time	Area	Height	Area%	Height%
1	4.567	1518426	201541	49.658	59.301
2	6.741	1539320	138321	50.342	40.699
Total		3057746	339862	100.000	100.000

Supplementary Figure 135. HPLC Spectrum of 7

Peak#	Ret. Time	Area	Height	Area%	Height%
1	4.558	2362045	289010	40.993	49.678
2	6.689	3399994	292757	59.007	50.322
Total		5762040	581766	100.000	100.000

Supplementary Figure 136. ¹H NMR Spectrum of 8

Supplementary Figure 137. ¹³C NMR Spectrum of 8

Supplementary Figure 138. HPLC Spectrum of racemic 8

Peak#	Ret. Time	Area	Height	Area%	Height%
1	9.608	2446895	98076	49.825	64.197
2	17.411	2464079	54698	50.175	35.803
Total		4910973	152774	100.000	100.000

Supplementary Figure 139. HPLC Spectrum of 8

Supplementary Figure 140. ¹H NMR Spectrum of 10a

Supplementary Figure 141. ¹³C NMR Spectrum of 10a

Supplementary Figure 142. HPLC Spectrum of racemic 10a

Peak#	Ret. Time	Area	Height	Area%	Height%
1	9.566	7000121	473590	50.084	64.367
2	16.323	6976682	262176	49.916	35.633
Total		13976803	735766	100.000	100.000

Supplementary Figure 143. HPLC Spectrum of 10a

Supplementary Figure 144. ¹H NMR Spectrum of 10b

Supplementary Figure 145. ¹³C NMR Spectrum of 10b

Supplementary Figure 146. ¹³C NMR Spectrum of 10b

Supplementary Figure 147. HPLC Spectrum of racemic 10b

Peak#	Ret. Time	Area	Height	Area%	Height%
1	6.715	4767825	478543	50.117	58.330
2	7.991	4745523	341863	49.883	41.670
Total		9513349	820406	100.000	100.000

Supplementary Figure 148. HPLC Spectrum of 10b

Peak#	Ret. Time	Area	Height	Area%	Height%
1	6.680	2956597	326990	94.708	95.591
2	7.986	165196	15082	5.292	4.409
Total		3121794	342072	100.000	100.000

Supplementary Figure 149. ¹H NMR Spectrum of 10c

Supplementary Figure 150. ¹⁹F NMR Spectrum of 10c

Supplementary Figure 151. ¹³C NMR Spectrum of 10c

Supplementary Figure 152. ¹³C NMR Spectrum of 10c

Supplementary Figure 153. HPLC Spectrum of racemic 10c

Supplementary Figure 154. HPLC Spectrum of 10c

Peak#	Ret. Time	Area	Height	Area%	Height%
1	5.839	2286055	262530	93.048	92.874
2	6.857	170789	20144	6.952	7.126
Total		2456845	282675	100.000	100.000

Supplementary Figure 155. ¹H NMR Spectrum of 10d

Supplementary Figure 156. ¹³C NMR Spectrum of 10d

Supplementary Figure 158. HPLC Spectrum of 10d

Supplementary Figure 159. ¹H NMR Spectrum of 10e

Supplementary Figure 160. ¹³C NMR Spectrum of 10e

Supplementary Figure 161. ¹³C NMR Spectrum of 10e

Supplementary Figure 162. HPLC Spectrum of racemic 10e

Peak#	Ret. Time	Area	Height	Area%	Height%
1	3.396	5370929	790228	49.928	59.919
2	5.091	5386396	528592	50.072	40.081
Total		10757326	1318820	100.000	100.000

Supplementary Figure 163. HPLC Spectrum of 10e

Supplementary Figure 164. ¹H NMR Spectrum of 10f

Supplementary Figure 165. ¹³C NMR Spectrum of 10f

Supplementary Figure 166. ¹³C NMR Spectrum of 10f

Supplementary Figure 167. HPLC Spectrum of racemic 10f

Peak#	Ret. Time	Area	Height	Area%	Height%
1	5.488	3258170	349886	50.058	58.381
2	7.356	3250581	249425	49.942	41.619
Total		6508751	599311	100.000	100.000

Supplementary Figure 168. HPLC Spectrum of 10f

数据文件名:zcg-20170928-3-IC40-90%.lcd 样品名:zcg-20170928-3-IC40-90% 样品ID:zcg-20170928-3-IC40-90%

Supplementary Figure 169. X-ray of 3au

Supplementary Tables

Supplementary Table 1. Crystal data and structure refinement for 3au.

Identification code	a	
Empirical formula	C22 H19 Br O4	
Formula weight	427.28	
Temperature	173.1500 K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	P 21 21 21	
Unit cell dimensions	a = 11.666(2) Å	= 90°.
	b = 12.090(2) Å	= 90°.
	c = 13.715(3) Å	= 90°.
Volume	1934.4(6) Å ³	
7.	4	

Density (calculated)	1.467 Mg/m ³
Absorption coefficient	2.149 mm ⁻¹
F(000)	872
Crystal size	0.385 x 0.276 x 0.174 mm ³
Theta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta = 25.242 ° Absorption correction Max. and min. transmission	2.246 to 27.483 °. -15<=h<=15, -15<=k<=15, -17<=l<=17 20386 4432 [R(int) = 0.1690] 100.0 % Semi-empirical from equivalents 1.00000 and 0.58344
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	4432 / 0 / 248
Goodness-of-fit on F ²	1.147
Final R indices [I>2sigma(I)] R indices (all data) Absolute structure parameter Extinction coefficient	R1 = 0.0852, wR2 = 0.2416 R1 = 0.1375, wR2 = 0.3162 0.06(3) n/a
Largest diff. peak and hole	1.047 and -1.211 e.Å ⁻³

Supplementary Table 2. Atomic coordinates (x 10⁴) and equivalent isotropic

displacement parameters $(Å^2 x \ 10^3)$ for 3au.

U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	Х	у	Z	U(eq)
Br1	3427(1)	1560(1)	-1572(1)	50(1)
01	3650(6)	5700(7)	3181(6)	42(2)
O2	-799(7)	5520(7)	3099(6)	51(2)
O3	-83(6)	4028(6)	3798(5)	38(2)
O4	3660(6)	2594(6)	3363(5)	39(2)
C1	2988(8)	4337(8)	2137(7)	31(2)
C2	3813(9)	5110(9)	2353(7)	35(2)
C3	4780(9)	5260(8)	1743(7)	36(2)
C4	4881(9)	4632(9)	912(7)	36(2)
C5	4038(9)	3807(9)	664(7)	35(2)
C6	4124(9)	3177(9)	-201(7)	36(2)
C7	3327(8)	2393(8)	-411(7)	32(2)
C8	2425(9)	2185(9)	236(7)	37(2)
C9	2313(8)	2803(9)	1071(7)	34(2)
C10	3110(9)	3647(8)	1299(7)	32(2)
C11	4457(9)	6561(10)	3406(7)	41(2)
C12	1939(8)	4234(8)	2757(7)	33(2)
C13	1096(9)	4982(10)	2639(7)	37(2)
C14	-4(10)	4929(10)	3144(7)	41(2)
C15	766(10)	3278(10)	3940(7)	41(2)
C16	449(9)	2402(11)	4652(8)	43(2)
C17	1490(11)	1810(9)	5071(9)	48(3)
C18	2298(11)	1482(9)	4240(8)	45(3)
C19	2659(10)	2498(9)	3646(6)	36(2)
C20	1781(8)	3328(8)	3447(6)	31(2)
C21	1120(17)	753(13)	5611(13)	86(7)
C22	2111(12)	2561(13)	5799(8)	59(4)

Br1-C7	1.888(9)
O1-C2	1.354(12)
01-C11	1.437(13)
O2-C14	1.172(14)
O3-C14	1.415(14)
O3-C15	1.356(14)
O4-C19	1.236(13)
C1-C2	1.373(14)
C1-C10	1.428(12)
C1-C12	1.495(13)
C2-C3	1.416(14)
C3-H3	0.9300
C3-C4	1.375(14)
C4-H4	0.9300
C4-C5	1.442(15)
C5-C6	1.413(14)
C5-C10	1.403(14)
C6-H6	0.9300
C6-C7	1.358(14)
C7-C8	1.399(13)
C8-H8	0.9300
C8-C9	1.374(13)
С9-Н9	0.9300
C9-C10	1.415(14)
C11-H11A	0.9600
C11-H11B	0.9600
C11-H11C	0.9600
C12-C13	1.346(14)
C12-C20	1.460(14)
С13-Н13	0.9300
C13-C14	1.460(14)
C15-C16	1.488(16)
C15-C20	1.366(13)
C16-H16A	0.9700
C16-H16B	0.9700
C16-C17	1.523(17)

Supplementary Table 3. Bond lengths [Å] and angles [] for 3au.

C17-C18	1.531(14)
C17-C21	1.538(17)
C17-C22	1.53(2)
C18-H18A	0.9700
C18-H18B	0.9700
C18-C19	1.533(15)
C19-C20	1.459(14)
C21-H21A	0.9600
C21-H21B	0.9600
C21-H21C	0.9600
C22-H22A	0.9600
C22-H22B	0.9600
C22-H22C	0.9600
C2-O1-C11	118.1(8)
C15-O3-C14	123.9(8)
C2-C1-C10	120.1(9)
C2-C1-C12	120.5(8)
C10-C1-C12	119.4(9)
O1-C2-C1	116.2(9)
01-C2-C3	122.6(10)
C1-C2-C3	121.3(9)
С2-С3-Н3	120.4
C4-C3-C2	119.2(9)
С4-С3-Н3	120.4
C3-C4-H4	119.4
C3-C4-C5	121.3(9)
C5-C4-H4	119.4
C6-C5-C4	121.5(9)
C10-C5-C4	118.4(9)
C10-C5-C6	120.1(10)
С5-С6-Н6	119.8
C7-C6-C5	120.4(10)
С7-С6-Н6	119.8
C6-C7-Br1	120.6(7)
C6-C7-C8	120.4(8)
C8-C7-Br1	119.0(7)
С7-С8-Н8	119.9

C9-C8-C7	120.2(9)
С9-С8-Н8	119.9
С8-С9-Н9	119.6
C8-C9-C10	120.9(9)
С10-С9-Н9	119.6
C5-C10-C1	119.8(9)
C5-C10-C9	118.0(8)
C9-C10-C1	122.2(9)
O1-C11-H11A	109.5
O1-C11-H11B	109.5
01-C11-H11C	109.5
H11A-C11-H11B	109.5
H11A-C11-H11C	109.5
H11B-C11-H11C	109.5
C13-C12-C1	118.3(9)
C13-C12-C20	119.4(9)
C20-C12-C1	122.3(8)
С12-С13-Н13	118.1
C12-C13-C14	123.8(11)
C14-C13-H13	118.1
O2-C14-O3	116.8(10)
O2-C14-C13	130.1(12)
O3-C14-C13	113.1(10)
O3-C15-C16	112.8(9)
O3-C15-C20	122.3(10)
C20-C15-C16	124.9(11)
C15-C16-H16A	109.1
C15-C16-H16B	109.1
C15-C16-C17	112.6(9)
H16A-C16-H16B	107.8
C17-C16-H16A	109.1
C17-C16-H16B	109.1
C16-C17-C18	109.4(10)
C16-C17-C21	110.4(12)
C16-C17-C22	110.2(10)
C18-C17-C21	108.5(10)
C18-C17-C22	110.3(11)
C22-C17-C21	108.1(13)

C17-C18-H18A	109.5
C17-C18-H18B	109.5
C17-C18-C19	110.9(9)
H18A-C18-H18B	108.0
C19-C18-H18A	109.5
C19-C18-H18B	109.5
O4-C19-C18	120.1(10)
O4-C19-C20	122.7(9)
C20-C19-C18	117.2(9)
C15-C20-C12	117.6(10)
C15-C20-C19	119.1(9)
C19-C20-C12	123.3(8)
C17-C21-H21A	109.5
C17-C21-H21B	109.5
C17-C21-H21C	109.5
H21A-C21-H21B	109.5
H21A-C21-H21C	109.5
H21B-C21-H21C	109.5
C17-C22-H22A	109.5
C17-C22-H22B	109.5
C17-C22-H22C	109.5
H22A-C22-H22B	109.5
H22A-C22-H22C	109.5
H22B-C22-H22C	109.5

Symmetry transformations used to generate equivalent atoms:

U23 U12 U11 U22 1133 U13Br1 62(1) 57(1) 32(1) -17(1)6(1) -1(1)01 36(4) 52(4) 37(4) 2(3) -9(3)-16(3)02 44(4) 58(5) 50(5) -14(4) 25(4)-16(4)O3 28(3) 56(4) 30(3) -12(3)6(3) -3(3)**O**4 47(4) 4(3) 5(3) 7(3) 34(3) 36(4) C1 41(5) 30(4) 22(4) 4(4) 5(3) 8(4) C2 6(4) 47(5) 37(5) 21(4) -1(4)-1(4)C3 46(5) 32(5) -4(4)3(4) -3(4)30(4) C4 42(5) 37(5) 29(5) 1(4)8(4) 10(4) C5 46(5) 36(5) 21(4)9(4) 1(4) 6(4) C6 40(5)47(5) 20(4)8(4) 2(4)12(4) C7 30(4) 35(4) 30(4) -11(4)-1(4)3(4) C8 38(5) 37(5) 35(5) -8(4)-2(4)-7(4)C9 31(4) 44(5) 26(4) -7(4)6(4) -3(4)C10 6(4)41(5) 34(5) 22(4)-3(3)4(3) C11 40(5) 50(5) 34(5) -11(5)-5(4)1(4)C12 34(4) 43(5) 22(4) -10(4)0(3)1(4) C13 36(5) 51(6) 25(4)-9(4)3(4)3(4)C14 47(6) 51(6) 23(4) -13(4)2(4)-7(5)C15 49(6) 25(4)2(4)-4(5)48(6) -10(4)C16 30(4) 51(6) 47(6) 2(5) 8(4) -5(4)C17 56(7) 48(6) 5(5) 22(6) 4(5) 39(6) C18 53(6) 39(5) 42(6) 10(5) 15(5) 15(5) C19 46(5) -3(4)44(5)17(4) 7(4) -2(4)C20 43(5) 3(3) 31(4) 19(4) -6(4)-9(4)C21 114(15) 53(8) 92(12) 31(8) 68(12) 30(9) C22 62(8) 83(10) 33(6) 18(6) 12(5) 34(8)

Supplementary Table 4. Anisotropic displacement parameters $(Å^2x \ 10^3)$ for 3au.

The anisotropic displacement factor exponent takes the form: -2 2 [$h^{2} a^{*2}U^{11} + ...$

 $+ 2 h k a^* b^* U^{12}$]

	Х	у	Z	U(eq)
Н3	5339	5778	1903	44
H4	5506	4742	502	43
H6	4730	3299	-628	43
H8	1901	1626	101	44
Н9	1705	2665	1493	40
H11A	4492	7075	2874	62
H11B	5201	6242	3509	62
H11C	4217	6940	3986	62
H13	1221	5566	2211	45
H16A	-42	1865	4332	51
H16B	16	2732	5181	51
H18A	1916	956	3816	54
H18B	2974	1127	4507	54
H21A	571	939	6106	130
H21B	1778	416	5908	130
H21C	781	246	5157	130
H22A	2180	3291	5529	88
H22B	2860	2269	5930	88
H22C	1681	2595	6395	88

Supplementary Table 5. Hydrogen coordinates $(x \ 10^4)$ and isotropic displacement parameters $(Å^2x \ 10^3)$ for 3au.

Br1-C7-C8-C9	-178.0(8)
01-C2-C3-C4	-179.7(9)
O3-C15-C16-C17	-160.4(9)
O3-C15-C20-C12	0.7(14)
O3-C15-C20-C19	179.3(8)
O4-C19-C20-C12	11.4(14)
O4-C19-C20-C15	-167.1(10)
C1-C2-C3-C4	1.1(15)
C1-C12-C13-C14	175.3(9)
C1-C12-C20-C15	-176.6(9)
C1-C12-C20-C19	4.9(14)
C2-C1-C10-C5	-3.9(14)
C2-C1-C10-C9	176.9(9)
C2-C1-C12-C13	77.9(12)
C2-C1-C12-C20	-105.0(11)
C2-C3-C4-C5	-1.6(15)
C3-C4-C5-C6	178.5(9)
C3-C4-C5-C10	-0.7(14)
C4-C5-C6-C7	179.1(9)
C4-C5-C10-C1	3.4(14)
C4-C5-C10-C9	-177.4(9)
C5-C6-C7-Br1	179.3(7)
C5-C6-C7-C8	-1.4(15)
C6-C5-C10-C1	-175.8(8)
C6-C5-C10-C9	3.4(14)
C6-C7-C8-C9	2.7(16)
C7-C8-C9-C10	-0.9(16)
C8-C9-C10-C1	177.1(9)
C8-C9-C10-C5	-2.2(15)
C10-C1-C2-O1	-177.6(9)
C10-C1-C2-C3	1.6(14)
C10-C1-C12-C13	-100.2(11)
C10-C1-C12-C20	76.9(12)
C10-C5-C6-C7	-1.7(14)
C11-O1-C2-C1	-176.5(9)
C11-O1-C2-C3	4.3(14)
C12-C1-C2-O1	4.3(14)
C12-C1-C2-C3	-176.4(9)
C12-C1-C10-C5	174.2(9)
C12-C1-C10-C9	-5.0(14)
C12-C13-C14-O2	-179.6(11)
C12-C13-C14-O3	1.9(14)

Supplementary Table 6. Torsion angles [] for 3au.

C13-C12-C20-C15	0.5(13)
C13-C12-C20-C19	-178.0(9)
C14-O3-C15-C16	-178.7(9)
C14-O3-C15-C20	-0.6(14)
C15-O3-C14-O2	-179.3(9)
C15-O3-C14-C13	-0.7(13)
C15-C16-C17-C18	-47.8(14)
C15-C16-C17-C21	-167.1(11)
C15-C16-C17-C22	73.6(12)
C16-C15-C20-C12	178.6(9)
C16-C15-C20-C19	-2.8(15)
C16-C17-C18-C19	57.3(14)
C17-C18-C19-O4	139.2(11)
C17-C18-C19-C20	-40.3(14)
C18-C19-C20-C12	-169.1(9)
C18-C19-C20-C15	12.4(13)
C20-C12-C13-C14	-1.9(15)
C20-C15-C16-C17	21.5(16)
C21-C17-C18-C19	177.7(13)
C22-C17-C18-C19	-64.1(13)

Symmetry transformations used to generate equivalent atoms:

Supplementary Table 7. Hydrogen bonds for 3au [Å and].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
Supplementary Discussion

Computational Details

All structures were optimized at the B3LYP/6-31G(d,p) level of theory. Minima were confirmed by frequency calculations (1 imaginary frequency for transition state, 0 imaginary frequency for intermediates).

Conformers

As intermediate **VI**, acyl azolium, has been ruled out by equation (2), only path A starting from **II** was investigated. **II** has four conformers denoted A, B, C, and D (Supplementary Figure 170). **II_A** and **II_C** with the carbonyl group pointing towards the indane ring is favored over **II_B** and **II_D** where the carbonyl group is towards the tribromophenyl group. Attention was focused on **II_A** as the methoxy group is in the same direction as the carbonyl group for an important favorable coordination to magnesium during the reaction.

Supplementary Figure 170. Optimized conformers of II and relative Gibbs Free Energies given in kcal/mol.

The alkynyl azolium creates a twisted plane in which the ketoenolate can attack from two different sides (Supplementary Figure 171);

Supplementary Figure 171. The attack by the ketoenolate can happen from either sides.

Furthermore, the Mg-coordinated ketoenolate has two enantio-faces for the nucleophilic attack (Supplementary Figure 172). The attack via **TS1(i)** will lead to an allenolate ready for the next proton transfer, while the attack via **TS1(ii)** results in an allenolate with the proton pointing away from the allene moiety and creates a higher energy barrier (2.78 kcal/mole higher, Supplementary Table 8).

Supplementary Figure 172. The ketoenolate can attack in two different ways, (i) and (ii).

Supplementary Table 8. Comparison between TS1(i) and TS1(ii).

We hypothesize that enantioselectivity is determined by the attack on the pi plane by the ketoenolate (Figure 172 and 173).

Supplementary Figure 173. The attack by the ketoenolate on the alkyne bond .

Supplementary Figure 174. Energy profile of Path A from Figure 6 for A.

Geometries and Energies

II_A

E(RB3LYP/6-31G(d,p)) = -9336.82746821 A.U.

Temp. 298.150 K 1.00000 Atm.

E + zero-point Energies	= -9336.367804
E + thermal Energies	= -9336.333140
E + thermal Enthalpies	= -9336.332196
E + thermal Free Energies	= -9336.439358

Geometry at E(RB3LYP/6-31G(d,p))

Charge: 1 Multiplicity: 1 C -2.767866000000 2.595911000000 -0.119090000000 C -3.162194000000 3.638569000000 -0.993607000000 C -4.482027000000 4.144260000000 -0.940775000000 C -5.381047000000 3.627133000000 -0.035805000000 H -4.789158000000 4.936122000000 -1.611440000000 H -6.39208000000 4.024168000000 -0.008346000000 C -1.46027000000 2.109576000000 -0.210746000000 C -0.311127000000 1.689094000000 -0.308282000000 C 1.067187000000 1.444050000000 -0.450926000000 O 1.859225000000 2.132159000000 -1.095722000000 C 3.087946000000 -0.999698000000 1.363656000000 C 1.660039000000 0.262641000000 0.284806000000 N 2.05076000000 -1.769876000000 1.172964000000 N 2.89401900000 0.248563000000 0.822785000000 C 3.97530000000 1.262586000000 0.847739000000 H 3.499679000000 2.235544000000 0.717467000000 C 4.328322000000 -1.211627000000 2.171164000000 H 5.190968000000 -1.417918000000 1.523743000000 H 4.19326000000 -2.046543000000 2.859860000000 C 4.75616000000 1.171803000000 2.219352000000 H 4.42349000000 1.959852000000 2.896670000000 O 4.49213900000 -0.031668000000 2.947504000000 C 6.24880600000 1.326372000000 1.836126000000 H 6.585243000000 2.348950000000 2.046554000000 H 6.863768000000 0.661041000000 2.450376000000 C 5.030766000000 0.994451000000 -0.208854000000 C 6.309034000000 1.030877000000 0.356809000000 C 4.84412000000 0.770231000000 -1.573618000000 C 7.431979000000 0.834978000000 -0.447810000000 C 5.970414000000 0.565871000000 -2.371165000000

H 3.847827000000 0.755510000000 -2.002434000000 C 7.253466000000 0.598930000000 -1.811944000000 H 8.430162000000 0.862187000000 -0.020941000000 H 5.85160200000 0.38630600000 -3.434913000000 H 8.119541000000 0.440100000000 -2.446831000000 N 1.16303500000 -0.967571000000 0.495341000000 C -0.053759000000 -1.535060000000 0.008117000000 C -1.065925000000 -1.901908000000 0.904321000000 C -0.217919000000 -1.801862000000 -1.359182000000 C -2.229258000000 -2.513083000000 0.450435000000 C -1.380773000000 -2.404161000000 -1.827943000000 C -2.375576000000 -2.755471000000 -0.915476000000 H -3.00826000000 -2.790587000000 1.147944000000 H -1.504353000000 -2.604209000000 -2.884247000000 Br -0.87606000000 -1.546654000000 2.755232000000 Br 1.14603000000 -1.353869000000 -2.600439000000 Br -3.957725000000 -3.582183000000 -1.543719000000 C -3.707268000000 2.066336000000 0.842026000000 C -5.034233000000 2.592131000000 0.872427000000 C -5.967706000000 2.079292000000 1.809352000000 C -5.604691000000 1.084831000000 2.691393000000 C -4.288143000000 0.574970000000 2.666123000000 H -3.994158000000 -0.201905000000 3.365798000000 C -3.359951000000 1.055227000000 1.764010000000 H -6.32270200000 0.698161000000 3.407014000000 H -6.974004000000 2.488003000000 1.821548000000 H -2.350385000000 0.663413000000 1.767958000000 O -2.228160000000 4.081942000000 -1.847166000000 C -2.539699000000 5.142388000000 -2.758070000000 H -1.622683000000 5.318900000000 -3.318459000000 H -3.339174000000 4.849198000000 -3.446005000000 H -2.822140000000 6.053325000000 -2.220873000000

II_B

E(RB3LYP/6-31G(d,p)) = -9336.82149543 A.U.

Temp. 298.150 K 1.00000 Atm.

E + zero-point Energies	= -9336.362132
E + thermal Energies	= -9336.327292
E + thermal Enthalpies	= -9336.326348
E + thermal Free Energies	= -9336.435796

Geometry at E(RB3LYP/6-31G(d,p))

Charge: 1 Multiplicity: 1

C 3.610653000000 2.463564000000 0.215033000000 C 3.603099000000 3.853385000000 0.492609000000 C 4.815302000000 4.582366000000 0.491429000000 C 6.001505000000 3.940964000000 0.219090000000 H 4.813537000000 5.642550000000 0.708588000000 H 6.926157000000 4.511432000000 0.226083000000 C 2.389572000000 1.781541000000 0.276614000000 C 1.302583000000 1.217612000000 0.363792000000 C -0.05698000000 0.84856000000 0.491396000000 O -0.986440000000 1.644065000000 0.584772000000 C -0.507687000000 -2.791781000000 0.835853000000 C -0.41674000000 -0.61881000000 0.548094000000 N -1.746176000000 -2.433468000000 0.627341000000 N 0.339719000000 -1.710615000000 0.787834000000 C 1.796707000000 -1.914459000000 0.891731000000 H 2.237913000000 -0.957607000000 1.178039000000 C 0.074742000000 -4.111495000000 1.228880000000 H 0.543488000000 -4.607615000000 0.368485000000 H -0.704879000000 -4.761094000000 1.628996000000 C 2.118555000000 -3.024569000000 1.964599000000 H 2.384128000000 -2.566948000000 2.919065000000 O 0.995482000000 -3.849479000000 2.281443000000 C 3.300909000000 -3.818379000000 1.354028000000 H 4.246735000000 -3.474065000000 1.790534000000 H 3.20686000000 -4.880296000000 1.600535000000 C 2.381289000000 -2.459441000000 -0.399144000000 C 3.245596000000 -3.525125000000 -0.126861000000 C 2.15880800000 -2.015672000000 -1.703609000000 C 3.920281000000 -4.156127000000 -1.172630000000 C 2.83101000000 -2.655693000000 -2.746495000000 H 1.462585000000 -1.208529000000 -1.915324000000 C 3.708247000000 -3.713651000000 -2.480636000000 H 4.590978000000 -4.987443000000 -0.976575000000 H 2.670639000000 -2.332610000000 -3.769934000000 H 4.221359000000 -4.203195000000 -3.302432000000 N -1.675267000000 -1.078879000000 0.445364000000 C -2.86342600000 -0.367232000000 0.087251000000 C -3.794682000000 -0.011966000000 1.066395000000 C -3.119007000000 -0.070181000000 -1.254813000000 C -4.977623000000 0.627509000000 0.711937000000 C -4.293822000000 0.572587000000 -1.626050000000 C -5.214438000000 0.910999000000 -0.633192000000 H -5.697911000000 0.904282000000 1.470609000000

H -4.489765000000 0.804038000000 -2.664753000000 Br -3.427468000000 -0.372888000000 2.886580000000 Br -1.841175000000 -0.525480000000 -2.586283000000 Br -6.821301000000 1.784276000000 -1.125434000000 C 6.134814000000 -0.175204000000 -0.703286000000 H 6.162286000000 -1.229698000000 -0.960698000000 C 7.333834000000 0.569352000000 -0.673646000000 C 7.294721000000 1.912617000000 -0.369744000000 C 4.922331000000 0.422523000000 -0.419840000000 C 4.853358000000 1.795399000000 -0.092461000000 C 6.063781000000 2.553689000000 -0.078512000000 O 2.407546000000 4.397435000000 0.758784000000 C 2.307192000000 5.795029000000 1.055854000000 H 2.871841000000 6.047314000000 1.959114000000 H 2.653645000000 6.402875000000 0.214076000000 H 1.246929000000 5.977078000000 1.225317000000 H 8.206969000000 2.501998000000 -0.353221000000 H 8.278627000000 0.085498000000 -0.898010000000 H 4.008383000000 -0.157666000000 -0.474452000000

II_C E(RB3LYP/6-31G(d,p)) = -9336.82755746 A.U.

Temp. 298.150 K 1.00000 Atm.

E + zero-point Energies	= -9336.367816
E + thermal Energies	= -9336.333179
E + thermal Enthalpies	= -9336.332235
E + thermal Free Energies	= -9336.439756

Geometry at E(RB3LYP/6-31G(d,p))

Charge: 1 Multiplicity: 1

C -2.988892000000 2.11604300000 0.58315300000 C -3.826011000000 1.336597000000 1.414409000000 C -5.169034000000 1.720089000000 1.6240000000000 C -5.662243000000 2.854683000000 1.017910000000 H -5.815677000000 1.127273000000 2.257385000000 H -6.698171000000 3.135787000000 1.186526000000 C -1.655402000000 1.748889000000 0.384789000000 C -0.475991000000 1.496882000000 0.158169000000 C 0.907132000000 1.441151000000 -0.091444000000 O 1.577307000000 2.329954000000 -0.620445000000 C 3.252079000000 -1.105290000000 1.070348000000 C 1.655007000000 0.210296000000 0.357719000000 N 2.252659000000 -1.909266000000 0.822019000000 N 2.93060900000 0.200329000000 0.786530000000 C 3.938835000000 1.279129000000 0.916662000000 H 3.387936000000 2.215388000000 1.014539000000 C 4.571321000000 -1.359488000000 1.726557000000 H 5.383439000000 -1.379078000000 0.987587000000 H 4.551853000000 -2.311584000000 2.258309000000 C 4.853397000000 1.002410000000 2.176445000000 H 4.542464000000 1.630475000000 3.012643000000 O 4.729828000000 -0.327104000000 2.691244000000 C 6.291210000000 1.334241000000 1.704945000000 H 6.590364000000 2.320119000000 2.081159000000 H 6.99878000000 0.611407000000 2.123412000000 C 4.901563000000 1.299890000000 -0.255813000000 C 6.224212000000 1.328403000000 0.196778000000 C 4.596183000000 1.324522000000 -1.617465000000 C 7.272814000000 1.376154000000 -0.722659000000 C 5.649224000000 1.363722000000 -2.531650000000 H 3.565546000000 1.313281000000 -1.956378000000 C 6.976372000000 1.389565000000 -2.086617000000 H 8.30460600000 1.399790000000 -0.384712000000 H 5.438244000000 1.380794000000 -3.596122000000 H 7.784345000000 1.421813000000 -2.810867000000 N 1.259071000000 -1.072045000000 0.374449000000 C 0.040745000000 -1.631719000000 -0.117520000000 C -0.890921000000 -2.177627000000 0.773212000000 C -0.199036000000 -1.704501000000 -1.497149000000 C -2.044176000000 -2.793251000000 0.299745000000 C -1.356551000000 -2.302436000000 -1.983328000000 C -2.266251000000 -2.845632000000 -1.076113000000 H -2.757223000000 -3.224334000000 0.989646000000 H -1.540511000000 -2.352527000000 -3.048489000000 Br -0.592271000000 -2.069777000000 2.638384000000 Br 1.051701000000 -0.985085000000 -2.729669000000 Br -3.839594000000 -3.673385000000 -1.727855000000 C -3.502636000000 3.314762000000 -0.046856000000 C -4.865813000000 3.676704000000 0.180305000000 C -5.392224000000 4.844601000000 -0.429441000000 C -4.599671000000 5.632099000000 -1.234224000000 C -3.251467000000 5.274128000000 -1.454640000000 H -2.628747000000 5.898795000000 -2.087519000000 C -2.711760000000 4.141197000000 -0.877516000000 H -5.005112000000 6.525182000000 -1.698005000000 H -6.430802000000 5.106039000000 -0.248401000000

H -1.67400000000 3.88168900000 -1.05644400000 O -3.26698100000 0.24785900000 1.97664500000 C -4.02579700000 -0.51713900000 2.92063200000 H -3.33934000000 -1.28121300000 3.28141200000 H -4.35512800000 0.10511000000 3.758656000000 H -4.89206600000 -0.98881800000 2.44496900000

II_D

E(RB3LYP/6-31G(d,p)) = -9336.82439084 A. U.

Temp. 298.150 K 1.00000 Atm.

E + zero-point Energies	= -9336.364738
E + thermal Energies	= -9336.330013
E + thermal Enthalpies	= -9336.329069
E + thermal Free Energies	= -9336.437547

Geometry at E(RB3LYP/6-31G(d,p))

Charge: 1 Multiplicity: 1

C 3.89630000000 1.967374000000 0.176735000000 C 5.014206000000 1.110364000000 0.074608000000 C 6.315977000000 1.650455000000 -0.000483000000 C 6.493566000000 3.017017000000 0.025902000000 H 7.177396000000 0.999797000000 -0.074491000000 H 7.501182000000 3.419619000000 -0.030207000000 C 2.608226000000 1.427245000000 0.246494000000 C 1.460776000000 1.000823000000 0.320025000000 C 0.074153000000 0.741720000000 0.390898000000 O -0.794031000000 1.609330000000 0.386104000000 C -0.612099000000 -2.849759000000 0.818164000000 C -0.38520300000 -0.692247000000 0.502896000000 N -1.83058000000 -2.409404000000 0.652761000000 N 0.30610000000 -1.830998000000 0.726445000000 C 1.752264000000 -2.135469000000 0.774926000000 H 2.275332000000 -1.214777000000 1.037059000000 C -0.113943000000 -4.202822000000 1.211093000000 H 0.287862000000 -4.745202000000 0.344684000000 H -0.924122000000 -4.787543000000 1.648762000000 C 2.031185000000 - 3.270601000000 1.837167000000 H 2.39096000000 -2.83505000000 2.770688000000 O 0.859522000000 -3.988912000000 2.225891000000 C 3.097592000000 -4.176299000000 1.170887000000 H 4.090572000000 -3.942731000000 1.574706000000 H 2.900378000000 -5.225552000000 1.411400000000

C 2.250186000000 -2.714058000000 -0.536963000000 C 3.017773000000 -3.860131000000 -0.304190000000 C 2.042245000000 -2.227296000000 -1.827569000000 C 3.599547000000 -4.536988000000 -1.377700000000 C 2.62005900000 -2.911894000000 -2.897924000000 H 1.429262000000 -1.348549000000 -2.007805000000 C 3.394927000000 -4.055814000000 -2.672900000000 H 4.192172000000 -5.432015000000 -1.212268000000 H 2.466534000000 -2.556027000000 -3.911575000000 H 3.83474900000 -4.579785000000 -3.515714000000 N -1.675197000000 -1.065726000000 0.451554000000 C -2.82800600000 -0.279912000000 0.134257000000 C -3.679965000000 0.163342000000 1.148461000000 C -3.131293000000 0.000799000000 -1.201273000000 C -4.832625000000 0.876269000000 0.835977000000 C -4.276526000000 0.715000000000 -1.531025000000 C -5.118695000000 1.142237000000 -0.503114000000 H -5.491947000000 1.221376000000 1.621623000000 H -4.509626000000 0.934037000000 -2.564723000000 Br -3.246118000000 -0.182666000000 2.957667000000 Br -1.956567000000 -0.577676000000 -2.577701000000 Br -6.685134000000 2.113100000000 -0.939736000000 C 4.078978000000 3.402251000000 0.202690000000 C 5.407333000000 3.923004000000 0.125185000000 C 5.611558000000 5.326953000000 0.149781000000 C 4.541557000000 6.187971000000 0.245980000000 C 3.229371000000 5.670313000000 0.321010000000 H 2.388666000000 6.352948000000 0.396040000000 C 2.998531000000 4.308854000000 0.300855000000 H 4.701221000000 7.260906000000 0.264468000000 H 6.626718000000 5.708663000000 0.091331000000 H 1.984475000000 3.928023000000 0.359198000000 O 4.753385000000 -0.214828000000 0.054106000000 C 5.831542000000 -1.130660000000 -0.171174000000 H 5.367522000000 -2.112612000000 -0.253810000000 H 6.354985000000 -0.900137000000 -1.104137000000 H 6.53909000000 -1.121997000000 0.664503000000

 III_A_i

E(RB3LYP/6-31G(d,p)) = -10227.5228534 A. U.

Temp. 298.150 K 1.00000 Atm.

E + zero-point Energies	= -10226.832762
E + thermal Energies	= -10226.779821
E + thermal Enthalpies	= -10226.778877
E + thermal Free Energies	= -10226.928725

Geometry at E(RB3LYP/6-31G(d,p))

Charge: 1 Multiplicity: 1

C -3.351654000000 -2.706544000000 -0.503470000000 C -1.857142000000 -1.107130000000 -0.576885000000 N -2.208452000000 -3.313707000000 -0.324133000000 N -3.185156000000 -1.352732000000 -0.654227000000 C -4.371008000000 -0.469352000000 -0.771236000000 H -4.034493000000 0.457883000000 -1.232436000000 C -4.726614000000 -3.263384000000 -0.689122000000 H -5.322194000000 -3.149244000000 0.226525000000 H -4.671079000000 -4.321998000000 -0.946163000000 C -5.486994000000 -1.170249000000 -1.639578000000 H -5.466519000000 -0.788512000000 -2.661676000000 O -5.287356000000 -2.577277000000 -1.800173000000 C -6.814515000000 -0.825158000000 -0.919076000000 H -7.315834000000 0.002220000000 -1.436268000000 H -7.496032000000 -1.680675000000 -0.959248000000 C -5.029529000000 -0.233487000000 0.575354000000 C -6.41116000000 -0.425082000000 0.480137000000 C -4.427919000000 0.150526000000 1.774160000000 C -7.219425000000 -0.221787000000 1.599003000000 C -5.24029600000 0.345116000000 2.891919000000 H -3.351628000000 0.271066000000 1.849863000000 C -6.625422000000 0.164038000000 2.802041000000 H -8.294034000000 -0.366409000000 1.539021000000 H -4.795472000000 0.640476000000 3.836609000000 H -7.24419400000 0.320751000000 3.679970000000 N -1.28280000000 -2.306774000000 -0.371935000000 C 0.068472000000 -2.606141000000 -0.019674000000 C 0.900822000000 -3.269943000000 -0.928341000000 C 0.521701000000 -2.334429000000 1.278727000000 C 2.173387000000 -3.673765000000 -0.541670000000 C 1.808388000000 -2.694221000000 1.667340000000 C 2.606796000000 -3.380598000000 0.753129000000 H 2.815484000000 -4.200129000000 -1.235622000000 H 2.17705000000 -2.421952000000 2.646344000000 Br 0.297355000000 -3.608777000000 -2.690682000000 Br -0.630204000000 -1.499804000000 2.525025000000 Br 4.344338000000 - 3.934380000000 1.276347000000 C 2.325611000000 1.512598000000 -1.883331000000 C 2.188892000000 2.794211000000 -2.499538000000 C 3.320351000000 3.426706000000 -3.060440000000 C 4.553396000000 2.817030000000 -2.992440000000 H 3.220701000000 4.386668000000 -3.548847000000 H 5.412382000000 3.316121000000 -3.432752000000 C 1.169308000000 0.894854000000 -1.434546000000 C 0.094571000000 0.364966000000 -1.125045000000 C -1.224731000000 0.224910000000 -0.730125000000 C 3.633037000000 0.898475000000 -1.773768000000 C 4.75409000000 1.564633000000 -2.353589000000 C 6.041854000000 0.982694000000 -2.255896000000 C 6.221981000000 -0.210538000000 -1.587434000000 C 5.117742000000 -0.851104000000 -0.990379000000 H 5.260145000000 -1.770923000000 -0.433339000000 C 3.84708900000 -0.309363000000 -1.081836000000 H 7.210881000000 -0.649142000000 -1.506493000000 H 6.885543000000 1.498550000000 -2.704936000000 H 3.012817000000 -0.797293000000 -0.592043000000 O 0.957850000000 3.308703000000 -2.544585000000 C 0.729877000000 4.578186000000 -3.193586000000 H -0.335042000000 4.765066000000 -3.073114000000 H 0.996045000000 4.514237000000 -4.252677000000 H 1.308145000000 5.365935000000 -2.702285000000 O -1.994351000000 1.219825000000 -0.546482000000 Mg -1.591220000000 3.197730000000 -0.248576000000 O -0.08966000000 3.549959000000 0.832915000000 C 0.931935000000 3.076481000000 1.486976000000 C 1.06050000000 1.752576000000 1.843581000000 C 2.023217000000 4.071586000000 1.823786000000 C 2.226981000000 1.220636000000 2.507378000000 H 0.252084000000 1.060216000000 1.645138000000 C 2.925588000000 3.657152000000 3.009562000000

H 1.54876000000 5.041495000000 2.011353000000 H 2.638317000000 4.205362000000 0.920004000000 C 3.368097000000 2.192184000000 2.801530000000 H 4.060258000000 2.137742000000 1.947299000000 H 3.917370000000 1.812063000000 3.668737000000 C 2.153518000000 3.795210000000 4.338017000000 H 1.849025000000 4.834244000000 4.504124000000 H 2.783095000000 3.493555000000 5.181747000000 H 1.252861000000 3.174617000000 4.353676000000 C 4.161089000000 4.572100000000 3.054946000000 H 3.870336000000 5.619847000000 3.189928000000 H 4.745498000000 4.501400000000 2.130368000000 H 4.818241000000 4.300093000000 3.887710000000 O 2.34315000000 0.01998000000 2.791246000000 O -3.417999000000 4.079691000000 -0.074675000000 C -3.223258000000 4.593717000000 -1.224072000000 C -4.225905000000 5.544757000000 -1.819901000000 H -5.215026000000 5.378040000000 -1.392750000000 H -4.246955000000 5.447796000000 -2.906661000000 H -3.917607000000 6.568508000000 -1.580838000000 O -2.143861000000 4.313779000000 -1.860128000000

TS1(i)

Imaginary Frequency = $-254.0239 \text{ cm}^{-1}$ E(RB3LYP/6-31G(d,p)) = -10227.5152368

Temp. 298.150 K 1.00000 Atm.

= -10226.825403
= -10226.773537
= -10226.772593
= -10226.917958

Geometry at E(RB3LYP/6-31G(d,p))

Charge: 1 Multiplicity: 1

C 3.39078200000 -2.67189000000 0.61052800000 C 1.90478100000 -1.06186100000 0.47431900000 N 2.27542700000 -3.28297400000 0.32101200000 N 3.21379800000 -1.31273300000 0.70808500000 C 4.37720400000 -0.43092000000 0.95835300000 H 3.98481600000 0.50338100000 1.356581000000 C 4.73363300000 -3.22420200000 0.96496300000 H 5.43488600000 -3.12192000000 0.12588100000 H 4.64791500000 -4.27919900000 1.22835800000 C 5.37198300000 -1.11634800000 1.97313300000 H 5.217979000000 -0.721656000000 2.978881000000 O 5.160838000000 -2.522969000000 2.125522000000 C 6.781654000000 -0.774565000000 1.427238000000 H 7.207828000000 0.064127000000 1.991613000000 H 7.455126000000 -1.625341000000 1.570372000000 C 5.204738000000 -0.213209000000 -0.294531000000 C 6.56278000000 -0.399241000000 -0.019404000000 C 4.762987000000 0.149966000000 -1.566962000000 C 7.508411000000 -0.213600000000 -1.028305000000 C 5.712301000000 0.327383000000 -2.574332000000 H 3.704958000000 0.269846000000 -1.778760000000 C 7.074296000000 0.150161000000 -2.304445000000 H 8.566411000000 -0.355045000000 -0.828144000000 H 5.39293000000 0.606722000000 -3.573163000000 H 7.800905000000 0.292832000000 -3.098172000000 N 1.354407000000 -2.267859000000 0.233702000000 C 0.030536000000 -2.576087000000 -0.192841000000 C -0.837996000000 -3.269248000000 0.659222000000 C -0.38596000000 -2.257465000000 -1.492818000000 C -2.103012000000 -3.642961000000 0.218155000000 C -1.656814000000 -2.596328000000 -1.938659000000 C -2.498962000000 -3.294933000000 -1.072778000000 H -2.772879000000 -4.179462000000 0.876978000000 H -1.993766000000 -2.301970000000 -2.921928000000 Br -0.312649000000 -3.679186000000 2.430848000000 Br 0.781213000000 -1.319891000000 -2.664074000000 Br -4.24421000000 -3.749895000000 -1.647919000000 C -2.256498000000 1.449075000000 1.601396000000 C -2.034227000000 2.642847000000 2.323525000000 C -3.000634000000 3.095786000000 3.253198000000 C -4.166996000000 2.389214000000 3.437338000000 H -2.824839000000 3.997516000000 3.824572000000 H -4.899071000000 2.750808000000 4.154025000000 C -1.205542000000 0.968595000000 0.769525000000 C -0.062447000000 0.438455000000 0.697497000000 C 1.273181000000 0.273801000000 0.483409000000 C -3.491023000000 0.726014000000 1.767082000000 C -4.453128000000 1.205313000000 2.710572000000 C -5.669624000000 0.497676000000 2.889330000000 C -5.938770000000 -0.634756000000 2.152846000000 C -4.996034000000 -1.097531000000 1.208582000000 H -5.21550500000 -1.971451000000 0.603479000000 C -3.797570000000 -0.437768000000 1.023187000000 H -6.874975000000 -1.166383000000 2.287882000000

H -6.388422000000 0.870604000000 3.613302000000 H -3.097633000000 -0.790992000000 0.276195000000 O -0.871081000000 3.293273000000 2.094209000000 C -0.569789000000 4.483543000000 2.846118000000 H 0.409828000000 4.804874000000 2.497114000000 H -0.534962000000 4.264294000000 3.917782000000 H -1.312626000000 5.263041000000 2.648563000000 O 2.098015000000 1.266241000000 0.352027000000 Mg 1.648856000000 3.128984000000 -0.146835000000 O 0.006435000000 3.266282000000 -1.145663000000 C -1.200555000000 2.896615000000 -1.292837000000 C -1.561489000000 1.531192000000 -1.455133000000 C -2.281749000000 3.948221000000 -1.240872000000 C -2.921730000000 1.150944000000 -1.871346000000 H -0.785996000000 0.834679000000 -1.746374000000 C -3.521692000000 3.638006000000 -2.112656000000 H -1.834065000000 4.911839000000 -1.502977000000 H -2.589972000000 4.022063000000 -0.185420000000 C -4.007915000000 2.210599000000 -1.770825000000 H -4.382421000000 2.193220000000 -0.736490000000 H -4.836845000000 1.901958000000 -2.414051000000 C -3.154639000000 3.733894000000 -3.607006000000 H -2.807515000000 4.741319000000 -3.858904000000 H -4.02496000000 3.51360900000 -4.23306900000 H -2.362433000000 3.029698000000 -3.883238000000 C -4.631274000000 4.653585000000 -1.794796000000 H -4.304334000000 5.675220000000 -2.016286000000 H -4.921061000000 4.613225000000 -0.738881000000 H -5.524688000000 4.453521000000 -2.394934000000 O -3.164554000000 0.014115000000 -2.272394000000 O 3.249139000000 4.215377000000 -0.756476000000 C 3.13051000000 4.893463000000 0.317114000000 C 4.038249000000 6.061131000000 0.591795000000 H 4.221767000000 6.157546000000 1.663113000000 H 3.53986000000 6.976328000000 0.253644000000 H 4.973991000000 5.957627000000 0.042164000000 O 2.205447000000 4.585096000000 1.152212000000

TS1(ii)

Imaginary Frequency = -283.2260 cm⁻¹ E(RB3LYP/6-31G(d,p)) = -10227.5117001

Temp. 298.150 K 1.00000 Atm. E + zero-point Energies = -10226.821985

E + thermal Energies	= -10226.770310
E + thermal Enthalpies	= -10226.769366
E + thermal Free Energies	= -10226.913528

Geometry at E(RB3LYP/6-31G(d,p))

Cha	rge: 1 Multiplicity: 1		
С	-3.143721000000	-0.332946000000	-2.499936000000
С	-1.692980000000	0.138279000000	-0.922132000000
Ν	-2.200466000000	-1.219376000000	-2.654783000000
Ν	-2.880950000000	0.505002000000	-1.441823000000
С	-3.834880000000	1.565587000000	-1.053422000000
Н	-3.273596000000	2.298077000000	-0.469567000000
С	-4.319443000000	0.009948000000	-3.357374000000
Н	-5.257663000000	-0.326934000000	-2.897619000000
Н	-4.218499000000	-0.449216000000	-4.341402000000
С	-4.452922000000	2.216402000000	-2.355307000000
Н	-3.941572000000	3.150751000000	-2.592675000000
0	-4.268691000000	1.421642000000	-3.532137000000
С	-5.945915000000	2.438658000000	-2.014894000000
Н	-6.115280000000	3.486878000000	-1.738763000000
Н	-6.564484000000	2.241376000000	-2.895943000000
С	-5.036363000000	1.026093000000	-0.295555000000
С	-6.222271000000	1.521848000000	-0.847807000000
С	-5.050751000000	0.188926000000	0.821503000000
С	-7.451850000000	1.173082000000	-0.288451000000
С	-6.284231000000	-0.164626000000	1.369748000000
Н	-4.129197000000	-0.178036000000	1.258033000000
С	-7.474802000000	0.323526000000	0.818993000000
Н	-8.378288000000	1.552855000000	-0.709106000000
Н	-6.316027000000	-0.820361000000	2.233960000000
Н	-8.426211000000	0.040035000000	1.258339000000
Ν	-1.300221000000	-0.920990000000	-1.650202000000
С	-0.216553000000	-1.817952000000	-1.413812000000
С	0.857338000000	-1.877525000000	-2.311990000000
С	-0.263690000000	-2.722873000000	-0.342568000000
С	1.879485000000	-2.806354000000	-2.138441000000
С	0.746199000000	-3.661037000000	-0.161134000000
С	1.812688000000	-3.688186000000	-1.059981000000
Н	2.709069000000	-2.840945000000	-2.832588000000
Н	0.705634000000	-4.355366000000	0.667868000000
Br	0.929528000000	-0.688208000000	-3.783130000000
Br	-1.698699000000	-2.681439000000	0.902338000000
Br	3.215839000000	-4.929185000000	-0.787173000000
С	1.997580000000	3.147810000000	0.133462000000

С	2.123039000000	4.188512000000	1.077710000000
С	2.939315000000	5.311022000000	0.802389000000
С	3.614494000000	5.389299000000	-0.390558000000
Н	3.034159000000	6.105459000000	1.530838000000
Н	4.240318000000	6.253994000000	-0.592703000000
С	1.216516000000	2.007328000000	0.463906000000
С	0.158908000000	1.360127000000	0.181289000000
С	-1.069541000000	0.801709000000	0.256387000000
С	2.704087000000	3.228400000000	-1.124438000000
С	3.522881000000	4.372188000000	-1.379128000000
С	4.226869000000	4.470309000000	-2.605768000000
С	4.135171000000	3.475424000000	-3.554819000000
С	3.324654000000	2.348039000000	-3.303957000000
Н	3.243619000000	1.562857000000	-4.049851000000
С	2.625224000000	2.226493000000	-2.119835000000
Н	4.679080000000	3.557181000000	-4.490122000000
Н	4.843641000000	5.346782000000	-2.782988000000
Н	1.995462000000	1.360262000000	-1.959029000000
0	1.392949000000	4.059662000000	2.199005000000
С	1.690247000000	4.895704000000	3.327242000000
Н	1.054361000000	4.530088000000	4.132945000000
Н	1.442044000000	5.941194000000	3.119827000000
Н	2.742171000000	4.791669000000	3.604619000000
0	-1.876527000000	0.902523000000	1.278328000000
Mg	-1.241521000000	-0.176525000000	2.810851000000
0	0.607034000000	-0.651574000000	2.353587000000
С	1.796614000000	-0.282201000000	2.107032000000
С	2.195298000000	1.077672000000	2.197980000000
С	2.774687000000	-1.324508000000	1.617983000000
С	3.622249000000	1.439169000000	2.121157000000
Н	1.582731000000	1.738946000000	2.801717000000
С	4.253896000000	-1.044318000000	1.971334000000
Н	2.669836000000	-1.365649000000	0.523618000000
Н	2.452027000000	-2.298102000000	1.998964000000
С	4.582240000000	0.405972000000	1.551423000000
Н	5.595330000000	0.692075000000	1.847266000000
Н	4.533470000000	0.488653000000	0.454950000000
С	5.150170000000	-2.026055000000	1.198512000000
Н	4.901507000000	-3.064293000000	1.442158000000
Н	6.204470000000	-1.866018000000	1.445003000000
Η	5.036409000000	-1.903776000000	0.115518000000
С	4.479803000000	-1.226351000000	3.485496000000
Н	4.255910000000	-2.253608000000	3.791826000000
Н	3.850914000000	-0.556010000000	4.081067000000

Η	5.521991000000	-1.019623000000	3.747875000000
0	4.006682000000	2.553806000000	2.461967000000
С	-3.375463000000	-0.945270000000	5.925430000000
Η	-4.381614000000	-1.256314000000	5.639555000000
Η	-2.906037000000	-1.782922000000	6.452889000000
Η	-3.407541000000	-0.087557000000	6.597260000000
0	-2.712250000000	-1.316356000000	3.628620000000
0	-1.682018000000	0.297594000000	4.727823000000
С	-2.557488000000	-0.631958000000	4.703150000000

TS1'(i)

Imaginary Frequency = $-256.6398 \text{ cm}^{-1}$ E(RB3LYP/6-31G(d,p)) = -10227.5112208 A.U.

Temp. 298.150 K 1.00000 Atm.

E + zero-point Energies	= -10226.821359
E + thermal Energies	= -10226.769557
E + thermal Enthalpies	= -10226.768613
E + thermal Free Energies	= -10226.914152

Geometry at E(RB3LYP/6-31G(d,p))

Charge: 1 Multiplicity: 1

C -2.540998000000 1.185443000000 -1.046911000000 C -2.438741000000 1.985313000000 -2.208238000000 C -3.567318000000 2.167142000000 -3.043441000000 C -4.771459000000 1.589492000000 -2.715195000000 H -3.486770000000 2.762622000000 -3.942702000000 H -5.629034000000 1.742722000000 -3.364278000000 C -1.354039000000 0.962312000000 -0.291041000000 C -0.207682000000 0.433143000000 -0.233881000000 C 1.144993000000 0.340272000000 -0.094529000000 C 3.210464000000 -2.067965000000 1.660971000000 C 1.778126000000 -0.814334000000 0.568822000000 N 2.173557000000 -2.838988000000 1.478202000000 N 3.016399000000 -0.821268000000 1.118788000000 C 4.107934000000 0.184673000000 1.151827000000 H 3.638941000000 1.161627000000 1.052040000000 C 4.453555000000 -2.298440000000 2.457313000000 H 5.307829000000 -2.514853000000 1.801389000000 H 4.311052000000 -3.136305000000 3.140982000000 C 4.915654000000 0.069357000000 2.506239000000 H 4.613047000000 0.863694000000 3.190243000000 O 4.64530900000 -1.127555000000 3.238720000000

C 6.404288000000 0.199455000000 2.093139000000 H 6.768216000000 1.208879000000 2.319806000000 H 7.016961000000 -0.493900000000 2.678199000000 C 5.139258000000 -0.066095000000 0.068112000000 C 6.429305000000 -0.061154000000 0.606549000000 C 4.921553000000 -0.251149000000 -1.297771000000 C 7.531882000000 -0.251975000000 -0.227321000000 C 6.027055000000 -0.449148000000 -2.125824000000 H 3.91709900000 -0.240932000000 -1.708627000000 C 7.321714000000 -0.449988000000 -1.592989000000 H 8.539235000000 -0.250176000000 0.178425000000 H 5.882812000000 -0.599039000000 -3.191095000000 H 8.171975000000 -0.605114000000 -2.249852000000 N 1.288725000000 -2.049568000000 0.788636000000 C 0.087208000000 -2.656566000000 0.313884000000 C -1.073473000000 -2.639205000000 1.093833000000 C 0.109918000000 -3.379498000000 -0.885405000000 C -2.197721000000 -3.355418000000 0.692895000000 C -1.009492000000 -4.089340000000 -1.304416000000 C -2.150056000000 -4.076148000000 -0.500036000000 H -3.09606000000 -3.343699000000 1.295238000000 H -0.991371000000 -4.646074000000 -2.232086000000 Br -1.14710000000 -1.571531000000 2.651386000000 Br 1.678897000000 -3.383479000000 -1.951302000000 Br -3.675796000000 -5.056420000000 -1.048859000000 C -3.807468000000 0.597543000000 -0.689552000000 C -4.934553000000 0.803895000000 -1.546011000000 C -6.186851000000 0.228471000000 -1.209528000000 C -6.331365000000 -0.518516000000 -0.061817000000 C -5.22044000000 -0.716025000000 0.787334000000 H -5.340131000000 -1.291445000000 1.700395000000 C -3.986229000000 -0.176429000000 0.482665000000 H -7.29313600000 -0.95045600000 0.19440900000 H -7.031182000000 0.392890000000 -1.872828000000 H -3.15150000000 -0.332423000000 1.154771000000 O -1.234517000000 2.538548000000 -2.478894000000 C -1.066642000000 3.291075000000 -3.696204000000 H -0.028163000000 3.615836000000 -3.694919000000 H -1.266628000000 2.660861000000 -4.568145000000 H -1.727546000000 4.163621000000 -3.705560000000 O 1.967537000000 1.254627000000 -0.509380000000 Mg 1.535364000000 3.162275000000 -0.811058000000 O 0.110652000000 3.754713000000 0.348853000000 C -1.008563000000 3.493304000000 0.890782000000

C -1.252262000000 2.282455000000 1.598442000000 C -2.130329000000 4.487873000000 0.724104000000 C -2.444826000000 2.136495000000 2.455087000000 H -0.398241000000 1.701758000000 1.920275000000 C -3.105498000000 4.561475000000 1.924155000000 H -1.689598000000 5.464016000000 0.499678000000 H -2.688210000000 4.180383000000 -0.175773000000 C -3.581325000000 3.126247000000 2.247720000000 H -4.193032000000 2.751506000000 1.414127000000 H -4.210913000000 3.102680000000 3.141582000000 C -2.394297000000 5.177107000000 3.145974000000 H -2.049858000000 6.192905000000 2.925862000000 H -3.075662000000 5.232638000000 4.000693000000 H -1.523171000000 4.590150000000 3.456892000000 C -4.312022000000 5.434529000000 1.543253000000 H -3.996953000000 6.453730000000 1.295253000000 H -4.844528000000 5.025113000000 0.677757000000 H -5.02173000000 5.498824000000 2.374104000000 O -2.506266000000 1.244828000000 3.297381000000 O 3.233850000000 4.273261000000 -0.896037000000 C 2.956337000000 4.498907000000 -2.119962000000 C 3.836222000000 5.387313000000 -2.955615000000 H 3.467415000000 6.415911000000 -2.875692000000 H 4.861944000000 5.365487000000 -2.586272000000 H 3.791570000000 5.092962000000 -4.004979000000 O 1.895836000000 3.980297000000 -2.626065000000

Allenolate_A_i

E(RB3LYP/6-31G(d,p)) = -10227.5410639 A.U.

Temp. 298.150 K 1.00000 Atm.

E + zero-point Energies	= -10226.848947
E + thermal Energies	= -10226.797217
E + thermal Enthalpies	= -10226.796272
E + thermal Free Energies = -	-10226.941362

Geometry at E(RB3LYP/6-31G(d,p))

Charge: 1 Multiplicity: 1

C 3.148233000000 -2.885654000000 0.416093000000 C 1.770356000000 -1.171134000000 0.371262000000 N 2.011163000000 - 3.398324000000 0.043283000000 N 3.051336000000 -1.529307000000 0.624702000000 C 4.254588000000 -0.753939000000 1.004631000000 H 3.898657000000 0.166014000000 1.464886000000 C 4.43719000000 -3.552742000000 0.772140000000 H 5.184625000000 - 3.420215000000 - 0.021476000000 H 4.275379000000 -4.619551000000 0.931653000000 C 5.151078000000 -1.590627000000 1.997241000000 H 4.970692000000 -1.276804000000 3.026860000000 O 4.848701000000 -2.989025000000 2.010854000000 C 6.606162000000 -1.298398000000 1.550472000000 H 7.054375000000 -0.541598000000 2.206306000000 H 7.216248000000 -2.201810000000 1.648219000000 C 5.159454000000 -0.482254000000 -0.182233000000 C 6.486884000000 -0.785666000000 0.134708000000 C 4.809105000000 0.025050000000 -1.433161000000 C 7.492646000000 -0.579515000000 -0.810038000000 C 5.817351000000 0.222728000000 -2.377748000000 H 3.774272000000 0.248509000000 -1.672410000000 C 7.148834000000 -0.075947000000 -2.066194000000 H 8.527501000000 -0.812403000000 -0.576713000000 H 5.567962000000 0.613391000000 -3.359077000000 H 7.922538000000 0.083027000000 -2.810901000000 N 1.158297000000 -2.317205000000 0.007368000000 C -0.189908000000 -2.536242000000 -0.393478000000 C -1.057295000000 -3.244170000000 0.449576000000 C -0.642023000000 -2.129819000000 -1.655898000000 C -2.348569000000 -3.552821000000 0.034940000000 C -1.937614000000 -2.406598000000 -2.075542000000 C -2.774354000000 -3.125342000000 -1.221264000000 H -3.014063000000 -4.100338000000 0.688969000000 H -2.292045000000 -2.057239000000 -3.034947000000 Br -0.494445000000 -3.768098000000 2.178556000000 Br 0.508834000000 -1.153750000000 -2.813483000000 Br -4.55420900000 -3.493754000000 -1.756652000000 C -2.052107000000 1.493421000000 1.558412000000 C -1.650039000000 2.538868000000 2.391366000000 C -2.42272000000 2.891499000000 3.527617000000 C -3.578246000000 2.206061000000 3.817207000000 H -2.108458000000 3.700142000000 4.173982000000

H -4.162722000000 2.486772000000 4.688717000000 C -1.199044000000 1.131445000000 0.379718000000 C -0.074647000000 0.461741000000 0.495636000000 C 1.234845000000 0.198325000000 0.438809000000 C -3.248861000000 0.767089000000 1.859565000000 C -4.029360000000 1.138648000000 3.004002000000 C -5.225966000000 0.431184000000 3.296462000000 C -5.65004000000 -0.602488000000 2.494261000000 C -4.87962900000 -0.977532000000 1.368751000000 H -5.211879000000 -1.787973000000 0.727103000000 C -3.707643000000 -0.320034000000 1.066180000000 H -6.569541000000 -1.132047000000 2.721782000000 H -5.802823000000 0.725738000000 4.168708000000 H -3.129158000000 -0.633649000000 0.206856000000 O -0.505938000000 3.217319000000 2.048496000000 C -0.060193000000 4.282480000000 2.905163000000 H 0.854890000000 4.663902000000 2.455526000000 H 0.151735000000 3.909314000000 3.912175000000 H -0.807639000000 5.081365000000 2.958713000000 O 2.165993000000 1.146322000000 0.469598000000 Mg 1.890049000000 2.986450000000 -0.035456000000 O 0.16602000000 3.400523000000 -0.995205000000 C -1.045041000000 3.152503000000 -1.034151000000 C -1.514967000000 1.704548000000 -1.045130000000 C -2.049088000000 4.264423000000 -1.006755000000 C -2.954746000000 1.508100000000 -1.560172000000 H -0.870841000000 1.155458000000 -1.737995000000 C -3.346976000000 4.006938000000 -1.809803000000 H -1.551878000000 5.191946000000 -1.305135000000 H -2.303331000000 4.368060000000 0.061375000000 C -3.933934000000 2.642377000000 -1.365468000000 H -4.188269000000 2.685539000000 -0.296845000000 H -4.845785000000 2.400860000000 -1.917342000000 C -3.036453000000 3.992768000000 -3.319925000000 H -2.622288000000 4.953741000000 -3.640805000000 H -3.945715000000 3.808695000000 -3.899771000000 H -2.313924000000 3.213767000000 -3.592174000000 C -4.355163000000 5.125112000000 -1.499182000000 H -3.953547000000 6.103405000000 -1.782773000000 H -4.603947000000 5.156131000000 -0.433134000000 H -5.283867000000 4.972430000000 -2.057200000000 O -3.233121000000 0.475108000000 -2.135983000000 O 3.387344000000 3.993876000000 -0.966278000000 C 3.404365000000 4.778785000000 0.038118000000

C 4.34529700000 5.95086000000 0.089782000000 H 5.09454300000 5.88204200000 -0.698076000000 H 4.82083000000 6.001683000000 1.071959000000 H 3.76888300000 6.87280300000 -0.039669000000 O 2.590447000000 4.568029000000 1.009780000000

E(RB3LYP) = -10227.5751754

Temperature 298.150 Kelvin. Pressure 1.00000 Atm.

E + zero-point Energies	= -10226.882619
E + thermal Energies	= -10226.831288
E + thermal Enthalpies	= -10226.830343
E + thermal Free Energies	= -10226.974064

Charge: 1 Multiplicity: 1

C 2.555198000000 -2.802958000000 1.330150000000 C 1.157446000000 -1.239804000000 0.690157000000 N 1.418189000000 -3.426366000000 1.180050000000 N 2.442723000000 -1.465866000000 1.033042000000 C 3.633984000000 -0.587099000000 1.057722000000 H 3.286353000000 0.441803000000 1.152218000000 C 3.85800200000 -3.276255000000 1.889063000000 H 4.590548000000 - 3.449209000000 1.089275000000 H 3.715728000000 -4.203580000000 2.445397000000 C 4.574985000000 -0.992831000000 2.258456000000 H 4.43022600000 -0.31201000000 3.098974000000 O 4.279961000000 -2.279139000000 2.811735000000 C 6.011096000000 -0.900108000000 1.684130000000 H 6.48119900000 0.037492000000 2.005220000000 H 6.626995000000 -1.713668000000 2.080245000000 C 4.49858000000 -0.763114000000 -0.177658000000 C 5.838807000000 -0.932611000000 0.184255000000 C 4.103481000000 -0.729507000000 -1.516040000000 C 6.814017000000 -1.075180000000 -0.803662000000 C 5.082838000000 -0.881704000000 -2.499164000000 H 3.06125000000 -0.59206900000 -1.784747000000 C 6.426641000000 -1.051812000000 -2.145106000000 H 7.858137000000 -1.208204000000 -0.535849000000 H 4.800639000000 -0.862706000000 -3.547050000000 H 7.175844000000 -1.168313000000 -2.922099000000 N 0.552944000000 -2.439039000000 0.772877000000 C -0.740436000000 -2.809716000000 0.292974000000 C -1.808356000000 -2.991464000000 1.176366000000 C -0.924367000000 -3.052039000000 -1.074614000000 C -3.053865000000 -3.398420000000 0.711176000000 C -2.165498000000 -3.453211000000 -1.557500000000 C -3.21582000000 -3.624677000000 -0.656165000000 H -3.878588000000 -3.535024000000 1.398162000000 H -2.307703000000 -3.632623000000 -2.614954000000 Br -1.565834000000 -2.640994000000 3.023271000000 Br 0.519591000000 -2.836182000000 -2.275121000000 Br -4.90872600000 -4.179126000000 -1.304091000000 C -1.686002000000 2.604428000000 1.369570000000 C -0.777043000000 3.221402000000 2.213514000000 C -1.193968000000 4.092082000000 3.244026000000 C -2.536466000000 4.32480000000 3.430666000000 H -0.468909000000 4.588143000000 3.876050000000 H -2.859691000000 4.994834000000 4.221761000000 C -1.190519000000 1.694720000000 0.288304000000 C 0.580377000000 0.067714000000 0.276737000000 C -3.087625000000 2.846276000000 1.548051000000 C -3.513851000000 3.717840000000 2.604272000000 C -4.901484000000 3.953681000000 2.798063000000 C -5.838449000000 3.351269000000 1.992336000000 C -5.421882000000 2.479014000000 0.958685000000 H -6.166902000000 1.997880000000 0.332289000000 C -4.085095000000 2.230589000000 0.741259000000 H -6.896093000000 3.537597000000 2.147962000000 H -5.208336000000 4.619867000000 3.599318000000 H -3.786588000000 1.550618000000 -0.048889000000 O 0.58250000000 3.001829000000 1.962936000000 C 1.485323000000 3.131324000000 3.090871000000 H 1.603632000000 4.181042000000 3.368614000000 H 2.44418900000 2.749607000000 2.751004000000 H 1.100349000000 2.554848000000 3.935321000000 O 1.422059000000 0.839587000000 -0.315813000000 Mg 1.460793000000 2.865995000000 -0.054132000000 O -0.037565000000 4.144308000000 -0.751212000000

C -0.96998000000 3.552423000000 -1.347685000000 C -1.184067000000 2.141824000000 -1.031063000000 C -1.709645000000 4.186779000000 -2.481834000000 C -1.355324000000 1.226437000000 -2.206826000000 C -1.591817000000 3.297138000000 -3.759321000000 H -1.316452000000 5.190326000000 -2.660213000000 H -2.769135000000 4.266689000000 -2.203014000000 C -2.052820000000 1.862123000000 -3.410319000000 H -3.129465000000 1.874491000000 -3.183931000000 H -1.911059000000 1.187660000000 -4.259117000000 C -0.135245000000 3.281637000000 -4.264152000000 H 0.205220000000 4.294181000000 -4.501247000000 H -0.056285000000 2.679361000000 -5.174578000000 H 0.565685000000 2.864538000000 -3.532899000000 C -2.507418000000 3.878864000000 -4.849433000000 H -2.202126000000 4.896899000000 -5.111211000000 H -3.551916000000 3.911339000000 -4.521821000000 H -2.457252000000 3.271797000000 -5.758932000000 O -1.047225000000 0.047205000000 -2.195317000000 C -0.710664000000 0.396321000000 0.663635000000 H -1.208970000000 -0.180134000000 1.435202000000 C 5.235210000000 3.455516000000 -0.774874000000 H 5.660417000000 2.466991000000 -0.981700000000 H 5.753385000000 3.874209000000 0.089431000000 H 5.382618000000 4.081776000000 -1.655112000000 C 3.766761000000 3.292405000000 -0.484870000000 O 3.373976000000 3.006187000000 0.706048000000 O 2.906318000000 3.402087000000 -1.411914000000

IV-V_A_i

E(RB3LYP/6-31G(d,p)) = -10227.5649095 A.U.

E + zero-point Energies	= -10226.871614
E + thermal Energies	= -10226.821654
E + thermal Enthalpies	= -10226.820710

Charge: 1 Multiplicity: 1

C -2.188613000000 -2.927999000000 -1.398694000000 C -1.029644000000 -1.251799000000 -0.594710000000 N -0.98652000000 -3.408431000000 -1.238438000000 N -2.259017000000 -1.608141000000 -1.018610000000 C -3.54495000000 -0.866472000000 -1.111646000000 H -3.30724000000 0.196337000000 -1.174526000000 C -3.38788000000 -3.528266000000 -2.056603000000 H -4.147571000000 -3.812359000000 -1.316227000000 H -3.10024000000 -4.411319000000 -2.628437000000 C -4.346766000000 -1.338360000000 -2.390124000000 H -4.237042000000 -0.602485000000 -3.188017000000 O -3.855352000000 -2.548338000000 -2.973845000000 C -5.817053000000 -1.459435000000 -1.914698000000 H -6.391371000000 -0.588182000000 -2.252224000000 H -6.286094000000 -2.338790000000 -2.367691000000 C -4.46703500000 -1.174868000000 0.052593000000 C -5.744866000000 -1.508891000000 -0.407445000000 C -4.177625000000 -1.118433000000 1.416588000000 C -6.759082000000 -1.802643000000 0.505019000000 C -5.193593000000 -1.421086000000 2.324302000000 H -3.187176000000 -0.839284000000 1.760481000000 C -6.473521000000 -1.761615000000 1.870962000000 H -7.755092000000 -2.064416000000 0.160018000000 H -4.991572000000 -1.387600000000 3.390191000000 H -7.253207000000 -1.994532000000 2.589547000000 N -0.271001000000 -2.351872000000 -0.731456000000 C 1.122592000000 -2.546206000000 -0.478309000000 C 2.056558000000 -2.279265000000 -1.485314000000 C 1.555828000000 -3.089910000000 0.737093000000 C 3.41418600000 -2.497812000000 -1.273883000000 C 2.909089000000 -3.319035000000 0.962389000000 C 3.824958000000 - 3.010736000000 - 0.043970000000 H 4.132237000000 -2.283757000000 -2.054505000000 H 3.241928000000 - 3.734946000000 1.904305000000 Br 1.472312000000 -1.645865000000 -3.176502000000 Br 0.304011000000 -3.527389000000 2.084209000000 Br 5.671071000000 -3.310218000000 0.262495000000 C 1.575956000000 3.110577000000 -0.795017000000 C 0.826581000000 4.080743000000 -1.445854000000 C 1.431906000000 5.224786000000 -2.013115000000 C 2.794977000000 5.383348000000 -1.932134000000

H 0.830352000000 5.984062000000 -2.495508000000 H 3.259149000000 6.264658000000 -2.364775000000 C 0.877459000000 1.959569000000 -0.152270000000 C -0.672331000000 0.139886000000 -0.116296000000 C 2.995943000000 3.268579000000 -0.703608000000 C 3.612773000000 4.422402000000 -1.288112000000 C 5.022893000000 4.576071000000 -1.209769000000 C 5.801291000000 3.629278000000 -0.586785000000 C 5.196353000000 2.481809000000 -0.020578000000 H 5.817432000000 1.732920000000 0.461749000000 C 3.832336000000 2.303406000000 -0.077926000000 H 6.877726000000 3.755337000000 -0.531055000000 H 5.475589000000 5.457613000000 -1.654742000000 H 3.385158000000 1.414011000000 0.351801000000 O -0.560919000000 3.913367000000 -1.487246000000 C -1.289462000000 4.608981000000 -2.529896000000 H -1.367891000000 5.673731000000 -2.295915000000 H -2.276551000000 4.151224000000 -2.546294000000 H -0.786624000000 4.466868000000 -3.489195000000 O -1.668463000000 0.797720000000 0.341569000000 Mg -1.693798000000 2.901617000000 0.079501000000 O -0.488304000000 3.822359000000 1.522441000000 C 0.303509000000 3.014403000000 2.082103000000 C 0.801052000000 1.908266000000 1.316283000000 C 0.585996000000 3.067867000000 3.559525000000 C 0.710068000000 0.668998000000 1.962108000000 C 0.270372000000 1.700128000000 4.242937000000 H -0.005426000000 3.868368000000 4.010761000000 H 1.649429000000 3.303182000000 3.698255000000 C 0.969092000000 0.558995000000 3.444961000000 H 2.053252000000 0.614634000000 3.609724000000 H 0.631413000000 -0.421398000000 3.792041000000 C -1.252483000000 1.462820000000 4.260930000000 H -1.763414000000 2.268581000000 4.796529000000 H -1.485542000000 0.521937000000 4.770254000000 H -1.680109000000 1.409490000000 3.254335000000 C 0.803791000000 1.717495000000 5.683293000000 H 0.322013000000 2.509924000000 6.264964000000 H 1.884926000000 1.889391000000 5.709914000000 H 0.600033000000 0.765996000000 6.185459000000 O 0.33439000000 -0.386208000000 1.317472000000 C 0.341421000000 0.941258000000 -0.864327000000 H 0.504394000000 0.788338000000 -1.925094000000 C -5.557928000000 3.161155000000 -0.479547000000

H -5.83244300000 3.28182900000 -1.528797000000 H -5.98071300000 3.96351800000 0.125947000000 H -5.97505500000 2.21249600000 -0.122944000000 C -4.05973000000 3.11492800000 -0.322577000000 O -3.32454200000 2.62917000000 -1.253094000000 O -3.51414000000 3.52796900000 0.750308000000

E(RB3LYP/6-31G(d,p)) = -10227.5666918 A.U.

Temp. 298.150 K 1.00000 Atm.

E + zero-point Energies	= -10226.872474
E + thermal Energies	= -10226.822091
E + thermal Enthalpies	= -10226.821147
E + thermal Free Energies	= -10226.961491

Geometry at E(RB3LYP/6-31G(d,p))

Charge: 1 Multiplicity: 1

C -2.401111000000 -2.855674000000 -1.412416000000 C -1.199159000000 -1.241112000000 -0.552990000000 N -1.231419000000 -3.396603000000 -1.210502000000 N -2.422838000000 -1.532768000000 -1.027278000000 C -3.667094000000 -0.722593000000 -1.148248000000 H -3.352499000000 0.318194000000 -1.221810000000 C -3.604577000000 -3.396173000000 -2.112394000000 H -4.396213000000 -3.659152000000 -1.397706000000 H -3.33820900000 -4.282739000000 -2.689137000000 C -4.483768000000 -1.177157000000 -2.425887000000 H -4.369098000000 -0.435033000000 -3.217040000000 O -4.006344000000 -2.384339000000 -3.025372000000 C -5.955567000000 -1.287433000000 -1.948511000000 H -6.534437000000 -0.432952000000 -2.318743000000 H -6.420179000000 -2.184397000000 -2.371355000000 C -4.609452000000 -0.957850000000 0.014946000000 C -5.890212000000 -1.283770000000 -0.440723000000 C -4.329381000000 -0.844913000000 1.377427000000 C -6.916134000000 -1.520254000000 0.475528000000 C -5.356961000000 -1.088990000000 2.289048000000 H -3.337334000000 -0.563003000000 1.714694000000 C -6.639443000000 -1.427158000000 1.840404000000 H -7.915232000000 -1.774875000000 0.134112000000 H -5.163287000000 -1.010617000000 3.354198000000 H -7.42861000000 -1.614344000000 2.562054000000 N -0.489881000000 -2.377521000000 -0.664589000000 C 0.899979000000 -2.581223000000 -0.399114000000 C 1.83736900000 -2.349419000000 -1.414143000000 C 1.340705000000 -3.026108000000 0.853467000000 C 3.20100000000 -2.468819000000 -1.167401000000 C 2.701961000000 - 3.154783000000 1.115358000000 C 3.61720400000 -2.848872000000 0.108055000000 H 3.920003000000 -2.265231000000 -1.949901000000 H 3.040738000000 - 3.483449000000 2.089178000000 Br 1.250936000000 -1.868066000000 -3.152536000000 Br 0.094142000000 -3.455403000000 2.208606000000 Br 5.474128000000 -2.942703000000 0.481227000000 C 1.926846000000 2.722439000000 -0.793084000000 C 1.388942000000 3.803054000000 -1.476309000000 C 2.224406000000 4.781047000000 -2.065651000000 C 3.591502000000 4.647168000000 -1.987883000000 H 1.799981000000 5.639062000000 -2.569973000000 H 4.228478000000 5.401226000000 -2.440821000000 C 1.020761000000 1.743028000000 -0.131452000000 C -0.734483000000 0.117272000000 -0.026595000000 C 3.345853000000 2.563139000000 -0.723040000000 C 4.192429000000 3.541069000000 -1.337373000000 C 5.602177000000 3.367452000000 -1.291973000000 C 6.158448000000 2.263958000000 -0.687696000000 C 5.322757000000 1.285466000000 -0.096661000000 H 5.759124000000 0.396769000000 0.350393000000 C 3.954362000000 1.435047000000 -0.106115000000 H 7.236008000000 2.136506000000 -0.667781000000 H 6.234367000000 4.119481000000 -1.755606000000 H 3.325902000000 0.674658000000 0.344001000000 O -0.001145000000 3.893283000000 -1.549821000000 C -0.564033000000 4.812934000000 -2.517471000000 H -1.624797000000 4.574008000000 -2.558090000000 H -0.103643000000 4.651572000000 -3.494946000000 H -0.415214000000 5.845810000000 -2.191742000000 O -1.720442000000 0.949347000000 0.198852000000

Mg -1.418439000000 2.984100000000 -0.091375000000 O -0.132422000000 3.884415000000 1.390056000000 C 0.509801000000 3.017726000000 2.026222000000 C 0.848288000000 1.791823000000 1.331321000000 C 0.732235000000 3.087298000000 3.510454000000 C 0.452596000000 0.657299000000 2.009352000000 C 0.065621000000 1.858359000000 4.215093000000 H 0.316949000000 4.020583000000 3.897939000000 H 1.811922000000 3.073271000000 3.705986000000 C 0.530387000000 0.548144000000 3.506763000000 H 1.574105000000 0.341741000000 3.779560000000 H -0.067503000000 -0.303742000000 3.841444000000 C -1.468404000000 1.975104000000 4.129263000000 H -1.812205000000 2.907338000000 4.587037000000 H -1.942347000000 1.145386000000 4.663769000000 H -1.833810000000 1.957582000000 3.097832000000 C 0.499474000000 1.824981000000 5.687929000000 H 0.171013000000 2.730007000000 6.208407000000 H 1.587845000000 1.753997000000 5.786412000000 H 0.055914000000 0.966582000000 6.203197000000 O -0.078855000000 -0.353671000000 1.339685000000 C 0.385079000000 0.764065000000 -0.805673000000 H 0.546755000000 0.548679000000 -1.855373000000 C -5.107707000000 4.068545000000 -0.761904000000 H -5.744956000000 3.408631000000 -0.164422000000 H -5.383169000000 3.987757000000 -1.813352000000 H -5.276052000000 5.086348000000 -0.401566000000 C -3.66589000000 3.68643000000 -0.544134000000 O -3.122613000000 3.880971000000 0.591118000000 O -2.979817000000 3.154508000000 -1.485508000000

Product

E(RB3LYP/6-31G(d,p)) = -10227.5949318

Temp. 298.150 K 1.00000 Atm.

E + zero-point Energies	= -10226.902489
E + thermal Energies	= -10226.850673
E + thermal Enthalpies	= -10226.849729
E + thermal Free Energies	= -10226.998484

Geometry at E(RB3LYP/6-31G(d,p))

Charge: 1 Multiplicity: 1 C 4.356953000000 -1.345292000000 -1.151864000000 C 2.860317000000 -0.524410000000 0.288695000000 N 3.42570600000 -2.254198000000 -1.123751000000 N 4.050465000000 -0.292383000000 -0.317129000000 C 4.928001000000 0.883254000000 -0.236664000000 H 4.712564000000 1.377617000000 0.715024000000 C 5.704061000000 -1.339657000000 -1.798578000000 H 5.71122000000 -0.705846000000 -2.696146000000 H 5.997697000000 -2.351457000000 -2.080906000000 C 6.442634000000 0.445528000000 -0.327997000000 H 6.89165000000 0.423405000000 0.666546000000 O 6.624647000000 -0.889340000000 -0.809353000000 C 7.114272000000 1.507229000000 -1.236971000000 H 7.669167000000 2.228968000000 -0.624828000000 H 7.84380000000 1.028022000000 -1.897421000000 C 4.742898000000 1.831866000000 -1.407168000000 C 5.975866000000 2.180400000000 -1.965416000000 C 3.550301000000 2.353994000000 -1.905934000000 C 6.028380000000 3.065842000000 -3.042818000000 C 3.605164000000 3.234825000000 -2.986903000000 H 2.595299000000 2.076779000000 -1.467809000000 C 4.837028000000 3.587384000000 -3.550387000000 H 6.980541000000 3.342736000000 -3.485931000000 H 2.688526000000 3.648919000000 -3.395376000000 H 4.866013000000 4.272142000000 -4.392336000000 N 2.502526000000 -1.716397000000 -0.239912000000 C 1.330712000000 -2.462067000000 0.068085000000 C 1.075104000000 -2.920827000000 1.368401000000 C 0.389891000000 -2.760473000000 -0.929347000000 C -0.03672000000 -3.700877000000 1.664266000000 C -0.724538000000 -3.550264000000 -0.660071000000 C -0.918618000000 -4.026503000000 0.635118000000 H -0.214753000000 -4.044034000000 2.674939000000 H -1.443052000000 -3.765493000000 -1.439694000000 Br 2.202149000000 -2.400706000000 2.820707000000 Br 0.57296900000 -2.017981000000 -2.6666064000000 Br -2.434326000000 -5.097831000000 1.017919000000

C -4.40870500000 0.501311000000 -0.309287000000 C -5.601307000000 0.837095000000 0.334192000000 C -6.807701000000 0.173938000000 0.013682000000 C -6.812547000000 -0.810289000000 -0.945561000000 H -7.726992000000 0.435735000000 0.521459000000 H -7.741998000000 -1.316248000000 -1.190461000000 C -3.161801000000 1.178647000000 0.117351000000 C -0.959665000000 0.979442000000 1.145928000000 C -4.39668600000 -0.52992000000 -1.305266000000 C -5.631194000000 -1.187222000000 -1.629381000000 C -5.654026000000 -2.191960000000 -2.632847000000 C -4.511128000000 -2.543103000000 -3.311217000000 C -3.294781000000 -1.889052000000 -3.007302000000 H -2.389494000000 -2.152181000000 -3.545885000000 C -3.235923000000 -0.912152000000 -2.036652000000 H -4.539887000000 -3.307709000000 -4.080741000000 H -6.600926000000 -2.673901000000 -2.859634000000 H -2.285586000000 -0.427472000000 -1.841962000000 O -5.511754000000 1.790921000000 1.299156000000 C -6.709182000000 2.282933000000 1.901018000000 H -6.393576000000 3.072512000000 2.583301000000 H -7.220231000000 1.500508000000 2.472655000000 H -7.388999000000 2.699413000000 1.150480000000 O -0.000182000000 0.366102000000 1.661085000000 Mg 1.934473000000 0.468925000000 2.024313000000 O -4.897086000000 3.171135000000 -1.241208000000 C -3.862758000000 3.549048000000 -0.727273000000 C -2.934445000000 2.605233000000 -0.007407000000 C -3.408537000000 4.997406000000 -0.857416000000 C -1.771723000000 3.126904000000 0.497013000000 C -2.569698000000 5.525538000000 0.322729000000 H -4.305791000000 5.600836000000 -1.019781000000 H -2.817808000000 5.060806000000 -1.783881000000 C -1.369557000000 4.567541000000 0.496903000000 H -0.648345000000 4.717630000000 -0.320489000000 H -0.821783000000 4.772611000000 1.423745000000 C -3.41790900000 5.570139000000 1.609797000000 H -4.27606900000 6.235637000000 1.474581000000 H -2.829718000000 5.952510000000 2.450273000000 H -3.802882000000 4.584149000000 1.889520000000 C -2.048319000000 6.936555000000 0.006654000000 H -2.880884000000 7.634231000000 -0.125434000000 H -1.451385000000 6.948322000000 -0.911697000000 H -1.422943000000 7.316085000000 0.821694000000

O -0.82199000000 2.33688800000 1.05835900000 C -2.15926900000 0.40865000000 0.67681000000 H -2.27515200000 -0.660297000000 0.798628000000 C 3.82704400000 2.81553600000 4.452991000000 H 4.42745800000 3.55102600000 3.917808000000 H 4.44518900000 2.228186000000 5.134887000000 H 3.08240000000 3.341577000000 5.060024000000 C 3.107841000000 1.906835000000 3.493898000000 O 2.96426000000 2.232922000000 2.263455000000 O 2.61161900000 0.802888000000 3.905528000000

Time (min)	% second eluted enantiomer (%t)	ln ((%t-50)/(%0-50))
0	95.50	0
20	95.01	-0.01083
40	93.72	-0.03991
60	92.53	-0.0675
80	91.12	-0.10122
120	88.33	-0.17148
240	81.56	-0.36582
360	76.23	-0.55081
600	68.58	-0.89563
840	62.94	-1.25739
1320	55.78	-2.06331

Supplementary Table 9. Data of enantiomerisation barrier determation^a

^{*a*} Conditions: About 3 mg of enantio-enriched (**3gh**) were refluxed in 15 mL of toluene at 85 °C. Samples of 7 μ L of this solution were injected on Chiralpak IC (heptane / *i*PrOH = 80/20, 1 mL/min, UV detection at 254 nm) to monitor the percentage decrease of the second eluted enantiomer over time.

Supplementary Table 10. Statistical results.

k racemization =	2.59688E-05 s ⁻¹
k enantiomerisation =	1.29844E-05 s ⁻¹
ΔG^{\neq} enantiomerisation =	119.71 KJ.mol ⁻¹
	$28.6 \text{ kcal.mol}^{-1}$
half-life time ^{<i>a</i>} $t_{1/2} =$	26692 s
	444.87 min
	7.41 h
	0.309 d

^{*a*} T = 85 °C, $t_{1/2}$ = 7.41 h, T = 25 °C, $t_{1/2}$ = 1.67 year.

Supplementary Figure 175. Kinetic line based on the data in Supplementary Table 9.

Supplementary Methods

General Information

Chemicals and solvents were purchased from commercial suppliers and used as received. ¹H and ¹³C NMR spectra were recorded on a Bruker ACF400 (400 MHz) spectrometer. Chemical shifts were reported in parts per million (ppm), and the residual solvent peak was used as an internal reference: proton (chloroform δ 7.26), carbon (chloroform δ 77.0) or tetramethylsilane (TMS δ 0.00) was used as a reference. Multiplicity was indicated as follows: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), dd (doublet of doublet), bs (broad singlet). Coupling constants were reported in Hertz (Hz). All high resolution mass spectra were obtained on a Finnigan/MAT 95XL-T spectrometer. For thin layer chromatography (TLC), Merck pre-coated TLC plates (Merck 60 F254) were used, and compounds were visualized with a UV light at 254 nm. Flash chromatography separations were performed on Merck 60 (0.040-0.063 mm) mesh silica gel. The enantiomeric excesses of products were determined by chiral phase HPLC analysis. Optical rotations were recorded on Jasco DIP-1000 polarimeter.

General procedure for the synthesis of 1e-g.

To a solution of **S2** (40.0 mmol) in THF (60 mL) was added NaH (1.6 g, 40 mmol, 60%) at 0 °C. The reaction mixture was stirred for 30 min. **S1** (20.0 mmol) in THF (20 mL) was added. The reaction mixture was warmed to 70 °C and stirred for 48 h. The reaction was then quenched by addition of NH₄Cl. The reaction mixture was extracted with Et₂O (3 x 80 mL) and washed with brine, dried over sodium sulfate. The solvent was evaporated, and the residue was purified by column chromatography to afford the **S3**.

To the above product **S3** (20.0 mmol), N-methoxymethanamine (40.0 mmol) in THF (60 mL) was added ⁱPrMgBr (40.0 mL, 2.0 M in THF) at -20 $^{\circ}$ C under N₂, the mixture was warmed to RT and stirred for 2 h. The reaction was then quenched by addition of NH₄Cl. The reaction mixture was extracted with EtOAc (3 x 80 mL) and washed with brine, dried over sodium sulfate. The solvent was removed under reduced pressure, and the residue was used directly for the next step.

To the above product S4 (20.0 mmol) in THF (40 mL) was added MeMgBr (20.0 mL, 2.0 M in THF) at -20 °C under N₂, the mixture was warmed to 0 °C and stirred for 2 h. The reaction was then quenched by addition of NH₄Cl, the reaction mixture was extracted with EtOAc (3 x 80 mL) and washed with brine, dried over sodium sulfate. The solvent was evaporated, and the residue was purified by column chromatography to afford the S5.

Sodium metal (460 mg, 20.0 mmol) was added to ethanol (30 mL) at rt under argon. After the sodium dissolved completely, diethyl malonate **S6** (3.20 g, 20.0 mmol) was added to the sodium ethoxide solution followed by addition of **S5** (10.0 mmol) at rt. The solution was warmed to reflux. After 24 h reflux, the solution was cooled to rt and a solution of potassium hydroxide (5.6 g, 100 mmol) in H₂O (20 mL) was added. The resulting solution was warmed to reflux for 48 h. The solution was cooled to 0 \degree and acidified with 6 N HCl to pH 3. The EtOH was evaporated, and the residue was extracted with EtOAc (3 x 100 mL) and washed with brine, dried over sodium sulfate. The solvent was evaporated, and the residue was purified by column chromatography to afford the **1e-g**.

1b-d were prepared according to references [1] and [2].

General procedure for the synthesis of 2.

2a, 2b, 2c, 2e, 2f, 2g, 2h, 2i, 2j, 2k, 2l, 2m, 2n, 2o, 2p, 2q, 2r, 2t, and 2u were synthesized by method A.

Method A:

To a solution of **S7** (10.0 mmol) in 1,4-dioxane (40 mL) was added 2 M aqueous Na_2CO_3 (10 mL, 20 mmol), boric acid (15.0 mmol) and $PdCl_2(dppf)$ (183 mg, 0.25 mmol). The flask was flushed with nitrogen gas. The solution was warmed to reflux for 4 h. The reaction mixture was cooled to RT. The 1,4-dioxane was evaporated, and the residue was extracted with EtOAc (3 x 30 mL) and washed with brine, dried over sodium sulfate. The solvent was evaporated, and the residue was purified by column

chromatography to afford S8.

To MeOH (50 mL) being stirred at 0 $^{\circ}$ C in a round-bottom flask was added sulfuric acid (95.8%, 0.56 mL, 15.0 mmol), **S7** (10.0 mmol), KI (1.67 g, 10.0 mmol), and H₂O₂ (31.6%, 2.0 mL, 21.0 mmol). The dark mixture was kept stirring at 0 $^{\circ}$ C for 9 h at which time the substrate appeared consumed (TLC). The mixture was quenched by adding excess saturated aqueous Na₂SO₃. The MeOH was evaporated, and the residue was extracted with EtOAc (3 x 30 mL) and washed with brine, dried over sodium sulfate. The solvent was evaporated to yield the product **S9** which was used directly for the next step.

A mixture of bromo-2-naphthol **S7** (10.0 mmol) and CuCN (1.34 g, 15.0 mmol) in DMF (20 mL) was vigorously stirred at 150 $^{\circ}$ C for 4.5 h. After cooling to room temperature, the mixture was added 10% NaOH (30 mL) and stirred for 5 min. The reaction was filtered and the filtrate was washed with water (15 mL). Then, 3 N HCl was used to adjust pH to 2-3. The precipitate was collected by filtration to give **S10** as a brown solid which was used directly for the next step.

To a solution of **S10** (5.0 mmol) in THF: H_2O (50 mL, 1:4) was added Na_2CO_3 (1.06 g, 10.0 mmol), and I_2 (1.27 g, 5.0 mmol) at 0 °C. The reaction was vigorously stirred at RT for 4 h. at which time TLC indicated complete conumption of the naphthol. The mixture was quenched by adding excess saturated aqueous Na_2SO_3 . The mixture was extracted with EtOAc (3 x 30 mL) and washed with brine, dried over sodium sulfate. The solvent was evaporated to yield the product **S11** which was used directly for the next step.

To a solution of **S11** or **S9** (5.0 mmol) in acetone (20 mL) was added K_2CO_3 (1.38 g, 10.0 mmol), dimethyl sulfate (1.0 mL, 10.0 mmol). The solution was warmed to reflux for 4 h at which time TLC indicated complete consumption of the naphthol. The reaction mixture was cooled to RT. Et₃N (5.0 mL) was added, and the reaction was stirred for 1 h. The reaction mixture was filtered through a pad of Celite, the solid was washed with DCM and the solvent was evaporated to yield a yellow solid. The solid was washed with PE for three times to give the product **S12** which was used directly for the next step.

To a solution of **S12** (5.00 mmol) and propargyl alcohol (1.4 g, 25.0 mmol) in triethylamine (20 mL) was added $PdCl_2(PPh_3)_2$ (142 mg, 0.202 mmol) and CuI (76 mg, 0.40 mmol). The flask was flushed with nitrogen gas. The resulting mixture was stirred at room temperature for 40 h. The reaction mixture was filtered and washed with EtOAc. The combined filtrate was concentrated and the residue was purified by a silica gel column chromatography to give **S13**.

To a solution of **S13** (4.0 mmol) in DCM (50 mL) was added NaHCO₃ (1.06 g, 10.0 mmol), and Dess-Martin oxidant (2.12 g, 5.0 mmol) at 0 $^{\circ}$ C. The reaction was stirred at RT for 2 h. at which time TLC indicated complete conumption of the **S14**. The mixture was quenched by adding excess saturated aqueous Na₂SO₃. The mixture was vigorously stirred at RT for 1 h. The mixture was extracted with EtOAc (3 x 30 mL) and washed with brine, dried over sodium sulfate. The solvent was concentrated and the residue was purified by a silica gel column chromatography to give **2**.

Method B

2d and 2s were synthesized by method B.

Method B:

To a solution of **S14** (10.0 mmol) in DCM (50 mL) was added PPh₃ (13.1 g, 50.0 mmol), CBr₄ (8.3 g, 25.0 mmol) was added slowly at 0 °C. The solution was stirred for 30 mins. Half of the solvent was evaporated, PE: EtOAc (50 mL, 1:1) was added to the mixture. The mixture was filtered through a pad of silica gel, the solid was washed with PE: EtOAc (50 mL, 1:1) for three times and the solvent was evaporated and the residue was purified by a silica gel column chromatography to give **S15**.

To the above product **S15** (8.0 mmol), in THF (30 mL) was added BuLi (7.0 mL, 2.5 M) at -78 °C under N₂, the mixture was warmed to -30 °C and stirred for 1 h. Then DMF (1.19 g, 16.0 mmol) was added to the reaction mixture. The reaction was warmed to RT and stirred for another 2 hours and then quenched by addition of NH₄Cl. The reaction mixture was extracted with EtOAc (3 x 30 mL) and washed with brine, dried over sodium sulfate. The solvent was concentrated and the residue was purified by a silica gel column chromatography to give **2**.

Characterization data of 1 and 2.

1e: White solid: ¹**H NMR** (400MHz, CDCl₃) δ 3.35 (s, 2H), 2.41 (s, 4H), 0.67 – 0.60 (m, 2H), 0.42 – 0.32 (m, 8H); ¹³**C NMR** (101MHz, CDCl₃) δ 204.3, 57.4, 48.9, 40.8, 35.0, 18.8, 0.4; **HRMS** (ESI): *m*/*z*: calculated for C₁₂H₁₇O₂⁺: [M + H]⁺ 193.1223, found: 193.1229.

1f: White solid: ¹**H NMR** (400MHz, CDCl₃) δ 3.33 (s, 2H), 2.53 (s, 4H), 1.38 -1.22 (m, 16H), 0.88 (t, *J* = 6.9 Hz, 6H); ¹³**C NMR** (101MHz, CDCl₃) δ 204.2, 57.6, 50.9, 43.1, 37.5, 32.1, 22.7, 22.4, 13.9; **HRMS** (ESI): *m/z*: calculated for C₁₆H₂₉O₂⁺: [M + H]⁺ 253.2162, found: 253.2170.

1g: White solid: ¹**H NMR** (400MHz, CDCl₃) δ 3.33 (s, 2H), 2.52 (s, 4H), 1.21 (s, 4H), 1.09 (s, 6H), 0.86 (s, 12H); ¹³**C NMR** (101MHz, CDCl₃) δ 204.0, 57.6, 50.9, 35.9, 35.0, 31.9, 28.3, 22.5; **HRMS** (ESI): *m*/*z*: calculated for C₁₆H₂₉O₂⁺: [M + H]⁺ 253.2162, found: 253.2171.

2a: Yellow solid; ¹**H NMR** (400 MHz, CDCl₃) δ 9.59 (s, 1H), 8.22 (d, *J* = 8.5 Hz, 1H), 7.96 (d, *J* = 9.2 Hz, 1H), 7.79 (d, *J* = 8.1 Hz, 1H), 7.62 – 7.57 (m, 1H), 7.44 – 7.40 (m, 1H), 7.24 (d, *J* = 9.6 Hz, 1H), 4.05 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 176.7, 162.2, 134.9, 134.1, 128.6, 128.5, 128.2, 124.8, 124.7, 112.1, 102.1, 98.5, 91.3, 56.5; **HRMS** (ESI): *m/z*: calculated for C₁₄H₁₀NaO₂⁺: [M + Na]⁺ 233.0573, found: 233.0579.

2b: Yellow solid; ¹**H NMR** (400 MHz, CDCl₃) δ 9.59 (s, 1H), 8.21 (d, *J* = 8.5 Hz, 1H), 7.91 (d, *J* = 9.0 Hz, 1H), 7.77 (d, *J* = 8.1 Hz, 1H), 7.58 (t, *J* = 7.4 Hz, 1H), 7.40 (t, *J* = 7.4 Hz, 1H), 7.23 (d, *J* = 9.1 Hz, 1H), 4.28 (q, *J* = 7.0 Hz, 1H), 1.51 (t, *J* = 7.0 Hz, 1H); ¹³**C NMR** (100 MHz, CDCl₃) δ 176.7, 161.7, 134.9, 133.8, 128.4, 128.3,

128.1, 124.7, 113.3, 102.5, 98.4, 91.5, 65.2, 14.9; **HRMS** (ESI): m/z: calculated for $C_{15}H_{12}NaO_2^+$: $[M + Na]^+ 247.0730$, found: 247.0736.

2c: Yellow solid; ¹**H** NMR (400 MHz, CDCl₃) δ ¹**H** NMR (400MHz, CDCl₃) δ 9.56 (s, 1H), 8.22 (d, J = 8.4 Hz, 1H), 7.86 (d, J = 9.1 Hz, 1H), 7.75 (d, J = 8.2 Hz, 1H), 7.59 – 7.55 (m, 1H), 7.48 (d, J = 7.3 Hz, 2H), 7.42 – 7.36 (m, 3H), 7.33 – 7.29 (m, 1H), 7.23 – 7.20 (m, 1H), 5.33 (s, 2H); ¹³C NMR (101MHz, CDCl₃) δ 176.7, 161.4, 136.3, 134.9, 133.9, 128.7, 128.5, 128.5, 128.4, 127.0, 125.0, 124.8, 114.0, 103.3, 98.5, 91.2, 71.2; **HRMS** (ESI): m/z: calculated for C₂₀H₁₄NaO₂⁺: [M + Na]⁺ 309.0886, found: 309.0892.

2d: White solid; ¹**H NMR** (400MHz, CDCl₃) δ 9.64 (s, 1H), 8.30 (d, J = 8.4 Hz, 1H), 7.97 (s, 1H), 7.88 (d J = 8.1 Hz, 1H), 7.68 – 7.63 (m, 3H), 7.56 – 7.43 (m, 4H), 3.78 (s, 3H); ¹³**C NMR** (101MHz, CDCl₃) δ 176.4, 161.4, 137.1, 134.7, 134.3, 134.0, 130.1, 129.1, 128.4, 128.4, 128.1, 127.8, 126.2, 124.9, 108.8, 97.4, 90.4, 61.9; **HRMS** (ESI): m/z: calculated for C₂₀H₁₄NaO₂⁺: [M + Na]⁺ 309.0886, found: 309.0880.

2e: Yellow solid; ¹**H** NMR (400MHz, CDCl₃) δ 9.55 (s, 1H), 8.16 (s, 2H), 7.60 (s, 1H), 7.39 (d, *J* = 6.8 Hz, 1H), 6.53 (s, 1H), 4.05 (s, 6H); ¹³C NMR (101MHz, CDCl₃) δ 176.5, 164.2, 160.8, 135.4, 129.2, 124.5, 124.1, 122.6, 120.9, 98.9, 94.3, 93.3, 91.9, 56.5, 55.9; **HRMS** (ESI): *m/z*: calculated for C₁₅H₁₂NaO₃⁺: [M + Na]⁺ 263.0679, found: 263.0672.

2f: White solid; ¹**H NMR** (400MHz, CDCl₃) δ 9.60 (s, 1H), 8.31 (d, *J* = 8.4 Hz, 1H), 7.80 (d, *J* = 8.4 Hz, 1H), 7.62 – 7.58 (m, 1H), 7.54 – 7.47 (m, 5H), 7.37 – 7.33 (m, 1H), 7.19 (s, 1H), 4.04 (s, 3H); ¹³**C NMR** (101MHz, CDCl₃) δ 176.6, 161.4, 146.8, 139.6, 135.4, 129.6, 128.5, 128.4, 128.2, 126.9, 125.1, 124.8, 113.3, 101.5, 98.8, 91.4, 56.5; **HRMS** (ESI): *m/z*: calculated for C₂₀H₁₄NaO₂⁺: [M + Na]⁺ 309.0886, found: 309.0882.

2g: Yellow solid; ¹H NMR (400MHz, DMSO-d⁶) δ 9.60 (s, 1H), 8.18 (s, 2H), 8.04 (s,

1H), 7.78 (s, 1H), 7.69 (d, J = 5.6 Hz, 1H), 4.06 (s, 3H); ¹³C NMR (101MHz, DMSO-D₆) δ 179.0, 160.5, 134.0, 130.5, 127.9, 126.9, 125.5, 125.3, 120.3, 117.1, 113.8, 106.8, 99.8, 87.2, 57.8; **HRMS** (ESI): m/z: calculated for C₁₅H₉NNaO₂⁺: [M + Na]⁺ 258.0525, found: 258.0530.

2h: Yellow solid; ¹**H** NMR (400MHz, DMSO-D₆) δ 9.59 (s, 1H), 8.42 (s, 1H), 8.28 (s, 1H), 8.11 (s, 1H), 7.81 (s, 2H), 4.08 (s, 3H); ¹³C NMR (101MHz, DMSO-D₆) δ 178.9, 163.1, 134.3, 132.3, 130.8, 129.9, 128.7, 126.7, 117.7, 116.6, 110.2, 102.3, 99.0, 88.4, 57.4; **HRMS** (ESI): *m*/*z*: calculated for C₁₅H₉NNaO₂⁺: [M + Na]⁺ 258.0525, found: 258.0518.

2i: Yellow solid; ¹H NMR (400MHz, CDCl₃) δ 9.61 (s, 1H), 8.27 (d, J = 8.5 Hz, 1H), 8.03 (d, J = 9.4 Hz, 1H), 7.65 – 7.61 (m, 1H), 7.51 – 7.43 (m, 5H), 7.35 (d, J = 7.1 Hz, 1H), 7.15 (d, J = 2.5 Hz, 1H), 4.03 (s, 3H); ¹³C NMR (101MHz, CDCl₃) δ 176.7, 162.0, 141.1, 140.1, 135.4, 132.5, 130.0, 128.4, 128.2, 127.6, 126.6, 125.9, 124.3, 102.3, 98.6, 91.4, 56.5; HRMS (ESI): m/z: calculated for C₂₀H₁₄NaO₂⁺: [M + Na]⁺ 309.0886, found: 309.0880.

2j: Yellow solid; ¹**H** NMR (400MHz, CDCl₃) δ 9.63 (s, 1H), 8.30 – 8.27 (m, 1H), 8.01 – 7.98 (m, 2H), 7.88 – 7.85 (m, 1H), 7.71 (d, *J* = 8.2 Hz, 2H), 7.51 (t, *J* = 8.0 Hz, 2H), 7.28 – 7.25 (m, 1H), 4.07 (s, 3H); ¹³C NMR (101MHz, CDCl₃) δ 176.6, 162.1, 140.3, 137.5, 134.2, 134.0, 128.9, 128.4, 128.1, 127.5, 127.1, 126.1, 125.2, 112.4, 102.0, 98.4, 91.0, 56.5; **HRMS** (ESI): *m*/*z*: calculated for C₂₀H₁₄NaO₂⁺: [M + Na]⁺ 309.0886, found: 309.0892.

2k: Yellow solid; ¹**H NMR** (400MHz, CDCl₃) δ 9.61 (s, 1H), 8.14 (d, *J* = 8.6 Hz, 1H), 7.90 – 7.87 (m, 1H), 7.57 (s, 1H), 7.46 (dd, *J* = 8.6, 1.8 Hz, 1H), 7.22 – 7.19 (m, 1H), 4.04 (dd, *J* = 4.9, 3.6 Hz, 3H), 2.80 (dd, *J* = 15.2, 7.6 Hz, 2H), 1.35 – 1.31 (m, 3H); ¹³**C NMR** (101MHz, CDCl₃) δ 176.6, 161.6, 140.6, 133.5, 133.2, 129.7, 128.4, 126.0, 124.5, 111.9, 101.8, 98.3, 91.5, 56.4, 28.5, 15.3; **HRMS** (ESI): *m/z*: calculated for C₁₆H₁₄NaO₂⁺: [M + Na]⁺ 261.0886, found: 261.0881.

21: White solid; ¹**H NMR** (400MHz, DMSO-D₆) δ 9.59 (s, 1H), 8.63 (d, *J* = 1.4 Hz, 1H), 8.33 (d, *J* = 9.3 Hz, 1H), 8.23 (d, *J* = 8.7 Hz, 1H), 7.95 (dd, *J* = 8.7, 1.7 Hz, 1H),

7.74 (d, J = 9.3 Hz, 1H), 4.10 (s, 3H); ¹³C NMR (101MHz, DMSO-D₆) 178.9, 164.5, 136.3, 135.6, 135.5, 129.6, 127.3, 125.6, 119.4, 115.5, 107.5, 101.4, 98.7, 88.7, 57.5; **HRMS** (ESI): m/z: calculated for C₁₅H₉NNaO₂⁺: [M + Na]⁺ 258.0525, found: 258.0531.

2m: Yellow solid; ¹H NMR (400MHz, CDCl₃) δ 9.60 (s, 1H), 8.23 (d, J = 8.7 Hz, 1H), 7.97 (d, J = 9.2 Hz, 1H), 7.91 (d, J = 1.6 Hz, 1H), 7.76 (dd, J = 8.7, 1.8 Hz, 1H), 7.64 (t, J = 1.8 Hz, 1H), 7.54 – 7.51 (m, 1H), 7.40 – 7.32 (m, 2H), 7.26 – 7.24 (m, 1H), 4.05 (s, 3H); ¹³C NMR (101MHz, CDCl₃) δ 176.6, 162.3, 142.1, 136.0, 134.8, 134.3, 134.2, 130.1, 128.3, 127.7, 127.4, 127.2, 126.3, 125.4, 112.6, 102.1, 98.4, 90.8, 56.5; HRMS (ESI): m/z: calculated for C₂₀H₁₃ClNaO₂⁺: [M + Na]⁺ 343.0496, found: 343.0490.

2n: Yellow solid; ¹H NMR (400MHz, DMSO-D₆) δ 9.60 (s, 1H), 8.26 – 8.16 (m, 3H), 7.98 (d, J = 7.6 Hz, 1H), 7.84 (d, J = 7.2 Hz, 2H), 7.58 (d, J = 7.6 Hz, 1H), 7.35 (d, J = 7.4 Hz, 2H), 4.06 (s, 3H); ¹³C NMR (101MHz, DMSO-D₆) δ 178.9, 162.7, 136.3, 135.7, 135.3, 133.7, 129.9 (d, J = 8.2 Hz), 128.6, 128.2, 126.6, 128.2, 126.6, 125.0, 116.3 (d, J = 2.1 Hz), 114.2, 100.8, 98.7, 90.3, 57.1; ¹⁹F NMR (376 MHz, DMSO-D₆)

δ -115.2; **HRMS** (ESI): m/z: calculated for C₂₀H₁₃FNaO₂⁺: [M + Na]⁺ 327.0792, found: 327.0799.

20: Yellow solid; ¹**H NMR** (400MHz, CDCl₃) δ 9.60 (s, 1H), 8.32 (d, *J* = 7.9 Hz, 1H), 7.98 – 7.88 (m, 5H), 7.74 (d, *J* = 7.7 Hz, 1H), 7.53 – 7.41 (m, 4H), 7.26 (d, *J* = 8.6 Hz, 1H), 4.06 (s, 3H); ¹³**C NMR** (101MHz, CDCl₃) δ 176.7, 162.3, 139.4, 137.4, 134.2, 134.1, 133.9, 131.7, 131.2, 129.2, 128.4, 128.3, 128.0, 127.3, 126.3, 126.0, 125.8, 125.5, 124.6, 112.5, 102.2, 98.5, 91.1, 56.6; **HRMS** (ESI): *m/z*: calculated for C₂₄H₁₆NaO₂⁺: [M + Na]⁺ 359.1043, found: 359.1049.

2p: White solid; ¹**H NMR** (400MHz, CDCl₃) δ 9.59 (s, 1H), 8.36 (s, 1H), 7.92 (d, J = 9.1 Hz, 1H), 7.81 (d, J = 8.4 Hz, 1H), 7.30 (d, J = 8.4 Hz, 2H), 7.64 (dd, J = 8.4, 1.6 Hz, 1H), 2.49 (t, J = 7.3 Hz, 2H), 7.39 (t, J = 7.3 Hz, 1H), 7.19 (d, J = 9.1 Hz, 1H), 4.02 (s, 3H); ¹³C NMR (101MHz, CDCl₃) δ 176.6, 162.6, 141.3, 140.7, 135.2, 133.8, 129.0, 127.9, 127.6, 127.4, 124.6, 122.5, 112.0, 102.3, 98.8, 91.2, 56.6; **HRMS** (ESI): m/z: calculated for C₂₀H₁₄NaO₂⁺: [M + Na]⁺ 309.0886, found: 309.0881.

2q: White solid; ¹**H** NMR (400MHz, DMSO-D₆) δ 9.60 (s, 1H), 8.49 (s, 1H), 8.26 (d, J = 6.1 Hz, 1H), 8.12 (d, J = 4.2 Hz, 1H), 7.72 (d, J = 6.5 Hz, 2H), 4.06 (s, 3H); ¹³C NMR (101MHz, DMSO-D₆) δ 179.1, 163.3, 134.8, 133.6, 130.8, 130.0, 129.6, 125.8, 119.4, 116.8, 111.5, 101.5, 99.0, 88.4; **HRMS** (ESI): m/z: calculated for C₁₅H₉NNaO₂⁺: [M + Na]⁺ 258.0525, found: 258.0520.

2r: Yellow solid; ¹**H** NMR (400MHz, CDCl₃) δ 9.62 (s, 1H), 7.95 (s, 1H), 7.82 (d, J = 9.1 Hz, 1H), 7.65 (d, J = 8.4 Hz, 1H), 7.23 (dd, J = 8.3, 1.5 Hz, 1H), 7.06 (d, J = 9.1 Hz, 1H), 3.95 (s, 3H), 2.81 (dd, J = 15.2, 7.6 Hz, 2H), 1.32 (t, J = 7.6 Hz, 3H); ¹³**C** NMR (101MHz, CDCl₃) δ 176.5, 162.1, 144.8, 134.8, 133.6, 128.2, 126.4, 125.6, 122.1, 110.8, 101.1, 98.4, 91.6, 29.1, 15.3; **HRMS** (ESI): m/z: calculated for C₁₆H₁₄NaO₂⁺: [M + Na]⁺ 261.0886, found: 261.0891.

2s: White solid; ¹**H NMR** (400MHz, CDCl₃) δ 9.32 (s, 1H), 7.58 – 7.41 (m, 6H), 7.05 (dd, *J* = 7.7, 0.5 Hz, 1H), 6.95 (d, *J* = 8.4 Hz, 1H), 3.98 (s, 3H), ¹³**C NMR** (101MHz, CDCl₃) δ 176.6, 162.4, 148.0, 139.2, 132.3, 129.1, 128.1, 128.1, 122.0, 109.3, 107.4,

95.5, 92.3, 56.1; **HRMS** (ESI): *m/z*: calculated for C₁₆H₁₂NaO₂⁺: [M + Na]⁺ 259.0730, found: 259.0737.

2t: Yellow solid; ¹**H** NMR (400MHz, CDCl₃) δ 9.49 (s, 1H), 7.14 (d, *J* = 8.6 Hz, 1H), 6.69 (d, *J* = 8.6 Hz, 1H), 3.88 (s, 3H), 2.88 (t, *J* = 6.0 Hz, 2H), 2.69 (t, *J* = 6.2 Hz, 2H), 1.82 – 1.74 (m, 4H); ¹³C NMR (101MHz, CDCl₃) δ 176.8, 160.4, 143.1, 133.4, 129.9, 108.1, 107.9, 97.7, 91.5, 55.8, 28.8, 28.2, 22.7, 22.5; **HRMS** (ESI): *m/z*: calculated for C₁₄H₁₄NaO₂⁺: [M + Na]⁺ 237.0886, found: 237.0880.

2u: White solid; ¹**H NMR** (400MHz, DMSO-D₆) δ 9.57 (s, 1H), 8.23 (d, *J* = 2.0 Hz, 1H), 8.14 (d, *J* = 9.2 Hz, 1H), 8.00 (d, *J* = 9.0 Hz, 1H), 7.75 (dd, *J* = 9.0, 2.1 Hz, 1H), 7.58 (d, *J* = 9.3 Hz, 1H), 4.04 (s, 3H); ¹³**C NMR** (101MHz, DMSO-D₆) δ 178.8, 162.7, 134.0, 133.1, 132.0, 131.0, 129.4, 126.4, 118.0, 114.8, 101.1, 98.7, 89.5, 57.2; **HRMS** (ESI): *m/z*: calculated for C₁₄H₉BrNaO₂⁺: [M + Na]⁺ 310.9678, 312.9658, found: 310.9685, 312.9663.

Supplementary Table 11. Optimization of the reaction conditions.

		yield	er	yield	yield	yield
entry	deviation from standard conditions ^a	$3(\%)^{b}$	$3(\%)^{c}$	$4(\%)^{b}$	5 $(\%)^{b}$	6 $(\%)^{b}$
1^d	none	70	91:9	<5	<5	<5
2	no cat. C	0	-	0	0	0
3	A instead of C	54	81:19	<5	20	18
4	B instead of C	<5	-	<5	<5	<5
5	D instead of A	<5	-	<5	<5	60
6	no Mg(OTf) ₂	60	90:10	<5	<5	18
7	LiCl instead of Mg(OTf) ₂	58	90:10	<5	<5	<10
8	In(OTf) ₃ instead of Mg(OTf) ₂	63	90:10	<5	<5	<10
9	Sc(OTf) ₃ instead of Mg(OTf) ₂	60	90:10	<5	<5	<10
10	Zn(OTf) ₂ instead of Mg(OTf) ₂	61	90:10	<5	<5	<10
11	CHCl ₃ as solvent	40	80:20	<5	15	23

12	THF as solvent	54	85:15	<5	<10	19
13	Dioxane as solvent	20	-	<5	<5	50
14	no ^{<i>n</i>} Bu ₄ NOAc	0	-	0	0	0
15	DIPEA as base	45	80:20	<5	17	20
16	Cs_2CO_3 as base	40	75:25	<5	20	22
17	KO ^t Bu as base	<10	-	<5	<5	<5
18	F instead of E	<5	-	74	<5	<5
19	G instead of E	<5	-	70	<5	<5
20	10 mol % cat. C	69^e	91:9	<5	<5	13
21	100 mol % E	28	91:9	20	20	10
22	120 mol % E	56	91:9	<5	22	10
23	100 mol % base	40	91:9	<5	23	25
24	50 mol % base	30	91:9	<5	32	28
25	150 mol % 1a	31	91:9	<5	30	28
26	200 mol % 1a	28	91:9	<5	24	40
27	150 mol % 2a	<5	-	<5	<5	<5
28	200 mol % 2a	<5	-	<5	<5	<5
29 ^e	2b instead of $2a^{f}$	60	75:25	<5	<5	18
30 ^f	$2c$ instead of $2a^{g}$	60	72:8	<5	<5	<5

^{*a*}Standard conditions: **1a** (0.11 mmol), **2a** (0.10 mmol, R = Me), ^{*n*}Bu₄NOAc (0.2 mmol), oxidant **E** (0.15 mmol), Mg(OTf)₂ (20 mol %), cat. **C** (15 mol %), toluene (2.0 mL), room temperature, N₂, 24 h. ^{*b*}Isolated yield. ^{*c*}Determined by chiral HPLC. ^{*e*} 48 h. ^{*f*}**3ab** as major product. ^{*g*}**3ac** as major product.

General procedure for NHC-catalyzed reaction of 1 with 2.

In a glovebox, a flame-dried Schlenk reaction tube equipped with a magnetic stir bar, was added the azolium precatalyst (9.2 mg, 0.015 mmol), Bu_4NOAc (60.2 mg, 0.20 mmol), DQ (62.0 mg), **1** (0.11 mmol) and **2** (0.10 mmol), and freshly distilled toluene (2.0 mL) was added. The mixture was then stirred at rt for 24 h. The reaction mixture was filtered through a pad of Celite, the solid was washed with DCM and the solvent was evaporated and purified by via column chromatography on silica gel to afford the desired product.

Note: Racemic samples for the standard of chiral HPLC spectra were prepared using racemic NHC precursor as catalyst.

Characterization data of 3, 4, 5, 6, 7, 8, 10.

3aa: 70%; white solid; ¹**H** NMR (400MHz, CDCl₃) δ 7.90 (d, *J* = 9.0 Hz, 1H), 7.82 (d, *J* = 8.0 Hz, 1H), 7.47 (d, *J* = 8.3 Hz, 1H), 7.40 – 7.26 (m, 3H), 6.14 (s, 1H), 3.80 (s, 3H), 2.80 (s, 2H), 2.32 (d, *J* = 15.9 Hz, 1H), 2.22 (d, *J* = 15.9 Hz, 1H), 1.14 (s, 3H), 1.11 (s, 3H); ¹³C NMR (101MHz, CDCl₃) δ 192.5, 172.5, 160.1, 152.4, 152.0, 131.2, 130.0, 128.7, 128.2, 126.8, 123.5, 123.4, 120.0, 116.0, 114.5, 112.3, 56.1, 51.6, 42.5, 31.7, 28.0, 27.8; **HRMS** (ESI): *m/z*: calculated for C₂₂H₂₀NaO₄⁺: [M + Na]⁺ 371.1254, found: 371.1250; HPLC (Chiralpak IB, *i*-propanol/hexane = 10/90, flow rate 1.0 mL/min, λ = 254 nm): *t*_R (major) = 25.8 min, *t*_R (minor) = 32.7 min, e.r. = 90:10; [α]²⁵_D = -214.6 (*c* = 1.0, CHCl₃).

3ab: 60%; yellow oil; ¹**H NMR** (400MHz, CDCl₃) δ 7.87 (d, *J* = 9.0 Hz, 1H), 7.80 (d, *J* = 7.6 Hz, 1H), 7.45 (d, *J* = 8.4 Hz, 1H), 7.39 – 7.32 (m, 2H), 7.27 – 7.24 (m, 1H), 6.14 (s, 1H), 4.14 – 4.08 (m, 2H), 2.84 (s, 2H), 2.30 (dd, *J* = 28.0, 15.9 Hz, 2H), 1.27

(t, J = 7.0 Hz, 3H), 1.17 (s, 3H), 1.13 (s, 3H); ¹³C NMR (101MHz, CDCl₃) δ 192.6, 172.6, 160.3, 152.5, 152.0, 131.5, 130.0, 128.8, 128.3, 126.9, 123.6, 123.6, 120.4, 116.1, 114.6, 113.6, 64.6, 51.8, 42.7, 31.9, 28.4, 28.0, 15.1; HRMS (ESI): m/z: calculated for C₂₃H₂₃O₄⁺: [M + H]⁺ 363.1591, found: 363.1597; HPLC (Chiralpak IB, *i*-propanol/hexane = 10/90, flow rate 1.0 mL/min, $\lambda = 254$ nm): $t_{\rm R}$ (major) = 19.9 min, $t_{\rm R}$ (minor) = 21.4 min, e.r. = 75:25; [α]²⁵_D = -103.2 (c = 1.0, CHCl₃).

3ac: 60%; yellow oil; ¹**H** NMR (400MHz, CDCl₃) δ 7.87 (dd, J = 22.8, 9.2 Hz, 2H), 7.52 (d, J = 8.3 Hz, 1H), 7.44 – 7.28 (m, 8H), 6.15 (s, 1H), 5.19 (d, J = 12.0 Hz, 1H), 5.10 (d, J = 12.0 Hz, 1H), 2.78 (dd, J = 23.8, 18.4 Hz, 2H), 2.18 (dd, J = 26.4, 15.8 Hz, 2H), 1.11 (s, 3H), 1.03 (s, 3H); ¹³C NMR (101MHz, CDCl₃) δ 192.7, 172.4, 160.2, 152.2, 151.7, 136.9, 131.4, 130.1, 129.1, 128.5, 128.3, 127.9, 127.1, 126.9, 123.8, 123.7, 121.0, 116.0, 114.6, 114.1, 71.2, 51.6, 42.5, 31.7, 28.0, 28.0; **HRMS** (ESI): m/z: calculated for C₂₈H₂₅O₄⁺: [M + H]⁺ 425.1747, found: 425.1741; HPLC (Chiralpak IB, *i*-propanol/hexane = 10/90, flow rate 1.0 mL/min, $\lambda = 254$ nm): $t_{\rm R}$ (major) = 20.7 min, $t_{\rm R}$ (minor) = 28.4 min, e.r. = 72.5:8.5; [α]²⁵_D = -83.2 (c = 1.0, CHCl₃).

3ba: 61%; yellow oil; ¹**H NMR** (400 MHz, CDCl₃) δ 7.90 (d, J = 9.0 Hz, 1H), 7.82 (d, J = 7.9 Hz, 1H), 7.50 (d J = 8.4 Hz, 1H), 7.40 (dt, J = 8.4, 1.4 Hz, 1H), 7.34 (dt, J = 6.8, 1.2 Hz, 1H), 7.29 (d, J = 9.1 Hz, 1H), 6.17 (s, 1H), 3.84 (s, 3H) 2.94 (d, J = 18.7)

Hz, 1H), 2.76 (d, J = 18.7 Hz, 1H), 2.41 (d, J =15.8 Hz, 1H), 2.18 (d, J = 16.1 Hz, 1H), 0.63 – 0.49 (m, 4H); ¹³C NMR (101MHz, CDCl₃) δ 192.2, 173.2, 159.9, 152.4, 152.4, 131.4, 130.2, 128.8, 128.3, 127.0, 123.7, 123.5, 120.1, 116.2, 115.6, 112.6, 56.3, 46.9, 38.4, 14.0, 11.4, 11.1; **HRMS** (ESI): m/z: calculated for C₂₂H₁₈NaO₄⁺: [M + Na]⁺ 369.1097, found: 369.1091; HPLC (Chiralpak IB, *i*-propanol/hexane = 20/80, flow rate 1.0 mL/min, λ = 254 nm): t_R (major) = 15.6 min, t_R (minor) = 22.0 min, e.r. = 85:15; [α]²⁵_D = -129.2 (*c* = 1.0, CHCl₃).

3ca: 69%; yellow oil; ¹**H NMR** (400 MHz, CDCl₃) δ 7.90 (d, J = 9.0 Hz, 1H), 7.81 (d, J = 7.5 Hz, 1H), 7.48 (d, J = 8.4 Hz, 1H), 7.40 – 7.31 (m 2H), 7.26 (d, J = 1.7 Hz, 1H), 6.14 (s, 1H), 3.82 (s, 3H), 2.89 (t, J = 19.5 Hz, 2H), 2.37 (dd, J = 41.6, 15.9 Hz, 2H), 1.55 – 1.42 (m, 10H); ¹³**C NMR** (101MHz, CDCl₃) δ 192.7, 172.3, 160.4, 152.5, 152.0, 131.3, 130.2, 128.8, 128.3, 127.0, 123.6, 123.5, 120.0, 116.0, 114.8, 112.5, 56.2, 49.7, 40.3, 36.4, 36.3, 34.6, 31.6, 25.8, 22.6, 21.5, 21.4; **HRMS** (ESI): *m/z*: calculated for C₂₅H₂₅O₄⁺: [M + H]⁺ 389.1747, found: 389.1742; HPLC (Chiralpak IB, *i*-propanol/hexane = 15/85, flow rate 1.0 mL/min, λ = 254 nm): *t*_R (major) = 14.5 min, *t*_R (minor) = 16.0 min, e.r. = 88:12; [α]²⁵_D = -133.6 (*c* = 1.0, CHCl₃).

3da: 68%; yellow oil; ¹**H NMR** (400MHz, CDCl₃) δ 7.92 (d, J = 9.0 Hz, 1H), 7.84 (d, J = 8.0 Hz, 1H), 7.51 (d, J = 8.4 Hz, 1H), 7.43 – 7.29 (m, 3H), 6.17 (s, 1H), 3.85 (s,

3H), 2.85 (dd, J = 22.9, 18.7 Hz, 2H), 2.38 (d. J = 15.8 Hz, 1H), 2.29 (d, J = 15.8 Hz, 1H), 1.60 - 1.45 (m, 4H), 0.92 - 0.84 (m, 6H); ¹³C NMR (101MHz, CDCl₃) δ 193.0, 172.6, 160.4, 152.5, 152.0, 131.3, 130.2, 128.9, 128.4, 127.0, 123.7, 123.6, 120.0, 116.0, 114.9, 112.5, 56.2, 47.9, 38.9, 37.2, 29.1, 28.9, 7.7, 7.6; **HRMS** (ESI): *m/z*: calculated for $C_{24}H_{25}O_4^+$: $[M + H]^+$ 377.1747, found: 377.1753; HPLC (Chiralpak ID, *i*-propanol/hexane = 15/85, flow rate 1.0 mL/min, λ = 254 nm): $t_{\rm R}$ (major) = 15.9 min, $t_{\rm R}$ (minor) = 19.5 min, e.r. = 90:10; $[\alpha]^{25}_{\rm D}$ = -163.4 (c = 1.0, CHCl₃).

3ea: 72%; yellow oil; ¹**H NMR** (400MHz, CDCl₃) δ 7.93 (d, J = 9.0 Hz, 1H), 7.84 (d, J = 8.0 Hz, 1H), 7.48 (d, J = 8.2 Hz, 1H), 7.42 – 7.29 (m, 3H), 6.16 (s, 1H), 3.85 (s, 3H), 2.76 (dd, J = 21.4, 19.0 Hz, 2H), 2.24 (d, J = 15.9 Hz, 1H), 2.15 (d, J = 15.9 Hz, 1H), 0.92 - 0.77 (m, 2H), 0.47 - 0.35 (m, 8H); ¹³C NMR (101MHz, CDCl₃) δ 192.5, 172.6, 160.2, 152.5, 152.0, 131.3, 130.1, 128.8, 128.3, 126.9, 123.6, 123.5, 120.0, 115.9, 115.0, 112.5, 56.2, 46.0, 37.7, 35.2, 18.4, 18.4, 0.7, 0.6, 0.6, 0.5; **HRMS** (ESI): m/z: calculated for C₂₆H₂₅O₄⁺: [M + H]⁺ 401.1747, found: 401.1752; HPLC (Chiralpak IB, *i*-propanol/hexane = 20/80, flow rate 1.0 mL/min, λ = 190 nm): $t_{\rm R}$ (major) = 15.9 min, $t_{\rm R}$ (minor) = 19.0 min, e.r. = 93:7; $[\alpha]^{25}{}_{\rm D}$ = -177.2 (c = 1.0, CHCl₃).

3fa: 71%; yellow oil; ¹**H NMR** (400MHz, CDCl₃) δ 7.93 (d, J = 9.0 Hz, 1H), 7.84 (d, 234

J = 8.0 Hz, 1H), 7.49 (d, *J* = 8.3 Hz, 1H), 7.42 – 7.28 (m, 3H), 6.17 (s, 1H), 3.86 (d, *J* = 6.4 Hz, 3H), 2.86 (dd, *J* = 23.4, 22.6 Hz, 2H), 2.38 (d, *J* = 15.9 Hz, 1H), 2.29 (d, *J* = 15.9 Hz, 1H), 1.46 – 1.25 (m, 18H), 0.94 – 0.88 (m, 6H); ¹³C NMR (101MHz, CDCl₃) δ 192.9, 172.7, 160.4, 152.5, 152.0, 131.4, 130.2, 128.8, 128.4, 127.0, 123.7, 123.5, 120.0, 116.0, 114.8, 112.5, 56.3, 48.7, 39.7, 37.3, 37.2, 37.0, 32.4, 32.3, 23.0, 22.9, 22.5, 22.5, 14.1, 14.0; **HRMS** (ESI): *m/z*: calculated for C₃₀H₃₇O₄⁺: [M + H]⁺ 461.2686, found: 461.2680; HPLC (Chiralpak IB, *i*-propanol/hexane = 20/80, flow rate 1.0 mL/min, λ = 190 nm): *t*_R (major) = 11.0 min, *t*_R (minor) = 13.2 min, e.r. = 94:6; [α]²⁵_D = -106.8 (*c* = 1.0, CHCl₃).

3ga: 70%; yellow oil; ¹**H NMR** (400MHz, CDCl₃) δ 7.90 (d, *J* = 9.0 Hz, 1H), 7.81 (d, *J* = 7.5 Hz, 1H), 7.44 (d, *J* = 8.1 Hz, 1H), 7.38 – 7.26 (m, 3H), 6.13 (s, 1H), 3.82 (s, 3H), 2.83 (dd, *J* = 23.4, 18.6 Hz, 2H), 2.31 (dd, *J* = 33.2, 15.9 Hz, 2H), 1.50 – 1.36 (m, 6H), 1.14 – 1.06 (m, 4H), 0.91 – 0.85 (m, 12H); ¹³**C NMR** (101MHz, CDCl₃) δ 192.7, 172.7, 160.3, 152.5, 152.0, 131.4, 130.1, 128.8, 128.3, 126.9, 123.6, 123.5, 120.1, 116.0, 114.7, 112.5, 56.2, 48.7, 39.7, 36.8, 34.7, 34.7, 32.1, 32.1, 28.5, 28.4, 22.5; **HRMS** (ESI): *m/z*: calculated for C₃₀H₃₇O₄⁺: [M + H]⁺ 461.2686, found: 461.2691; HPLC (Chiralpak IB, *i*-propanol/hexane = 20/80, flow rate 1.0 mL/min, λ = 190 nm): *t*_R (major) = 9.9 min, *t*_R (minor) = 14.7 min, e.r. = 95:5; [α]²⁵_D = -189.8 (*c* = 1.0, CHCl₃).

3gd: 57%; yellow oil; ¹**H NMR** (400 MHz, CDCl₃) δ 7.86 – 7.84 (m, 2H), 7.68-7.66 (m, 2H), 7.47 – 7.36 (m, 6H), 6.23 (s, 1H), 3.21 (s, 3H), 2.86 (s, 2H) 3.34 (dd, J = 24.0, 16.0 Hz, 2H), 1.47 – 1.39 (m, 6H), 1.14 – 1.08 (m, 4H), 0.90 – 0.85 (m, 12H) ¹³**C NMR** (101MHz, CDCl₃) δ 192.8, 173.0, 160.1, 152.2, 151.3, 138.3, 134.2, 130.9, 130.5, 129.1, 128.4, 128.4, 127.4, 126.6, 125.1, 123.8, 115.7, 114.7, 60.4, 48.6, 39.9, 36.9, 34.8, 34.7, 32.1, 28.5, 28.4, 22.6, 22.5, 22.5; **HRMS** (ESI): *m/z*: calculated for $C_{36}H_{41}O_4^+$: [M + H]⁺ 537.2999, found: 537.2993; HPLC (Chiralpak IA, *i*-propanol/hexane = 10/90, flow rate 1.0 mL/min, λ = 300 nm): *t*_R (major) = 5.3 min, *t*_R (minor) = 6.2 min, e.r. = 90:10; [α]²⁵_D = -173.2 (*c* = 1.0, CHCl₃).

3ge: 76%; yellow oil; ¹**H** NMR (400MHz, CDCl₃) δ 8.20 (d, J = 8.2 Hz, 1H), 7.42 – 7.26 (m, 3H), 6.64 (s, 1H), 6.14 (s, 1H), 4.04 (s, 3H), 3.82 (s, 3H), 2.82 (dd, J = 23.2, 18.8 Hz, 2H), 2.31 (dd, J = 31.8, 15.8 Hz, 2H), 1.51 – 1.35 (m, 6H), 1.13 – 1.10 (m, 4H), 0.90 – 0.85 (m, 12H); ¹³C NMR (101MHz, CDCl₃) δ 193.0, 172.5, 160.5, 157.4, 153.1, 152.2, 132.0, 127.6, 123.2, 123.0, 122.5, 121.1, 116.3, 115.0, 112.4, 92.6, 56.3, 55.6, 48.9, 39.8, 36.8, 34.7, 34.7, 32.2, 32.1, 28.5, 28.5, 22.6, 22.6; **HRMS** (ESI): *m/z*: calculated for C₃₁H₃₉O₅⁺: [M + H]⁺ 491.2792, found: 491.2798; HPLC (Chiralpak IB,

i-propanol/hexane = 20/80, flow rate 1.0 mL/min, $\lambda = 190$ nm): $t_{\rm R}$ (major) = 6.3 min, $t_{\rm R}$ (minor) = 8.8 min, e.r. = 93:7; $[\alpha]^{25}{}_{\rm D}$ = -165.4 (c = 1.0, CHCl₃).

3gf: 74%; yellow oil; ¹**H NMR** (400MHz, CDCl₃) δ 7.86 (d, J = 8.4 Hz, 1H), 7.58 – 7.48 (m, 6H), 7.41 – 7.38 (m, 1H), 7.31 – 7.25 (m, 2H), 6.22 (s, 1H), 3.86 (s, 3H), 2.89 (dd, J = 23.7, 18.6 Hz, 2H), 2.44 – 2,32 (m, 2H), 1.54 – 1.42 (m, 6H), 1.20 – 1.11 (m, 4H), 0.95 – 0.90 (m, 12H); ¹³**C NMR** (101MHz, CDCl₃) δ 193.0, 172.8, 160.4, 152.1, 151.8, 142.6, 140.5, 132.0, 130.1, 128.3, 127.6, 127.2, 126.8, 126.6, 123.9, 123.7, 119.6, 116.2, 114.9, 113.8, 56.3, 48.8, 39.8, 36.9, 34.8, 34.8, 32.2, 32.2, 28.6, 28.5, 22.6; **HRMS** (ESI): m/z: calculated for C₃₆H₄₁O₄⁺: [M + H]⁺ 537.2999, found: 537.2991; HPLC (Chiralpak IB, *i*-propanol/hexane = 20/80, flow rate 1.0 mL/min, λ = 190 nm): $t_{\rm R}$ (major) = 5.4 min, $t_{\rm R}$ (minor) = 4.9 min, e.r. = 95:5; [α]²⁵_D = -173.9 (c = 1.0, CHCl₃).

3gg: 60%; yellow oil; ¹**H NMR** (400MHz, CDCl₃) δ 8.24 (d, *J* = 8.2 Hz, 1H), 7.69 (s, 1H), 7.60 – 7.50 (m, 3H), 6.10 (s, 1H), 3.88 (s, 3H), 2.87 (dd, *J* = 21.8, 18.9 Hz, 2H), 2.39 – 2.27 (m, 2H), 1.52 – 1.38 (m, 6H), 1.18 – 1.04 (m, 4H), 0.93 – 0.87 (m, 12H);

¹³**C NMR** (101MHz, CDCl₃) δ 192.8, 173.5, 160.0, 151.5, 150.1, 131.3, 128.3, 128.3, 126.3, 126.3, 125.6, 124.3, 118.2, 117.5, 115.7, 114.1, 111.4, 56.5, 48.4, 39.7, 36.9, 34.8, 34.6, 32.1, 32.1, 28.5, 28.4, 22.5, 22.4; **HRMS** (ESI): *m/z*: calculated for C₃₁H₃₆NO₄⁺: [M + H]⁺ 486.2639, found: 486.2634; HPLC (Chiralpak IB, *i*-propanol/hexane = 20/80, flow rate 1.0 mL/min, λ = 365 nm): *t*_R (major) = 8.6 min, *t*_R (minor) = 7.0 min, e.r. = 93:7; [α]²⁵_D = -145.8 (*c* = 1.0, CHCl₃).

3gh: 70%; yellow oil; ¹**H NMR** (400MHz, CDCl₃) δ 8.34 (d, J = 9.2 Hz, 1H), 7.78 (d, J = 7.0 Hz, 1H), 7.70 (d, J = 8.6 Hz, 1H), 7.50 (d, J = 9.2 Hz, 1H), 7.42 (dd, J = 8.6, 7.2 Hz, 1H), 6.10 (s, 1H), 3.89 (s, 3H), 2.86 (dd, J = 26.4, 18.7 Hz, 2H), 2.34 (dd, J = 37.2, 16.0 Hz, 2H), 1.54 – 1.37 (m, 6H), 1.17 – 1.07 (m, 4H), 0.93 – 0.88 (m, 12H); ¹³C NMR (101MHz, CDCl₃) δ 192.9, 173.3, 159.9, 153.7, 150.6, 131.2, 130.3, 128.8, 127.3, 125.8, 121.0, 117.8, 116.1, 114.8, 114.3, 110.6, 56.3, 48.6, 39.7, 36.8, 34.8, 34.6, 32.1, 32.1, 28.5, 28.4, 22.5, 22.4; **HRMS** (ESI): m/z: calculated for C₃₁H₃₆NO₄⁺: [M + H]⁺ 486.2639, found: 486.2644; HPLC (Chiralpak IB, *i*-propanol/hexane = 20/80, flow rate 1.0 mL/min, $\lambda = 190$ nm): $t_{\rm R}$ (major) = 19.1 min, $t_{\rm R}$ (minor) = 17.5 min, e.r. = 95.5:4.5; [α]²⁵_D = -198.6 (c = 1.0, CHCl₃).

Additional experiment:

3gi: 71%; yellow oil; ¹**H NMR** (400MHz, CDCl₃) δ 7.97 (d, J = 9.4 Hz, 1H), 7.53 – 7.41 (m, 7H), 7.30 (d, J = 1.16 Hz, 1H), 7.23 (d, J = 9.4 Hz 1H), 6.20 (s, 1H), 3.83 (s, 3H), 2.89 (dd, J = 22.5, 18.6 Hz, 2H), 2.37 (dd, J = 30.4, 15.9 Hz, 2H), 1.54 – 1.41 (m, 6H), 1.19 – 1.13 (m, 4H), 0.95 – 0.90 (m, 12H); ¹³C **NMR** (101MHz, CDCl₃) δ 192.9, 172.8, 160.3, 152.4, 152.3, 140.8, 140.7, 131.8, 130.1, 128.4, 128.2, 127.2, 127.0, 126.5, 124.8, 123.1, 120.2, 116.0, 114.8, 112.4, 56.2, 48.7, 39.8, 36.8, 34.7, 34.7, 32.1, 28.5, 28.4, 22.5; **HRMS** (ESI): *m*/*z*: calculated for C₃₆H₄₁O₄⁺: [M + H]⁺ 537.2999, found: 537.2993; HPLC (Chiralpak IB, *i*-propanol/hexane = 20/80, flow rate 1.0 mL/min, $\lambda = 300$ nm): $t_{\rm R}$ (major) = 6.4 min, $t_{\rm R}$ (minor) = 5.7 min, e.r. = 93:7; [α]²⁵_D = -167.4 (*c* = 1.0, CHCl₃).

3gj: 68%; yellow oil; ¹**H NMR** (400MHz, CDCl₃) δ 8.01 (s, 1H), 7.95 (d, J = 9.0 Hz, 1H), 7.67 – 7.53 (m, 3H), 7.53 – 7.44 (m, 3H), 7.37 – 7.29 (m, 2H), 6.16 (s, 1H), 3.83 (s, 3H), 2.84 (dd, J = 23.1, 18.9 Hz, 2H), 2.32 (dd, J = 33.5, 15.8 Hz, 2H), 1.50 – 1.37 (m, 6H), 1.11 (d, J = 6.4 Hz, 4H), 0.90 – 0.85 (m, 12H); ¹³C **NMR** (101MHz, CDCl₃) δ 192.8, 172.8, 160.3, 152.6, 151.9, 140.9, 136.4, 130.5, 130.4, 129.0, 128.8, 127.2, 127.1, 126.7, 126.2, 124.0, 120.0, 115.9, 114.7, 112.9, 56.2, 48.7, 39.7, 36.8, 34.7,

34.6, 32.1, 32.1, 28.5, 28.4, 22.5; **HRMS** (ESI): m/z: calculated for C₃₄H₃₇O₄⁺: [M + H]⁺ 537.2999, found: 537.2992; HPLC (Chiralpak IB, *i*-propanol/hexane = 20/80, flow rate 1.0 mL/min, λ = 190 nm): $t_{\rm R}$ (major) = 7.1 min, $t_{\rm R}$ (minor) = 8.9 min, e.r. = 96:4; $[\alpha]^{25}_{\rm D}$ = -178.6 (c = 1.0, CHCl₃).

3gk: 66%; yellow oil; ¹**H NMR** (400MHz, CDCl₃) δ 7.83 (d, *J* = 9.0 Hz, 1H), 7.59 (s, 1H), 7.37 (d, *J* = 8.6 Hz, 1H), 7.24 (d, *J* = 9.0 Hz, 2H), 6.13 (s, 1H), 3.80 (s, 3H), 2.88 – 2.73 (m, 4H), 2.31 (dd, *J* = 34.3, 15.8 Hz, 2H), 1.50 – 1.36 (m, 6H), 1.31 – 1.27 (m, 3H), 1.27 -1.11 (m, 4H), 0.90 – 0.85 (m, 12H); ¹³**C NMR** (101MHz, CDCl₃) δ 192.7, 172.6, 160.4, 152.2, 152.0, 139.4, 129.8, 129.5, 129.1, 128.2, 125.9, 123.4, 120.0, 115.9, 114.8, 112.6, 56.3, 48.7, 39.7, 36.8, 34.7, 34.7, 32.1, 32.1, 28.6, 28.5, 28.4, 22.5, 22.5, 15.4; **HRMS** (ESI): *m*/*z*: calculated for C₃₂H₄₁O₄⁺: [M + H]⁺ 489.2999, found: 489.2992; HPLC (Chiralpak IB, *i*-propanol/hexane = 20/80, flow rate 1.0 mL/min, λ = 190 nm): *t*_R (major) = 6.1 min, *t*_R (minor) = 8.1 min, e.r. = 95:5; [α]²⁵_D = -165.9 (*c* = 1.0, CHCl₃).

3gl: 72%; white solid; ¹**H NMR** (400MHz, CDCl₃) δ 8.20 (s, 1H), 7.96 (d, *J* = 9.1 Hz, 1H), 7.49 (dd, *J* = 13.4, 8.8 Hz, 2H), 7.39 (d, *J* = 9.1 Hz, 1H), 6.08 (s, 1H), 3.87 (s,

3H), 2.85 (dd, J = 22.6, 18.9 Hz, 2H), 2.31 (dd, J = 32.4, 16.0 Hz, 2H), 1.51 – 1.36 (m, 6H), 1.15 – 1.08 (m, 4H), 0.91 – 0.85 (m, 12H); ¹³**C NMR** (101MHz, CDCl₃) δ 193.0, 173.4, 159.9, 155.0, 150.6, 134.7, 132.9, 130.9, 127.4, 127.3, 124.8, 120.6, 119.3, 116.1, 114.3, 114.0, 107.0, 56.2, 48.6, 39.8, 36.9, 34.8, 34.6, 32.1, 32.1, 28.5, 28.4, 22.6, 22.5; **HRMS** (ESI): m/z: calculated for C₃₁H₃₆NO₄⁺: [M + H]⁺ 486.2639, found: 486.2634; HPLC (Chiralpak IA, *i*-propanol/hexane = 20/80, flow rate 1.0 mL/min, λ = 190 nm): $t_{\rm R}$ (major) = 8.1 min, $t_{\rm R}$ (minor) = 11.7 min, e.r. = 96.5:3.5; [α]²⁵_D = -187.0 (c = 1.0, CHCl₃).

3gm: 70%; yellow oil; ¹**H NMR** (400MHz, CDCl₃) δ 7.99 – 7.95 (m, 2H), 7.65 (s, 1H), 7.94 (d, J = 9.0 Hz, 1H), 7.59 – 7.51 (m, 3H), 7.40 – 7.31 (m, 3H), 6.16 (s, 1H), 3.84 (s, 3H), 2.85 (dd, J = 22.8, 18.8 Hz, 2H), 2.32 (dd, J = 33.8, 15.8 Hz, 2H), 1.50 – 1.37 (m, 6H), 1.12 – 1.11 (m, 4H), 0.91 – 0.86 (m, 12H); ¹³C NMR (101MHz, CDCl₃) δ 192.9, 172.9, 160.3, 152.9, 151.8, 142.8, 135.0, 134.7, 130.9, 130.5, 130.1, 128.9, 127.3, 127.2, 126.5, 126.3, 125.4, 124.3, 120.1, 116.0, 114.7, 113.1, 56.3, 48.7, 39.8, 36.9, 34.8, 34.7, 32.2, 32.1, 28.5, 28.5, 22.6; **HRMS** (ESI): *m/z*: calculated for C₃₆H₃₉ClNaO₄⁺: [M + Na]⁺ 593.2429, found: 593.2424; HPLC (Chiralpak IB, *i*-propanol/hexane = 20/80, flow rate 1.0 mL/min, $\lambda = 190$ nm): $t_{\rm R}$ (major) = 7.6 min, $t_{\rm R}$ (minor) = 9.0 min, e.r. = 95:5; [α]²⁵_D = -173.6 (*c* = 1.0, CHCl₃).

3gn: 71%; yellow oil; ¹**H** NMR (400MHz, CDCl₃) δ 7.94 (d, J = 9.0 Hz, 2H), 7.63 – 7.56 (m, 3H), 7.51 (d, J = 8.8 Hz, 1H), 7.31 (d, J = 9.0 Hz, 1H), 7.14 (t, J = 8.6 Hz, 2H), 6.16 (s, 1H), 3.83 (s, 3H), 2.85 (dd, J = 23.7, 18.8 Hz, 2H), 2.32 (dd, J = 34.6, 15.8 Hz, 2H), 1.50 – 1.37 (m, 6H), 1.14 – 1.07 (m, 4H), 0.91 – 0.85 (m, 12H); ¹³**C** NMR (101MHz, CDCl₃) δ 192.9, 172.8, 162.4 (d, J = 244.7 Hz), 160.3, 152.7, 151.8, 137.0 (d, J = 3.1 Hz), 135.4, 130.5, 130.3, 128.9, 128.7 (d, J = 7.9 Hz), 126.5, 126.0, 134.2, 120.0, 116.0, 115.7 (d, J = 21.3 Hz), 114.7, 113.1, 76.7, 56.2, 48.7, 39.7, 36.8, 34.7, 34.7, 32.1, 32.1, 28.5, 28.4, 22.5; ¹⁹F NMR (376 MHz, CDCl₃) δ -115.8; HRMS (ESI): m/z: calculated for C₃₆H₃₉FNaO₄⁺: [M + Na]⁺ 577.2725, found: 577.2730; HPLC (Chiralpak IB, *i*-propanol/hexane = 20/80, flow rate 1.0 mL/min, $\lambda = 190$ nm): $t_{\rm R}$ (major) = 7.5 min, $t_{\rm R}$ (minor) = 10.8 min, e.r. = 95:5; $[\alpha]^{25}_{\rm D} = -165.4$ (c = 1.0, CHCl₃).

3go: 67%; yellow oil; ¹**H NMR** (400MHz, CDCl₃) δ 7.96 – 7.86 (m, 5H), 7.56 – 7.48 (m, 5H), 7.43 (d, J = 7.6 Hz, 1H), 7.33 (d, J = 9.0 Hz, 1H), 6.22 (s, 1H), 3.86 (s, 3H), 2.85 (dd, J = 25.2, 18.8 Hz, 2H), 2.36 (dd, J = 32,3, 15.9 Hz, 2H), 1.51 – 1.38 (m, 6H), 1.15 – 1.07 (m, 4H), 0.92 – 0.85 (m, 12H); ¹³**C NMR** (101MHz, CDCl₃) δ 193.0,

172.9, 160.4, 152.8, 152.0, 140.0, 136.1, 133.9, 131.8, 130.6, 130.4, 129.6, 129.2, 128.9, 128.3, 127.7, 127.2, 126.2, 126.1, 125.8, 125.5, 123.4, 120.2, 116.1, 114.8, 113.0, 56.4, 48.8, 39.8, 36.9, 34.8, 34.7, 32.2, 32.2, 28.6, 28.5, 22.6, 22.6; **HRMS** (ESI): m/z: calculated for C₄₀H₄₃O₄⁺: [M + H]⁺ 587.3156, found: 587.3151; HPLC (Chiralpak IC, *i*-propanol/hexane = 20/80, flow rate 1.0 mL/min, λ = 190 nm): $t_{\rm R}$ (major) = 9.4 min, $t_{\rm R}$ (minor) = 11.4 min, e.r. = 94:6; [α]²⁵_D = -179.4 (c = 1.0, CHCl₃).

3gp: 72%; yellow oil; ¹**H** NMR (400MHz, CDCl₃) δ 7.90 (dd, J = 14.2, 9.0 Hz, 2H), 7.57 (t, 7.1 Hz, 4H), 7.42 (t, J = 7.3 Hz, 2H), 7.36 – 7.26 (m, 2H), 6.19 (s, 1H), 3.83 (s, 3H), 2.83 (dd, J = 21.6, 19.0 Hz, 2H), 2.31 (dd, J = 37.5, 15.8 Hz, 2H), 1.51 – 1.33 (m, 6H), 1.13 – 1.03 (m, 4H), 0.91 – 0.77 (m, 12H); ¹³C NMR (101MHz, CDCl₃) δ 192.9, 172.9, 160.4, 153.0, 152.2, 141.4, 139.9, 131.6, 129.9, 128.9, 128.0, 127.6, 127.4, 123.7, 121.6, 120.3, 116.0, 114.7, 112.5, 56.3, 48.8, 39.8, 36.8, 34.8, 32.2, 32.1, 28.5, 28.4, 22.6, 22.5; **HRMS** (ESI): *m/z*: calculated for C₃₄H₃₇O₄⁺: [M + H]⁺ 537.2999, found: 537.2993; HPLC (Chiralpak IB, *i*-propanol/hexane = 20/80, flow rate 1.0 mL/min, $\lambda = 190$ nm): $t_{\rm R}$ (major) = 8.0 min, $t_{\rm R}$ (minor) = 10.2 min, e.r. = 96:4; $[\alpha]^{25}_{\rm D}$ = -198.6 (*c* = 1.0, CHCl₃).

3gq: 60%; yellow oil; ¹**H NMR** (400MHz, CDCl₃) δ 7.95 (d, J = 9.0 Hz, 1H), 7.90 (d, J = 8.4 Hz, 1H), 7.45 (t, J = 10.5 Hz, 2H), 6.08 (s, 1H), 3.85 (s, 3H), 2.87 (s, 2H), 2.32 (dd, J = 24.5, 15.9 Hz, 2H), 1.51 – 1.37 (m, 6H), 1.13 – 1.09 (m, 4H), 0.90 – 0.86 (m, 12H); ¹³**C NMR** (101MHz, CDCl₃) δ 193.1, 173.5, 159.7, 153.8, 150.3, 130.5, 130.2, 129.9, 129.7, 129.6, 124.0, 120.8, 119.2, 116.1, 115.4, 114.2, 110.5, 56.3, 48.6, 39.8, 36.9, 35.0, 34.4, 32.1, 32.1, 28.5, 28.4, 22.6, 22.5; **HRMS** (ESI): m/z: calculated for C₃₁H₃₆NO₄⁺: [M + H]⁺ 486.2639, found: 486.2644; HPLC (Chiralpak IB, *i*-propanol/hexane = 20/80, flow rate 1.0 mL/min, $\lambda = 190$ nm): $t_{\rm R}$ (major) = 9.4 min, $t_{\rm R}$ (minor) = 10.8 min, e.r. = 93:7; [α]²⁵_D = -143.7 (*c* = 1.0, CHCl₃).

3gr: 71%; yellow oil; ¹**H** NMR (400MHz, CDCl₃) δ 7.87 (d, *J* = 9.0 Hz, 1H), 7.76 (d, *J* = 8.2 Hz, 1H), 7.28 (s, H), 7.23 (d, *J* = 9.8 Hz, 1H), 6.16 (s, 1H), 3.83 (s, 3H), 2.87 (t, *J* = 19.5 Hz, 2H), 2.71 (dd, *J* = 14.8, 7.3 Hz, 2H), 2.34 (dd, *J* = 36.5, 15.8 Hz, 2H), 1.52 - 1.38 (m, 6H), 1.25 (t, *J* = 7.7 Hz, 3H), 1.14 - 1.13 (m, 4H), 0.93 - 0.86 (m, 12H); ¹³C NMR (101MHz, CDCl₃) δ 192.8, 172.6, 160.5, 152.6, 152.3, 143.0, 131.6, 129.8, 128.3, 127.4, 124.8, 121.3, 119.6, 115.9, 114.8, 111.6, 56.2, 48.8, 39.7, 36.8, 34.7, 34.6, 32.1, 32.1, 29.4, 28.5, 28.4, 22.5, 15.6; **HRMS** (ESI): *m*/*z*: calculated for C₃₂H₄₁O₄⁺: [M + H]⁺ 489.2999, found: 489.2993; HPLC (Chiralpak IB, *i*-propanol/hexane = 20/80, flow rate 1.0 mL/min, λ = 254 nm): *t*_R (major) = 6.8 min, *t*_R (minor) = 8.8 min, e.r. = 97:3; [α]²⁵_D = -189.6 (*c* = 1.0, CHCl₃).

3gs: 60%; yellow oil; ¹**H** NMR (400MHz, CDCl₃) δ 7.39 (t, J = 7.9 Hz, 1H), 7.26 – 7.20 (m, 3H), 7.12 – 7.10 (m, 2H), 6.99 (d, J = 37.8 Hz, 1H), 6.88 (d, J = 8.3 Hz, 1H), 5.70 (s, 1H), 3.72 (s, 3H), 2.76 (d, J = 18.5 Hz, 1H), 2.64 (d, J = 18.5 Hz, 1H), 2.39 (d, J = 15.5 Hz, 1H), 2.25 (d, J = 15.5 Hz, 1H), 1.49 – 1.26 (m, 6H), 1.15 – 1.05 (m, 4H), 0.89 (d, J = 6.6 Hz, 12H); ¹³C NMR (101MHz, CDCl₃) δ 193.5, 171.4, 160.2, 155.6, 152.8, 140.7, 140.6, 129.1, 128.0, 127.1, 125.6, 122.5, 115.6, 115.2, 109.1, 55.7, 48.7, 39.5, 37.0, 35.0, 34.1, 32.1, 32.0, 28.5, 28.5, 22.6, 22.6, 22.5, 22.5; HRMS (ESI): *m/z*: calculated for C₃₂H₃₉O₄⁺: [M + H]⁺ 487.2843, found: 487.2844; HPLC (Chiralpak IB, *i*-propanol/hexane = 20/80, flow rate 1.0 mL/min, $\lambda = 254$ nm): $t_{\rm R}$ (major) = 7.5 min, $t_{\rm R}$ (minor) = 7.1 min, e.r. = 96:4; [α]²⁵_D = -176.8 (c = 1.0, CHCl₃).

3gt: 61%; yellow oil; ¹**H NMR** (400MHz, CDCl₃) δ 7.05 (d, *J* = 8.4Hz, 1H), 6.69 (d, *J* = 8.2 Hz, 1H), 5.97 (s, 1H), 3.64 (s, 3H), 2.84 – 2.72 (m, 4H), 2.54 (d, *J* = 16.9 Hz, 1H), 2.33 (dd, *J* = 24.2, 15.9 Hz, 2H), 2.18 (d, *J* = 16.4 Hz, 1H), 1.71 – 1.63 (m, 4H), 1.48 – 1.36 (m, 6H), 1.11 – 1.10 (m, 4H), 0.89 – 0.86 (m, 12H); ¹³**C NMR** (101MHz, CDCl₃) δ 192.9, 172.6, 160.5, 153.4, 153.2, 133.8, 129.6, 129.4, 125.8, 114.7, 114.2, 108.1, 55.6, 48.7, 39.7, 36.8, 34.8, 34.5, 32.1, 29.0, 28.5, 28.4, 27.6, 22.9, 22.5, 22.5, 22.4; **HRMS** (ESI): *m/z*: calculated for C₃₀H₄₁O₄⁺: [M + H]⁺ 465.2999, found:

465.2993; HPLC (Chiralpak IB, *i*-propanol/hexane = 10/90, flow rate 1.0 mL/min, λ = 190 nm): $t_{\rm R}$ (major) = 6.8 min, $t_{\rm R}$ (minor) = 7.3 min, e.r = 92:8; $[\alpha]^{25}{}_{\rm D}$ = -143.2 (c = 1.0, CHCl₃).

3au: 68%; white solid; ¹**H NMR** (400MHz, CDCl₃) δ 7.97 (d, J = 1.4 Hz, 1H), 7.81 (d, J = 9.1 Hz, 1H), 7.44 (dd, J = 9.0, 1.8 Hz, 1H), 7.35 – 7.26 (m, 2H), 6.11 (s, 1H), 3.82 (s, 3H), 2.84 (s, 2H), 2.30 (dd, J = 36.1, 15.9 Hz, 2H), 1.17 (s, 3H), 1.13 (s, 1H); ¹³**C NMR** (101MHz, CDCl₃) δ 192.7, 172.8, 160.0, 152.7, 151.4, 130.2, 129.9, 129.8, 129.2, 125.3, 120.3, 117.4, 116.1, 114.4, 113.5, 56.2, 51.6, 42.6, 31.8, 28.2, 28.0; **HRMS** (ESI): m/z: calculated for C₂₀H₂₀BrO₄⁺: [M + H]⁺ 427.0539, 429.0519, found: 427.0534, 429.0513; HPLC (Chiralpak IB, *i*-propanol/hexane = 20/80, flow rate 1.0 mL/min, $\lambda = 254$ nm): $t_{\rm R}$ (major) = 10.4 min, $t_{\rm R}$ (minor) = 12.8 min, e.r. = 91:9; $[\alpha]^{25}_{\rm D}$ = -193.2 (c = 1.0, CHCl₃).

4aa: 74%; White solid; ¹**H NMR** (400MHz, CDCl₃) δ 8.48 (d, J = 8.7 Hz, 1H), 7.75 (d, J = 8.6 Hz, 2H), 7.58 (t, J = 7.4 Hz, 1H), 7.35 (t, J = 7.3 Hz, 1H), 7.18 (d, J = 9.0 Hz, 1H), 5.12 (d, J = 10.1 Hz, 1H), 3.81 (s, 3H), 3.03 (dd, J = 16.9, 10.3 Hz, 1H), 2.69 (d, J = 16.9 Hz, 1H), 2.49 (dd, J = 28.6, 17.8 Hz, 2H), 2.17 (dd, J = 21.7, 16.4 Hz, 2H), 1.11 (s, 3H), 0.98 (s, 3H); ¹³C **NMR** (101MHz, CDCl₃) δ 197.0, 165.6, 165.0, 155.0, 132.2, 129.5, 129.2, 128.4, 126.7, 123.6, 123.4, 122.5, 112.7, 112.0,

54.4, 50.7, 41.5, 33.9, 32.3, 28.4, 27.7, 26.8; **HRMS** (ESI): m/z: calculated for $C_{22}H_{23}O_4^+$: $[M + H]^+$ 351.1591, found: 351.1596; HPLC (Chiralpak AD-H, *i*-propanol/hexane = 20/80, flow rate 1.0 mL/min, $\lambda = 190$ nm): t_R (major) = 7.7 min, t_R (minor) = 6.1 min, e.r. = 67:33; $[\alpha]^{25}_{D} = -53.2$ (c = 1.0, CHCl₃).

11: 80%; white solid; ¹H NMR (400 MHz, CDCl₃) δ 7.30 – 7.20 (m, 3H), 7.15 (d, J = 7.2 Hz, 2H), 4.30 (t, J = 4.6 Hz, 1H), 2.94 (dd, J = 21.8, 16.2 Hz, 1H), 2.93 (s, 1H) 2.54 (s, 2H), 2.32 (s, 2H) 1.15 (s, 3H), 1.10 (s, 3H); ¹³C NMR (101MHz, CDCl₃) δ 196.1, 166.0, 165.7, 140.5, 129.1, 127.5, 126.5, 116.1, 50.6, 41.0, 36.3, 33.8, 32.5, 28.5, 28.1; HRMS (ESI): m/z: calculated for C₁₇H₁₉O₃⁺: [M + H]⁺ 271.1329, found: 271.1327; HPLC (Chiralpak AD-H, *i*-propanol/hexane = 20/80, flow rate 1.0 mL/min, $\lambda =$ 254 nm): $t_{\rm R}$ (major) = 7.8 min, $t_{\rm R}$ (minor) = 5.2 min, e.r. = 67:33; [α]²⁵_D = -110.2 (c = 1.0, CHCl₃).

5aa: Yellow oil; ¹**H NMR** (400MHz, CDCl₃) δ 7.90 (d, *J* = 9.1 Hz, 1H), 7.80 (d, *J* = 7.3 Hz, 1H), 7.41 – 7.26 (m, 4H), 5.79 (s, 1H), 3.83 (s, 3H), 2.96 (s, 2H), 2.38 (dd, *J* = 18.3, 16.3 Hz, 2H), 2.04 (d, *J* = 7.6 Hz, 2H), 1.58 (dd, *J* = 22.9, 18.0 Hz, 2H), 1.20 (d, *J* = 3.5 Hz, 6H), 0.81 (s, 6H); ¹³C **NMR** (101MHz, CDCl₃) δ 199.2, 191.9, 169.6, 166.9, 154.7, 154.2, 140.3, 132.5, 130.4, 128.7, 128.1, 128.1, 126.7, 123.8, 123.5, 121.5, 114.8, 113.2, 112.9, 56.4, 52.6, 50.4, 41.1, 37.8, 34.8, 32.4, 28.5, 28.3, 27.8,

27.7; **HRMS** (ESI): m/z: calculated for $C_{30}H_{31}O_5^+$: $[M + H]^+$ 471.2166, found: 471.2161.

6aa: Yellow oil; ¹**H NMR** (400MHz, CDCl₃) δ 7.93 (d, J = 9.1 Hz, 1H), 7.81 (d, J = 8.1 Hz, 1H), 7.72 (d, J = 8.5 Hz, 1H), 7.51 - 7.47 (m, 2H), 7.38 (t, J = 7.6 Hz, 1H), 7.30 (d, J = 9.1 Hz, 1H), 3.97 (s, 3H), 2.62 (s, 2H), 2.38 (s, 2H), 1.14 (s, 6H); ¹³C **NMR** (101MHz, CDCl₃) δ 191.7, 190.5, 179.3, 156.2, 147.2, 132.1, 131.8, 128.7, 128.4, 127.2, 124.3, 124.0, 114.8, 113.3, 112.6, 110.6, 56.2, 51.8, 39.0, 33.8, 28.4; **HRMS** (ESI): m/z: calculated for C₂₂H₂₁O₄⁺: [M + H]⁺ 349.1434, found: 349.1439.

7: 20%; yellow oil; ¹H NMR (400MHz, CDCl₃) δ 7.93 (t, J = 8.0 Hz, 1H), 7.19 - 7.09 (m, 5H), 7.00 (d, J = 8.2 Hz, 1H), 6.96 (d, J = 8.2 Hz, 1H), 5.93 (s, 1H), 3.76 (s, 3H), 2.80 (s, 2H), 2.39 (d, J = 16.1 Hz, 1H), 2.30 (d, J = 16.1 Hz, 1H), 2.25 (s, 2H), 2.07 (s, 2H), 2.48 - 2.10 (m, 20H), 0.96 - 0.88 (m, 24H); ¹³C NMR (101MHz, CDCl₃) δ 199.6, 192.3, 169.0, 167.1, 156.7, 154.7, 143.1, 141.0, 139.5, 129.6, 129.4, 129.1, 127.6, 127.0, 122.1, 121.9, 118.3, 115.5, 109.5, 55.9, 49.6, 47.7, 40.1, 38.8, 37.8, 35.5, 34.5, 34.4, 33.7, 32.4, 32.3, 32.2, 29.7, 28.5, 22.7, 22.6, 22.6; HRMS (ESI): m/z: calculated for C₄₈H₆₅O₅⁺: [M + H]⁺721.4827, found: 721.4821; HPLC (Chiralpak IC,

i-propanol/hexane = 10/90, flow rate 1.0 mL/min, $\lambda = 254$ nm): $t_{\rm R}$ (major) = 6.7 min, $t_{\rm R}$ (minor) = 4.6 min, e.r. = 59:41; $[\alpha]^{25}{}_{\rm D}$ = -11.2 (c = 1.0, CHCl₃).

8: 71%; yellow oil; ¹H NMR (400MHz, CDCl₃) δ 8.22 (t, *J* = 7.9 Hz, 1H), 7.98 (d, *J* = 4.4 Hz, 1H), 7.56 – 7.40 (m, 2H), 7.41 (d, *J* = 4.4 Hz, 1H), 6.10 (s, 1H), 3.88 (s, 3H), 2.87 (dd, *J* = 22.0 Hz, 18.8 Hz, 2H), 2.33 (dd, *J* = 33.2 Hz, 16.0 Hz, 2H), 1.45 – 1.24 (m, 18H), 0.90 (dd, *J* = 14.8 Hz, 6.8 Hz, 6H); ¹³C NMR (101MHz, CDCl₃) δ 193.1, 173.3, 159.9, 155.0, 134.6, 132.8, 130.9. 127.4, 127.3, 120.5, 119.2, 116.1, 114.3, 113.9, 106.9, 56.2, 48.6, 39.6, 37.4, 37.1, 32.3, 32.2, 22.9, 22.8, 22.5, 14.0, 13.9; HRMS (ESI): *m*/*z*: calculated for C₃₁H₃₈NO₄⁺: [M + H]⁺488.2801, found: 488.2808; HPLC (Chiralpak IA, *i*-propanol/hexane = 20/80, flow rate 1.0 mL/min, λ = 254 nm): *t*_R (major) = 9.6 min, *t*_R (minor) = 17.5 min, e.r. = 96:4; [α]²⁵_D = -17.6 (*c* = 1.0, CHCl₃).

10a: 52%; White solid; ¹**H NMR** (400 MHz, CDCl₃) δ 7.84 – 7.78 (m, 2H), 7.32 (d, J = 9.0 Hz, 1H), 7.27 – 7.21 (m, 3H), 6.75 (s, 1H), 3.75 (s, 3H), 3.03 (dd, J = 14.1, 7.0 Hz, 4H), 2.73 (dd, J = 21.0, 17.1 Hz, 2H), 2.31 (s, 3H), 2.23 (d, J = 15.1 Hz, 1H), 2.12 (d, J = 15.2 Hz, 1H), 1.02 (t, J = 7.1 Hz, 6H), 0.85 – 0.76 (m, 2H), 0.37 – 0.30 (m, 8H); ¹³**C NMR** (101MHz, CDCl₃) δ 197.4, 153.8, 152.8, 142.7, 134.5, 133.3,

130.9, 129.1, 127.9, 127.8, 127.4, 127.3, 125.7, 124.8, 123.9, 123.1, 114.0, 56.7, 46.8, 46.4, 37.0, 35.6, 18.8, 18.5, 14.6, 12.2, 1.0, 0.6, 0.3, 0.2, 0.0; **HRMS** (ESI): m/z: calculated for $C_{32}H_{38}NO_2^+$: $[M + H]^+$ 468.2897, found: 468.2897; HPLC (Chiralpak IB, *i*-propanol/hexane = 5/95, flow rate 1.0 mL/min, λ = 241 nm): t_R (major) = 9.6 min, t_R (minor) = 16.5 min, e.r. = 93:7; $[\alpha]^{25}_{D}$ = -140.2 (c = 1.0, CHCl₃).

10b: 52%; yellow oil; ¹**H NMR** (400 MHz, CDCl₃) δ 7.83 – 7.81 (m, 1H), 7.60 – 7.57 (m, 2H), 7.50 (t, J = 7.4 Hz, 2H), 7.45 – 7.41 (m, 1H), 7.29 – 7.26 (m, 2H), 7.21 – 7.19 (m, 2H), 6.80 (s, 1H), 3.76 (s, 3H), 3.04 (dd, J = 14.1, 7.0 Hz, 4H), 2.81 (s, 2H), 2.35 (dd, J = 28.4, 16.0 Hz, 2H), 2.34 (s, 3H), 1.44 – 1.36 (m, 6H), 1.20 – 1.17 (m, 2H), 1.10 – 1.06 (m, 2H), 1.02 (t, J = 7.0 Hz, 6H), 0.88 – 0.84 (m, 12H); ¹³C NMR (101MHz, CDCl₃) δ 197.8, 153.8, 152.1, 142.8, 141.2, 140.1, 134.7, 133.7, 131.1, 130.3, 128.2, 127.4, 127.1, 127.0, 126.1, 125.6, 125.1, 124.2, 123.2, 115.3, 56.7, 49.9, 46.5, 38.9, 37.3, 35.2, 34.5, 32.2, 28.6, 28.6, 22.7, 22.7, 22.5, 22.5, 14.6, 12.2; HRMS (ESI): m/z: calculated for C30H37O4⁺: [M + H]⁺ 604.4149, found: 604.4147; HPLC (Chiralpak IE, *i*-propanol/hexane = 10/90, flow rate 1.0 mL/min, $\lambda = 254$ nm): t_R (major) = 6.7 min, t_R (minor) = 8.0 min, e.r. = 95:5; $[\alpha]^{25}_{\text{D}}$ = -122.0 (c = 1.0, CHCl₃).

10c: 64%; yellow oil; ¹**H NMR** (400 MHz, CDCl₃) δ 7.93 (d, J = 1.4 Hz, 1H), 7.87 (d, J = 9.0 Hz, 1H), 7.62 – 7.58 (m, 2H), 7.41 (dd, J = 8.8, 1.8 Hz, 1H), 7.35 (d, J = 9.0 Hz, 1H), 7.28 (d, J = 8.8 Hz, 1H) 7.12 (t, J = 8.7 Hz, 2H), 6.77 (s, 1H), 3.76 (s, 3H), 3.04 (dd, J = 14.2, 7.0 Hz, 4H), 2.81 (s, 2H), 2.34 (s, 3H), 2.32 (dd, J = 30.0, 16.0 Hz, 2H), 1.45 – 1.35 (m, 6H), 1.18 – 1.12 (m, 2H), 1.10 – 1.05 (m, 2H), 1.02 (t, J = 7.02 Hz, 6H), 0.87 – 0.83 (m, 12H); ¹⁹**F NMR** (376 MHz, CDCl₃) δ -116.47; ¹³**C NMR** (101MHz, CDCl₃) δ 197.7, 162.2 (J = 245.8 Hz), 153.8, 153.0, 142.8, 137.6 (J = 3.1 Hz), 134.8, 134.5, 132.4, 131.2, 129.2, 128.7 (J = 7.9 Hz), 128.1, 127.4, 127.2, 125.8, 125.4, 125.3, 124.0, 115.5 (J = 21.4 Hz), 114.6, 56.7, 49.9, 46.5, 38.8, 37.3, 35.1, 34.5, 32.2, 28.6, 28.6, 22.7, 22.5, 14.6, 12.2; **HRMS** (ESI): m/z: calculated for C₄₂H₅₃FNO₂⁺: [M + H]⁺ 622.4055, found: 622.4059; HPLC (Chiralpak IB, *i*-propanol/hexane = 5/95, flow rate 1.0 mL/min, $\lambda = 254$ nm): t_R (major) = 5.8 min, t_R (minor) = 6.9 min, e.r. = 93:7; [α]²⁵_D = -120.0 (c = 1.0, CHCl₃).

10d: 78%; yellow oil; ¹**H NMR** (400MHz, CDCl₃) δ 8.22 (s, 1H), 7.91 (d, J = 9.2 Hz, 1H), 7.45 (d, J = 8.8 Hz, 4H), 7.35 – 7.28 (m, 2H), 6.71 (s, 1H), 3.83 (s, 3H), 3.07 (dd, J = 14.4 Hz, 7.2 Hz, 2H), 2.85 (s, 1H), 2.42 -2.29 (m, 5H), 1.30 – 1.26 (m, 18H), 1.06
(t, J = 6.8 Hz, 6H), 0.89 (dd, J = 10.8 Hz, 6.8 Hz, 6H), ; ¹³C NMR (101MHz, CDCl₃) δ 197.9, 155.4, 154.1, 143.2, 134.4, 133.3, 131.6, 128.6, 127.7, 126.1, 126.0, 123.6, 115.0, 106.2, 56.4, 49.7, 46.4, 38.9, 37.7, 37.6, 32.5, 32.5, 22.5, 22.4, 14.7, 14.0, 12.2; HRMS (ESI): m/z: calculated for C₃₇H₄₉N₂O₂⁺: [M + H]⁺ 553.3794, found: 553.3795; HPLC (Chiralpak IA, *i*-propanol/hexane = 10/90, flow rate 1.0 mL/min, λ = 254 nm): $t_{\rm R}$ (major) = 4.5 min, $t_{\rm R}$ (minor) = 7.6 min, e.r. = 96:4; [α]²⁵_D = -16.8 (c = 1.0, CHCl₃).

10e: 80%; yellow oil; ¹**H NMR** (400 MHz, CDCl₃) δ 7.87 (d, J = 3.6 Hz, 1H), 7.85 (d, J = 3.0 Hz, 1H), 7.61 (s, 1H), 7.45 (d, J = 9.0 Hz, 1H), 7.38 (dd, J = 8.5, 1.6 Hz, 1H), 6.66 (s, 1H), 3.77 (s, 3H), 3.05 (dd, J = 14.1, 7.1 Hz, 4H), 2.82 (s, 2H), 2.35 (s, 3H), 2.32 (dd, J = 24.7, 15.8 Hz, 2H), 1.47 – 1.35 (m, 6H), 1.16 – 1.08 (m, 4H), 1.03 (t, J = 7.0 Hz, 6H), 0.86 – 0.83 (m, 12H); ¹³C NMR (101MHz, CDCl₃) δ 197.9, 154.2, 154.0, 143.3, 133.0, 132.5, 131.8, 131.4, 130.0, 129.1, 128.3, 127.9, 126.8, 123.5, 123.4, 119.7, 116.6, 109.1, 56.5, 49.8, 46.3, 39.0, 37.3, 34.8, 34.8, 32.2, 28.6, 28.5, 22.7, 22.6, 22.5, 14.7, 12.2; HRMS (ESI): m/z: calculated for C₃₇H₄₉N₂O₂⁺: [M + H]⁺ 553.3789, found: 553.3790; HPLC (Chiralpak AD-H, *i*-propanol/hexane = 10/90, flow rate 1.0 mL/min, $\lambda = 254$ nm): $t_{\rm R}$ (major) = 3.4 min, $t_{\rm R}$ (minor) = 5.1 min, e.r. = 90.5:9.5; [α]²⁵_D = -60.0 (c = 1.0, CHCl₃).

10f: 48%; yellow oil; ¹**H NMR** (400 MHz, CDCl₃) δ 7.86 (t, J = 8.0 Hz, 2H), 7.52 (dd, J = 8.5 Hz, 1.8 Hz, 1H), 7.46 – 7.44 (m, 3H), 7.34 – 7.30 (m, 3H), 7.27 – 7.23 (m, 2H), 6.82 (s, 1H), 3.75 (s, 3H), 3.07 – 3.02 (m, 4H), 2.79 (s, 2H), 2.34 (s, 3H), 2.31 (dd, J = 39.9 Hz, 15.8 Hz, 2H), 1.44 – 1.24 (m, 6H), 1.17 – 1.07 (m, 2H), 1.01 (t, J = 7.0 Hz, 6H), 0.84 (dd, J = 11.0, 6.6 Hz, 6H), 0.73 (d, J = 6.6 Hz, 6H); ¹³C NMR (101MHz, CDCl₃) δ 197.7, 153.7, 153.2, 142.8, 141.9, 138.6, 134.5, 133.4, 131.3, 128.4, 127.7, 127.5, 127.5, 127.4, 126.8, 124.1, 123.1, 123.0, 114.0, 56.6, 50.0, 46.6, 38.8, 37.3, 35.0, 34.6, 32.2, 28.6, 28.4, 22.7, 22.6, 22.5, 14.6, 12.2; HRMS (ESI): m/z: calculated for C₄₂H₅₄NO₂⁺: [M + H]⁺ 604.4149, found: 604.4147; HPLC (Chiralpak IC, *i*-propanol/hexane = 10/90, flow rate 1.0 mL/min, $\lambda = 254$ nm): t_R (major) = 5.5 min, t_R (minor) = 7.4 min, e.r. = 95:5; [α]²⁵_D = -72.7 (c = 1.0, CHCl₃).

Supplementary References:

- 1. Shriner, R. L.; Todd; H. R. Organic Syntheses, 1935, XV, 14-16.
- Jin X, Xu W, Yang J, et al. Short and tandem syntheses of spiro [2.5] octane-5,
 7-dione and spiro [3.5] nonane-6, 8-dione via diethyl acetonedicarboxylate.
 Tetrahedron Lett. 56, 6287-6289 (2015).