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Abstract: Protein–protein interactions (PPIs) execute many fundamental cellular functions and have
served as prime drug targets over the last two decades. Interfering intracellular PPIs with small
molecules has been extremely difficult for larger or flat binding sites, as antibodies cannot cross
the cell membrane to reach such target sites. In recent years, peptides smaller size and balance of
conformational rigidity and flexibility have made them promising candidates for targeting challenging
binding interfaces with satisfactory binding affinity and specificity. Deciphering and characterizing
peptide–protein recognition mechanisms is thus central for the invention of peptide-based strategies to
interfere with endogenous protein interactions, or improvement of the binding affinity and specificity
of existing approaches. Importantly, a variety of computation-aided rational designs for peptide
therapeutics have been developed, which aim to deliver comprehensive docking for peptide–protein
interaction interfaces. Over 60 peptides have been approved and administrated globally in clinics.
Despite this, advances in various docking models are only on the merge of making their contribution
to peptide drug development. In this review, we provide (i) a holistic overview of peptide drug
development and the fundamental technologies utilized to date, and (ii) an updated review on
key developments of computational modeling of peptide–protein interactions (PepPIs) with an aim
to assist experimental biologists exploit suitable docking methods to advance peptide interfering
strategies against PPIs.

Keywords: binding site; docking; Interface; modeling; peptide; peptide–protein interaction;
protein–protein interaction; scoring

1. Introduction

Delivering drugs specifically to patient neoplasms is a major and ongoing clinical challenge.
Function-blocking monoclonal antibodies were first proposed as cancer therapies nearly four decades
ago. The large size of these molecules hindered their commercial development so that the first antibody
or antibody-fragment therapies were only commercialized for cancer therapeutics and diagnostics
20 years later [1,2]. A classic development during this period, a radiolabelled peptide analog of
somatostatin (SST) was used to target neuroendocrine tumors expressing the SST receptor instead of
targeting the receptor with an antibody [3]. The concept of using a peptide as a targeting moiety for
cancer diagnosis and treatment has since led to current peptide drug developments in both academia
and pharmaceutical industries. In addition to cancer treatments, peptides that mimic natural peptide

Int. J. Mol. Sci. 2019, 20, 2383; doi:10.3390/ijms20102383 www.mdpi.com/journal/ijms

http://www.mdpi.com/journal/ijms
http://www.mdpi.com
https://orcid.org/0000-0002-1601-6555
http://www.mdpi.com/1422-0067/20/10/2383?type=check_update&version=1
http://dx.doi.org/10.3390/ijms20102383
http://www.mdpi.com/journal/ijms


Int. J. Mol. Sci. 2019, 20, 2383 2 of 21

hormones also offer therapeutic opportunities. Synthetic human insulin, for instance, has been long
exemplified for its clinical efficacy for diabetic patients [4].

In comparison to small molecules, such as proteins and antibodies, peptides indeed represent a
unique class of pharmaceutical compounds attributed to their distinct biochemical and therapeutic
characteristics. In addition to peptide-based natural hormone analogs, peptides have been developed
as drug candidates to disrupt protein–protein interactions (PPIs) and target or inhibit intracellular
molecules such as receptor tyrosine kinases [5,6]. These strategies have turned peptide therapeutics
into a leading industry with nearly 20 new peptide-based clinical trials annually. In fact, there are
currently more than 400 peptide drugs that are under global clinical developments with over 60 already
approved for clinical use in the United States, Europe and Japan.

Protein–protein interactions (PPIs) are the foundation of essentially all cellular process.
Those biochemical processes are often comprised of activated receptors that indirectly or directly
regulate a series of enzymatic activities from ion transportation, transcription of nucleic acids and
various post-translational modifications of translated proteins [7]. Drugs that bind specifically to such
receptors can act as agonists or antagonists, with downstream consequences on cellular behavior.
Peptides and small molecules that interfere with PPIs are thus in high demand as therapeutic agents in
pharmaceutical industries due to their potential to modulate disease-associated protein interactions.
Accumulating evidence has suggested that better identification of targetable disease-associated PPIs
and optimization of peptide drug binding characteristics will be key factors for their clinical success [8].

Unfortunately, understanding the molecular recognition mechanism and delineating binding
affinity for PPIs is a complex challenge for both computational biologists and protein biochemists.
This is largely because small molecules are superior in binding to deep folding pockets of proteins
instead of the larger, flat and hydrophobic binding interfaces that are commonly present at PPI complex
interfaces [9]. Although monoclonal antibodies are more effective at recognizing those PPI interfaces,
they cannot penetrate the cell membrane to reach and recognize intracellular targets. In recent years,
peptides with balanced conformational flexibility and binding affinity that are up to five times larger
than small molecule drugs have attracted enormous attention [10,11]. Cyclic peptides, for example
have small molecule drug properties like long in vivo stability, while maintaining robust antibody-like
binding affinity and minimal toxicity [12]. In this review, we will focus two aspects of peptide drug
development: (i) Fundamental technologies utilized for peptide drug developments to date, and (ii)
key developments of computational modeling techniques in peptide–protein interactions (PepPIs).
Recent topics and basics in conventional docking of PPIs will also be covered with an aim to assist
experimental biologists exploiting suitable docking methods to advance peptide interfering strategies
against PPIs.

2. Key Aspects in Bioactive Peptide Drug Development

2.1. Historic Overview

Since the first isolation and commercialization of insulin, a 51 amino acid peptide in the early
1920s, peptide drugs have greatly reshaped our modern pharmaceutical industry [13]. With advances
in DNA recombination and protein purification technologies, human recombinant insulin has replaced
the animal tissue-derived insulin product that was on the market for nearly 90 years. Over the past two
decades, nearly 30 more peptide drugs have been approved, with over 60 in total approved worldwide.
Breaking down the intended usage of these approved peptide drugs, it appears that metabolic disorders
and cancer are the most predominantly targeted disease categories. A global industry analysis on
peptide therapeutics predicted a compound annual growth rate (CAGR) of 9.1% from 2016 to 2024
and sales of peptide drugs to exceed 70 billion USD in 2019 [14]. The healthy growth in this industry,
however, is likely attributed to the expected increasing incidence of metabolic disorders and cancers.
The top selling peptide drugs for metabolic disease such as liraglutide (Victoza) and glucagon-like
peptide 1 (GLP-1) both had at least two billion USD sales per annum. Popular peptide drugs including
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leuprolide (Lupron), gosarelin (Zoladex) and somatostatin analogs, octreotide and lanreotide also
contributed to over four billion USD in sales.

2.2. Overcoming Intrinsic Drawbacks of Peptide Drugs

Unlike peptide drugs that are usually synthetically made, natural polypeptides such as hormones,
growth factors or neurotransmitters are known to play central roles in normal physiology. Peptide
drugs have two major drawbacks: Their in vivo instability and membrane impermeability [15].
Proteolytic degradation of peptide drugs in serum limits the drug’s half-life and reduces the bioavailable
concentration. Routine dosing may be needed to maintain the drug at a clinically effective concentration.
A number of chemical modification methods have been utilized to prevent proteolytic degradation and
improve the in vivo half-life of peptide drugs. The section below gives a guide on modern technologies
commonly applied to make peptides less susceptible to proteolysis.

2.2.1. Termini Protection

Proteolysis can potentially take place from both N- and C-termini of a peptide by up to 500 proteases
and peptidases including serum aminopeptidases and carboxypeptidases [16]. It is well-documented
that different amino acid residues at N- or C-terminal will result in different degrees of proteolysis
and degradation. For example, residues such as Met, Ser, Ala, Thr, Val and Gly at N-terminus are
more resistant to degradation in plasma, whereas peptides rich in Pro, Glu, Ser and Thr are more
susceptible [17]. If the N- or C-terminal sequences can be modified while maintaining the required
targeting specificity and affinity, such modification can reduce proteolytic degradation and improve
bioavailability [18]. Similarly, as long as such modifications permit proper functioning of the drug,
C-terminal amidation or N-terminal acetylation can also be used to improve in vivo stability [19].
Modification with unnatural amino acid analogs may also serve the same purpose.

2.2.2. Non-Chemical Methods: Identifying Critical Residues

For biologists, the choice of chemical modification often requires expertise in chemistry through
collaborations. There are, however, a number of methods that can be approached easily and yet are
important for biological study of peptide drug design. First, it is necessary to identify the minimum
amino acid residue(s) essential for peptide activity. This can be achieved by repetitive truncating amino
acids from either the N- or C-terminus of a lead sequence to ascertain the critical core peptide motif
needed for biological activity. Secondly, a classic screening method called alanine scanning can be
used to determine the contribution of individual amino acids to biological activity of the peptide [20].
By screening the biological functionality of a library of peptides where individual amino acids have
been substituted with alanine, it is possible to identify critical amino acids. Alanine is used for the
substitution because its small, uncharged side chain doesn’t interfere with the function of adjacent
side chains [21]. More recently, more complex scanning techniques that take enantiomers of amino
acid or further physical attributes such as acidity, basicity and hydrophobicity into account have been
developed. These scanning techniques nonetheless still require validation by molecular biology and
in silica methods such as mutagenesis, stability and pharmacokinetic (PK) experiments for mature
development of improved biological activity. Such structure–activity relationship (SAR) studies will
lead to identification of proteolytically-labile amino acids within a peptide sequence. Detailed updates
on those scanning methods are not within the scope of this review and are reviewed elsewhere [22].

2.2.3. Synthetic Amino Acid Substitution and Backbone Modification

The amino acid scanning techniques discussed above also provide useful information for the
design of further modifications, especially on the side chain group of a particular residue. Synthetic
enantiomer amino acids, for instance, have been proposed to enhance resistance to proteases as
their stereochemically reversed side-chains are not recognized as protease substrates [23]. Arginine,
in particular, can be effectively replaced by β3 analogues or other variants such as homoarginine,
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lysine or ornithine [24]. Each natural amino acid has at least a few close analogues that can be used for
effective substitution on the critical residues in order to modify the rigidity and conformation of the
peptide. Unnatural analogues are also available for aromatic amino acids and used to replace β-methyl
groups from the heterocycles to enhance proteolytic resistance [25]. A recent preclinical success
utilized side-chain modification of a momomeric helical peptide, which then acted as a triagonist to
simultaneously activate the GLP-1, glucose-dependent insulinotropic polypeptide (GIP), and glucagon
receptors. In a rodent model of obesity this triagonist peptide resulted in significantly reduced body
weight and reduced diabetic complications without cross-reactivity at non-specific receptors [26].

Although enantiomer amino acid (D-amino acid) substitution has been a common approach to
protect peptides from protease degradation, the conformational changes created can compromise
the biological activity of the original L-peptide [27]. In addition to the use of D-amino acids,
α-methylation and N-methylation have also been widely used. While α-methylation of amino acid
provides the advantage of maintaining the side-chain at its original spatial orientation, which is
critical for helical peptides; N-methylation has been proven beneficial for enhancing solubility
and reducing undesired polymerization [27,28]. Such side-chain functionality-modifying strategies
have evolved peptide secondary structures and yielded new peptidic molecules that are referred to
as peptidomimetics. Further information on the chemistry and applications of β-/D-amino acids,
α-/N-methylations, or backbone-modified semicarbazide-peptides, peptoids and peptidomimetics can
be found in these reviews [29–33].

The protease resistance of peptides can also be improved by peptide cyclization. There are
a number or strategies for generating cyclized peptides. These include head-to-tail cyclization,
which generates a peptide bond between the original N- and C- termini. The amino group on lysine
side-chains can be reacted with aspartic or glutamic acid side chains or the free C-terminus, forming
an amide bond. Alternatively cysteine pairs can be reacted to form a disulfide bond between the
side chains. These strategies can protect termini and restrict conformational flexibility of peptides,
maintaining them in their bioactive conformation [34]. Cyclization between side-chains, in particular,
has been proven effective in optimizing conformational stability for helical peptides. The cyclized
peptide drug ATSP-7041 is an example of a recent success [35]. This side-chain cyclized α-helical
(stapled) peptide is able to selectively bind to and inhibit MDM2/MDMX, thus activating p53-dependent
tumor suppression [6]. Such strategies of targeting PPIs are of great therapeutic potentials as there has
been vast amount of information available on disease-related PPIs in the literature but peptide-based
inhibitors are only emerging to mature in the past decade.

2.2.4. Computational Methods for Improving Aqueous Solubility and Membrane Permeability

The generally poor cell membrane permeability of peptides has limited their application against
inaccessible intracellular targets. Peptide therapeutic development has largely focused on extracellular
targets due to this limitation. Improvement of membrane permeability or development of strategies
that facilitate active intracellular uptake will be critical for successful peptide-based targeting of
intracellular PPIs. Potential strategies for improving intracellular uptake include modulation of the
hydrophobicity and electrostatic charges to improve passive uptake, or conjugation of the active drug
peptide to a cell-penetrating peptide (CPP) to facilitate its active transport.

Bioavailability of peptide biotherapeutics is usually greatly enhanced when they are more water
soluble, as effective serum concentrations can be easily maintained. Optimization of aqueous solubility
is however a largely empirical process, with experimental identification of unnecessary hydrophobic
amino acids which can be replaced with charged or polar residues to modulate the pI while maintaining
bioactivity [36,37]. Recently, two support-vector machine (SVM) machine-learning bioinformatic tools
were developed to expedite this process [38]. ccSOL omics offers a large-scale calculation of solubility
for not only a proteome-wide prediction, but also the identification of soluble motifs within any given
amino acid sequence [39]. PROSO II is another SVM learning based online tool to predict solubility
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based on physiochemical properties of the primary sequence such as the degree of hydrophobicity,
hydrophilicity and secondary structural propensities in coil, helix or sheet [40].

2.2.5. Membrane Protein-Facilitated Intracellular Peptide Uptake

G-protein coupled receptors (GPCRs) are a superfamily of transmembrane receptors, which are
responsible for transporting diverse molecules across membranes. Although peptides can be natural
ligands for GPCRs, only a small subset of extracellular peptides are actively transported across the
plasma membrane. These peptides capable of crossing cell membranes are now termed cell permeable
peptides (CPPs). They are generally highly hydrophobic, five to 30 amino acid long peptides [41].
The molecular and structural mechanisms underlying CPP intracellular transport remain unclear,
investigating CPPs towards an ultimate goal of developing peptide drugs that are cell-permeable
and orally bioavailable has been an intense field of research [42]. The ability of CPPs to cross the
membrane lipid bilayer has been the foundation of significant developments in biotherapeutic peptides.
The highly amphipathic and cationic characteristics of antimicrobial peptides (AMPs), for example,
have allowed them to penetrate cell membranes to eliminate microbes and infectives by modulating
immune responses [43]. CPPs have also been exploited as targeting moieties by conjugation to
deliver cargos including small molecules, peptides, proteins or antibodies that would otherwise be
membrane-impermeable [44]. The covalent conjugation of a HIV TAT peptide or more recently an
amphipathic cyclic peptide was demonstrated to facilitate escape from early endocytosis and effective
cytosolic delivery of otherwise membrane-impermeable peptides to target PPIs [45]. There are a number
of powerful bioinformatic tools that allow users to predict and optimize their experimental designs of
CPPs. CPPpred web servers such CPPpred-RF or KELM-CPPpred allow the prediction and design of
CPPs from a query input protein sequence using machine learning-based models [46–48]. CellPPD is
another free webserver that provides a permeability prediction based on physiochemical properties
such as hydrophobicity, amphipathicity, steric hindrance, charge and molecular weight [49,50]. Despite
the lack of physiochemical analyses, CPPpred-RF and KELM-CPPpred use selected databases for
CPP uptake efficiency prediction and robust CPP/non-CPP prediction, respectively. CPPsite 2.0 is a
repository currently containing 1855 unique experimentally validated CPPs along with their secondary
and tertiary structures. This provides an informative resource to assist web-lab researchers to design
more optimal CPPs prior to labor- and time-expensive experiments [51]. Table 1 provides an overview
to these online tools for analysis of peptide solubility, prediction and design of CPPs.

As discussed above, cyclic peptides have superior proteolytic resistance and structural stability
than linear peptides. Tremendous efforts have been made towards developing of cell-permeable
cyclic peptide drugs to block PPIs. Short CPP motifs have been rationally conjugated to otherwise
cell-impermeable cyclic peptides to facilitate their intracellular uptake. This delivery strategy has
been applied more generally to develop bicyclic peptide drugs comprised of one membrane-crossing
CPP moiety and one cyclic peptide PPI inhibitor, while maintaining target specificity and affinity [52].
The oncogenic Ras-Raf interaction was blocked by a bicyclic peptide inhibitor that significantly
impeded MEK/ATK signaling and led to apoptosis in lung cancer cells [53]. While CPPs are not
themselves immunogenic, bioactive peptide-conjugated CPPs can sometimes induce an immune
response, which may limit their application against some targets [54].
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Table 1. Overview of prediction methods for peptide solubility and cell-penetrating peptides.

Method Learning
Machine Model

Input
Length (aa) Input Format Multiple Entry Database Web Server Refs

Peptide Solubility

ccSOL omics Super vector
machine (SVM) – FASTA Yes (up to 104)

Target Track
(non-redundant)

(http://sbkb.org/tt/)

http://s.tartaglialab.com/static_files/
shared/tutorial_ccsol_omics.html [39]

PROSO II Super vector
machine (SVM) 21 to 2000 FASTA Yes (up to 50) Target Track

(http://sbkb.org/tt/)
http://mbiljj45.bio.med.uni-muenchen.

de:8888/prosoII/prosoII.seam [40]

Cell-Penetrating Peptides

CPPpred Artificial neural
networks (ANN) 5 to 30 FASTA Yes CPPsite http://bioware.ucd.ie/cpppred [47]

CPPpred-RF Random forest
(RF) – FASTA Yes CPP924 and CPPsite3 http://server.malab.cn/CPPred-RF [46]

KELM-CPPpred
Kernel extreme
learning model

(KELM)
5 to 30 FASTA Yes Curated 408

CPP/non-CPP
http://sairam.people.iitgn.ac.in/KELM-

CPPpred.html [48]

CellPPD Super vector
machine (SVM) – FASTA Yes CPPsite1,2,3 http://crdd.osdd.net/raghava/cellppd/

multi_pep.php [50]

CPPsite 2.0 – – FASTA Yes 1855 uniquely curated http://crdd.osdd.net/raghava/cppsite/ [51]

http://sbkb.org/tt/
http://s.tartaglialab.com/static_files/shared/tutorial_ccsol_omics.html
http://s.tartaglialab.com/static_files/shared/tutorial_ccsol_omics.html
http://sbkb.org/tt/
http://mbiljj45.bio.med.uni-muenchen.de:8888/prosoII/prosoII.seam
http://mbiljj45.bio.med.uni-muenchen.de:8888/prosoII/prosoII.seam
http://bioware.ucd.ie/cpppred
http://server.malab.cn/CPPred-RF
http://sairam.people.iitgn.ac.in/KELM-CPPpred.html
http://sairam.people.iitgn.ac.in/KELM-CPPpred.html
http://crdd.osdd.net/raghava/cellppd/multi_pep.php
http://crdd.osdd.net/raghava/cellppd/multi_pep.php
http://crdd.osdd.net/raghava/cppsite/
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2.3. High-Throughput Screening (HTS) for New Peptide Leads

The discovery of the Ras-Raf bicyclic peptide inhibitor in fact stemmed from optimization of
hits identified from a screen of 5.7 million bicyclic peptides for interaction with oncogenic K-RasG12V.
While high content combinatorial library screening method has facilitated the rapid identification of
PPI inhibitors, peptides with weaker inhibitory activity may not be efficiently detected. Such modest
interactions should not necessarily be ignored because sequence optimization or cyclization may be
able to drastically improve affinity. The sequential rounds of “biopanning” enrichment in phage
display library screening can improve the detection of weaker interactions. In fact the importance of
this approach over the past three decades was recently recognized by the Nobel Prize for Chemistry
award [55,56]. Over this period, phage display and recombinant DNA technologies have facilitated
identification and optimization of new lead peptides against a diverse array of biological targets.
The original approach involved sequential rounds of affinity enrichment and expansion, and finally
identification of enriched phages. Although facilitating sensitive detection of weaker interactions,
the high number of biopanning rounds involved can cause selection bias, dropouts and enrichment
of false positives [57]. These issues have been much reduced by the recent application of next
generation sequencing (NGS) analysis of phase display experiments. NGS is quantitative and
sensitive enough to minimize the number of biopanning rounds needed to detect enriched interactions,
minimizing the bias caused by multi-cycle screening. The low cycle number does however require that
interactions bind fairly strongly [58]. Traditionally, phage-displayed libraries have been constrained
by the necessity of using only linear display of non-modified naturally occurring amino acids.
This limitation has recently been overcome by the development of strategies for on-phage chemical
modifications including introduction of chemical entities such as cyclization linkers, fluorophores,
small molecules or post-translational modifications like glycosylation. [59,60]. These advances in
modern biopanning approaches support the notion that lead peptides of higher affinity and genuine
bioactivity could be identified and then subjected to rational optimization of sequence and modifications
for clinical development.

3. Peptides and Protein–Protein Interactions

PPIs are well-recognized potential therapeutic targets, given that dysregulated protein interaction
networks underlie a wide range of pathologies. It is estimated that there are at least 140,000 pairwise
PPIs in the human interactome [61]. Many efforts towards peptide innovations have been made to
interfere with pathogenic PPIs to modulate the downstream signaling events. Such modulation with
small molecules, however, has been difficult due to the large area of most larger PPI interfaces (generally
1500 Å2 to 3000 Å2), relative to the binding pocket size of the small molecules (300–1000 Å2) [62].
Small molecules generally do not interact with target proteins over a large enough surface area to block
the interacting surface [63]. As discussed above, the physiochemical natures of peptides including the
large and flexible backbones make them much better candidates in PPI inhibition than small molecules.
Peptides that interfere with PPIs are termed interfering peptides (IPs) and are capable of binding to the
larger grooves or clefts on an interacting face thus blocking that interaction surface. Another major
advantage of IPs as the means of targeting PPIs over small molecules is the presence of amino acid
residues that can interact with other residues at protein–protein interfaces [9]. With recent advances in
techniques to overcome the intrinsic disadvantages of peptide drugs such as their limited stability,
solubility and bioavailability, IPs as biotherapeutics are receiving increasing attention. In this section,
we reviewed a number of promising successes in IP development against PPIs, as well as common
strategies used to validate and optimize IPs as effective biotherapeutics.
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3.1. Promising Developments for Interfering Peptides

Protein–protein interactions are at the core of normal and pathogenic cell biology and physiology.
Abnormal protein–protein interactions drive signaling changes that underpin pathologies including
infection, chronic inflammation, neurodegeneration, cancer and cardiovascular disease to name a few.
Protein interaction surfaces are therefore attractive therapeutic targets, and as discussed peptides have
advantages over small molecules in this area. A number of promising IPs are currently under clinical
investigation. A 28-mer peptide drug that blocks the interaction of the ubiquitin-ligase MDM2 with its
target p53 is able to block MDM2-dependent p53 ubiquitination, promoting p53 stabilization and tumor
suppression [64,65]. A 17-mer peptide drug (CTCE-9908) is able to block CXCR4 activation in tumor
cells, by blocking the interaction between CXCR4 and its ligand CXCL12. CTCE-9908 is under a phase
I trial [66,67]. A peptide drug based on the N-terminal c-Jun sequence (XG-102, Brimapitide) competes
with endogenous c-Jun for interaction with JNK, repressing JNK-driven inflammation. Brimapitide is
under a phase III trial [68,69].

IPs with α-helical structures that bind to protein interacting surfaces have shown particularly
promising interaction-blocking activity, probably due to their good stability and protease resistance. [70].
The literature has documented the effectiveness of α-helical peptides targeting several oncogenic
protein interactions, including EZH2/PRC2, MDM2/p53, β-catenin/Wnt and Bax/Bcl-xL interactions.
These structurally-modified peptide drugs are termed peptimimetics, and are designed to disrupt the
flat and large interfaces of their respective targets. These cases demonstrate the therapeutic potential
for peptide drugs to modulate pathogenic protein interactions with high specificity [71,72].

3.2. Experimental and Computational Methods for Determining PPI

Protein–protein interactions have been experimentally determined by a variety of biophysical
techniques such as X-ray crystallography, NMR spectroscopy, surface plasma resonance (SPR), bio-layer
interferometry (BLI), isothermal titration calorimetry (ITC), radio-ligand binding, spectrophotometric
assays and fluorescence spectroscopy. Experimental data generated by these techniques has advanced
our knowledge of how secondary and tertiary protein structure and interaction kinetics influence
downstream biological events. These techniques, however, are often time-consuming and applied
to study one specific PPI at a time. While protein crystal X-ray diffraction is undoubtedly a very
powerful structural analysis approach, which is capable of defining structure down to individual atoms,
it has major technical challenges. Many proteins do not crystalize well, or do not crystalize except as
smaller protein domains. Even if each protein in a complex forms crystals alone, co-crystallization
can be especially challenging. NMR spectroscopy can generate protein complex structures, but has
a lower resolution compared to X-ray diffraction. Optical or calorimetric approaches can provide
information about the energy, affinity and disassociation properties of an interaction, but do not
identify a specific interaction surface the way NMR or X-ray diffraction do. The technical challenges
and poor scalability of wet-lab experimental approaches has necessitated the development of reliable
computational strategies. Computational docking methods have thus been developed to expedite the
process of generating accurate predictions of protein structure, surface charge and interaction affinities.
Even for proteins without an available crystal structure, these programs can be applied for in silico
identification of key protein interaction surfaces, the structural effect of mutations and binding analysis
of potential blocking peptides.

3.2.1. Computational Docking Strategies

Computational PPI docking has provided rapid and useful information for drug designs at the
atomic level, as some of the docking methods can be executed within the order of minutes. This can
be achieved by rigid-body docking strategies, in which two interacting proteins are both considered
absolutely rigid in calculation for optimization of chemical and geometric orientation fit. Z-DOCK is a
typical rigid-body protein docking program that generally generates accurate predictions of PPI when
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proper scoring scaffolds are provided [73]. Due to the availability and complexity of various scoring
parameters from most flexible docking methods, a variety of different docking programs have been
developed over the past decades. ATTRACT, for instance, is a well-established PPI prediction server
with powerful toolkits covering many scoring parameters but is less user-friendly [74].

3.2.2. Sequence- or Structural-based Predictions

Many computational docking strategies, especially flexible-body docking methods, require
structural information including number of hydrogen bonds, buried surface area, mutation hotspots,
geometric angles and allosteric effects for calculations of binding free energies to generate more accurate
predictions on binding affinities between the interacting proteins [75]. By contrast, sequence-based
strategies rely on the sequence and functional information in many publicly available databases to
generate predictions of binding affinity. PPA-Pred, for example, developed a model based on sequence
features by classifying protein–protein complexes according to their biological functions and percentage
of binding residues for binding affinity prediction [76]. Despite offering less confident prediction on
binding affinity and an inability to predict conformational binding poses, sequence-based models
can be refined with dataset updates in experimental and functional scaffolds. In fact, sequence-based
strategies also utilize learning machines to enhance their prediction confidence over time [77].

Although significant progress has been made in scoring functions from both strategies, the lack of
high computing power and larger experimental datasets with high quality have restricted the advances
in the field. A community-wide experiment CAPRI compared computationally predicted protein
complex structures with experimentally determined structures to evaluate and rank the best-performing
servers based on prediction accuracy [78]. HADDOCK and ClusPro are ranked the top prediction
servers that use rigid-body docking methods based on root mean square deviation (RMSD) to yield
binding free energy and buried surface area at highest confidence [79–81].

4. Innovations and Computational Methods for Peptide—Protein Interactions

Similar to protein–protein interactions, structural information (either a sole target protein structure
or complex structure with ligand) that is available for a drug target has often limited prediction accuracy
for PepPIs. As a result of the lack of protein co-structures, many studies utilize existing information
from structural databases such as the Protein Data Bank (PDB) to identify sequence-binding motifs
for peptide designs. [82]. Another database PepX is comprised of more than 500 experimentally
studied peptide interactions with high-resolution structures and allows simple inputs of user-defined
peptide templates [83]. In silica mutation hotspot analyses of protein–peptide interfaces suggested
6–11 amino acid long peptides usually contain 2–3 residues that form critical contacts with the target
protein. Despite its apparent similarity to modeling protein–protein interactions, PepPI analyses can
be surprisingly complex due to the diverse structural changes that could arise from flexible side-chains
and backbones within a peptide [84,85]. Short peptides of up to about 15 residues usually form simpler
α-helix or β-sheet structures, the structures of longer peptides are more difficult to predict due to their
backbone rearrangements. The degree of complexity in peptide structure prediction further increases
as the flexibility of target protein conformation is considered [86]. In this section, we will review recent
computational models that are developed to overcome these challenges for more reliable peptide
drug designs against PPIs. Selected PepPI prediction methods and summaries of their key features
discussed in this section are provided as an overview in Table 2.

4.1. Selection of Initial Peptide Scaffolds

Before discussing current computational methods for PepPIs, we would like to first introduce
recent advances in the selection of initial peptide scaffolds that also play critical roles in peptide drug
development. A number of well-characterized natural occurring peptides had been selected from
natural proteins and demonstrated to preserve original functions including structural scaffolds or the
ability of recognizing target molecule. Repeated Arg-Gly-Asp (RGD) motifs, for instance, were first
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derived from cell attachment domain of fibronectin that binds to membrane-bound receptor protein
integrins and activates cellular growth, differentiation, adhesion and migration [87]. The capability of
RGD peptides in mimicking the functions of their natural protein has served as a promising strategy
for not only therapeutic PPI interferences but also structural and functional analyses of proteins.
In addition to the above-mentioned chemical and phage peptide libraries, in silica modeling-based
design (sections below) has recently emerged as a powerful approach to new peptidic leads identification
from natural proteins. Another interesting development is the identification of microtubule-binding
peptides. Microtubules are hollow tubular protein assemblies composed of intracellular α-/β- tubulin
dimers with significant nanodevice implications attributed to their involvement in many eukaryotic
cell functions including tumor progression. Peptide-modulated nanodevice-encapsulating drugs
targeting intracellular tubulins under different formulations such as peptide-conjugating liposomes or
peptide-drug assemblies to exert synergistic anti-cancer effects have attracted vast attentions [88,89].
A recent pioneer study further demonstrated that peptides selected from microtubule-associated
protein Tau functionalized inner surface of microtubule by encapsulation of gold nanoparticles
inside microtubules [90]. Moreover, another intriguing discovery of a tetrapeptide Ser-Leu-Arg-Pro
(SLRP) from a peptide library was shown to perturb microtubule function and lead to apoptosis of
cancer cells [91]. Of note, the selection of SLRP was assisted by the computation docking method
Autodock Vina.

4.2. Docking Peptide–Protein Interactions

Successful docking of the structural pose of a PepPI has been largely dependent on the extent of
structural scaffolds available about the interaction complex. The dramatic increases in numbers of
peptide–protein structures available in PDB have greatly facilitated the development of more powerful
docking and refinement methods in predicting accurate PepPIs. Peptide–protein docking strategies are
usually categorized into local or global docking based on the extent of structural information provided
as inputs.

4.2.1. Local and Global Docking Methods

Local docking is the mostly commonly used strategy as it searches for a potential binding pose
for peptide at a user-defined binding site in a resolved structure of its target receptor. A number of
methods have the capability to improve initial model quality at atomic resolution within 1 Å to 2 Å
RMSD of the experimental peptide conformation. DynaRock, Rosetta FlexPepDock and PepCrawler
are the most popular methods that provide different approaches of defining peptide-binding sites.
DynaDock uses soft-core potential combined with Molecular Dynamics as refinement approach for
conformational sampling and receptor side-chain flexibility determination [92]. As van der Waals and
Coulomb energy potentials were smoothened in this protocol, faster conformational sampling of the
peptide–protein complex was achieved when the soft-core potential gradually converged to a physical
potential as the simulation progressed. Rosetta FlexPepDock is a Monte Carlo-based method that
minimizes optimization steps to yield high-quality conformational sampling for well-characterized
binding motifs with hotspot residues [93,94]. This protocol was validated against a large dataset
with rigid-body sample docking and variable degrees of backbone modeling. PepCrawler utilizes
an algorithmic robotics motion planning called Rapidly-exploring Random Tree (RRT) to optimize
peptide structural poses at binding sites [95]. In this refinement protocol, a conformation tree for the
peptide–protein complex is built for the resulting models that are automatically clustered by local
shape analysis of energy funnel.

However, not every query peptide has available information of backbone conformation. Sampling
methods that allow acquisition of near-native peptide conformation become essential prior to
performing local docking. Rosetta FlexPepDock ab initio, for instance, is a protocol that combines ab
initio peptide folding with local docking by placing the query peptide into a user-defined binding site
from any arbitrary backbone conformation [96]. The binding site can be defined through positioning
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of a hotspot residue (with side-chain) or using the standard constrains for binding sites provided
by Rosetta FlexPepDock. Recently, HADDOCK method (HADDOCK peptide docking) was used to
hypothesize the unnecessity of prior backbone information in local docking using secondary structure:
α-helix, extended or polyproline-II helix as an ensemble of canonical conformation constrained to a
defined binding site [97]. Further, a number of small molecule docking methods such as Gold, Surflex
and AutoDock Vina have been applied to perform local docking for short peptides of less than five
amino acids [98–100]. Despite sub-optimal near-native modeling results were obtained, an interesting
docking protocol DINC 2.0 proposed to overcome the limitation by docking peptide fragments [101].

4.2.2. Global Docking Methods

Unlike local docking that searches for the peptide-binding pose, global docking methods also
search for the peptide-binding site at the target protein. Global docking is often the method of choice
when no prior information is available on binding sites. A spatial position specific scoring matrix
(PSSM) was used in developing the PepSite method to identify potential binding sites with estimated
position for each residue [102,103]. The variable degrees of peptide backbone/side-chain flexibility,
nonetheless, render flexible-body docking extremely inefficient. Standard procedures for global
peptide–protein docking thus usually depend on rigid-body docking following acquisition of input
peptide conformation. Several global docking methods are capable of predicting peptide conformation
from a given query sequence. ClusPro (ClusPro PeptiDock) and ATTRACT (pepATTRACT) for example,
use a pre-defined motif set of template conformations for threading query sequences. The generated
peptide conformations are next rigid-body docked in one simulation round [104,105]. Other global
docking methods such as PeptiMap, AnchorDock and CABS-Dock also provide automatic docking
simulation with varying algorithms such as small molecule binding adaption, in-solvent simulation,
flexibility of query peptide or target protein at predicted binding proximity [106–108].

In addition to highly accurate predictions made by PIPER-FlexPepDock, another recently
developed method HPEPDOCK used an ensemble of peptide conformations for blind global docking
and obtained significantly higher success rates as well as lower simulation time required than
pepATTRACT [105,109].
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Table 2. Summary for peptide–protein interactions docking methods.

Methods Key Features Model Quality # Web Server Refs

Local Docking

DynaDock

� Combined Optimized Potential Molecular dynamics
(OPMD) with a soft-core potential

� Faster conformational sampling
� Smoothened van der Waals and Coulomb energy potentials
� Full flexibility of peptide and target protein

Near-native Not available to public [92]

Rosetta FlexPepDock

� Monte Carlo-based optimization
� High-quality conformational sampling
� Hotspot residue (side-chain) modeling
� Receptor flexibility (side-chains to full structure)
� Rosetta energy function based clustering and scoring

Sub-angstrom *
http://flexpepdock.furmanlab.

cs.huji.ac.il or http://www.
rosettacommons.org/software

[93]

PepCrawler

� Rapidly-exploring Random Tree (RRT) algorithm
� Motion-planning based sampling
� Ranking by automated energy funnel analysis

(clustering-based)
� Fully flexible peptide structures

Near-native * http://bioinfo3d.cs.tau.ac.il/
PepCrawler [95]

Rosetta FlexPepDock
ab initio

� Ab initio modeling based on Rosetta fragment library
� Simultaneous docking and de-novo folding of peptides
� Peptide secondary structure option
� No information for peptide conformation required

Near-native to
Sub-angstrom §

http://www.rosettacommons.
org/software [96]

HADDOCK peptide
docking

� Modeling from ensemble of three canonical secondary
structures (α-helix, extended or polyproline-II helix)

� User-defined residues at binding pocket
� Binding free energy based scoring
� Fully flexible for interacting residues of peptide and protein

Near-native * http://haddock.science.uu.nl/
services/HADDOCK2.2/

[79,97]

http://flexpepdock.furmanlab.cs.huji.ac.il
http://flexpepdock.furmanlab.cs.huji.ac.il
http://www.rosettacommons.org/software
http://www.rosettacommons.org/software
http://bioinfo3d.cs.tau.ac.il/PepCrawler
http://bioinfo3d.cs.tau.ac.il/PepCrawler
http://www.rosettacommons.org/software
http://www.rosettacommons.org/software
http://haddock.science.uu.nl/services/HADDOCK2.2/
http://haddock.science.uu.nl/services/HADDOCK2.2/
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Table 2. Cont.

Methods Key Features Model Quality # Web Server Refs

Local Docking

PepSite 2.0

� Identifies most peptide-binding site in seconds
� Generates low-resolution model of peptide
� Coarse-grained peptide orientation by spatial

position-specific scoring matrix (S-PSSM)

Medium † http://pepsite2.russelllab.org [102]

Global Docking

ClusPro PeptiDock

� Fast Fourier Transform (FFT)-based docking method
� Motif-based prediction for peptide conformation
� Clustering by structure scoring and CAPRI peptide

docking criteria

Near-native to
Sub-angstrom § https://peptidock.cluspro.org/ [81,104]

pepATTRACT

� Peptide structure prediction by threading sequence onto the
three peptide conformations (as HADDOCK
peptide docking)

� Rigid-body peptide docking within binding pocket
� Suitable for large-scale in silico protein–peptide docking
� Clustering based on ATTRACT scores
� Optional flexible docking for interacting residues

Near-native to
Sub-angstrom §

http://bioserv.rpbs.univ-paris-
diderot.fr/services/

pepATTRACT/
[105]

HPEPDOCK

� Hierarchical algorithm
� Ensemble peptide conformation by MODPEP
� Blind global peptide docking
� Higher success rate and lower processing time for both

global and local docking

Near-native to
Sub-angstrom §

http://huanglab.phys.hust.edu.
cn/hpepdock/

[109]

http://pepsite2.russelllab.org
https://peptidock.cluspro.org/
http://bioserv.rpbs.univ-paris-diderot.fr/services/pepATTRACT/
http://bioserv.rpbs.univ-paris-diderot.fr/services/pepATTRACT/
http://bioserv.rpbs.univ-paris-diderot.fr/services/pepATTRACT/
http://huanglab.phys.hust.edu.cn/hpepdock/
http://huanglab.phys.hust.edu.cn/hpepdock/
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Table 2. Cont.

Methods Key Features Model Quality # Web Server Refs

Template-based

GalaxyPepDock

� Use similarity search (known template structures) as scaffolds
for prediction

� Energy-based model optimization and scoring
� Superior accuracy using PeptiDB datasets than other servers

Medium (ligand);
Near-native (interface)

http:
//galaxy.seoklab.org/pepdock [110]

SPRINT-Str

� Predict residues at peptide–protein binding interface
� Use SVM with optimized parameters
� Capability to distinguish binding sites of peptide from DNA,

RNA and carbohydrate

N/A http://sparks-lab.org/server/
SPRINT-Str [111]

PBRpredict-Suite

� Predict interacting residues based on peptide-binding domain
(PDB) from template sequences in NCBI database

� Integrated six machine learning algorithms (model stacking)
� Proteome-wide prediction feasibility

N/A
http://cs.uno.edu/~{}tamjid/

Software/PBRpredict/
pbrpredict-suite.zip

[112]

PepComposer

� Motif similarity search to defined binding interfaces from
monomeric protein databases PepX (http://pepx.switchlab.org)

� Monte carlo-implemented PyRosetta
� User-defined options for binding site residues or chain selection

Near-native
https://cassandra.med.

uniroma1.it/pepcomposer/
webserver/pepcomposer.php

[113]

# RMSD of peptide backbone to experimental structure data. Medium: Between 2 Å to 5 Å; Near-native: 1 Å to 2 Å; Sub-angstrom: Less than 1 Å. * Tested on PeptiDB dataset. † Customized
dataset of 405 known protein–peptide complexes with unbound receptor models. § On selected subsets of PeptiDB.

http://galaxy.seoklab.org/pepdock
http://galaxy.seoklab.org/pepdock
http://sparks-lab.org/server/SPRINT-Str
http://sparks-lab.org/server/SPRINT-Str
http://cs.uno.edu/~{}tamjid/Software/PBRpredict/pbrpredict-suite.zip
http://cs.uno.edu/~{}tamjid/Software/PBRpredict/pbrpredict-suite.zip
http://cs.uno.edu/~{}tamjid/Software/PBRpredict/pbrpredict-suite.zip
http://pepx.switchlab.org
https://cassandra.med.uniroma1.it/pepcomposer/webserver/pepcomposer.php
https://cassandra.med.uniroma1.it/pepcomposer/webserver/pepcomposer.php
https://cassandra.med.uniroma1.it/pepcomposer/webserver/pepcomposer.php
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4.2.3. Template-Based Docking Method

Template-based docking methods are also known as comparative docking strategies. They use
known structures as template scaffolds by threading the sequence of the query peptide and/or target
protein to build a model of the interacting complex [78]. Template-based docking has recently been
considered as a new category in peptide–protein docking due to the rapid increases in the number of
peptide–protein structures deposited in PBD, which have greatly expedited advances and designs in
simulation algorithms. The GalaxyPepDock is a popular server that performs such similarity-based
docking by searching templates of highest similarity and builds models using energy optimization
to allow more accurate predictions on structural flexibility between interacting complexes [110].
GalaxyPepDock demonstrated superior prediction results than other servers using PeptiDB datasets
during CAPRI blind prediction experiments. Recently, a machine learning (Rain Forest) based
method SPRINT-Str used experimental structural information for robust and consistent prediction
on peptide–protein binding residues and sites [111]. Another template- and machine learning-based
docking method, PBRpredict, utilized models trained from peptide-binding residues of diverse types
of domains to build models that robustly predict interacting residues in peptide-binding domains from
target protein sequences [112]. The use of computational machine learning algorithms is reminiscent
to the prediction servers for CPP and has become commonly utilized in optimization of clustering and
scoring in methods for predicting PepPIs. A commonly accessible online program for computational
design of peptide–protein, PepComposer, also implemented a machine learning algorithm (Monte
Carlo) in Pyrosetta for a fully automatic computational peptide design that was demonstrated to
predict known PepPIs at highly reproducible rates [113].

5. Concluding Remarks

Peptides have attracted a lot of attention and the number of approved peptide biotherapeutics has
been on the incline over the recent decades. This has been an attractive approach due to their ability to
bind with larger interfacial pockets than small molecules, and has been driven by major advances in
computational structural prediction and the expansion of available chemical modifications to improve
stability, affinity and specificity. The publicly available computational binding prediction tools have
led to effective rational designs of new peptide drugs of higher therapeutic potency. Our recent study
utilized both biological and computational methods to develop a cancer-specific targeting peptide that
facilitated significantly greater in vitro and in vivo and therapeutic efficacy [114].

Despite recent advances in computational modeling of protein–protein and peptide–protein
structures, major challenges remain. For instance, it remains challenging to simultaneously consider
the backbone and side-chain flexibility of the peptide and its target protein to accurately predict
the bound structure. Secondly, interpretation of experimental data from high-resolution NMR
spectroscopy and cryo-electromicroscopy or small-angle X-ray scattering (SAXS) to obtain accurate
experimental structures is often ambiguous, which makes integration of such experimental data into
computational prediction software very difficult. There are computational servers that have attempted
to translate ambiguous experimental data into algorithmic constrains that can be applied as an option
for docking [79,97]. In fact, those docking methods become quite helpful for experimental biologists
as a means of validating the proposed binding mechanism. Thirdly, scoring had also been a great
challenge because many lower-ranked models were found to be of higher quality in the docking results
and vice versa. It was attributed to most scoring were solely based on binding energy for clustering.
Recently, CAPRI experiments revealed that a hybrid model selection methodology of utilizing both
energy-based scoring as well as other methods such as mutagenesis, co-evolutionary information,
sequence- or structural-clustering function could generate accurate peptide–protein docking results
that are closer to native models [78,80,115]. In this review, we summarized various works from the
fields of biology, chemistry and computation that are relevant to peptide drug development. Increasing
interests in peptide biotherapeutics has sparked rapid advances in both chemical and biocomputational
methods. Figure 1 provides a modular view for a common peptide drug development cycle that covers
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the diverse topics discussed. Although this figure may not cover every modern technique used in
peptide drug development to date, the generalized concepts and workflow emphasize that neither the
biological, chemical nor computational method is indispensable for greater peptide drug discovery and
development. We also anticipate that peptide–protein docking methods will become more commonly
used tools to support experimental work for better structural-based peptide drug design and discovery.

Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 15 of 20 

 

common peptide drug development cycle that covers the diverse topics discussed. Although this 
figure may not cover every modern technique used in peptide drug development to date, the 
generalized concepts and workflow emphasize that neither the biological, chemical nor 
computational method is indispensable for greater peptide drug discovery and development. We 
also anticipate that peptide–protein docking methods will become more commonly used tools to 
support experimental work for better structural-based peptide drug design and discovery. 

 
Figure 1. A modular view of the peptide drug development cycle. This flowchart provides a 
summarized overview for topics covered in this review. Boxes in green color indicate computational 
methods; gold are biological methods; grey are commonly modification methods applied for 
improving peptide bioactivity. The blue two-headed arrow represents the modification methods that 
are relatively more biological, chemical or computational. White dashed boxes are criteria for 
accessing which method can be chosen next depending on availability of information. Solid or dashed 
arrows indicate direct or optional connections between methods, respectively. 

Funding: This work is supported by National Health & Medical Research (NH&MRC) Program Grant [ID 
1017028] and medical research grants from Chang Gung Memorial Hospital [CMRPG3F2232, CMRP3G1491 and 
CMRPG3H1241]. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Press, O.W.; Eary, J.F.; Appelbaum, F.R.; Martin, P.J.; Nelp, W.B.; Glenn, S.; Fisher, D.R.; Porter, B.; 
Matthews, D.C.; Gooley, T., et al. Phase II trial of 131I-B1 (anti-CD20) antibody therapy with autologous 
stem cell transplantation for relapsed B cell lymphomas. Lancet. 1995, 346, 336–340. 

2. Goldenberg, D.M.; Deland, F.; Kim, E.; Bennett, S.; Primus, F.J.; van Nagell, J.R., Jr.; Estes, N.; DeSimone, 
P.; Rayburn, P. Use of radiolabeled antibodies to carcinoembryonic antigen for the detection and 
localization of diverse cancers by external photoscanning. N. Engl. J. Med. 1978, 298, 1384–1386. 

3. Krenning, E.P.; Bakker, W.H.; Breeman, W.A.; Koper, J.W.; Kooij, P.P.; Ausema, L.; Lameris, J.S.; Reubi, 
J.C.; Lamberts, S.W. Localisation of endocrine-related tumours with radioiodinated analogue of 
somatostatin. Lancet. 1989, 1, 242–244. 

4. Banting, F.G.; Best, C.H.; Collip, J.B.; Campbell, W.R.; Fletcher, A.A. Pancreatic Extracts in the Treatment 
of Diabetes Mellitus. Can. Med. Assoc. J. 1922, 12, 141–146. 

5. Birk, A.V.; Liu, S.; Soong, Y.; Mills, W.; Singh, P.; Warren, J.D.; Seshan, S.V.; Pardee, J.D.; Szeto, H.H. The 
mitochondrial-targeted compound SS-31 re-energizes ischemic mitochondria by interacting with 

Figure 1. A modular view of the peptide drug development cycle. This flowchart provides a
summarized overview for topics covered in this review. Boxes in green color indicate computational
methods; gold are biological methods; grey are commonly modification methods applied for improving
peptide bioactivity. The blue two-headed arrow represents the modification methods that are relatively
more biological, chemical or computational. White dashed boxes are criteria for accessing which
method can be chosen next depending on availability of information. Solid or dashed arrows indicate
direct or optional connections between methods, respectively.

Funding: This work is supported by National Health & Medical Research (NH&MRC) Program Grant [ID
1017028] and medical research grants from Chang Gung Memorial Hospital [CMRPG3F2232, CMRP3G1491 and
CMRPG3H1241].

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Press, O.W.; Eary, J.F.; Appelbaum, F.R.; Martin, P.J.; Nelp, W.B.; Glenn, S.; Fisher, D.R.; Porter, B.;
Matthews, D.C.; Gooley, T.; et al. Phase II trial of 131I-B1 (anti-CD20) antibody therapy with autologous
stem cell transplantation for relapsed B cell lymphomas. Lancet 1995, 346, 336–340. [CrossRef]

2. Goldenberg, D.M.; Deland, F.; Kim, E.; Bennett, S.; Primus, F.J.; van Nagell, J.R., Jr.; Estes, N.; DeSimone, P.;
Rayburn, P. Use of radiolabeled antibodies to carcinoembryonic antigen for the detection and localization of
diverse cancers by external photoscanning. N. Engl. J. Med. 1978, 298, 1384–1386. [CrossRef] [PubMed]

3. Krenning, E.P.; Bakker, W.H.; Breeman, W.A.; Koper, J.W.; Kooij, P.P.; Ausema, L.; Lameris, J.S.; Reubi, J.C.;
Lamberts, S.W. Localisation of endocrine-related tumours with radioiodinated analogue of somatostatin.
Lancet 1989, 1, 242–244. [CrossRef]

4. Banting, F.G.; Best, C.H.; Collip, J.B.; Campbell, W.R.; Fletcher, A.A. Pancreatic Extracts in the Treatment of
Diabetes Mellitus. Can. Med. Assoc. J. 1922, 12, 141–146.

http://dx.doi.org/10.1016/S0140-6736(95)92225-3
http://dx.doi.org/10.1056/NEJM197806222982503
http://www.ncbi.nlm.nih.gov/pubmed/349387
http://dx.doi.org/10.1016/S0140-6736(89)91258-0


Int. J. Mol. Sci. 2019, 20, 2383 17 of 21

5. Birk, A.V.; Liu, S.; Soong, Y.; Mills, W.; Singh, P.; Warren, J.D.; Seshan, S.V.; Pardee, J.D.; Szeto, H.H.
The mitochondrial-targeted compound SS-31 re-energizes ischemic mitochondria by interacting with
cardiolipin. J. Am. Soc. Nephrol. 2013, 24, 1250–1261. [CrossRef]

6. Chang, Y.S.; Graves, B.; Guerlavais, V.; Tovar, C.; Packman, K.; To, K.H.; Olson, K.A.; Kesavan, K.; Gangurde, P.;
Mukherjee, A.; et al. Stapled alpha-helical peptide drug development: A potent dual inhibitor of MDM2 and
MDMX for p53-dependent cancer therapy. Proc. Natl. Acad. Sci. USA 2013, 110, 3445–3454. [CrossRef]

7. Yan, Z.; Wang, J. Specificity quantification of biomolecular recognition and its implication for drug discovery.
Sci. Rep. 2012, 2, 309. [CrossRef] [PubMed]

8. Thomas, D. A Big Year for Novel Drugs Approvals; Biotechnology Innovation Organization: Washington, DC,
USA, 2013.

9. Wells, J.A.; McClendon, C.L. Reaching for high-hanging fruit in drug discovery at protein-protein interfaces.
Nature 2007, 450, 1001–1009. [CrossRef] [PubMed]

10. Hewitt, W.M.; Leung, S.S.; Pye, C.R.; Ponkey, A.R.; Bednarek, M.; Jacobson, M.P.; Lokey, R.S. Cell-permeable
cyclic peptides from synthetic libraries inspired by natural products. J. Am. Chem. Soc. 2015, 137, 715–721.
[CrossRef] [PubMed]

11. Driggers, E.M.; Hale, S.P.; Lee, J.; Terrett, N.K. The exploration of macrocycles for drug discovery-an
underexploited structural class. Nat. Rev. Drug. Discov. 2008, 7, 608–624. [CrossRef] [PubMed]

12. Matsson, P.; Doak, B.C.; Over, B.; Kihlberg, J. Cell permeability beyond the rule of 5. Adv. Drug. Deliv. Rev.
2016, 101, 42–61. [CrossRef]

13. Bliss, M. Banting’s, Best’s, and Collip’s accounts of the discovery of insulin. Bull. Hist. Med. 1982, 56, 554–568.
14. Research, T.M. Global Industry Analysis, Size, Share, Growth, Trends and Forecast. Pept. Mark. 2016, 2016–2024.
15. Fosgerau, K.; Hoffmann, T. Peptide therapeutics: Current status and future directions. Drug Discov. Today

2015, 20, 122–128. [CrossRef]
16. Puente, X.S.; Gutierrez-Fernandez, A.; Ordonez, G.R.; Hillier, L.W.; Lopez-Otin, C. Comparative genomic

analysis of human and chimpanzee proteases. Genomics 2005, 86, 638–647. [CrossRef] [PubMed]
17. Werle, M.; Bernkop-Schnurch, A. Strategies to improve plasma half life time of peptide and protein drugs.

Amino Acids 2006, 30, 351–367. [CrossRef]
18. Jambunathan, K.; Galande, A.K. Design of a serum stability tag for bioactive peptides. Protein Pept. Lett.

2014, 21, 32–38. [CrossRef]
19. Di, L. Strategic approaches to optimizing peptide ADME properties. AAPS. J. 2015, 17, 134–143. [CrossRef]

[PubMed]
20. Weiss, G.A.; Watanabe, C.K.; Zhong, A.; Goddard, A.; Sidhu, S.S. Rapid mapping of protein functional

epitopes by combinatorial alanine scanning. Proc. Natl. Acad. Sci. USA 2000, 97, 8950–8954. [CrossRef]
21. Morrison, K.L.; Weiss, G.A. Combinatorial alanine-scanning. Curr. Opin. Chem. Biol. 2001, 5, 302–307.

[CrossRef]
22. Eustache, S.; Leprince, J.; Tuffery, P. Progress with peptide scanning to study structure-activity relationships:

The implications for drug discovery. Expert. Opin. Drug Discov. 2016, 11, 771–784. [CrossRef]
23. Weinstock, M.T.; Francis, J.N.; Redman, J.S.; Kay, M.S. Protease-resistant peptide design-empowering nature’s

fragile warriors against HIV. Biopolymers 2012, 98, 431–442. [CrossRef] [PubMed]
24. Wisniewski, K.; Galyean, R.; Tariga, H.; Alagarsamy, S.; Croston, G.; Heitzmann, J.; Kohan, A.; Wisniewska, H.;

Laporte, R.; Riviere, P.J.; et al. New, potent, selective, and short-acting peptidic V1a receptor agonists.
J. Med. Chem. 2011, 54, 4388–4398. [CrossRef]

25. Frey, V.; Viaud, J.; Subra, G.; Cauquil, N.; Guichou, J.F.; Casara, P.; Grassy, G.; Chavanieu, A. Structure-activity
relationships of Bak derived peptides: Affinity and specificity modulations by amino acid replacement.
Eur. J. Med. Chem. 2008, 43, 966–972. [CrossRef] [PubMed]

26. Finan, B.; Yang, B.; Ottaway, N.; Smiley, D.L.; Ma, T.; Clemmensen, C.; Chabenne, J.; Zhang, L.; Habegger, K.M.;
Fischer, K.; et al. A rationally designed monomeric peptide triagonist corrects obesity and diabetes in rodents.
Nat. Med. 2015, 21, 27–36. [CrossRef]

27. Werner, H.M.; Cabalteja, C.C.; Horne, W.S. Peptide Backbone Composition and Protease Susceptibility:
Impact of Modification Type.; Position, and Tandem Substitution. ChemBioChem 2016, 17, 712–718. [CrossRef]
[PubMed]

28. Liskamp, R.M.; Rijkers, D.T.; Kruijtzer, J.A.; Kemmink, J. Peptides and proteins as a continuing exciting
source of inspiration for peptidomimetics. ChemBioChem 2011, 12, 1626–1653. [CrossRef] [PubMed]

http://dx.doi.org/10.1681/ASN.2012121216
http://dx.doi.org/10.1073/pnas.1303002110
http://dx.doi.org/10.1038/srep00309
http://www.ncbi.nlm.nih.gov/pubmed/22413060
http://dx.doi.org/10.1038/nature06526
http://www.ncbi.nlm.nih.gov/pubmed/18075579
http://dx.doi.org/10.1021/ja508766b
http://www.ncbi.nlm.nih.gov/pubmed/25517352
http://dx.doi.org/10.1038/nrd2590
http://www.ncbi.nlm.nih.gov/pubmed/18591981
http://dx.doi.org/10.1016/j.addr.2016.03.013
http://dx.doi.org/10.1016/j.drudis.2014.10.003
http://dx.doi.org/10.1016/j.ygeno.2005.07.009
http://www.ncbi.nlm.nih.gov/pubmed/16162398
http://dx.doi.org/10.1007/s00726-005-0289-3
http://dx.doi.org/10.2174/09298665113209990069
http://dx.doi.org/10.1208/s12248-014-9687-3
http://www.ncbi.nlm.nih.gov/pubmed/25366889
http://dx.doi.org/10.1073/pnas.160252097
http://dx.doi.org/10.1016/S1367-5931(00)00206-4
http://dx.doi.org/10.1080/17460441.2016.1201058
http://dx.doi.org/10.1002/bip.22073
http://www.ncbi.nlm.nih.gov/pubmed/23203688
http://dx.doi.org/10.1021/jm200278m
http://dx.doi.org/10.1016/j.ejmech.2007.06.008
http://www.ncbi.nlm.nih.gov/pubmed/17692431
http://dx.doi.org/10.1038/nm.3761
http://dx.doi.org/10.1002/cbic.201500312
http://www.ncbi.nlm.nih.gov/pubmed/26205791
http://dx.doi.org/10.1002/cbic.201000717
http://www.ncbi.nlm.nih.gov/pubmed/21751324


Int. J. Mol. Sci. 2019, 20, 2383 18 of 21

29. Cabrele, C.; Martinek, T.A.; Reiser, O.; Berlicki, L. Peptides containing beta-amino acid patterns: Challenges
and successes in medicinal chemistry. J. Med. Chem. 2014, 57, 9718–9739. [CrossRef] [PubMed]

30. Chatterjee, J.; Rechenmacher, F.; Kessler, H. N-methylation of peptides and proteins: An. important element
for modulating biological functions. Angew. Chem. Int. Ed. Engl. 2013, 52, 254–269. [CrossRef] [PubMed]

31. Perez, J.J. Designing Peptidomimetics. Curr. Top Med. Chem. 2018, 18, 566–590. [CrossRef]
32. Chingle, R.; Proulx, C.; Lubell, W.D. Azapeptide Synthesis Methods for Expanding Side-Chain Diversity for

Biomedical Applications. ACC Chem. Res. 2017, 50, 1541–1556. [CrossRef] [PubMed]
33. Pelay-Gimeno, M.; Glas, A.; Koch, O.; Grossmann, T.N. Structure-Based Design of Inhibitors of Protein-Protein

Interactions: Mimicking Peptide Binding Epitopes. Angew. Chem. Int. Ed. Engl. 2015, 54, 8896–8927.
[CrossRef] [PubMed]

34. Kluskens, L.D.; Nelemans, S.A.; Rink, R.; de Vries, L.; Meter-Arkema, A.; Wang, Y.; Walther, T.; Kuipers, A.;
Moll, G.N.; Haas, M. Angiotensin-(1-7) with thioether bridge: An. angiotensin-converting enzyme-resistant,
potent angiotensin-(1-7) analog. J. Pharm. Exp. 2009, 328, 849–854. [CrossRef]

35. Decoene, K.W.; Vannecke, W.; Passioura, T.; Suga, H.; Madder, A. Pyrrole-Mediated Peptide Cyclization
Identified through Genetically Reprogrammed Peptide Synthesis. Biomedicines 2018, 6, 99. [CrossRef]

36. Wu, S.J.; Luo, J.; O’Neil, K.T.; Kang, J.; Lacy, E.R.; Canziani, G.; Baker, A.; Huang, M.; Tang, Q.M.; Raju, T.S.;
et al. Structure-based engineering of a monoclonal antibody for improved solubility. Protein Eng. Des. Sel.
2010, 23, 643–651. [CrossRef]

37. Mant, C.T.; Kovacs, J.M.; Kim, H.M.; Pollock, D.D.; Hodges, R.S. Intrinsic amino acid side-chain
hydrophilicity/hydrophobicity coefficients determined by reversed-phase high-performance liquid
chromatography of model peptides: Comparison with other hydrophilicity/hydrophobicity scales.
Biopolymers 2009, 92, 573–595. [CrossRef]

38. Cortes, C.; Vapnik, V. Support-Vector Networks. Mach. Learn. 1995, 20, 273–297. [CrossRef]
39. Agostini, F.; Cirillo, D.; Livi, C.M.; Ponti, R.D.; Tartaglia, G.G. cc SOL omics: A webserver for solubility

prediction of endogenous and heterologous expression in Escherichia coli. Bioinformatics 2014, 30, 2975–2977.
[CrossRef]

40. Smialowski, P.; Doose, G.; Torkler, P.; Kaufmann, S.; Frishman, D. PROSO II-a new method for protein
solubility prediction. FEBS J. 2012, 279, 2192–2200. [CrossRef]

41. Derakhshankhah, H.; Jafari, S. Cell penetrating peptides: A concise review with emphasis on biomedical
applications. Biomed. Pharm. 2018, 108, 1090–1096. [CrossRef]

42. Copolovici, D.M.; Langel, K.; Eriste, E.; Langel, U. Cell-penetrating peptides: Design, synthesis,
and applications. ACS Nano. 2014, 8, 1972–1994. [CrossRef]

43. Mahlapuu, M.; Hakansson, J.; Ringstad, L.; Bjorn, C. Antimicrobial Peptides: An. Emerging Category of
Therapeutic Agents. Front Cell Infect. Microbiol. 2016, 6, 194. [CrossRef]

44. Qian, Z.; LaRochelle, J.R.; Jiang, B.; Lian, W.; Hard, R.L.; Selner, N.G.; Luechapanichkul, R.; Barrios, A.M.;
Pei, D. Early endosomal escape of a cyclic cell-penetrating peptide allows effective cytosolic cargo delivery.
Biochemistry 2014, 53, 4034–4046. [CrossRef] [PubMed]

45. Qian, Z.; Martyna, A.; Hard, R.L.; Wang, J.; Appiah-Kubi, G.; Coss, C.; Phelps, M.A.; Rossman, J.S.;
Pei, D. Discovery and Mechanism of Highly Efficient Cyclic Cell-Penetrating Peptides. Biochemistry 2016,
55, 2601–2612. [CrossRef] [PubMed]

46. Wei, L.; Xing, P.; Su, R.; Shi, G.; Ma, Z.S.; Zou, Q. CPPred-RF: A Sequence-based Predictor for Identifying
Cell-Penetrating Peptides and Their Uptake Efficiency. J. Proteome. Res. 2017, 16, 2044–2053. [CrossRef]
[PubMed]

47. Holton, T.A.; Pollastri, G.; Shields, D.C.; Mooney, C. CPPpred: Prediction of cell penetrating peptides.
Bioinformatics 2013, 29, 3094–3096. [CrossRef] [PubMed]

48. Pandey, P.; Patel, V.; George, N.V.; Mallajosyula, S.S. KELM-CPPpred: Kernel Extreme Learning Machine
Based Prediction Model. for Cell-Penetrating Peptides. J. Proteome. Res. 2018, 17, 3214–3222. [CrossRef]

49. Eiriksdottir, E.; Konate, K.; Langel, U.; Divita, G.; Deshayes, S. Secondary structure of cell-penetrating
peptides controls membrane interaction and insertion. Biochim. Biophys. Acta 2010, 1798, 1119–1128.
[CrossRef]

50. Gautam, A.; Chaudhary, K.; Kumar, R.; Sharma, A.; Kapoor, P.; Tyagi, A. Raghava GPS, consortium Osdd.
In silico approaches for designing highly effective cell penetrating peptides. J. Transl. Med. 2013, 11, 74.
[CrossRef]

http://dx.doi.org/10.1021/jm5010896
http://www.ncbi.nlm.nih.gov/pubmed/25207470
http://dx.doi.org/10.1002/anie.201205674
http://www.ncbi.nlm.nih.gov/pubmed/23161799
http://dx.doi.org/10.2174/1568026618666180522075258
http://dx.doi.org/10.1021/acs.accounts.7b00114
http://www.ncbi.nlm.nih.gov/pubmed/28598597
http://dx.doi.org/10.1002/anie.201412070
http://www.ncbi.nlm.nih.gov/pubmed/26119925
http://dx.doi.org/10.1124/jpet.108.146431
http://dx.doi.org/10.3390/biomedicines6040099
http://dx.doi.org/10.1093/protein/gzq037
http://dx.doi.org/10.1002/bip.21316
http://dx.doi.org/10.1007/BF00994018
http://dx.doi.org/10.1093/bioinformatics/btu420
http://dx.doi.org/10.1111/j.1742-4658.2012.08603.x
http://dx.doi.org/10.1016/j.biopha.2018.09.097
http://dx.doi.org/10.1021/nn4057269
http://dx.doi.org/10.3389/fcimb.2016.00194
http://dx.doi.org/10.1021/bi5004102
http://www.ncbi.nlm.nih.gov/pubmed/24896852
http://dx.doi.org/10.1021/acs.biochem.6b00226
http://www.ncbi.nlm.nih.gov/pubmed/27089101
http://dx.doi.org/10.1021/acs.jproteome.7b00019
http://www.ncbi.nlm.nih.gov/pubmed/28436664
http://dx.doi.org/10.1093/bioinformatics/btt518
http://www.ncbi.nlm.nih.gov/pubmed/24064418
http://dx.doi.org/10.1021/acs.jproteome.8b00322
http://dx.doi.org/10.1016/j.bbamem.2010.03.005
http://dx.doi.org/10.1186/1479-5876-11-74


Int. J. Mol. Sci. 2019, 20, 2383 19 of 21

51. Agrawal, P.; Bhalla, S.; Usmani, S.S.; Singh, S.; Chaudhary, K.; Raghava, G.P.; Gautam, A. CPPsite 2.0:
A repository of experimentally validated cell-penetrating peptides. Nucleic Acids Res. 2016, 44, 1098–1103.
[CrossRef]

52. Lian, W.; Jiang, B.; Qian, Z.; Pei, D. Cell-permeable bicyclic peptide inhibitors against intracellular proteins.
J. Am. Chem. Soc. 2014, 136, 9830–9833. [CrossRef]

53. Trinh, T.B.; Upadhyaya, P.; Qian, Z.; Pei, D. Discovery of a Direct Ras Inhibitor by Screening a Combinatorial
Library of Cell-Permeable Bicyclic Peptides. ACS Comb. Sci. 2016, 18, 75–85. [CrossRef] [PubMed]

54. Carter, E.; Lau, C.Y.; Tosh, D.; Ward, S.G.; Mrsny, R.J. Cell penetrating peptides fail to induce an innate immune
response in epithelial cells in vitro: Implications for continued therapeutic use. Eur. J. Pharm. Biopharm. 2013,
85, 12–19. [CrossRef] [PubMed]

55. Smith, G.P. Filamentous fusion phage: Novel expression vectors that display cloned antigens on the virion
surface. Science 1985, 228, 1315–1317. [CrossRef]

56. McCafferty, J.; Griffiths, A.D.; Winter, G.; Chiswell, D.J. Phage antibodies: Filamentous phage displaying
antibody variable domains. Nature 1990, 348, 552–554. [CrossRef] [PubMed]

57. Omidfar, K.; Daneshpour, M. Advances in phage display technology for drug discovery. Expert. Opin.
Drug Discov. 2015, 10, 651–669. [CrossRef]

58. Matochko, W.L.; Derda, R. Next-generation sequencing of phage-displayed peptide libraries.
Methods Mol. Biol. 2015, 1248, 249–266. [PubMed]

59. Ng, S.; Derda, R. Phage-displayed macrocyclic glycopeptide libraries. Org. Biomol. Chem. 2016, 14, 5539–5545.
[CrossRef] [PubMed]

60. Heinis, C.; Winter, G. Encoded libraries of chemically modified peptides. Curr. Opin. Chem. Biol. 2015,
26, 89–98. [CrossRef]

61. Rolland, T.; Tasan, M.; Charloteaux, B.; Pevzner, S.J.; Zhong, Q.; Sahni, N.; Yi, S.; Lemmens, I.; Fontanillo, C.;
Mosca, R.; et al. A proteome-scale map of the human interactome network. Cell 2014, 159, 1212–1226.
[CrossRef]

62. Cunningham, A.D.; Qvit, N.; Mochly-Rosen, D. Peptides and peptidomimetics as regulators of protein-protein
interactions. Curr. Opin. Struct. Biol. 2017, 44, 59–66. [CrossRef]

63. Petta, I.; Lievens, S.; Libert, C.; Tavernier, J.; de Bosscher, K. Modulation of Protein-Protein Interactions for
the Development of Novel Therapeutics. Mol. Ther. 2016, 24, 707–718. [CrossRef]

64. Warso, M.A.; Richards, J.M.; Mehta, D.; Christov, K.; Schaeffer, C.; Bressler, L.R.; Yamada, T.; Majumdar, D.;
Kennedy, S.A.; Beattie, C.W.; et al. A first-in-class, first-in-human, phase I trial of p28, a non-HDM2-mediated
peptide inhibitor of p53 ubiquitination in patients with advanced solid tumours. Br. J. Cancer 2013,
108, 1061–1070. [CrossRef]

65. Tabernero, J.; Dirix, L.; Schoffski, P.; Cervantes, A.; Capdevila, J.; Baselga, J.; Beijsterveldt, L.V.; Winkler, H.;
Kraljevic, S.; Zhuang, S.H. Phase I pharmacokinetic (PK) and pharmacodynamic (PD) study of HDM-2
antagonist JNJ-26854165 in patients with advanced refractory solid tumors. J. Clin. Oncol. 2009, 27, 3514.

66. Wong, D.; Kandagatla, P.; Korz, W.; Chinni, S.R. Targeting CXCR4 with CTCE-9908 inhibits prostate tumor
metastasis. BMC Urol. 2014, 14, 12. [CrossRef]

67. Huang, E.H.; Singh, B.; Cristofanilli, M.; Gelovani, J.; Wei, C.; Vincent, L.; Cook, K.R.; Lucci, A. A CXCR4
antagonist CTCE-9908 inhibits primary tumor growth and metastasis of breast cancer. J. Surg. Res. 2009,
155, 231–236. [CrossRef] [PubMed]

68. Chiquet, C.; Aptel, F.; Creuzot-Garcher, C.; Berrod, J.P.; Kodjikian, L.; Massin, P.; Deloche, C.; Perino, J.;
Kirwan, B.A.; de Brouwer, S.; et al. Postoperative Ocular Inflammation: A Single Subconjunctival Injection
of XG-102 Compared to Dexamethasone Drops in a Randomized Trial. Am. J. Ophthalmol. 2017, 174, 76–84.
[CrossRef] [PubMed]

69. Borsello, T.; Clarke, P.G.; Hirt, L.; Vercelli, A.; Repici, M.; Schorderet, D.F.; Bogousslavsky, J.; Bonny, C. A
peptide inhibitor of c-Jun N-terminal kinase protects against excitotoxicity and cerebral ischemia. Nat. Med.
2003, 9, 1180–1186. [CrossRef] [PubMed]

70. Lau, Y.H.; de Andrade, P.; Wu, Y.; Spring, D.R. Peptide stapling techniques based on different macrocyclisation
chemistries. Chem. Soc. Rev. 2015, 44, 91–102. [CrossRef] [PubMed]

71. Mine, Y.; Munir, H.; Nakanishi, Y.; Sugiyama, D. Biomimetic Peptides for the Treatment of Cancer.
Anticancer Res. 2016, 36, 3565–3570. [PubMed]

http://dx.doi.org/10.1093/nar/gkv1266
http://dx.doi.org/10.1021/ja503710n
http://dx.doi.org/10.1021/acscombsci.5b00164
http://www.ncbi.nlm.nih.gov/pubmed/26645887
http://dx.doi.org/10.1016/j.ejpb.2013.03.024
http://www.ncbi.nlm.nih.gov/pubmed/23958314
http://dx.doi.org/10.1126/science.4001944
http://dx.doi.org/10.1038/348552a0
http://www.ncbi.nlm.nih.gov/pubmed/2247164
http://dx.doi.org/10.1517/17460441.2015.1037738
http://www.ncbi.nlm.nih.gov/pubmed/25616338
http://dx.doi.org/10.1039/C5OB02646F
http://www.ncbi.nlm.nih.gov/pubmed/26889738
http://dx.doi.org/10.1016/j.cbpa.2015.02.008
http://dx.doi.org/10.1016/j.cell.2014.10.050
http://dx.doi.org/10.1016/j.sbi.2016.12.009
http://dx.doi.org/10.1038/mt.2015.214
http://dx.doi.org/10.1038/bjc.2013.74
http://dx.doi.org/10.1186/1471-2490-14-12
http://dx.doi.org/10.1016/j.jss.2008.06.044
http://www.ncbi.nlm.nih.gov/pubmed/19482312
http://dx.doi.org/10.1016/j.ajo.2016.10.012
http://www.ncbi.nlm.nih.gov/pubmed/27810317
http://dx.doi.org/10.1038/nm911
http://www.ncbi.nlm.nih.gov/pubmed/12937412
http://dx.doi.org/10.1039/C4CS00246F
http://www.ncbi.nlm.nih.gov/pubmed/25199043
http://www.ncbi.nlm.nih.gov/pubmed/27354624


Int. J. Mol. Sci. 2019, 20, 2383 20 of 21

72. Ellert-Miklaszewska, A.; Poleszak, K.; Kaminska, B. Short peptides interfering with signaling pathways as
new therapeutic tools for cancer treatment. Future Med. Chem. 2017, 9, 199–221. [CrossRef]

73. Sliwoski, G.; Kothiwale, S.; Meiler, J.; Lowe, E.W., Jr. Computational methods in drug discovery. Pharm. Rev.
2014, 66, 334–395. [CrossRef] [PubMed]

74. De Vries, S.J.; Schindler, C.E.; de Beauchene, I.C.; Zacharias, M. A web interface for easy flexible protein-protein
docking with ATTRACT. Biophys. J. 2015, 108, 462–465. [CrossRef] [PubMed]

75. Choi, J.M.; Serohijos, A.W.R.; Murphy, S.; Lucarelli, D.; Lofranco, L.L.; Feldman, A.; Shakhnovich, E.I.
Minimalistic predictor of protein binding energy: Contribution of solvation factor to protein binding.
Biophys. J. 2015, 108, 795–798. [CrossRef] [PubMed]

76. Yugandhar, K.; Gromiha, M.M. Protein-protein binding affinity prediction from amino acid sequence.
Bioinformatics 2014, 30, 3583–3589. [CrossRef] [PubMed]

77. Yugandhar, K.; Gromiha, M.M. Feature selection and classification of protein-protein complexes based
on their binding affinities using machine learning approaches. Proteins 2014, 82, 2088–2096. [CrossRef]
[PubMed]

78. Lensink, M.F.; Velankar, S.; Wodak, S.J. Modeling protein-protein and protein-peptide complexes: CAPRI 6th
edition. Proteins 2017, 85, 359–377. [CrossRef] [PubMed]

79. Van Zundert, G.C.P.; Rodrigues, J.; Trellet, M.; Schmitz, C.; Kastritis, P.L.; Karaca, E.; Melquiond, A.S.J.;
van Dijk, M.; de Vries, S.J.; Bonvin, A. The HADDOCK2.2 Web Server: User-Friendly Integrative Modeling
of Biomolecular Complexes. J. Mol. Biol. 2016, 428, 720–725. [CrossRef]

80. Lensink, M.F.; Velankar, S.; Kryshtafovych, A.; Huang, S.Y.; Schneidman-Duhovny, D.; Sali, A.; Segura, J.;
Fernandez-Fuentes, N.; Viswanath, S.; Elber, R.; et al. Prediction of homoprotein and heteroprotein complexes
by protein docking and template-based modeling: A CASP-CAPRI experiment. Proteins 2016, 84, 323–348.
[CrossRef] [PubMed]

81. Comeau, S.R.; Gatchell, D.W.; Vajda, S.; Camacho, C.J. ClusPro: An automated docking and discrimination
method for the prediction of protein complexes. Bioinformatics 2004, 20, 45–50. [CrossRef] [PubMed]

82. Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E.
The Protein Data Bank. Nucleic Acids Res. 2000, 28, 235–242. [CrossRef] [PubMed]

83. Vanhee, P.; Reumers, J.; Stricher, F.; Baeten, L.; Serrano, L.; Schymkowitz, J.; Rousseau, F. PepX: A structural
database of non-redundant protein-peptide complexes. Nucleic Acids Res. 2010, 38, 545–551. [CrossRef]

84. London, N.; Movshovitz-Attias, D.; Schueler-Furman, O. The structural basis of peptide-protein binding
strategies. Structure 2010, 18, 188–199. [CrossRef]

85. Clackson, T.; Wells, J.A. A hot spot of binding energy in a hormone-receptor interface. Science 1995,
267, 383–386. [CrossRef]

86. Buonfiglio, R.; Recanatini, M.; Masetti, M. Protein Flexibility in Drug Discovery: From Theory to Computation.
ChemMedChem 2015, 10, 1141–1148. [CrossRef] [PubMed]

87. Takahashi, S.; Leiss, M.; Moser, M.; Ohashi, T.; Kitao, T.; Heckmann, D.; Pfeifer, A.; Kessler, H.; Takagi, J.;
Erickson, H.P.; et al. The RGD motif in fibronectin is essential for development but dispensable for fibril
assembly. J. Cell Biol. 2007, 178, 167–178. [CrossRef] [PubMed]

88. Mohapatra, S.; Saha, A.; Mondal, P.; Jana, B.; Ghosh, S.; Biswas, A.; Ghosh, S. Synergistic Anticancer Effect of
Peptide-Docetaxel Nanoassembly Targeted to Tubulin: Toward Development of Dual Warhead Containing
Nanomedicine. Adv. Healthc. Mater. 2017, 6. [CrossRef] [PubMed]

89. Inaba, H.; Matsuura, K. Peptide Nanomaterials Designed from Natural Supramolecular Systems.
Chem. Rec. 2018. [CrossRef]

90. Inaba, H.; Yamamoto, T.; Kabir, A.M.R.; Kakugo, A.; Sada, K.; Matsuura, K. Molecular Encapsulation Inside
Microtubules Based on Tau-Derived Peptides. Chem. Eur. J. 2018, 24, 14958–14967. [CrossRef]

91. Jana, B.; Mondal, P.; Saha, A.; Adak, A.; Das, G.; Mohapatra, S.; Kurkute, P.; Ghosh, S. Designed Tetrapeptide
Interacts with Tubulin and Microtubule. Langmuir 2018, 34, 1123–1132. [CrossRef] [PubMed]

92. Antes, I. DynaDock: A new molecular dynamics-based algorithm for protein-peptide docking including
receptor flexibility. Proteins 2010, 78, 1084–1104. [CrossRef] [PubMed]

93. Raveh, B.; London, N.; Schueler-Furman, O. Sub-angstrom modeling of complexes between flexible peptides
and globular proteins. Proteins 2010, 78, 2029–2040. [CrossRef]

http://dx.doi.org/10.4155/fmc-2016-0189
http://dx.doi.org/10.1124/pr.112.007336
http://www.ncbi.nlm.nih.gov/pubmed/24381236
http://dx.doi.org/10.1016/j.bpj.2014.12.015
http://www.ncbi.nlm.nih.gov/pubmed/25650913
http://dx.doi.org/10.1016/j.bpj.2015.01.001
http://www.ncbi.nlm.nih.gov/pubmed/25692584
http://dx.doi.org/10.1093/bioinformatics/btu580
http://www.ncbi.nlm.nih.gov/pubmed/25172924
http://dx.doi.org/10.1002/prot.24564
http://www.ncbi.nlm.nih.gov/pubmed/24648146
http://dx.doi.org/10.1002/prot.25215
http://www.ncbi.nlm.nih.gov/pubmed/27865038
http://dx.doi.org/10.1016/j.jmb.2015.09.014
http://dx.doi.org/10.1002/prot.25007
http://www.ncbi.nlm.nih.gov/pubmed/27122118
http://dx.doi.org/10.1093/bioinformatics/btg371
http://www.ncbi.nlm.nih.gov/pubmed/14693807
http://dx.doi.org/10.1093/nar/28.1.235
http://www.ncbi.nlm.nih.gov/pubmed/10592235
http://dx.doi.org/10.1093/nar/gkp893
http://dx.doi.org/10.1016/j.str.2009.11.012
http://dx.doi.org/10.1126/science.7529940
http://dx.doi.org/10.1002/cmdc.201500086
http://www.ncbi.nlm.nih.gov/pubmed/25891095
http://dx.doi.org/10.1083/jcb.200703021
http://www.ncbi.nlm.nih.gov/pubmed/17591922
http://dx.doi.org/10.1002/adhm.201600718
http://www.ncbi.nlm.nih.gov/pubmed/27782376
http://dx.doi.org/10.1002/tcr.201800149
http://dx.doi.org/10.1002/chem.201802617
http://dx.doi.org/10.1021/acs.langmuir.7b01326
http://www.ncbi.nlm.nih.gov/pubmed/28558224
http://dx.doi.org/10.1002/prot.22629
http://www.ncbi.nlm.nih.gov/pubmed/20017216
http://dx.doi.org/10.1002/prot.22716


Int. J. Mol. Sci. 2019, 20, 2383 21 of 21

94. London, N.; Raveh, B.; Cohen, E.; Fathi, G.; Schueler-Furman, O. Rosetta FlexPepDock web server–high
resolution modeling of peptide-protein interactions. Nucleic Acids Res. 2011, 39, 249–253. [CrossRef]
[PubMed]

95. Donsky, E.; Wolfson, H.J. PepCrawler: A fast RRT-based algorithm for high-resolution refinement and
binding affinity estimation of peptide inhibitors. Bioinformatics 2011, 27, 2836–2842. [CrossRef]

96. Raveh, B.; London, N.; Zimmerman, L.; Schueler-Furman, O. Rosetta FlexPepDock ab-initio: Simultaneous
folding, docking and refinement of peptides onto their receptors. PLoS ONE 2011, 6, e18934. [CrossRef]

97. Trellet, M.; Melquiond, A.S.; Bonvin, A.M. A unified conformational selection and induced fit approach to
protein-peptide docking. PLoS ONE 2013, 8, e58769. [CrossRef] [PubMed]

98. Verdonk, M.L.; Cole, J.C.; Hartshorn, M.J.; Murray, C.W.; Taylor, R.D. Improved protein-ligand docking
using GOLD. Proteins 2003, 52, 609–623. [CrossRef]

99. Rentzsch, R.; Renard, B.Y. Docking small peptides remains a great challenge: An assessment using AutoDock
Vina. Brief. Bioinform. 2015, 16, 1045–1056. [CrossRef]

100. Jain, A.N. Surflex: Fully automatic flexible molecular docking using a molecular similarity-based search
engine. J. Med. Chem. 2003, 46, 499–511. [CrossRef]

101. Hauser, A.S.; Windshugel, B. LEADS-PEP: A Benchmark Data Set for Assessment of Peptide Docking
Performance. J. Chem. Inf. Model 2016, 56, 188–200. [CrossRef] [PubMed]

102. Trabuco, L.G.; Lise, S.; Petsalaki, E.; Russell, R.B. PepSite: Prediction of peptide-binding sites from protein
surfaces. Nucleic Acids Res. 2012, 40, 423–427. [CrossRef]

103. Petsalaki, E.; Stark, A.; Garcia-Urdiales, E.; Russell, R.B. Accurate prediction of peptide binding sites on
protein surfaces. PLoS Comput. Biol. 2009, 5, e1000335. [CrossRef]

104. Porter, K.A.; Xia, B.; Beglov, D.; Bohnuud, T.; Alam, N.; Schueler-Furman, O.; Kozakov, D. ClusPro PeptiDock:
Efficient global docking of peptide recognition motifs using FFT. Bioinformatics 2017, 33, 3299–3301. [CrossRef]

105. De Vries, S.J.; Rey, J.; Schindler, C.E.M.; Zacharias, M.; Tuffery, P. The pepATTRACT web server for blind,
large-scale peptide-protein docking. Nucleic Acids Res. 2017, 45, 361–364. [CrossRef]

106. Lavi, A.; Ngan, C.H.; Movshovitz-Attias, D.; Bohnuud, T.; Yueh, C.; Beglov, D.; Schueler-Furman, O.;
Kozakov, D. Detection of peptide-binding sites on protein surfaces: The first step toward the modeling and
targeting of peptide-mediated interactions. Proteins 2013, 81, 2096–2105. [CrossRef]

107. Kurcinski, M.; Jamroz, M.; Blaszczyk, M.; Kolinski, A.; Kmiecik, S. CABS-dock web server for the flexible
docking of peptides to proteins without prior knowledge of the binding site. Nucleic Acids Res. 2015,
43, 419–424. [CrossRef]

108. Ben-Shimon, A.; Niv, M.Y. AnchorDock: Blind. and Flexible Anchor-Driven Peptide Docking. Structure 2015,
23, 929–940. [CrossRef]

109. Zhou, P.; Jin, B.; Li, H.; Huang, S.Y. HPEPDOCK: A web server for blind peptide-protein docking based on a
hierarchical algorithm. Nucleic Acids Res. 2018, 46, 443–450. [CrossRef]

110. Lee, H.; Heo, L.; Lee, M.S.; Seok, C. GalaxyPepDock: A protein-peptide docking tool based on interaction
similarity and energy optimization. Nucleic Acids Res. 2015, 43, 431–435. [CrossRef]

111. Taherzadeh, G.; Zhou, Y.; Liew, A.W.; Yang, Y. Structure-based prediction of protein- peptide binding regions
using Random Forest. Bioinformatics 2018, 34, 477–484. [CrossRef]

112. Iqbal, S.; Hoque, M.T. PBRpredict-Suite: A suite of models to predict peptide-recognition domain residues
from protein sequence. Bioinformatics 2018, 34, 3289–3299. [CrossRef]

113. Obarska-Kosinska, A.; Iacoangeli, A.; Lepore, R.; Tramontano, A. PepComposer: Computational design of
peptides binding to a given protein surface. Nucleic Acids Res. 2016, 44, 522–528. [CrossRef]

114. Wang, S.H.; Lee, A.C.; Chen, I.J.; Chang, N.C.; Wu, H.C.; Yu, H.M.; Chang, Y.J.; Lee, T.W.; Yu, J.C.; Yu, A.L.;
et al. Structure-based optimization of GRP78-binding peptides that enhances efficacy in cancer imaging and
therapy. Biomaterials 2016, 94, 31–44. [CrossRef]

115. Yu, J.; Andreani, J.; Ochsenbein, F.; Guerois, R. Lessons from (co-)evolution in the docking of proteins and
peptides for CAPRI Rounds 28–35. Proteins: Struct. Funct. Bioinform. 2017, 85, 378–390. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1093/nar/gkr431
http://www.ncbi.nlm.nih.gov/pubmed/21622962
http://dx.doi.org/10.1093/bioinformatics/btr498
http://dx.doi.org/10.1371/journal.pone.0018934
http://dx.doi.org/10.1371/journal.pone.0058769
http://www.ncbi.nlm.nih.gov/pubmed/23516555
http://dx.doi.org/10.1002/prot.10465
http://dx.doi.org/10.1093/bib/bbv008
http://dx.doi.org/10.1021/jm020406h
http://dx.doi.org/10.1021/acs.jcim.5b00234
http://www.ncbi.nlm.nih.gov/pubmed/26651532
http://dx.doi.org/10.1093/nar/gks398
http://dx.doi.org/10.1371/journal.pcbi.1000335
http://dx.doi.org/10.1093/bioinformatics/btx216
http://dx.doi.org/10.1093/nar/gkx335
http://dx.doi.org/10.1002/prot.24422
http://dx.doi.org/10.1093/nar/gkv456
http://dx.doi.org/10.1016/j.str.2015.03.010
http://dx.doi.org/10.1093/nar/gky357
http://dx.doi.org/10.1093/nar/gkv495
http://dx.doi.org/10.1093/bioinformatics/btx614
http://dx.doi.org/10.1093/bioinformatics/bty352
http://dx.doi.org/10.1093/nar/gkw366
http://dx.doi.org/10.1016/j.biomaterials.2016.03.050
http://dx.doi.org/10.1002/prot.25180
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Key Aspects in Bioactive Peptide Drug Development 
	Historic Overview 
	Overcoming Intrinsic Drawbacks of Peptide Drugs 
	Termini Protection 
	Non-Chemical Methods: Identifying Critical Residues 
	Synthetic Amino Acid Substitution and Backbone Modification 
	Computational Methods for Improving Aqueous Solubility and Membrane Permeability 
	Membrane Protein-Facilitated Intracellular Peptide Uptake 

	High-Throughput Screening (HTS) for New Peptide Leads 

	Peptides and Protein–Protein Interactions 
	Promising Developments for Interfering Peptides 
	Experimental and Computational Methods for Determining PPI 
	Computational Docking Strategies 
	Sequence- or Structural-based Predictions 


	Innovations and Computational Methods for Peptide—Protein Interactions 
	Selection of Initial Peptide Scaffolds 
	Docking Peptide–Protein Interactions 
	Local and Global Docking Methods 
	Global Docking Methods 
	Template-Based Docking Method 


	Concluding Remarks 
	References

