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Abstract

Efficient and effective cell segmentation of neuroendocrine tumor (NET) in whole slide scanned 

images is a difficult task due to a large number of cells. The weak or misleading cell boundaries 

also present significant challenges. In this paper, we propose a fast, high throughput cell 

segmentation algorithm by combining top-down shape models and bottom-up image appearance 

information. A scalable sparse manifold learning method is proposed to model multiple 

subpopulations of different cell shape priors. Followed by a shape clustering on the manifold, a 

novel affine transform-approximated active contour model is derived to deform contours without 

solving a large amount of computationally-expensive Euler-Lagrange equations, and thus 

dramatically reduces the computational time. To the best of our knowledge, this is the first report 

of a high throughput cell segmentation algorithm for whole slide scanned pathology specimens 

using manifold learning to accelerate active contour models. The proposed approach is tested 

using 12 NET images, and the comparative experiments with the state of the arts demonstrate its 

superior performance in terms of both efficiency and effectiveness.

1 Introduction

Effective and efficient cell segmentation of pancreatic neuroendocrine tumor (NET) is a 

prerequisite for quantitative image analyses such as Ki67 counting. Many state-of-the-art 

approaches [11, 4, 16, 10] have been applied to cell/nucleus segmentation on specific 

medical images. In order to handle partial occlusion, shape prior models have been 

introduced to improve touching cell separation [2, 14] and liver segmentation [17].

However, it is inefficient to exploit the aforementioned shape prior models, which are not 

adaptive to large data sets, to fast segment thousands of cells in whole slide scanned 

specimens. In addition, it is necessary to learn multiple subpopulations of shape priors to 

handle shape variations. In this paper, we propose a high throughput and large-scale cell 

segmentation algorithm by combing high-level shape priors and low-level active contour 

models. The main contributions are: 1) A scalable sparse manifold learning algorithm to 

model multiple cell shape priors; 2) A novel affine transform-approximated active contour 

model that dramatically accelerates the shape deformation.
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2 Methodology

An effective cell segmentation framework combining shape prior models and image 

appearance information is presented in [14]; however, it requires to solve one associated 

partial differential equation for each contour within each iteration and therefore is not 

suitable to handle a large number of cells in whole slide scanned images. In this paper, we 

propose a novel idea by assuming that there exists an affine transformation between any two 

similar cell shapes, and approximate shape deformation using the affine transformation 

instead of solving all computationally expensive Euler-Lagrange equations. In addition, 

since the shapes of cells on pancreatic NET images lie on a low-dimensional manifold due 

to the limited number of constraints of shape control (see Figure 1), we present a scalable 

sparse manifold learning algorithm for cell shape modeling, which can efficiently determine 

the shape memberships and perform the shape inference. In our algorithm, similar shapes are 

effectively grouped into the same cluster by taking advantage of the manifold geometry 

structure to allow the affine approximation for fast shape deformation in each cluster.

In the training stage, the cell shapes aligned with Procrustes analysis [7] are utilized to learn 

multiple subpopulations of shape priors using sparse manifold clustering and embedding. A 

deep convolutional neural network (CNN) [6] is trained with small image patches for shape 

initialization. In the testing stage, the CNN is exploited to generate probability maps with a 

sliding window on images, and initial cell shapes are obtained by applying an H-minima 

transform [5] to the maps, one per cell. These shapes deform towards cell boundaries with 

the affine transform-approximated deformable model. Meanwhile, shape inference and 

membership update are achieved by using the scalable manifold learning based on the 

learned shape repositories. The proposed approach alternately performs shape deformation 

and inference until the active contours converge.

2.1 Scalable Sparse Manifold Learning for Shape Prior Modeling

In our model, cell shape x ∈ R2p×1 is represented by p = 60 landmarks following the rules in 

[14]. We propose to model shape priors by clustering training shapes into multiple 

subpopulations considering the intrinsic dimensionality of the manifold. The sparse 

manifold clustering and embedding (SMCE) [8] can robustly achieve simultaneous 

clustering and dimensionality reduction. However, SMCE is a transductive algorithm that is 

not able to handle out-of-sample data, and it requires a computational complexity of 

to solve the optimization problem over N new testing shapes. In this paper, we efficiently 

extend SMCE to handle out-of-sample data and update shape clusters via sparse encoding-

based shape inference. Specifically, we first apply SMCE to the limited-size training data 

and obtain multiple subpopulations of cell shapes, then perform sparse encoding for each 

new shape, and finally assign the new shapes to corresponding clusters. In this scenario, the 

runtime computational complexity can be reduced from  to  where M is the 

number of training shapes with M ≪ N.

Shape Prior Modeling via Manifold Learning—SMCE formulates an optimization 

problem based on sparse representation to allow simultaneous clustering and embedding of 
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data lying in multiple manifolds. Given a set of aligned training cell shapes , SMCE 

solves the following problem

(1)

where Qi ∈ R(M−1)×(M−1) represents the proximity, and it is a positive-definite diagonal 

matrix with the j-th diagonal element equal to , such that the points near xi 

receive low penalties. Xi ∈ R2p×(M−1) is the normalized shape matrix and the j-th column is 

, j ≠ i. The γ is the sparsity weight, and 1Tci = 1 ensures translation invariance. 

Based on the solution to (1), we can build a similarity graph whose nodes represent the data 

points [8], and the manifold clustering is achieved by applying spectral clustering to the 

graph.

Shape Inference and Cluster Update—After the manifold clustering, we can obtain 

multiple subpopulations of shape priors . The original shapes whose 

embedding vectors lie in the same manifold are similar to each other and form a shape 

repository/cluster, which is used to perform runtime shape inference for cell shapes assigned 

to this cluster in the testing stage. It is challenging to efficiently perform shape inference and 

determine the memberships of out-of-sample data considering the intrinsic dimensionality. 

Fortunately, any Lipschitz-smooth function defined on a smooth nonlinear manifold can be 

effectively approximated by a globally linear function with respect to local coordinate 

coding [15], and the time complexity of sparse encoding completely depends on the much 

lower intrinsic dimensionality. This indicates that each shape can be sufficiently represented 

by its coding based on its neighbors. Therefore, we propose to achieve shape inference and 

cluster update in a unified manner via sparse encoding. Specifically, given the learned shape 

repository Φ = [ϕ1…ϕK] = [ψ1…ψM] ∈ R2p×M, we perform runtime shape inference

(2)

This local coordinate coding converts the difficult nonlinear learning into a linear problem. 

With the locality constraint in (2), we project each shape to its local coordinate system and 

solve a smaller linear system for shape inference [13]

(3)

where di measures the similarity between υi and ψj’s in Φ, and ⊙ is the element-wise 

multiplication. Equation (3) has an analytical solution and it can be solved efficiently. For 
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each shape υi that belongs to cluster k, it selects its neighbors for sparse encoding such that 

only training shapes in ϕk are used for shape inference. Therefore, the nonzero components 

of the solution  are grouped in the k-th segment of  (see Figure 2), and we can determine 

the label of υi as

(4)

where the  corresponds to the code for cluster k, and ‖·‖0 is l0-norm.

2.2 Fast Active Contour Model

Local Repulsive Deformable Model—For shape deformation, we introduce an edge 

detector into the Chan-Vese model [3] to better separate cells from the background. To 

efficiently model the interaction among shapes, for each cell we calculate the repulsion only 

from its nearest neighbors [14]. Formally, for image I with N cells, the locality-constrained 

Chan-Vese model can be described as

(5)

where Ωi and Ωb represent the regions inside υi and outside all the contours, respectively, hi 

(or hb) denotes the average intensity of Ωi (or Ωb), e(υi(s)) is the edge detector and chosen as 

−‖∇I(υi(s))‖2 (s ∈ [0, 1] is the parameter for contour representation), |υi| denotes the length 

of υi, and Gi represents the neighbors of υi. The original model [3] requires to solve N 
associated Euler-Lagrange equations of (5) for shape deformation (i = 1, …, N)

(6)

where ni is υi’s normal unit vector, and oj(υi) is the indicator function: oj(υi) = 1 if υi ∈ Ωj, 

otherwise 0. κ(υi) is the curvature. Solving (6) for each cell in each iteration is extremely 

computationally expensive in whole slice scanned images.

Affine Transform Approximation—In order to avoid solving a large number of Euler-

Lagrange equations, we propose to deform shapes using (6) for only a few cells and 

approximate all the other contour evolvements using affine transforms. Since similar cell 

shapes are grouped into the same clusters, we assume in each cluster there exists a certain 

affine transform between any two shape instances. Considering a cluster with Nk cells, 

, we assume that υi, i ≠ 1, is created from υ1 via affine 

transformation :

Xing and Yang Page 4

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2016 December 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(7)

where x1 ∈ Rp×1 and y1 ∈ Rp×1 represent the first and second half of υ1. Therefore, we have 

 in each shape cluster.

For each iteration t, we randomly select only one shape in each cluster and solve its 

corresponding equation (6). After this selected shape deformation, we update the temporary 

positions of the other shapes. To preserve the cell shape information at iteration t − 1, we 

apply a weight η to the update at iteration t

(8)

where  and . Thereafter, we perform shape 

inference using (3) to get the final contour positions Ŝt and  of each cluster k, and update 

the affine transform matrix as

(9)

In next iteration t + 1, we repeat this procedure by alternatively performing shape 

deformation and inference based on results obtained at iteration t. The membership of each 

shape is dynamically updated to ensure that it is assigned to a correct cluster. The affine 

transformation approximation in (8,9), which deals with a small-size matrix inverse (6 × 6), 

is much faster than solving N Euler-Lagrange equations within each iteration. In order to 

finetune the final segmentation, we can deform all contours using (6) only in last iteration.

3 Experiments

The proposed approach is extensively tested on 12 pancreatic NET whole slide scanned 

TMA discs, which are captured at 20× magnification and contain cells ranging from around 

4200 to 17600. The 13-layer CNN model [6] is trained with about 1.3 million image patches 

with size 32×32×3 (half positive and half negative). We have tested different number of 

training cells for shape prior modeling and observed no significant variations on the 

performance when the training size is larger than 1000, and thus in total 1395 cells are 

randomly selected. The algorithm is coded using Matlab on a PC of Intel Xeon CPU with 12 

cores and 128 GB RAM. We empirically set γ = 10 in (1), λ = 0.005 in (3), η = 0.2 in (8), 

and K = 6 shape clusters. The Chan-Vese model is relatively insensitive to parameters, which 

are λ1 = λ2 = 10, λ3 = 0.2, ω = 2.5 and μ = 1 in (6).

Figure 3 shows the segmentation results using our method on two whole slide scanned TMA 

discs with size of 3882 × 3882, where thousands of cells are accurately segmented one-by-

Xing and Yang Page 5

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2016 December 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



one with shape preserving. More importantly, the average of running time for one whole 

slide with about 6300 cells is around 251 seconds. We randomly crop 12 image patches of 

size around 1300×800 from the whole slide images for quantitative analysis. The patches 

contain 300 to 1200 cells with large shape variations, and the ground-truth of each cell 

boundary is all manually annotated by pathologists for comparison. We compute the Dice 

similarity coefficient (DSC) [18] to measure the pixel-wise segmentation accuracy, and 

compare the proposed method with the full active contour (FAC), which does not use affine 

transform approximation but solves (6) for each cell within each iteration, and the 

transductive SMCE [8] for shape inference. Figure 4 shows that our method can produce 

competitive performance as the other two in terms of the accuracy with a much lower 

running time (around 14(Proposed),107(FAC),39(Transductive) seconds on one patch with 

465 cells). Figure 4 also shows the running time (15 iterations) with respect to the number of 

cells, in which the proposed method exhibits the strong scalability and is significantly faster 

than the other two. The more cells we need to segment, the more advantages we gain using 

our method.

In Figure 5, we illustrate the comparative segmentation results on one zoomed-in image 

patch using mean shift (MS), isoperimetric (ISO) [9], marker-based watershed (MWS), 

graph-cut and coloring (GCC) [1], repulsive level set (RLS) [12], and the proposed 

approach. It is clear that the proposed method provides best results. Table 1 summarizes the 

comparative performance between the proposed method and the state of the arts with 

multiple metrics including DSC, Hausdorff distance (HD), and mean absolute distance 

(MAD) [18]. As one can tell, our approach provides the best performance in terms of the 

mean and standard deviation of the metrics. Table 1 also lists the running time of each 

algorithm, which demonstrates that our method produces best performance. Except that MS 

and GCC are implemented in C++, all the others are coded with Matlab. Watershed (MWS), 

due to its simplicity, is the fastest but with poor segmentation accuracy.

4 Conclusion

We propose a fast cell segmentation approach using scalable sparse manifold learning and 

affine transform-approximated active contour model, which exhibits outstanding scalability 

and can efficiently handle large scale images (whole slide scanned specimens) for high 

throughput analysis using a standard PC machine without parallel computing involving 

complex image partitioning and stitching.
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Fig. 1. 
The singular values of cell shapes. The first 6 singular values are nonzero and significantly 

larger than the rest, and thus cell shapes actually lie in a union of subspaces with dimension 

around 6.

Xing and Yang Page 8

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2016 December 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Left: Two cells with different shapes in one NET image. Middle: The sparse codes 

corresponding to the red cell, where the black dash vertical lines separate different shape 

clusters. Right: The sparse codes corresponding to the blue cell.
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Fig. 3. 
Segmentation of whole slice scanned TMA discs with the proposed algorithm.
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Fig. 4. 
Performance with the proposed method, full active contour (FAC), and transductive learning. 

Left: Dice similarity coefficient. Middle and Right: The running time with respect to the 

number of algorithm iterations and cells, respectively.
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Fig. 5. 
Comparative segmentation using different methods. From left to right: original images, 

ground truth, MS, ISO [9], GCC [1], MWS, RLS [12], and the proposed. MWS, RLS, and 

the proposed use the same initialization, and the lymphocytes are discarded on purpose. 

Note that cells touching image boundaries are ignored.
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