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In many practical situations the decision-maker has to pay special attention to decision space to determine the constructability of a
potential solution, in addition to its optimality in objective space. Practically desirable solutions are those around preferred values
in decision space and within a distance from optimality. This work investigates two methods to find simultaneously optimal and
practically desirable solutions. The methods expand the objective space by adding fitness functions that favor preferred values for
some variables. In addition, the methods incorporate a ranking mechanism that takes into account Pareto dominance in objective
space and desirability in decision space. One method searches with one population in the expanded space, whereas the other one
uses two populations to search concurrently in the original and expanded space. Our experimental results on benchmark and real

world problems show that the proposed method can effectively find optimal and practically desirable solutions.

1. Introduction

Evolutionary multiobjective algorithms [1, 2] optimize simul-
taneously two or more objective functions that are usually
in conflict with each other. The aim of the algorithm is to
find an approximation of the set of Pareto optimal solutions
that capture the trade-offs among objective functions. In the
presence of several optimal solutions, a decision-maker often
considers preferences in objective space and can choose one
or few candidate solutions for implementation [3]. Several
optimization methods that combine preferences with multi-
objective evolutionary algorithms have been proposed; see,
for example, [4-19]. Preferences can be determined a priori,
during the search, or a posteriori. Once preferred solutions
are found, the exact values of solutions in decision space are
implicitly determined. This approach is valid when there is no
concern about the buildability of candidate solutions.

In many practical situations the decision-maker has to
pay special attention to decision space in order to determine
the constructability of a potential solution. In manufac-
turing applications, for example, preferences for particular
values of decision variables could appear due to unexpected

operational constraints, such as the availability or lack of
materials with particular specifications, or simply because
physical processes that determine a particular value for
a decision variable have become easier to perform than
those required to determine another value. Also, it may be
necessary to introduce new equipment depending on the
combination of decision variables. When these situations
arise the decision-maker is interested in knowing how far
these possible solutions are from optimality. Furthermore, in
design optimization and innovation related applications the
extraction of useful design knowledge is extremely relevant.
In these cases, analysis of what-if scenarios to understand
trade-offs in decision space, without losing sight of optimal-
ity, is important.

A way of emphasizing preferred values in decision space
is to modify the range of variables, so the search could focus
on the regions of interest. A drawback of this approach is
that the preferred regions in decision space may not contain
optimal solutions. Thus, we could obtain solutions around
the preferred values in decision space, but we could lose the
trade-off information between the original fitness functions.
Another way is to add objective functions for decision
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optimal set computed in the original objective space f™. Sorting by desirability with respect to the original space ™™ and front number in

the extended space f*?.

variables, hoping that the search will render optimal as well
as preferred solution in decision space. However, it is well
known that multiobjective evolutionary algorithms can lose
their effectiveness on problems with more than 3 objectives.
Thus, the obtained solutions could be suboptimal and an
analysis of preferred solutions with respect to these obtained
solutions would be misleading.

From this standpoint, in this work, we investigate ways to
enhance approaches that incorporate additional fitness func-
tions associated with particular decision variables, aiming to
find solutions around preferred values of the chosen variables
while searching for optimal solutions in the original objective
space. We aim to obtain optimal solutions as well as solutions
with preferred settings on decision space that are close to the
Pareto front.

In addition to expanding the objective space, we also
constraint the distance that solutions could be away from
the instantaneous Pareto nondominated set computed in the
original space. We call these solutions as practically desirable
solutions. We put forward two methods. One method uses
two populations to search concurrently in the original and
extended spaces, ranking solutions by Pareto dominance and
practical desirability. The other method uses just one pop-
ulation to search in the extended space but ranks solutions
by Pareto dominance and practical desirability. We compare
with an algorithm that simply restricts the range of decision
variables around the preferred values and an algorithm that
expands the space without constraining the distance from
optimality. We test the algorithms using DTLZ functions
with two and three objectives in the original space and
two additional objectives for the expanded space. We also
use these approaches in real world design optimization
problems. Our results show that the proposed method can
effectively find practically desirable solutions that are valuable
to establish trade-offs in decision space and extract relevant
design knowledge.

2. Proposed Method

2.1. Concept. We pursue approaches that incorporate addi-
tional fitness functions associated with particular decision
variables, aiming to find solutions around preferred values of
the chosen variables while searching for optimal solutions in
the original objective space.

Let us define the original objective space
of functions

£™ as the vector

£ ) = (fy 0, frX)..os fin (X)), )
where x is a vector of variables and m1 > 2 the number of
functions. The extended objective space f™ with M > m
objectives is given by

£ (x)
(2)
= (i), LX) es firu (K)o ()50, far (),
where f,,(x),..., fp;(x) are the additional M —m functions

used to evaluate solutions with preferred values in one or
more decision variables.

The aim of extending the objective space is bias selection
to include solutions with particular desired values for some
decision variables. However, it is also expected that evolution
in an expanded objective space would substantially increase
diversity of solutions, which could jeopardize convergence
of the algorithm in the original space and the expanded
space as well. Thus, in addition to an expanded space, we
also constraint the distance that solutions could be from the
instantaneous set of Pareto nondominated solutions com-
puted in the original space, as illustrated in Figurel. We
call these solutions as practically desirable solutions. In the
following we describe two methods that implement the
concept outlined above.
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2.2. Two-Population Concurrent Evolution. This method
evolves concurrently two populations in different objective
spaces as illustrated in Figure 2. Population A evolves in the
extended objective space f™ using an enhanced ranking
of solutions that prefers practically desirable solutions for
survival selection and parent selection. On the other hand,
Population B evolves in the original objective space f™.
The instantaneous set of Pareto nondominated solutions
computed in ™ from the Population B is incorporated into
Population A and used as a reference to establish the desir-
ability of solutions in Population A. Ranking for Population
A is enhanced by making it dependant on both front number
in the extended space f™

the original space f™™. This new ranking is used for survival
selection and parent selection as well. In this method, since
Population B evolves independently, a good convergence is
expected in the original space, which implies a reference for
desirability closer to the true Pareto front of the problem.
In addition, since the set of Pareto solutions in Population
B is copied to Population A, a high pressure towards the
Pareto optimal front of the extended space is also expect-
ed.

In this work, Population A evolves using NSGA-II
with the enhanced ranking and survival selection, whereas
Population B evolves using conventional NSGA-II [20].
In the following we explain survival selection and rank-
ing procedure used to evolve Population A, illustrated in
Figure 2.

and desirability with respect to

Step 1. Get a copy of the set of nondominated solutions from
Population B that evolves in the original space f™. Let us call
this set F™.

Step 2. Apply nondominated sorting to R:* UFl(m) in the space
F™ | where R* = P* U Q! is the combined population of
parents P/ and offspring Q?* evolving in the expanded space
£ Classify solutions into fronts Fl.(M) and rank solu-
tions according to the ith front they belong to, where i =
1,2,...,NF. Note that solutions in Fl(m) will be part of FI(M).

Step 3. Calculate the Euclidean distance, in the original
objective space f™™, between solutions in the fronts Fi(M) and
the set Ff"o. The distance from solution x € Fi(M) to Ff"‘)
is given by 8(x) = min [f™(x) - f"(y)l, y € F™.If
the distance §(x) is smaller than a threshold distance d then

solution x is marked as desirable. Otherwise, it is marked as
undesirable.

Step 4. Sort solutions by front rank and desirability. The front
number (rank) of desirable solutions remains the same, while
the front number of an undesirable solution initially classified
in front i is modified to i + NF, where NF is the number of
fronts initially obtained by nondominated sorting. That is,
undesirable solutions are penalized so that no undesirable
solution is assigned better rank than a desirable one, while
still differentiating among undesirable ones. Sorting by front
number and desirability is illustrated in Figure 1(b).

Step 5. Form the population P, for the next generation by
copying to it fronts Fi(M) in ascending order, starting with
front FI(M). If all solutions in Fl.(M) do not fit in Pt‘j‘rl (|P£1| =

IR?I /2), select the required number according to their crowd-
ing distance (less crowded is better). Since undesirable solu-
tions are penalized, as explained above, desirable solutions are
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given priority for survival and reproduction as well (better
rank than undesirable solutions).

2.3. Single Population. This method evolves a single pop-
ulation in the extended objective space f* as illustrated
in Figure 3. At each generation, it classifies solutions as
desirable if they are within a distance d of the instantaneous
set of Pareto optimal solutions computed from the same
population in the original space £ and enhances ranking
of solutions by making it dependant on both front number
in the extended space f* and desirability with respect to
the original space f™. This new ranking is used for survival
selection and parent selection as well.

In this work we evolve the population using NSGA-II [20]
with the enhanced ranking and survival selection illustrated
in Figure 3 and described as follows.

Step 1. Apply nondominated sorting to the combined popula-
tion R, of parents P, and offspring Q,, R, = P,UQ,, calculating
dominance among solutions in the extended space f*, clas-
sify solutions into fronts Fi(M), and rank solutions according
to the ith front they belong to, where i = 1,2,...,NF.

Step 2. Obtain the set of nondominated solutions in the orig-
inal space f™ from the combined population R,. Let us call
this set F™.

Step 3. Calculate the Euclidean distance between solutions
in the fronts Fl.(M) and the set Fl(m) and mark solutions as
desirable or undesirable as described in Step 3 of the previous
section. If the distance 8(x) is smaller than a threshold
distance d then solution x is marked as desirable. Otherwise,
it is marked as undesirable.

Step 4. Sort solutions by their desirability as described in Step
4 of the previous section.

Step 5. Form the population P, ; for the next generation as
described in Step 5 of the previous section.
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3. Test Problems, Performance Indicators, and
Experimental Setup

We study the performance of the algorithms in continuous
DTLZ2 and DTLZ3 functions [21]. These functions are
scalable in the number of objectives and variables and have
a nonconvex Pareto optimal surface that lies inside the first
quadrant of the unit hypersphere, with Pareto-local fronts
constructed parallel to it. DTLZ3 is a variation of DTLZ2
that introduces a large number of local Pareto optimal fronts
located far away from the true Pareto optimal set, which
increases the difficulty to converge towards the true Pareto
optimal set. Functions in DTLZ2 are unimodal, whereas
functions in DTLZ3 are multimodal.

In our experiments with the DTLZ problems we set the
number of objectives to m = {2,3} varying the number of
variables n = {5, 10, 15}. Thus, the original objective space is
given by £ = (f,, f,) and £ = (f,, f,, f5), respec-
tively. The original objective space is extended by adding two
functions to form f*, where M = m + 2. The two additional
functions are as follows:

Fmer = |xs = 03],
Fea = |xs = 0.4].

Here, the assumed desirable values for variable x5 are 0.3 and
0.4. Also, in this problem it is known that the optimal value for
x5 is 0.5. We set the threshold distance d = 10 to determine
the desirability of solutions with respect to Pareto optimal
solutions in £,

In addition to DTLZ functions, we also test the algorithms
on two formulations of a real world problem for tire design
optimization. Details about the problem are included in the
experimental section.

To evaluate convergence of solutions obtained by the
algorithms we use the generational distance (GD) [22], which
measures the distance of the obtained solutions to the true
Pareto front using (4), where P denotes a set solutions found
by the algorithm and x a solution in the set. Smaller values
of GD indicate that the set P is closer to the Pareto optimal

3)
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front. That is, smaller values of GD mean better convergence
of solutions.

. 1/2
GD = average [ (f: (x))2:| -1 (4)

xeP

i=1

We also use the €-metric [22] to compare sets of Pareto
nondominated solutions obtained by MOEAs and provide
complementary information on convergence. Let us denote
o and & to be the set of nondominated solutions found by
two algorithms. €(</, %) gives the fraction of solutions in
9 that are dominated at least by one solution in &/. More
formally,

[{be % |Jaecd:ax>Db}
|5 ’

where a > b indicates that a dominates b. €(<f, %) = 1.0
indicates that all solutions in 98 are dominated by solutions
in of, whereas €(</, B) = 0.0 indicates that no solution in
& is dominated by solutions in . Since usually € (<, B) +
G (B, d) + 1.0, both €(H, B) and €(RB, o) are required to
understand the degree to which solutions of one set dominate
solutions of the other set.

We study three algorithms, a conventional NSGA-II and
the two proposed methods explained in Section 2. We run the
algorithms 30 times and present average results, unless stated
otherwise. We use a different random seed in each run, but
all algorithms use the same seeds. The number of generations
is set to 1000 generations, parent, and offspring population
size |P,| = |Q,| = 2500. In case of the proposed method that
evolves two populations concurrently, |PtA| = |Qf| = 2250
for the search on the expanded space and IPtB | = IQi3 | =250
for the search on the original space. These settings are chosen
for comparison. A discussion on population size is included
in Section 4.5. As variation operators, the algorithms use SBX
crossover and polynomial mutation, setting their distribution
exponents to 7. = 15 and #,, = 20, respectively. Crossover
rate is pc = 1.0, crossover rate per variable is pev = 0.5, and
mutation rate per variable is pm = 1/n, where nis the number
of variables of the problem.

G (A, RB) = (5)

4. Simulation Results and Discussion

4.1. Results by Conventional NSGA-II. First, we run a conven-
tional NSGA-II to optimize the original space f™ = (f,, f,)
modifying the range of variable x5 to [0.29,0.41] from its
original range [0.0, 1.0], so that the search could focus on a
subregion that includes the practically desirable values 0.3
and 0.4 established by the designer for variable x5. Results for
DTLZ3 are shown in Figure 5 for m = 2 objectives and n = 5
variables. Note that the algorithms are able to find solutions
around x5 = 0.4, but not for x5 < 0.4.

This is because solutions around x; = 0.4 completely
dominate solutions x5 < 0.4. In addition, since the reduced
range of variable x5 does not include the value 0.5 no optimal
solutions are found. Thus, simply restricting the range of the
variables is not an appropriate option to induce practically
desirable solutions.

Then second, we run a conventional NSGA-II to optimize
DTLZ3 expanding its objective space from £ to f* in
order to investigate whether the simple addition of objectives
fomsr and f,,,, that try to favor a preferred region of variable
space is effective or not. Figure 6 shows results at the final
generation by conventional NSGA-II for DTLZ3 problem
with m = 2 objectives in the original objective space f™ =
(fi» fo) and M = 4 objectives in the expanded space ™.
Note that a large number of solutions can be found in the
range x; = [0.3,0.4] and some around x; = 0.5, as
shown in Figure 6(a). This shows that objectives f,,,, and
fomsn introduce trade-offs and work effectively to generate
solutions in the range that include the desirable values 0.3
and 0.4 for x;. However, these solutions are far away from
the Pareto optimal front as shown in Figure 6(b). This can
be seen more precisely in Figures 6(c) and 6(d) that zoom
in the region f; < 20 and f, < 20. Note that the Pareto
optimal front in this problem is located in the first quadrant
of the circle of radius one. In summary, no desirable solution
close to the optimal front could be found by conventional
NSGA-II just by including the additional functions to bias the
search towards a preferred region of variable space. In fact, no
solution, preferred or not, close to the Pareto optimal front,
could be found.

4.2. Results by Proposed Method Evolving Solutions Concur-
rently on the Original and Expanded Space. Figure 7 shows
results for DTLZ3 by the proposed method searching con-
currently on the original space £ = (fir fo)m=2,n=5,
and on the expanded space f™, M = 4, ranking solutions
by their desirability to bias survival and parent selection.
From Figure 7(a) it can be seen that the proposed method
effectively finds solutions around the two preferred values
x5 = 0.3 and x; = 0.4. In addition it also finds solutions
around x5 = 0.5, the value at which solutions become Pareto
optimal in this problem. Also, from Figure 7(b) note that the
solutions found are within the threshold distance d = 10
established as a condition for solutions desirability.

These solutions are valuable for the designer to analyze
alternatives that include practical manufacturing desirable
features in addition to optimality.

4.3. Comparison between Methods Incorporating Desirability
Sort. In this section we compare the two methods presented
in Section 2. These methods search on the extended space
£ incorporating two fitness functions f,,,,1) and f,,,) to
induce preferred solutions in variable space and a desirability
sort to favor solutions close to the Pareto optimal set in the
original space f™. The difference between these methods
is that one of them evolves a single population in the
extended space, whereas the other one evolves concurrently
an additional population in the original space.

Figure 4 shows the number of solutions that fall within
the desirable area at various generations of the evolutionary
process that is solutions located within a distance d = 10
of the instantaneous set of Pareto nondominated solutions
in £ Results are shown for DTLZ3 problem with m =
{2,3} original objectives varying the number of variables
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functions.

n = {5,10, 15}. Note that the method that evolves a single
population is able to find a considerable number of solutions
for two and three objective problems for n = 5 variables, but
it cannot do it for » = 10 and n = 15 variables. On the other
hand, the method that evolves concurrently a population in

the extended space and a population in the original space can
effectively find a large number of solutions for any number of
variables.

Figure 8 shows the generational distance (GD) over
the generations by the single population method and the
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proposed concurrent search method. Results are shown for
DTLZ3, m = 2 original objectives, M = 4 objectives in
the extended space, and n = {5,10, 15} variables. GD is
calculated separately grouping solutions around the preferred
values x; = 0.3 and x; = 0.4 and optimal value x5 = 0.5.
Solutions are considered within a group if the value of x5 is
in the range [x5 —0.005, x5 +0.005]. Similarly, Figure 9 shows
results for m = 3 original objectives and M = 5 objectives in
the extended space. From these figures, note that for the three
groups of solutions the method that searches concurrently in
the original space and in the extended space overall achieves
better (smaller) GD than the method that searches only in the
extended space using a single population. This clearly shows
that the concurrent search on the original space pulls the
population closer to the Pareto optimal front and achieves
better convergence in addition to finding solutions around
the preferred values in variable space.

4.4. Threshold Distance for Desirability. The threshold dis-
tance d used to determine desirability of solutions is a
parameter set by the user. With this parameter the user
establishes how much he is willing to trade optimality for
constructability of solutions. The designer often has some
idea of how to set this parameter. However, it can be used
to explore different scenarios by the designer and learn more
about the problem. To illustrate this, Figure 10 shows results
on a DTLZ2 by NSGA-II and by the proposed method
evolving concurrently in the original and extended space set
with two values of d. The DTLZ2 problem used here hasn = 5
variables, m = 2 objectives in the original space, and M = 4
in the extended space. The objective functions and preferred
values are the same as those set for DTLZ3.

From Figures 10(a) and 10(d) note that NSGA-II evolving
in the extended space is able to find solutions around the

TABLE 1: C-metric every hundred generations by proposed method
with d = 0.25 (algorithm A ) and NSGA-II (algorithm B).

T C(B,A)) C(A,,B)
100 0.66 0.93
200 0.65 0.94
300 0.66 0.94
400 0.67 0.93
500 0.66 0.93
600 0.66 0.94
700 0.66 0.94
800 0.66 0.94
900 0.67 0.93
1000 0.67 0.93

desired values x; = 0.3 and x; = 0.4, but many of those
solutions are too far away from the Pareto optimal front. By
setting d = 0.25, the proposed algorithm finds desirable
solutions around the preferred values in variable space closer
to optimality than NSGA-II. However, when d = 0.025 is
used solutions around 0.4 are found, but no solution around
0.3 can be found. This tells the designer that solutions very
close to optimality can be implemented if he is willing to
build his solutions around x; = 0.4. But he must trade
more optimality if he wants to build the solution around
x5 = 0.3. Tables 1 and 2 show the C-metric values comparing
solutions obtained by NSGA-II (algorithm B) with solutions
obtained by the proposed algorithm set with distance d =
0.25 (algorithm A,) and d = 0.025 (algorithm A,). From
these tables note that more than 93% of solutions found by
NSGA-II are dominated by solutions found by the proposed
method.
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DTLZ3 problem.

4.5. Population Size and Iterations. We choose the population
size 2500 for the benchmark problems because this setting
allows the single population approach to find a large number
of practically desirable solutions (PDS) on DTLZ3 with
n = 5 variables, around 90% for M = 4 and 44% for
M = 5, although this population size is not enough to
find PDS on problems with a larger number of variables.
For the concurrent search approach we set the overall
population size 2500 to compare with the single population
approach using similar settings. As shown in Tables 3-7, the
proposed concurrent approach scales up to problems with
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, M = 4. Original space f™ = (f,, f,), m = 2, n = 5. Final generation,

a larger number of variables and can use smaller popula-
tions.

We use a large number of iterations in order to compare
both algorithms after they have approached convergence.
However, the number of iterations can be reduced in the
concurrent approach and still achieve acceptable good per-
formance.

To clarify this, Table 3 shows the percentage of PDS
solutions in the final population for the single population
approach on M = 4 objectives (2 objectives in the original
space and 2 additional objectives in the extended space).
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Final generation, DTLZ3 problem.

TABLE 2: C-metric every hundred generations by proposed method
with d = 0.025 (algorithm A,) and NSGA-II (algorithm B).

TABLE 4: Percentage of PDS in the final population for the two-
population concurrent search approach on M = 4.

T C(B, A,) C(A,,B) Pop size n=>5 n=10 n=15

100 0.57 0.94 500 (450, 50) 100 93.8 3L.6

200 0.53 0.95 1000 (900, 100) 100 96.2 571

300 0.53 0.94 1500 (1350, 150) 100 99.6 75.3

400 0.53 0.94 2000 (1800, 200) 100 99.9 85.1

500 0.54 0.94 2500 (2250, 250) 100 100 85.2

600 0.54 0.94

700 0.54 0.94 TABLE 5: Percentage of PDS in the final population for the two-

800 0.53 0.94 population concurrent search approach on M = 5.

900 0.54 0.94 -

1000 0.53 0.94 Pop size n=10 n=15
1500 (1350, 150) 60.4 17.2
2000 (1800, 200) 68.4 21.7

TABLE 3: Percentage of PDS in the final population for the single 2500 (2250, 250) 64.9 26.8

population approach on M = 4.

Pop size n=>5 n=10 n=15
500 59.7 0
1000 64.1 0
1500 66.5 0 0
2000 68.0 0 0
2500 89.9 0.64 0

Results are shown for population sizes 500, 1000, 1500,
2000, and 2500 on DTLZ3 problems with n = 5, 10,
and 15 variables. Similarly, Table 4 shows results for the
two-population concurrent search approach. In general, a
reduction in population size or an increase in number of

TABLE 6: Percentage of PDS in the final population for the con-
current search approach changing the population ratio between
extended and original space. M = 4, overall population size |P| =
1000.

Percentage of population

on original space n=s n=10 n=15
5% (950, 50) 100 85.9 24.8
10% (900, 100) 100 96.2 571
15% (850, 150) 100 99.9 71.6

variables leads to a reduction in number of PDS the algorithm
finds. Note that the single population approach finds PDS
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FIGURE 8: GD over the generations by single population method and proposed concurrent search method. DTLZ3, m = 2 original objectives,
M = 4 objectives in the extended space, and n = {5,10, 15} variables. GD is calculated separately grouping solutions into three groups
according the preferred values x5 = 0.3, x; = 0.4 and optimal value x; = 0.5. Solutions are considered within a group if x; = 0.3 + 0.005,

x5 = 0.4 £ 0.005, or x5 = 0.5 + 0.005, respectively.

TABLE 7: Percentage of PDS in the final population for the con-
current search approach changing the population ratio between
extended and original space. M = 4, overall population size |P| =
2500.

Percentage of population

on original space n=> n=10 n=1
5% (2375, 125) 100 100 56.9
10% (2250, 250) 100 100 85.2
15% (2125, 375) 100 100 99.9

solutions for n = 5 only when population size is 2500. For
n = 10 and n = 15, not even a population size 2500 is
enough to find PDS. On the other hand, the two-population
concurrent approach can find PDS even inn = 15 with a small

population. Note that more than 30% of solutions are PDS for
n = 15 with an overall population size of 500.

Table 5 shows the percentage of PDS solutions in the final
population for the two-population concurrent approach on
M = 5 (3 objectives in the original space and 2 additional
objectives in the extended space). Results are shown for
population sizes 1500, 2000, and 2500 on DTLZ3 problems
with n = 10 and 15 variables. Note that increasing the number
of objectives and variables makes it harder for the algorithm
to find PDS solutions. This is because the underlying NSGA-
IT algorithm is less effective in larger dimensional spaces.
Nonetheless, the concurrent approach still can find 17.2%
PDS for population size 1500 and n = 15 variables. In order
to get more PDS population size in the original space should
be increased, as explained in Table 5. The single population
approach cannot find PDS on M = 5 objectives.
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FIGURE 9: GD over the generations by single population method and proposed concurrent search method. DTLZ3, m = 3 original objectives,
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x5 = 0.5 £ 0.005, respectively.

As mentioned above, we set the overall population size
to 2500 to compare with the single population approach.
For two and three objectives a population of 200 or 300 is
commonly used when we search for the Pareto optimal set.
Thus, we take this as reference and set the population size to
250 to search in the original space and assign the rest of the
overall population to the search in the extended space (2250).

To investigate whether smaller populations in the original
and extended space could work, Tables 6 and 7 show the
percentage of PDS solutions in the final population for the
two-population concurrent approach varying the population
ratio between the extended and original space on M = 4
objectives and n = {5, 10, 15} variables. Results are shown for
overall population sizes of 1000 and 2500, respectively. From
these tables note that it is crucial to increase the population in
the original space to an appropriate size in order to find more
PDS solutions rather than increasing the population in the

extended space. In general, population size in the extended
space should be larger than the population in the original
space because of the higher dimensionality of the extended
space. However, as shown here, it does not need to be too
large as the value 2500 used for comparison with the single
population approach.

The poor performance of the single population algo-
rithm in the extended spaces of 4 and 5 objectives can
be explained from the lack of scalability of the underlying
NSGA-II algorithm and the added complexity of finding PDS.
Dominance based algorithms, such as NSGA-II, show good
optimization performance for multiobjective optimization
problems with two or three objectives and are frequently
applied to optimize real world problems. However, it is
known in the literature that the optimization performance
of these kind of algorithms significantly deteriorate as we
increase the number of objective functions [23, 24]. A way
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problem. DTLZ2, m = 2 original objectives, M = 4 objectives in the extended space, and n = 5 variables.

to improve performance of these algorithms on problems
with 4 or more objectives is to increase the population size
[25, 26]. However, the inclusion of the PDS criteria adds to
the complexity of the problem and an increase in population
size is not enough, as we show in this work.

4.6. Real World Problem. We have also applied the methods
discussed above to tire design optimization. The simplest
formulation of the problem consists of 2 highly conflicting

objectives f = (f, f,) and 6 real-value design variables
X = (X}, %,,...,Xs, X¢), Where each variable is defined in the
range x; = [-r;,r;]. We run a conventional evolutionary

multiobjective optimization algorithm for 1000 generations
setting its population size to |P,| = |Q,| = 400 individuals.
The Pareto set found by the algorithm (POSF) is computed
from the population at the last generation. The POS” contains
a large number of solutions and the trade-offs in objective
space can be clearly seen in Figure 11(a), as expected by the
conflicting nature of the objectives. However, analysis of the
trade-offs in variable space shows that all solutions in the
POS” take extreme values for variables x; and xg, x5 =
-3 and x4 = 3, as shown in Figure 11(b). Tires with these
specifications can be constructed; however tires with x5 = 0

and x; = 0 are preferable because they are known to be
physically easier to build.

We tried to find solutions around the preferred values
by restricting the ranges for variables x5 and x,. However,
this approach did not work because the solutions obtained
are too far from optimality, similar to DTLZ3. Thus, no
trade-off design knowledge between tire performance and
tire constructability could be extracted.

Similar to benchmark problems, we extended the original
objective space =2 = (f,, f,) by adding two functions to
form fM=% = (f,, f,, f5» fo). The two additional functions
are as follows:

f3= |x5|, (6)

fa =% (7)

The threshold distance d = 5 used to sort practically
desirable solutions is specified by the designer based on
knowledge of how much he is prepared to sacrifice in
tire performance to favor its constructability. The methods
that extend the objective space to include preferred values
could find a large number of solutions close to optimality
with variables taking values in a broader range, including
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the practically preferred design values. The method that
evolves two populations concurrently, set with population
sizes IPtAI = IQ?I = 350 for the extended space and IPtBI =
IQi3 | = 50 for the original space, was more successful than
the single population approach set with population size |P,| =
|Q,| = 400. Solutions generated by the proposed approach are
shown in Figure 12. Note that both optimal and practically
desired solutions are obtained by the algorithm, as shown
in Figure 12(a), which include a large range of values for

x5 and x4, including values in the preferred regions around
x5 = xg = 0, as shown in Figure 12(b). These solutions have
proved useful to understand the trade-offs between high-
performance and easier to build tires, so that the decision-
maker can make an appropriate design decision.

If we color each individual on objective and variable
space based on the value of decision variables x5 and x4, we
can understand visually the trade-off between optimality and
constructability by making x5 and x4 values approach to 0,
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that is, the ranges on f; and f, values that we need to sacrifice
in order to ease the implementation or manufacturing of the
solution.

We also try the proposed two-population concurrent
evolution approach to solve a four-objective formulation of
the problem. The preferred plane of objective space is set to
£"=2) = (f,, f,). The extended space is formed by adding four
additional fitness functions, so £~ = (f,, f5, f3» fu> fo» fo)s
where f; and f; correspond to the third and fourth objective
of the problem definition and f; and f; are related to
preferred variables x; and x, that is f5 = |x;] and f, =
|x¢l. Figure 13 shows results by NSGA-II solving the four-
objective formulation f = (f;, f,, f3, f4) set with population
size |P,| = |Q,| = 400. Similarly, Figure 14 shows results
by the two-population approach optimizing in f*=9
(fi> f» f» fur f» f5) in population A set with |P| = 350 and
£=2) = (f,, f,) in population B set with |P| = 50.

From these figures note that the proposed method finds
solutions with better converge properties in the objective

plane of interest with desirable solutions within the estab-
lished range. In Figure 13, we obtained nondominated solu-
tions on a 6 objectives space by conventional NSGA-II.
Looking at Figure 13(a), note that now we have a suboptimal
trade-off in the plane f;- f,. In addition, we can see solutions
with values of decision variables that are easy to implement,
but there are many solutions distributed far from the Pareto
front on f,-f, subspace. So, we are not able to use these
setting which cannot be used for implementation because
the product will be of low quality. Using the two populations
approach, we could search the region of interest even if
the number of objective functions increases. By considering
the optimality of f; and f;, solutions with useful decision
variable values for implementation are obtained in the region
of interest.

Advanced formulations of this problem include more
objectives. In the future we would like to try this approach
using a many-objective optimizer [25] instead of the multi-
objective optimizer used in this work.
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5. Conclusions

In this work we proposed two methods to search practically
desirable solutions. The methods are based on an approach
that expands the objective space by incorporating additional
fitness functions associated with particular decision vari-
ables, aiming to find solutions around preferred values of
the chosen variables while searching for optimal solutions
in the original objective space. The first method evolves
concurrently two populations, one in the extended space
and the other one in the original space. The population that
evolves in the extended space uses an enhanced ranking for
survival selection and parent selection that is based on the
front number the solution belongs to in the expanded space
and its desirability with respect to Pareto optimal solutions
computed in the original space. The second method evolves a
single population on the expanded space using the enhanced
ranking for survival selection and parent selection of the first
method.

The proposed methods were compared with an algorithm
that simply restricts the range of decision variables around
the preferred values and an algorithm that expands the
space without constraining the distance from optimality. Our
experiments on benchmark problems showed that simply
restricting the range of variables is not effective in finding
practically desirable solutions. Also, just extending the space
without constraining the distance of solutions to the Pareto
optimal set in the original space is not effective either.
Among the two methods proposed, the one that evolves two
populations concurrently can effectively find a large number
of practically desirable solutions for 2 and 3 objectives in the
original space and 5, 10, and 15 variables. The method that
evolves only one population works relatively well just for 5
variables.

We also applied the algorithms discussed in this work to a
tire design optimization problem. Similar to the benchmark
problem, the method that evolves concurrently a population
in the original space and another one in the extended
space worked better. Solutions generated by the proposed
approach have proved useful to understand the trade-offs
between high-performance and easier to build tires, so that
the decision-maker can make an appropriate design decision.

In the future we would like to test the proposed approach-
es on other kinds of problems. Also, we would like to use
many-objective optimizers for the search on the extended
space, particularly for problem formulations where the orig-
inal space is already a many-objective optimization problem.
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