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The dynamics behaviors of Kaldor–Kalecki business cyclemodel with diffusion effect and time delay under theNeumann boundary
conditions are investigated. First the conditions of time-independent and time-dependent stability are investigated. Then, we
find that the time delay can give rise to the Hopf bifurcation when the time delay passes a critical value. Moreover, the normal
form of Hopf bifurcations is obtained by using the center manifold theorem and normal form theory of the partial differential
equation, which can determine the bifurcation direction and the stability of the periodic solutions. Finally, numerical results not
only validate the obtained theorems, but also show that the diffusion coefficients play a key role in the spatial pattern. With the
diffusion coefficients increasing, different patterns appear.

1. Introduction

Recently, business cycle, as one of the important economic
phenomena, has received attractive attentions due its widely
application in many fields such as economic decisions,
macroeconomic regulation, and market regulation [1–8]. In
order to understand the mechanisms of business cycle, many
models are proposed. One of the most famous business cycle
models is the Kaldor–Kalecki business cycle [9, 10], which is
described as 𝑑𝑌 (𝑡)𝜕𝑡 = 𝛼 [𝐼 (𝑌 (𝑡) , 𝐾 (𝑡)) − 𝛾𝑌 (𝑡)]𝑑𝐾 (𝑡)𝜕𝑡 = 𝐼 (𝑌 ((𝑡)) , 𝐾 (𝑡)) − 𝑞𝐾 (𝑡) , (1)

where 𝑌(𝑡) is the gross product, 𝐾(𝑡) is the capital stock at
time, 𝛼 is the adjustment coefficient in the goods market, 𝑞
is the depreciation rate of the capital stock, 𝛾 represents the
propensity to save, and 𝐼(𝑌(𝑡), 𝐾(𝑡)) is the investment. Under
this model, the dynamic behaviors are widely studied such as

stability, Hopf bifurcation, codimension-two bifurcation, and
chaos [9–15].

It is well known that diffusion effects of economic
activities are widespread phenomenon that existed all over
the world. As a result of the impact of the growth pole,
the diffusion effects are the main interactions in economic
activities. So, the diffusion effect should be considered in the
business cycle model. However, to the best of our knowledge,
there are very few works on this field. Inspired by the
observation, in this paper, based on the Kaldor–Kalecki
model, we propose a novel business cycle with diffusion effect
and time delay under the Neumann boundary conditions,
which is as follows:𝜕𝑌 (𝑡, 𝑥)𝜕𝑡 = 𝑑1Δ𝑌 (𝑡, 𝑥)+ 𝛼 [𝐼 (𝑌 (𝑡, 𝑥)) − 𝛽𝐾 (𝑡, 𝑥) − 𝛾𝑌 (𝑡, 𝑥)]𝜕𝐾 (𝑡, 𝑥)𝜕𝑡 = 𝑑2Δ𝐾 (𝑡, 𝑥) + 𝐼 (𝑌 ((𝑡 − 𝜏) , 𝑥))− (𝑞 + 𝛽)𝐾 (𝑡, 𝑥) ,

(2)
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with its initial and boundary conditions given as follows:𝜕𝑢1𝜕𝑥 = 𝜕V1𝜕𝑥 = 𝜕𝑢2𝜕𝑥 = 𝜕V2𝜕𝑥 = 0, 𝑡 > 0, 𝑥 ∈ 𝜕Ω𝑢𝑖 (𝑡, 𝑥) = 𝜙𝑖 (𝑡, 𝑥) , 𝑖 = 1, 2, 𝑡 ∈ [−𝜏, 0] , 𝑥 ∈ Ω
V𝑖 (𝑡, 𝑥) = 𝜙𝑖 (𝑡, 𝑥) , 𝑖 = 1, 2, 𝑡 ∈ [−𝜏, 0] , 𝑥 ∈ Ω, (3)

where 𝛼 > 0, 𝛽 > 0, 𝑞 ∈ (0, 1), 𝛾 ∈ (0, 1), and Ω is the market
capacity. There are three contributions of this paper:

(1) Based on the Kaldor–Kalecki model, we propose a
novel business cycle under the Neumann boundary
conditions. Our model is a spatial-temporal model,
which is more general than the existing models.

(2) The time-independent and time-dependent stability
are investigated.Moreover, the conditions of theHopf
bifurcation are obtained.

(3) It is found that the diffusion coefficients play a key role
in the spatial pattern. With the diffusion coefficients
increasing, different patterns appear.

The rest paper is organized as follows. In Section 2, the
time-independent stability, time-dependent stability, and the
existence of Hopf bifurcation are obtained. In Section 3, the
normal form of Hopf bifurcation is obtained. In Section 4,
numerical results are given to validate the obtained theorems.

2. Local Stability and Hopf
Bifurcation Analysis

Let (𝑌∗, 𝐾∗) be an equilibrium of (2) and 𝑢1(𝑡, 𝑥) = 𝑌(𝑡, 𝑥) −𝑌∗, 𝑢2(𝑡, 𝑥) = 𝐾(𝑡, 𝑥) − 𝐾∗, 𝑖(𝑢(𝑡, 𝑥)) = 𝐼(𝑢(𝑡, 𝑥)) − 𝐼∗, and𝑠 = 𝑆 − 𝑆∗; (2) can be rewrite as𝜕𝑢1 (𝑡, 𝑥)𝜕𝑡 = 𝑑1Δ𝑢1 (𝑡, 𝑥)+ 𝛼 [𝑖 (𝑢1 (𝑡, 𝑥)) − 𝛽𝑢2 (𝑡, 𝑥) − 𝛾𝑢1 (𝑡, 𝑥)]𝜕𝑢2 (𝑡, 𝑥)𝜕𝑡 = 𝑑2Δ𝑢2 (𝑡, 𝑥) + 𝑖 (𝑢1 ((𝑡 − 𝜏) , 𝑥))− (𝑞 + 𝛽) 𝑢2 (𝑡, 𝑥) .
(4)

Taking the Taylor expansion of 𝑖 at 0 yields𝑖 (𝑢) = 𝑐1𝑢 + 𝑐2𝑢2 + 𝑐3𝑢3 + ⋅ ⋅ ⋅ , (5)

where 𝑐1 = 𝑖󸀠(0), 𝑐2 = (1/2)𝑖󸀠󸀠(0), and 𝑐3 = (1/3!)𝑖󸀠󸀠󸀠(0).
The linear parts of (4) are as follows:𝜕𝑢1 (𝑡, 𝑥)𝜕𝑡 = 𝑑1Δ𝑢1 (𝑡, 𝑥) + 𝛼 (𝑐1 − 𝛾) 𝑢1 (𝑡, 𝑥)− 𝛼𝛽𝑢2 (𝑡, 𝑥)𝜕𝑢2 (𝑡, 𝑥)𝜕𝑡 = 𝑑2Δ𝑢2 (𝑡, 𝑥) + 𝑐1𝑢1 ((𝑡 − 𝜏) , 𝑥)− (𝑞 + 𝛽) 𝑢2 (𝑡, 𝑥) .

(6)

Then, the characteristic of (6) is𝜆𝑦 − 𝐷Δ𝑦 − 𝐿 (𝑒𝜆𝑦) = 0, 𝑦 ∈ dom (Δ) \ {0} . (7)

Following the method of [16], we define −𝑘2 (𝑘 ∈ R0 ={0, 1, 2, . . .}) as the eigenvalue of Δ under the Neumann
boundary conditions on the 𝑋. Let 𝛽1𝑘 = (𝛾𝑘, 0, )𝑇, 𝛽2𝑘 =(0, 𝛾𝑘)𝑇 be the corresponding eigenvectors, where 𝛾𝑘 =
cos (𝑘𝑥), 𝑘 = 0, 1, 2, . . .. We use {𝛽1𝑘, 𝛽2𝑘}∞𝑘=0 to construct a
basis of the phase space 𝑋. Then, 𝑦 can be expanded in the
following form of Fourier on𝑋:

𝑦 = ∞∑
𝑘=0

𝑌𝑘𝑇(𝛽1𝑘𝛽2𝑘𝛽3𝑘𝛽4𝑘),
𝑌𝑘 = (⟨𝑦, 𝛽1𝑘⟩⟨𝑦, 𝛽2𝑘⟩⟨𝑦, 𝛽3𝑘⟩⟨𝑦, 𝛽4𝑘⟩)

𝑇

.
(8)

Then, we have

𝐿(𝜙𝑇(𝛽1𝑘𝛽2𝑘𝛽3𝑘𝛽4𝑘)) = 𝐿(𝜙)𝑇(𝛽1𝑘𝛽2𝑘𝛽3𝑘𝛽4𝑘), 𝑘 ∈ 𝑁0. (9)

By (7)–(9), we can obtain

det([𝜆 + 𝑑1𝑘2 00 𝜆 + 𝑑2𝑘2]− [𝛼 (𝑐1 − 𝛾) −𝛼𝛽𝑐1𝑒−𝜆𝜏 − (𝑞 + 𝛽)]) = 0. (10)

The characteristic equation of (10) is as follows:

(𝜆 + 𝑑1𝑘2 − 𝛼 (𝑐1 − 𝛾) 𝛼𝛽−𝑐1𝑒−𝜆𝜏 𝜆 + 𝑑2𝑘2 + (𝑞 + 𝛽)) = 0. (11)

The characteristic equation of (11) is𝐹 (𝜆) = 𝜆2 + 𝜑1 (𝑘) 𝜆 + 𝜑2 (𝑘) + 𝛼𝛽𝑐1𝑒−𝜆𝜏, (12)

where𝜑1 (𝑘) = (𝑑1 + 𝑑2) 𝑘2 + 𝑞 + 𝛽 − 𝛼 (𝑐1 − 𝛾)𝜑2 (𝑘) = 𝑑1𝑑2𝑘4 + (𝑑1𝑞 + 𝑑1𝛽 − 𝑑2 (𝑐1 − 𝛾) 𝛼) 𝑘2− (𝑐1 − 𝛾) (𝑞𝛼 + 𝛼𝛽) . (13)
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Lemma 1. If 𝑐1 < 𝛾 holds, the positive equilibrium of system
(2) is locally stable at 𝜏 = 0.
Proof. For 𝜏 = 0, (12) can be rewrite as 𝐹(𝜆) = 𝜆2 + 𝜑1(𝑘)𝜆 +𝜑2(𝑘)+𝛼𝛽𝑐1. As 𝑐1 < 𝛾, 𝛼 > 0, 𝛽 > 0, 𝑞 ∈ (0, 1), and 𝛾 ∈ (0, 1),
one can obtain ∀𝑘 ∈ 𝑁, 𝜑1(𝑘) > 0 and 𝜑2(𝑘) + 𝛼𝛽𝑐1 >𝛼(𝛾 − 𝑐1)𝑞 + 𝛾𝑞 > 0 which means the roots of (12) have
negative part. Therefore, the positive equilibrium of system
(2) is locally stable at 𝜏 = 0. The proof is completed.

Substituting 𝜆 = 𝑖𝜔 into (12) and separating real parts and
imaginary parts yield𝛼𝛽𝑐1 cos𝜔𝜏 = 𝜔2 − 𝜑2 (𝑘)𝛼𝛽𝑐1 sin𝜔𝜏 = 𝜑1 (𝑘) 𝜔. (14)

According to sin2𝜔𝜏 + cos2𝜔𝜏 = 1, from (14), we have𝐹 (𝜔) = 𝜔4 + (𝜑21 (𝑘) − 2𝜑2 (𝑘)) 𝜔2 + 𝜑22 (𝑘) − (𝛼𝛽𝑐1)2= 0. (15)

By simple calculation, we have𝜑21 (𝑘) − 2𝜑2 (𝑘)= (𝛼 (𝛾 − 𝑐1) + 𝑑1𝑘2)2 + (𝑞 + 𝛽 + 𝑑2𝑘2)2 > 0𝜑22 (𝑘) − (𝛼𝛽𝑐1)2= (𝛼 (𝛾 − 𝑐1) + 𝑑1𝑘2)2 (𝑞 + 𝛽 + 𝑑2𝑘2)2 − (𝛼𝛽𝑐1)2 .
(16)

As 𝑑𝑖 > 0, 𝑖 = 1, 2, one can obtain𝜑22 (𝑘) − (𝛼𝛽𝑐1)2= (𝛼 (𝛾 − 𝑐1) + 𝑑1𝑘2)2 (𝑞 + 𝛽 + 𝑑2𝑘2)2 − (𝛼𝛽𝑐1)2> 𝛼2 (𝛾 − 𝑐1)2 (𝑞 + 𝛽)2 − (𝛼𝛽𝑐1)2 . (17)

It is easy to see if (𝛾−𝑐1)(𝑞+𝛽)−(𝛽𝑐1) > 0, (15) has no positive
roots. Combining with the Lemma 1, we have the following
theorem.

Theorem 2. If 𝑐1 < 𝛾 and (𝛾 − 𝑐1)(𝑞 + 𝛽) − (𝛽𝑐1) > 0, the
positive equilibrium of system (2) is locally stable for any 𝜏 > 0.

In the following, one investigates the conditions of Hopf
bifurcation of (2). By (14), one can obtain

cos𝜔𝜏 = 𝜔2 − 𝜑2 (𝑘)𝛼𝛽𝑐1
sin𝜔𝜏 = 𝜑1 (𝑘) 𝜔𝛼𝛽𝑐1 . (18)

By simple calculation, one has

𝑑𝜔𝑑𝑘= −(4𝑏1𝑘3 + 2𝑏2𝑘 + 𝑏3) 𝜔2 + 8𝑏4𝑘7 + 6𝑏5𝑘5 + 4𝑏6𝑘3 + 2𝑏7𝑘4𝜔3 + 2 (𝑏1𝑘4 + 𝑏2𝑘2 + 𝑏3) 𝜔< 0,
(19)

where 𝑏1 = 𝑎25 − 2𝑎1,𝑏2 = 2 (𝑎5𝑎6 − 𝑎2) ,𝑏3 = 𝑎26 + 2𝑎3,𝑏4 = 𝑎21 ,𝑏5 = 2𝑎1𝑎2,𝑏6 = 𝑎22 − 2𝑎1𝑎3,𝑏7 = −2𝑎2𝑎3,𝑏8 = 𝑎23 − 𝑎24 ,𝑎1 = 𝑑1𝑑2,𝑎2 = 𝑑1𝑞 + 𝑑1𝛽 − 𝑑2𝛼 (𝑐1 − 𝛾) ,𝑎3 = 𝛼 (𝑞 + 𝛽) (𝑐1 − 𝛾) ,𝑎4 = 𝛼𝛽𝑐1,𝑎5 = 𝑑1 + 𝑑2,𝑎6 = 𝑞 + 𝛽 − 𝛼 (𝑐1 − 𝛾) .

(20)

If 𝑐1 < 𝛾, by simple calculation, one can obtain 𝑏𝑖 > 0, 𝑖 =1, 2, ..., 7, and then one has 𝑑𝜔/𝑑𝑘 < 0. From (18), one has

tan𝜔𝜏 = 𝜑1 (𝑘) 𝜔𝜔2 − 𝜑2 (𝑘) . (21)

Taking the derivative of 𝑘 in (21), one can obtain

𝑑𝜏𝑑𝑘 = −( 11 + 𝑒0 (𝑒1𝜔 + 𝑒2𝑘6 + 𝑒3𝑘4 + 𝑒4𝑘2 + 𝑒5𝜔 )
+ 𝜏𝜔) 𝑑𝜔𝑑𝑘 + 11 + 𝑒0 (𝑒6𝜔2 + 𝑒7) , (22)
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where 𝑒0 = ( (𝑎5𝑘2 + 𝑎6) 𝜔𝜔2 − 𝑎1𝑘4 − 𝑎2𝑘2 + 𝑎3)2 > 0,𝑒1 = 𝑎5𝑘2 + 𝑎6 > 0,𝑒2 = 𝑎1𝑎5 > 0,𝑒3 = 𝑎2𝑎5 + 𝑎1𝑎6,𝑒4 = 𝑎2𝑎6 − 𝑎3𝑎5,𝑒5 = −𝑎3𝑎6,𝑒6 = 2𝑎5𝑘,𝑒7 = 2𝑎1𝑎5𝑘5 + 4𝑎1𝑎6𝑘3 + 2 (𝑎2𝑎6 + 𝑎3𝑎5) 𝑘.

(23)

If 𝑐1 < 𝛾, one can obtain 𝑎3 < 0; by simple calculation, one
can get 𝑒𝑖 > 0, 𝑖 = 0, 1, . . . , 7. Combining with 𝑑𝜔/𝑑𝑘 < 0,
one has 𝑑𝜏𝑑𝑘 > 0, (24)

which means 𝜏 increase with the increasing of 𝑘. So, 𝜏0 must
exist in 𝑘 = 0. Now, one considers the case 𝑘 = 0. Let 𝑧 = 𝜔2;
(18) with 𝑘 = 0 is as follows:𝐹 (𝑧) = 𝑧2 + (𝛼2 (𝛾 − 𝑐1)2 + (𝑞 + 𝛽)2) 𝑧+ 𝛼2 (𝛾 − 𝑐1)2 (𝑞 + 𝛽)2 − (𝛼𝛽𝑐1)2 . (25)

Since 𝛼2(𝛾−𝑐1)2+(𝑞+𝛽)2 > 0, (25) has only one positive root
of (25) if (𝛾 − 𝑐1)(𝑞 + 𝛽) − (𝛽𝑐1) < 0. Let 𝑧 be the positive root
of (25); then one can obtain 𝜔 = √𝑧𝜏0𝑗 = 1𝜔 arctan

𝜑1 (0) 𝜔𝜔2 − 𝜑2 (0) + 1𝜔𝑗𝜋, 𝑗 = 1, 2, . . . . (26)

By (26), one can obtain 𝜏0 = 𝜏00 .
Lemma 3 (see [16, 17]). Consider the exponential polynomial𝑃 (𝜆, 𝑒−𝜆𝜏, . . . , 𝑒−𝜆𝜏𝑚)= 𝜆𝑛 + 𝑃(0)1 𝜆𝑛−1 + ⋅ ⋅ ⋅ + 𝑃(0)𝑛−1𝜆 + 𝑃(0)𝑛+ [𝑃(1)1 𝜆𝑛−1 + ⋅ ⋅ ⋅ + 𝑃(1)𝑛−1𝜆 + 𝑃(1)𝑛 ] 𝑒−𝜆𝜏 + ⋅ ⋅ ⋅+ [𝑃(𝑚)1 𝜆𝑛−1 + ⋅ ⋅ ⋅ + 𝑃(𝑚)𝑛−1𝜆 + 𝑃(𝑚)𝑛 ] 𝑒−𝜆𝜏𝑚,

(27)

where 𝜏𝑖 ≥ 0 (𝑖 = 1, 2, . . . , 𝑚) and 𝑝(𝑖)𝑗 (𝑗 = 1, 2, . . . , 𝑚) are
constants. As (𝜏1, 𝜏2, . . . , 𝜏𝑚) vary, the sum of the order of the
zeroes of 𝑃(𝜆, 𝑒−𝜆𝜏, . . . , 𝑒−𝜆𝜏𝑚) in the open right half plane can
change only if a zero appears on or crosses the imaginary axis.

Theorem 4. According to Lemmas 1 and 3, one has the
following.

If 𝑐1 < 𝛾 and (𝛾 − 𝑐1)(𝑞 + 𝛽) − (𝛽𝑐1) < 0 holds, system (2)
is asymptotically stable for 𝜏 ∈ [0, 𝜏0). System (2) undergoes a

Hopf bifurcation at the origin when 𝜏 = 𝜏0; that is, system (2)
has a branch of periodic solutions bifurcating from the trivial
solution near 𝜏 = 𝜏0.
Remark 5. By incorporate diffusion effect into the Kaldor–
Kalecki model of business cycle, a novel Kaldor–Kalecki
model of business cycle with diffusion effect and time delay
is proposed. Our model is a spatial-temporal model, which is
more general than the existing business cycle [8, 9].

3. Direction and Stability of
the Hopf Bifurcation

In this section, we give the normal form of Hopf bifurcation
of (2) by using the method of [16, 18]. Let 𝜗 = 𝜏 − 𝜏0 and
normalize 𝜏 by 𝑡 → 𝑡/𝜏; (2) can be rewritten as𝑅̇ (𝑡) = 𝜏0𝐷𝑈 (𝑡) + 𝐿 (𝜏0) (𝑈 (𝑡)) + 𝐹 (𝑈 (𝑡) , 𝜗) , (28)

where 𝐷 = diag (𝐷1, 𝐷2) ,𝐿 (𝜏0) (𝜑) = 𝜏0 (𝐵0𝜑 (0) + 𝐵1𝜑 (−𝜏)) ,𝐵0 = [𝛼ℎ −𝛼𝛽0 − (𝑞 + 𝛽)]𝐵1 = [0 0𝑐1 0] .𝐹 (𝜑, 𝜗) = 𝜗𝐷Δ𝜑 (0) + 𝐿 (𝜗) (𝜑) + 𝑓∗ (𝜑, 𝜗)𝑓∗ (𝜑, 𝜗) = (𝜏0 + 𝜗)(𝛼𝑐2𝜑21 (0) + 𝛼𝑐3𝜑31 (0)𝑐2𝜑21 (−1) + 𝑐3𝜑31 (−1)) ,𝑐1 = 𝑖󸀠 (0) ,𝑐2 = 12 𝑖󸀠󸀠 (0) ,𝑐3 = 13 𝑖󸀠󸀠󸀠 (0) .

(29)

For 𝜑 = (𝜑1, 𝜑2)𝑇 ∈ 𝜁, from Theorem 2, we knowΛ 0(−𝑖𝜔0𝜏0, 𝑖𝜔0𝜏0) are the eigenvalues of the linear part of
(28): 𝑈̇ (𝑡) = 𝜏0𝐷𝑢 (𝑡) + 𝐿 (𝜏0) (𝑢 (𝑡)) , (30)𝑧̇ (𝑡) = 𝐿 (𝜏0) (𝑧𝑡) , (31)

where 𝐿(𝜏0) is one parameter family of bounded linear
operator in 𝐶 fl 𝐶([−1, 0]R2) intoR2.

Following the method of [16], we define 𝜂(𝜃, 𝜏) for 𝜃 ∈[−1, 0], such that𝐿∗ (𝜏0) (𝜑) = ∫0
−1

𝑑𝜂 (𝜃, 𝜏0) 𝜑 (𝜃) , 𝜑 ∈ 𝐶, (32)

where 𝜂 (𝜃, 𝜏0) = (𝜏0 + 𝜗) [𝐵0𝛿 (𝜃) + 𝐵1𝛿 (𝜃 + 1)] . (33)𝛿(𝜃) is Drac-delta function.
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Let 𝐴(𝜏0) be the infinitesimal generator of the semigroup
induce by the solution of (28) and 𝐴∗ denote the formal
adjoint of 𝐴(𝜏0) under the bilinear pairing; we have⟨𝜓, 𝜑⟩ = 𝜓 (0) ⋅ 𝜑 (0)− ∫0

𝜃=−1
∫𝜃
𝜉=0

𝜓 (𝜉 − 𝜃) 𝑑𝜂 (𝜃) 𝜙 (𝜉) 𝑑𝜉, (34)

for 𝜙 ∈ 𝐶, 𝜓 ∈ 𝐶∗ = 𝐶([0, 1],R2). Then 𝐴(𝜏0) and 𝐴∗ are a
pair of adjoint operators.

It is not hard to see that 𝑖𝜏0𝜔0 is an eigenvalue of𝐴(𝜏0) and−𝑖𝜏0𝜔0 is an eigenvalue of 𝐴∗. Define 𝑞1(𝜃) = (1, 𝛼1)𝑇𝑒𝑖𝜔0𝜏0𝜃
and 𝑞2(𝜃) = 𝑞1(𝜃); then, one can obtain𝐴𝑞1 (0) = 𝑖𝜔0𝜏0𝑞1 (0) . (35)

Then, we have 𝛼1 = 𝛼ℎ − 𝑖𝜔0𝜏0𝛼𝛽 = 𝛼11 + 𝑖𝛼12, (36)

where 𝛼11 = 𝛼ℎ𝛼𝛽 ,𝛼12 = −𝜔0𝜏0𝛼𝛽 . (37)

Define 𝑞∗1 (𝜃∗) = (1, 𝛽1)𝑇𝑒−𝑖𝜔0𝜏0𝜃∗ and 𝑞∗2 (𝜃∗) = 𝑞∗1 (𝜃∗);
then, one can obtain𝐴∗𝑞∗1 (0) = −𝑖𝜔0𝜏0𝑞∗1 (0) . (38)

Then, we have 𝛽1 = 𝛽11 + 𝑖𝛽12, (39)

where 𝛽11 = −𝛼ℎ cos𝜔0𝜏0 − sin𝜔0𝜏0𝜔0𝜏0𝑐1 ,
𝛽12 = −𝜔0𝜏0 cos𝜔0𝜏0 + sin𝜔0𝜏0𝛼ℎ𝑐1 . (40)

Let 𝑢(𝜃) = (𝑢1(𝜃), 𝑢2(𝜃)) and V(𝜃) = (V1(𝜃), V2(𝜃))𝑇 with𝑢1 (𝜃) = 𝑞1 (𝜃) + 𝑞2 (𝜃)2= (Re {𝑒𝑖𝜔0𝜏0𝜃} ,Re {𝛼1𝑒𝑖𝜔0𝜏0𝜃})= ( cos𝜔0𝜏0𝜃𝛼11 cos𝜔0𝜏0𝜃 − 𝛼12 sin𝜔0𝜏0𝜃)𝑢2 (𝜃) = 𝑞1 (𝜃) − 𝑞2 (𝜃)2𝑖= (lim {𝑒𝑖𝜔0𝜏0𝜃} , lim {𝛼1𝑒𝑖𝜔0𝜏0𝜃})= ( sin𝜔0𝜏0𝜃𝛼11 sin𝜔0𝜏0𝜃 + 𝛼12 cos𝜔0𝜏0𝜃)
(41)

for 𝜃 ∈ [−1, 0] and
V1 (𝜃∗) = 𝑞∗1 (𝜃∗) + 𝑞∗2 (𝜃∗)2= (Re {𝑒−𝑖𝜔0𝜏0𝜃∗} ,Re {𝛽1𝑒−𝑖𝜔0𝜏0𝜃∗})= ( cos𝜔0𝜏0𝜃∗𝛽11 cos𝜔0𝜏0𝜃∗ + 𝛽12 sin𝜔0𝜏0𝜃∗)
V2 (𝜃∗) = 𝑞∗1 (𝜃∗) − 𝑞∗2 (𝜃∗)2𝑖= (lim {𝑒−𝑖𝜔0𝜏0𝜃∗} , lim {𝛽1𝑒−𝑖𝜔0𝜏0𝜃∗})= ( sin𝜔0𝜏0𝜃∗−𝛽11 sin𝜔0𝜏0𝜃∗ + 𝛽12 cos𝜔0𝜏0𝜃∗)

(42)

for 𝜃∗ ∈ [−1, 0].
In the following, we define (𝑢, V∗) = (𝑢𝑗, V∗𝑘) 𝑗, 𝑘 = 1, 2

and construct a new basis V

V = (V1, V2) = (V∗, 𝑢)−1 V∗. (43)

Let 𝑓𝑘 = (𝛽1𝑘 𝛽2𝑘) and 𝑐 ⋅ 𝑓0 = 𝑐1𝛽10 + 𝑐2𝛽20 for 𝑐 = (𝑐1, 𝑐2)𝑇 ∈ 𝜁;
the center space of linear equation (30) is given by𝑃𝐶𝑁𝜁∗ = 𝑢 (V, ⟨𝜑, 𝑓𝑘⟩) ⋅ 𝑓𝑘 𝜑 ∈ 𝜁∗. (44)

And 𝜁∗ = 𝑃𝐶𝑁𝜁∗ ⊕ 𝑄, where 𝑄 denotes the complement
subspace of 𝑃𝐶𝑁𝜁∗ in 𝜁∗.

As 𝐴(𝜏0) is the infinitesimal generator induced by the
solution of (32), then (28) can be rewritten as𝑈̇ (𝑡) = 𝐴𝜏0𝑈 (𝑡) + 𝑋0𝐹 (𝑈𝑡, 𝜗) , (45)

where 𝑋0 (𝜃) = {{{0, −1 ≤ 𝜃 < 0𝐼 𝜃 = 0. (46)

By using the decomposition 𝜁∗ = 𝑃𝐶𝑁𝜁∗ ⊕ 𝑄 and (45), (30)
can be written as𝑈 (𝑡) = 𝑈(𝑥1 (𝑡)𝑥2 (𝑡)) ⋅ 𝑓𝑘 + ℎ (𝑥1, 𝑥2, 𝜗) , (47)

where (𝑥1(𝑡), 𝑥2(𝑡))𝑇 = (V, ⟨𝑈(𝑡), 𝑓𝑘⟩), ℎ(𝑥1, 𝑥2, 𝜗) ∈ 𝑄, andℎ(0, 0, 0) = 𝐷ℎ(0, 0, 0) = 0. By using center manifold, we can
obtain 𝑈 (𝑡) = 𝑢(𝑥1 (𝑡)𝑥2 (𝑡)) ⋅ 𝑓𝑘 + ℎ (𝑥1, 𝑥2, 0) . (48)

Let 𝑧 = 𝑥1 − 𝑖𝑥2 and 𝑞1 = 𝑢1 + 𝑖𝑢2, from (48), we can obtain𝑅 (𝑡) = 12 (𝑞1𝑧 + 𝑞1𝑧) ⋅ 𝑓𝑘 + 𝑊(𝑧, 𝑧) , (49)
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where𝑊(𝑧, 𝑧) = ℎ ((𝑧 + 𝑧)2 , 𝑖 (𝑧 − 𝑧)2 , 0)
≜ 𝑊20 (𝑧22 ) + 𝑊11𝑧𝑧 + 𝑊02 (𝑧22 ) + ⋅ ⋅ ⋅ . (50)

Following [18], we have𝑧̇ = 𝑖𝜔0𝜏0𝑧 + 𝑔 (𝑧, 𝑧) , (51)

where 𝑔 (𝑧, 𝑧) = (V1 − 𝑖V2) ⟨𝑓 (𝑈 (𝑡) , 0) , 𝑓𝑘⟩≜ 𝑔20 𝑧22 + 𝑔11𝑧𝑧 + 𝑔20 𝑧22 + ⋅ ⋅ ⋅ (52)

for V(0) = (V1(0), V2(0))𝑇.
By calculation, from (52), we have⟨𝑓 (𝑅 (𝑡) , 0) , 𝑓𝑘⟩ = 𝜏04 1𝜋 ∫𝜋

0
cos3𝑘𝑥 𝑑𝑥(𝑑11𝑑21) 𝑧22+ 𝜏04 1𝜋 ∫𝜋
0
cos3𝑘𝑥 𝑑𝑥(𝑑12𝑑22)𝑧𝑧

+ 𝜏04 1𝜋 ∫𝜋
0
cos3𝑘𝑥 𝑑𝑥(𝑑13𝑑23) 𝑧22+ 𝜏02 (𝑑14𝑑24) 𝑧2𝑧2 ,

(53)

where𝑑11 = 𝑎𝑐2,𝑑12 = 𝑐2𝑒−𝑖𝜔0𝜏0 ,𝑑21 = 𝑎𝑐2,𝑑22 = 𝑐2𝑒−𝑖𝜔0𝜏0𝑑31 = 𝑎𝑐2,𝑑32 = 𝑐2𝑒−𝑖𝜔0𝜏0𝑑41 = 𝑎𝑐2 ⟨(2𝑊(1)11 (0) + 𝑊(1)20 (0)) cos 𝑘𝑥, cos 𝑘𝑥⟩+ 14𝑎𝑐3 1𝜋 ∫𝜋
0
cos4𝑘𝑥 𝑑𝑥𝑑42 = 𝑐2 ⟨(2𝑊(1)11 (0) 𝑒−𝑖𝜔0𝜏0 + 𝑊(1)20 (0) 𝑒𝑖𝜔0𝜏0)⋅ cos 𝑘𝑥, cos 𝑘𝑥⟩ + 14𝑐3 1𝜋 ∫𝜋

0
cos4𝑘𝑥 𝑑𝑥⟨𝑊𝑛𝑖𝑗 (𝜃) , cos 𝑘𝑥⟩ = 1𝜋 ∫𝜋

0
𝑊𝑛𝑖𝑗 (𝜃) (𝑥) 𝑑𝑥,𝑖 + 𝑗 = 2, 𝑛 = 1, 2, 3, 4.

(54)

It is easy to see (1/𝜋) ∫𝜋
0
cos3𝑘𝑥 𝑑𝑥 = 0 when 𝑘 ̸= 0.

Let(𝜌1, 𝜌2) = V1(0)−𝑖V2(0); compare the coefficients with (52);
we can obtain𝑔20 = {{{0 𝑘 = N𝜏4 (𝑑11𝜌1 + 𝑑21𝜌2) 𝑘 = 0

𝑔11 = {{{0 𝑘 = N𝜏4 (𝑑12𝜌1 + 𝑑22𝜌2) 𝑘 = 0
𝑔02 = {{{0 𝑘 = N𝜏4 (𝑑13𝜌1 + 𝑑23𝜌2) 𝑘 = 0.𝑔21 = 𝜏2 (𝑑14𝜌1 + 𝑑24𝜌2)

(55)

Because of 𝑊20(𝜃) and 𝑊11(𝜃) in the 𝑔21, we need to
determine them. It follows from (52) that𝑊̇ (𝑧, 𝑧) = 𝑊20𝑧𝑧̇ + 𝑊11𝑧̇𝑧 + 𝑊11𝑧𝑧̇ + 𝑊02𝑧𝑧̇+ ⋅ ⋅ ⋅ , (56)

𝐴𝜏0𝑊̇ (𝑧, 𝑧) = 𝐴𝜏0𝑊20 𝑧22 + 𝐴𝜏0𝑊11𝑧𝑧 + 𝐴𝜏0𝑊02 𝑧22+ ⋅ ⋅ ⋅ . (57)

According to [18], we have𝑊̇ = 𝐴𝜏0𝑊 + 𝐻(𝑧, 𝑧) , (58)
where 𝐻(𝑧, 𝑧) = 𝐻20 𝑧22 + 𝐻11𝑧𝑧 + 𝐻02 𝑧22 + ⋅ ⋅ ⋅= 𝑋0𝑓 (𝑈 (𝑡) , 0)− 𝑢 (V, ⟨𝑋0𝑓 (𝑈 (𝑡) , 0) , 𝑓𝑘⟩) ⋅ 𝑓𝑘. (59)

By comparing (56), (58), and (59), we have(𝐴𝜏0 − 2𝑖𝜔0𝜏0)𝑊20 (𝜃) = −𝐻20 (𝜃) ,𝐴𝜏0𝑊11 (𝜃) = −𝐻11 (𝜃) . (60)

Expanding (59), we can obtain𝐻(𝑧, 𝑧) = −12 [𝑞1 (𝜃) 𝑔20 + 𝑞2 (𝜃) 𝑔02] ⋅ 𝑓𝑘 𝑧22− 12 [𝑞1 (𝜃) 𝑔11 + 𝑞2 (𝜃) 𝑔11] ⋅ 𝑓𝑘𝑧𝑧 + ⋅ ⋅ ⋅ . (61)

According to (60), the following can be obtained:𝐻20 (𝜃) = {{{{{0 𝑘 ∈ N−12 [𝑞1 (𝜃) 𝑔20 + 𝑞2𝑔11 (𝜃)] ⋅ 𝑓0 𝑘 = 0
𝐻11 (𝜃) = {{{{{0 𝑘 ∈ N−12 [𝑞1 (𝜃) 𝑔11 + 𝑞2𝑔11 (𝜃)] ⋅ 𝑓0 𝑘 = 0.

(62)
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According to (60), (62), and 𝑞1(𝜃) = 𝑞1(0)𝑒𝑖𝜔0𝜏0 , we can obtain𝑊20 (𝜃) = 12 [ 𝑖𝑔20𝜔0𝜏0 𝑞1 (𝜃) + 𝑖𝑔203𝜔0𝜏0 𝑞2 (𝜃)] ⋅ 𝑓𝑘+ 𝐸1𝑒2𝑖𝜔0𝜏0𝜃𝑊11 (𝜃) = 12 [−𝑖𝑔11𝜔0𝜏0 𝑞1 (𝜃) + 𝑖𝑔11𝜔0𝜏0 𝑞2 (𝜃)] ⋅ 𝑓𝑘 + 𝐸2, (63)

where 𝐸1 = (𝐸(1)1 , 𝐸(2)1 ) ∈ R2, 𝐸2 = (𝐸(1)2 , 𝐸(2)2 ) ∈ R2, and𝐸1, 𝐸2 are constant vector.
In order to seek appropriate 𝐸1, 𝐸2, we can obtain the

following by the definition of 𝐴𝜏0 and (60)𝐻20 (0) = 2𝑖𝜔0𝜏0𝑊20 (0) − 𝜏0𝐷Δ𝑊20 (0)− 𝐿 (𝜏0)𝑊20 (𝜃)𝐻11 (0) = −𝜏0𝐷Δ𝑊11 (0) − 𝐿 (𝜏0)𝑊11 (𝜃) , (64)

where𝐻20 (0)
= {{{{{

𝜏04 (𝑑11, 𝑑21)𝑇 cos2𝑘𝑥 𝑘 ∈ N𝜏04 (𝑑11, 𝑑21)𝑇 − 12 [𝑞1 (0) 𝑔20 + 𝑞2 (0) 𝑔02] ⋅ 𝑓𝑘 𝑘 = 0𝐻11 (0)
= {{{{{

𝜏04 (𝑑12, 𝑑22)𝑇 cos2𝑘𝑥 𝑘 ∈ N𝜏04 (𝑑12, 𝑑22)𝑇 − 12 [𝑞1 (0) 𝑔11 + 𝑞2 (0) 𝑔11] ⋅ 𝑓𝑘 𝑘 = 0.
(65)

Then, we can obtain𝐸1 = 14 (2𝑖𝜔0 + 𝑑1𝑘2 − 𝛼 (𝑐1 − 𝛾) 𝛼𝛽−𝑐1𝑒−2𝑖𝜔0𝜏 2𝑖𝜔0 + 𝑑2𝑘2 + (𝑞 + 𝛽))−1⋅ (𝑑11𝑑21) cos2𝑘𝑥
𝐸2 = 14 (𝑑1𝑘2 − 𝛼 (𝑐1 − 𝛾) 𝛼𝛽−𝑐1 𝑑2𝑘2 + (𝑞 + 𝛽))−1⋅ (𝑑11𝑑21) cos2𝑘𝑥.

(66)

Now, we can calculate 𝑊20(𝜃) and 𝑊11(𝜃); 𝑔21 is also
expressed, and then the following important parameter can
be obtained𝐶1 (0) = 𝑔212 ,𝜇2 = − Re {𝐶1 (0)}

Re {𝜆󸀠 (𝜏0)} ,𝛽2 = 2Re {𝐶1 (0)} ,𝑇2 = − Im {𝐶1 (0)} + 𝜇2Im {𝜆󸀠 (𝜏0)}𝜔0𝜏0 .
(67)

Theorem 6. ByTheorem 4, one has the following results:

(i) The sign of 𝜇2 can determine the direction of Hopf
bifurcation: if 𝜇2 > 0 (𝜇2 < 0), the Hopf bifurcation is
supercritical (subcritical) and the bifurcating periodic
solution exists for 𝜏 > 𝜏0 (𝜏 < 𝜏0).

(ii) The sign of 𝛽2 determines the stability of the bifurcating
periodic solutions: if 𝛽2 < 0, (𝛽2 > 0) the bifurcation
periodic solutions are stable (unstable).

(iii) The sign of 𝑇2 determines the period of the bifurcating
periodic solutions: if 𝑇2 > 0 (𝑇2 < 0) the period
increases (decreases).

4. Numerical Simulations

In this section, two simulations are given to validate the
obtained theorems. Let 𝑑1 = 𝑑2 = 0.1, 𝛼 = 3, 𝛽 = 0.2,𝛾 = 0.25, 𝑞 = 0.05, 𝑖(𝑌(𝑡, 𝑥)) = 𝑒𝑌(𝑡,𝑥)/(1 + 𝑒𝑌(𝑡,𝑥)), and system
(2) can be rewrite as follows:𝜕𝑌 (𝑡, 𝑥)𝜕𝑡= 0.1 ∗ Δ𝑌 (𝑡, 𝑥)+ 3( 𝑒𝑌(𝑡,𝑥)1 + 𝑒𝑌(𝑡,𝑥) − 0.2𝑌 (𝑡, 𝑥) − 0.25𝐾 (𝑡, 𝑥))𝜕𝐾 (𝑡, 𝑥)𝜕𝑡= 0.1 ∗ Δ𝐾 (𝑡, 𝑥) + 𝑒𝑌(𝑡,𝑥)1 + 𝑒𝑌(𝑡,𝑥) − 0.25𝐾 (𝑡, 𝑥) ,

(68)

theNeumann boundary conditions of system (2) is as follows:𝜕𝑢1𝜕𝑥 = 𝜕V1𝜕𝑥 = 𝜕𝑢2𝜕𝑥 = 𝜕V2𝜕𝑥 = 0, 𝑡 > 0, 𝑥 ∈ 𝜕Ω, (69)

and the initial conditions is as follows:𝑢1 (𝑡, 𝑥) = V1 (𝑡, 𝑥) = 𝑢2 (𝑡, 𝑥) = V2 (𝑡, 𝑥) = 0.1. (70)

By simple calculations, we can obtain the equilibrium is(0.498, 2.489), 𝑐1 < 𝛾 (𝛾 − 𝑐1)(𝑞 + 𝛽) − (𝛽𝑐1) = −0.0198 <0, 𝜔0 = 0.366, and 𝜏0 ≈ 2.3805. Consider 𝜏 = 2.2 < 𝜏0,
by Theorem 4, system (2) is asymptotically stable, which is
verified in Figures 1 and 2.

Consider 𝜏 = 2.6 > 𝜏0; byTheorem 4, system (2) is unsta-
ble and a Hopf bifurcation occurs. By simple calculation, we
can obtain the parameter 𝐶1(0) = 7.0694 − 0.892020𝑖, 𝜇2 =7.3686 > 0, and𝛽2 = 14.1388 > 0whichmeansHopf bifurca-
tion is supercritical since 𝜇2 > 0. The simulations are shown
in Figures 3 and 4, which indicate that there is a stable limit
cycle.

In the following, we investigate the effect of diffusion on
the dynamics of system (2). Let 𝑑𝑖 = 0.1, 0.5 and 𝜏 = 2.8 > 𝜏0;
the diagrams are shown in Figures 4–7. From Figure 4, we
can see that system (2) have a periodic solutionwhen𝑑𝑖 = 0.1.
With 𝐷 increasing to 0.5, the periodic solution disappear,
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Figure 1: The temporal solution of system (2) with 𝜏 = 2.2.
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Figure 2: The temporal solution of system (2) with 𝜏 = 2.2, 𝑥 = 5.
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Figure 3: The periodic solutions diagram of system (2) with 𝜏 = 2.6.
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Figure 4: The periodic solutions diagram of system (2) with 𝜏 = 2.6, 𝑥 = 5.
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Figure 6: The temporal solution of system (2) with 𝜏 = 2.6, 𝑑𝑖 = 0.5.
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system (2) becomes divergent, which is shown in Figure 6.
Moreover, from Figures 5–7, we can see that the spatial
pattern with 𝑑𝑖 = 0.1 is different from the spatial pattern with𝑑𝑖 = 0.5. To summarize, it can be seen the diffusion coefficient
affects the pattern formation of system (2).

5. Conclusions

It is well known that diffusion effects of economic activities
are widespread phenomenon that existed all over the world.
As a result of the impact of the growth pole, the diffusion
effects are the main interactions in economic activities. So,
the diffusion effect should be considered in the business cycle
model. In this paper, we consider a Kaldor–Kalecki business
cycle model with diffusion effect and time delay under the
Neumann boundary conditions. First the time-independent
and time-dependent stability are investigated. Then, we find
that the time delay can give rise to the Hopf bifurcation when
the time delay passes a critical value. Moreover, the normal
form of Hopf bifurcation is obtained. Finally, numerical
results not only validate the obtained theorems, but also show
that the diffusion coefficients play a key role in the spatial
pattern. With the diffusion coefficients increasing, different
patterns appear.
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