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From the Central Limit Theorem, positions estimated via the process of path integration are 
expected to follow bivariate Gaussian distributions [S1]. Combining with Bayes’ theorem, the 
inverse covariances of two independent estimates sum linearly, i.e., 
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where Σ i
−1  denotes the inverse covariance matrix of cue i, and Σ opt

−1  is the inverse covariance 
matrix of the optimally combined positional estimate. The inverse covariance can be interpreted as 
a measure of positional ‘certainty’, analogous to the directional uncertainty considered in [1]. 

The center of the combined estimate’s Gaussian positional uncertainty is given by the relationship
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The derivations of (1) and (2) can be found in many standard texts, but is outlined briefly below for 
bivariate Gaussians. The bivariate positional uncertainty distribution can be written as 
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where z=[ x y ]  is the 2D position variable, μ=[μ x μ y ]  is the mean of the distribution (and also
position of maximum likelihood), and Σ  is the standard covariance matrix of two variables, i.e.,
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Bayes-optimal integration of two estimates with bivariate Gaussian uncertainty, f1 and f2, yields 
another estimate with bivariate Gaussian uncertainty fopt :
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noting that z Σ
−1

μ
T
=μ Σ

−1 zT  since Σ  is always symmetric. Note also that the constants C and C’ 
do not affect the form of fopt since it is normalized. Hence (5) shows that fopt is bivariate Gaussian 
with mean and covariance given by (1) and (2).

Importantly, μopt is the both maximum likelihood estimate of position (peak of distribution), and also
the position where most search effort should be applied [5].

To gain more insight into why there is a difference between directional and positional cue 
integration, we can take advantage of a simple relationship between bivariate Gaussian distributions
and univariate von Mises distributions. For a cue with a circularly symmetric Gaussian uncertainty 
distribution ( σ x

2
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2
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2  and σ xy=0 ), its directional uncertainty is well approximated by a von 
Mises distribution whose mean is the direction of the Gaussian peak, and with concentration
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where κ is the concentration of the von Mises directional uncertainty distribution, r is the distance 
between the observer and the cue, |Σ|  and σ2 are the determinant of the covariance matrix and 



marginal variance of the Gaussian, respectively. This useful approximation arises from the property 
of von Mises distributions being equivalent to the hitting density on a circle following Brownian 
motion which begins at the circle’s center, and with some constant drift [S2]. If an observer is at the 
circle’s center, the hitting density is the directional distribution from the observer’s viewpoint. 
Furthermore, since simple Brownian motion results in a circularly symmetric bivariate Gaussian 
distribution with some marginal variance σ2, and the constant drift determines the radial distance r 
at which the directional distribution is computed, the directional distribution of a circularly 
symmetric bivariate Gaussian distribution at distance r is given by (6). Thus, Bayes-optimal 
directional integration cannot distinguish entire classes of positional uncertainty distributions, e.g.,
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κ 0

0
r2

κ
]) (7)

where any constant ratio of r2 and σ2 leads to a constant κ despite substantially different distances r. 
Hence optimal directional cue integration results in practically identical combined directional 
estimate for all r in this class of positional uncertainty distributions (e.g., Fig 1A, initial headings of 
red paths). In contrast, both the center and covariance of the positional uncertainty varies with r 
which signficantly affects the optimal estimate of goal position and direction.

Similar principles apply to non-Gaussian uncertainties but do not always have simple closed form 
solutions or approximations. Nevertheless, it is straightforward to perform empirical positional and 
directional Bayesian integration to quantify their differences.

Figure 1A parameters

Cue uncertainty parameters:
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Start position was [0 0 ] . To generate paths using directional integration, (6) was combined with 
the von Mises path integration model of [1] at each step to compute the goal direction, at a step size 
of 0.01 units. To generate paths using positional integration, (1) and (2) were used.

Figure 1B parameters

The empirical probability of successfully locating a goal whose uncertainty distribution is f(x, y) is 
given by

P(success)≈∑
x , y

f (x , y ) (1−e−γϕ(x , y))Δ x Δ y (13)

where search success parameter γ = 0.2, discretized grid resolution Δx = Δy = 0.1, and search effort 
distribution ϕ(x , y ) . The optimal search distribution for a circularly symmetric bivariate Gaussian 
uncertainty distribution is from [5]:
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where Φ denotes the cumulative total search effort, ranging from 0 to 200 units in Fig 1B.

Figure 1C parameters

For each of three true paths of 100 steps, there were 104 repetitions with i.i.d. random compass error
ε∼VM (0,2) (15)

where VM denotes the von Mises distribution. The true paths were: straight (Fig 1C left), circular 
arc with a total turn angle of 7π/4 radians (Fig 1C middle), and a correlated random walk with 
independent random turn angles of the same distribution as ε (Fig 1C right). For display purposes, 
path integration position estimates were all scaled by 1/ ⟨cos(ε)⟩=I0(2)/ I 1(2) , where Iν denotes 
the modified Bessel function of the first kind of order ν, to correct for the proportionate 
underestimation of distance travelled due to compass error [S1].
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