
Imperial College London

Department of Computing

A Framework for Decentralised

Vehicular Services

Rudi Ball

December 2011

Submitted in part fulfilment of the requirements for the degree of

Doctor of Philosophy in Computing of Imperial College London

and the Diploma of Imperial College London

Declaration

I herewith certify that all material in this thesis which is not my own work has been properly

acknowledged.

Rudi Ball

i

Abstract

Traffic management is an old and growing problem within cities with inefficient road use re-

sulting in significant economic costs. Existing traffic management solutions are typically large

centralised systems which rely on central authorities for control. Furthermore, these systems are

costly to setup, deploy and maintain. Within the near future it is expected that Vehicle-to-X

(V2X) technologies will become integrated into both vehicles and transportation infrastruc-

tures. V2X technologies allow vehicles and road-side infrastructure to communicate with one

another using ad-hoc wireless communications.

In this thesis we present a unique vehicular framework for the development and prototyping

of decentralised vehicular services which exploit available V2X technologies. The framework

uses discrete event simulation to evaluate the operation of a decentralised vehicular service. The

decentralised services presented within the thesis are unique as they require a combination of

scaled ad-hoc inter-vehicle messaging, mobility data and cooperation to enable communities of

road vehicles to provide services to one another. Vehicles manage themselves in their local space

to approximate the outcomes of centralised services. As vehicular services are decentralised

they reduce the costs associated with deploying and supporting traffic services.

Using the framework we prototype two novel decentralised traffic control protocols which

evaluate the problems of travel time estimation and intersection control. Each protocol is

evaluated in a scaled scenario which emphasises the usage and requirement of fine grained

geographic mobility traces which mimic real city road maps. We show that decentralised

approaches provide a feasible means of providing vehicular services to users. We evaluate the

trade-offs and performance issues resulting from their use.

iii

Acknowledgements

I am forever grateful and thankful to a large group of people whom I had the privilege of learning

from during my time at Imperial College. Foremost, I am indebted to my inspiring supervisors

Naranker Dulay and Emil Lupu. Thank you for your gifted motivation, teachings, close support,

critical assessment and guidance throughout the years. I am also thankful to a number of other

supportive mentors including Morris Sloman, Susan Eisenbach, Peter Pietzuch and Rogerio de

Lemos. My great thanks to Amani El-Kholy for her help and advice on administrative issues.

My thanks to the Distributed Software Engineering Section and Policy Group with whom I have

been associated as well as the Engineering and Physical Science Research Council (EPSRC)

and the university for their funding and the tremendous opportunities provided to me as part

of both the Cityware and AEDUS2 projects. I am grateful to my thesis examiners, David

Hutchison and William Knottenbelt, for their time, comment and examination of the work.

My thanks to my colleagues, past and present: Dalal Alrajeh, Andi Bejleri, Themis Bourde-

nas, Robert Craven, Driss Choujaa, Domenico Corapi, Luke Dickens, Changyu Dong, Anandha

Gopalan, Vaibhav Gowadia, Markus Huebscher, Srdjan Marinovic, Pedro Martins, Edmund

Noon, Leonardo Mostarda, Dimosthenis Pediaditakis, Nikos Rizopoulos, Giovanni Russello,

Enrico Scalavino, Andrew Smith, Tamas Suto, Daniel Sykes, Vrizlynn Thing, Ryan Wishart

and Yanmin Zhu. Thank you for the gift of your time, a myriad of discussions, insights and

memories. Finally, a thanks to my family and the Jensen family for their constant encourage-

ment and motivation throughout the years abroad.

v

“Simplicity is a great virtue but it requires hard work to achieve it and

education to appreciate it. And to make matters worse:

complexity sells better.”

–

Edsger Dijkstra

‘On the Nature of Computing Science’

1984

vii

Contents

1. Introduction 1

1.1. Motivation . 2

1.2. Centralised and Decentralised Vehicular Services 5

1.3. Challenges . 6

1.4. Hypothesis and Assumptions . 8

1.5. Contributions . 9

1.6. Statement of Originality and Publications . 10

1.7. Thesis Structure . 11

2. Background 12

2.1. Complex Systems . 12

2.2. Vehicles . 13

2.2.1. Computational Devices . 13

2.2.2. Position and Mobility . 14

2.2.3. Vehicular Communications . 15

2.3. Vehicular Ad-hoc Networks . 17

2.4. Control Systems . 20

2.4.1. Feedback Control Systems . 20

2.4.2. Multi-agent Systems . 21

2.5. Simulation . 21

2.5.1. Mobility Models . 23

2.5.2. VANET simulation . 26

2.6. Vehicular Frameworks . 28

2.7. Intelligent Transportation Systems . 29

ix

2.8. Summary . 33

3. Decentralised Vehicular Services Framework 34

3.1. Requirements . 34

3.2. Framework . 38

3.2.1. World Model . 38

3.2.2. Time . 41

3.2.3. Vehicular Model . 41

3.2.4. Function Library . 56

3.3. Simulation . 59

3.3.1. Java in Simulation Time . 59

3.3.2. Geographic Urban Simulator . 60

3.3.3. Performance Comparison . 62

3.3.4. Discussion . 64

3.4. Summary . 65

4. Travel Time Estimation 66

4.1. Problem . 67

4.2. Metrics . 69

4.3. Scenario, Aims and Assumptions . 72

4.4. Mobility Traces . 73

4.5. Collect-Merge-Share . 74

4.6. Estimation and Mapping . 80

4.6.1. Estimation Algorithm . 80

4.6.2. Data Recency and Availability . 81

4.7. Evaluation . 83

4.7.1. Simulation Parameters . 83

4.7.2. Message Counts . 86

4.7.3. MapStore Growth . 90

4.7.4. Route Discovery . 93

4.7.5. Maps for Travel Time Estimates . 95

4.7.6. Message Failure and Redundancy . 100

x

4.8. Discussion . 102

4.9. Conclusions . 104

5. Intersection Control 106

5.1. Problem . 107

5.2. Related Approaches . 109

5.3. Intersection Control Metrics . 112

5.4. Scenario, Aims and Assumptions . 114

5.5. Intersection Control Protocol . 115

5.5.1. Utility Functions . 115

5.5.2. Protocol . 118

5.6. Evaluation . 122

5.6.1. Setup and Parameters . 123

5.6.2. Delay and Throughput . 124

5.6.3. Messaging and Adaptation . 127

5.6.4. Dropped Packets and Deadlock . 129

5.6.5. Performance Comparisons . 131

5.7. Discussion . 133

5.8. Conclusions . 135

6. Conclusions and Future Work 136

6.1. Summary . 136

6.2. Similarities, Limitations and Trade-offs . 139

6.3. Discussion . 141

6.4. Future Work . 142

6.4.1. Short-term Challenges . 142

6.4.2. Long-term Challenges . 143

6.5. Closing Remarks . 144

A. Framework 166

A.1. GUS Architecture and Execution . 166

A.2. Trace Synthesis . 169

xi

A.3. Geographic Distance . 170

A.4. Geographic Bearing . 172

A.5. Library Function Dependencies . 173

B. Travel Time Estimation 174

B.1. MapStore Datastructure . 174

C. Intersection Control 176

C.1. Collision Avoidance Algorithm . 176

C.2. Vehicle Regions . 177

C.3. Contacts and Dependencies . 178

xii

List of Tables

1.1. Service differentiation. 5

2.1. A comparison of implemented systems. 32

3.1. Primitive and derived library functions. 57

3.2. Simulation performance comparison. 64

4.1. Input mobility patterns: each regional dataset used contained over 1000 vehicle

movements. Values represent the ‘ideal’ mobility travel times. 84

4.2. Mean broadcast message counts (per minute) for increasing vehicle populations

(POP) versus increasing broadcast period (BP). 87

4.3. Mean ratios of received messages to broadcasts (R:B), given Table 4.2, for in-

creasing vehicle populations (POP) versus increasing broadcast period (BP) for

varying road maps. Each value represents the mean redundancy for each message

broadcast. 89

5.1. Intersection mobility patterns: the patterns represent all accepted vehicle routes

and traversals of the 4-way two-lane intersection. 109

5.2. Message counts and adaptations made, for varying input rates (vehicles per hour)

and varying packet loss, where σ represents measured standard deviation. . . . 128

C.1. Mean number of contacts versus mean number of adaptations contacts (and

associated standard deviation σ). 178

xiii

List of Figures

1.1. Selection of road network topologies, viewed at the same scale [Jen08]. 2

1.2. A typical ITS scenario. Multiple vehicles interact with both centralised ITS

services via 3G data networks, one another (via V2V interactions) and road-

side infrastructure (via V2I interactions). Vehicles and infrastructure use GPS

satellites to find position data and calculate speed and orientation data. Decen-

tralised vehicular services operate without service providers (servers) and mobile

phone networks. 4

2.1. Trilateration scenario: a vehicle determines its location to lie in the intersection

of three mobile cell tower signals (A ∩ B ∩ C). 14

2.2. Example mobility trace (history) shows a vehicles movement between a set of

geographic positions (circles). The time (t) when a vehicle existed at a location

or sampled its position is shown by the set of times between U and Y. 15

2.3. Wireless Access for Vehicular Environments (WAVE) stack. 16

2.4. Overlay network where messages are routed within a VANET from A to B. . . 18

2.5. Simulation: frameworks provide a simulator with mobility models, communica-

tion models, protocols or applications and scenario parameters. We assume that

the simulator holds its own internal object model which includes vehicular models. 22

2.6. Generated road topologies. 25

3.1. Layered model: vehicles (V1 to V5) exist on a transportation network. Each

vehicle records its past mobility as well as routing information on how to reach

its destination using the road network. 39

xiv

3.2. Vehicle architecture: a specialised extension of an Object. The architecture

shown does not include management components required to manage protocols

and applications. 42

3.3. An example route for a single vehicle travelling between A and B signified by

the sequence of waypoints (W0 to W6). 43

3.4. Vehicles V1 and V2 travelling in opposite but parallel directions, within a mea-

surable range of one another. 46

3.5. Messaging scenario. 49

3.6. Message structure. 50

3.7. Example Payload. 50

3.8. Simplified data feedback loop as a block diagram. 52

3.9. Parallel feedback. 52

3.10. Services ideally adapt towards equilibrium performance over time. 53

3.11. Procedural transitions for each protocol loop. 54

3.12. Dependency: vehicles communicate with one another in various time intervals.

The actions made by one vehicle effect the actions of another vehicle through

feedback. We represent this effect using directed arrows and weighting. In this

example, V2 is dependent on V1. For example 95/14 depicts the 95 adaptations

which V1 imposed on V2 and the 14 adaptations imposed by V2 on V1. 55

3.13. Code/JiST compilation/rewriter process [BHvR05a]. 60

3.14. GUS Simulation process. 61

3.15. GUS performance: elapsed experiment time versus simulation time. 63

4.1. A simple example of a road network (left) and one of several routes from A to

Z (right). 68

4.2. Real raw trace histories (left) and geographic map (right), illustrate the error

inherent in present positioning methods. We assume that the vehicle is able to

reconcile both datasets in pre-processing. 75

4.3. Travel time estimation architecture. Shaded components are modified from the

original framework architecture described in Chapter 3. 76

xv

4.4. Travel time tuple merging example. [A,B] and [P ,Q] are first checked to deter-

mine if they are redundant. If not redundant samples, travel times are stripped

and added to the MapStore. 78

4.5. Example radial geographic selection from the point of view of single vehicle. We

assume the vehicle to have already populated MapStore with tuples about the

road network. The shaded region represents the travel times to be selected from

MapStore for inclusion in a new Message. 79

4.6. Data availability problem. A centralised approach to data sharing with a central

authority (top), and a decentralised approach (bottom). Filled nodes represent

data which has been shared between a source in successive time-steps from 0 to 1. 81

4.7. Travel Time map visualisations. 82

4.8. Road networks (2.5 x 2.5km). 85

4.9. Travel Time payload. 86

4.10. Comparison of mean message per vehicle per minute retrieval for different road

network topologies for increasing broadcast periods (seconds). 88

4.11. MapStore growth (POP=250, CR=200m, BP=12.5s, RML=0%) for 1800 sec-

onds of simulation time. 91

4.12. Route Discovery Time (RDT) distributions for selected city mobilities for 1800

seconds of simulation (POP=250, CR=200m, BP=12.5s and RML=0%). 94

4.13. Grid heatmaps showing surface (above) and mapping (below). 96

4.14. London heatmaps showing surface (above) and mapping (below). 97

4.15. San Francisco heatmaps showing surface (above) and mapping (below). 98

4.16. Zurich heatmaps showing surface (above) and mapping (below). 99

4.17. San Fransisco Travel Time road network graphs. Edge labels represent the most

recent travel times for an associated road point. Each node represents a labelled

geographic position (POP=250, CR=200m, BP=12.5s, RML=0%). 101

4.18. Mapstore index (mI) tuples for increasing received message losses, after 1800

seconds of simulation time (POP=250, CR=200m, BP=12.5s). 102

4.19. Mapstore unique (mU) tuples for increasing received message losses, after 1800

seconds of simulation time (POP=250, CR=200m, BP=12.5s). 102

xvi

4.20. Mapstore index (mR) tuple redundancy for increasing received message losses,

after 1800 seconds of simulation time (POP=250, CR=200m, BP=12.5s). . . . 103

5.1. Scenario: intersection with vehicles A, B and C competing to traverse the inter-

section in minimal time. 107

5.2. An intersection: vehicles can enter and exit from one of four compass points. A

vehicle can travel one of 12 mobility patterns. 108

5.3. Related traffic light architectures. 110

5.4. Decentralised service approach: vehicles are advised uniquely (using virtual traf-

fic lights). 112

5.5. Protocol adaptation scenarios. Vehicles (V1, V2 and V3) require adaptation

to follow and avoid other vehicles while still ordering themselves to minimise

overall intersection delay and maximise overall intersection throughput. V1 is

following V2. V3 and V2 adapt with one another to avoid collision at X in a

future time-step. 119

5.6. VBP payload. 124

5.7. Delay: Comparison of TTC and VBP delay instances for a single experiment,

given a 300 second sample. 125

5.8. Throughput: Comparison of TTC and VBP throughput instances for a single

experiment, given a 300 second sample. 125

5.9. VBP delay performance for varying intersection input rates (vehicles per hour).

Delay is seen to grow linearly for increasing vehicle input rates. However, as the

vehicle rate is increased, the deviation of delay is also seen to increase. This is

coupled with an increasing divergence between maximum and mean delays. . . 126

5.10. VBP throughput performance for varying intersection input rates (vehicles per

hour). 127

5.11. Number of adaptations per vehicle for increasing vehicular input flows (vehicles

per hour). 129

5.12. Collision matrix maps the number of collisions occurring for increased numbers

of dropped receive packets and increasing input flows (vehicles per hour). . . . 130

xvii

5.13. Comparison of delay per vehicle between Timed Traffic Control (TTC), Actuated

TTC, unsignalised, roundabout and VBP for varying vehicle input rates between

500 and 2000 vehicles per hour. A lower delay value is preferable. 131

5.14. Comparison of throughput between Timed Traffic Control (TTC), Actuated

TTC, unsignalised, roundabout and VBP for varying vehicle input rates between

500 and 2000 vehicles per hour. A higher throughput is preferable. 132

A.1. Geographic Urban Simulator (GUS) object architecture. 167

A.2. Hierarchy of derived library functions. 173

C.1. Vehicle regions. A moving vehicle maps short and long range locations to regions.

A danger region directly ahead of the vehicle is defined between two left (L) and

right (R) points. The danger sector can be made dynamic changing with the

speed of a vehicle. Obstacles detected within the danger sector in front of a

vehicle are handled with priority. 178

C.2. An example dependencies graph showing the linked adaptations between vehicles

(nodes) as they negotiate their ordering to use the intersection. The dependency

graph allows us to see which vehicles influenced the mobility of which other

vehicles and hence provides a method of representation of run-time behaviour.

Edge weights represent the number of adaptation negotiations occurring between

two vehicles. The vehicle seen to receive more adaptations typically yields. . . . 179

xviii

1. Introduction

Traffic management is an old, costly and growing issue within road networks. Various control

systems have been implemented and applied to traffic management with varying success. An

example small scale traffic control system is that of automated traffic lights, which attempt

to share the usage of road intersections between competing vehicles. As time has progressed,

the declining costs of computer hardware and improvements in computing technologies, have

contributed to new control systems being applied to traffic management problems. Some of

these systems seek to control traffic, not only within a city but also countrywide. Traffic man-

agement solutions have tended towards becoming ever larger and more expensive centralised

sensory control systems. However, the existence of cheap sensors, devices and wireless com-

munication technologies offer an alternative decentralised means by which to construct traffic

management systems and thereby manage the city at reduced cost.

This thesis presents a vehicular framework for the development and evaluation of decen-

tralised vehicular services which are applied to traffic management problems. The framework

provides a geographic scaffolding methodology, which helps to distil and abstract away com-

plexities experienced when building decentralised services. Decentralised vehicular services seek

to extend the outcomes of centralised services but reduce the costs of setup, deployment and

maintenance, enhancing road usage, reducing the costs of road monitoring and management,

as well as reducing road infrastructure costs. The services differ in comparison with alterna-

tive approaches, as they focus on traffic monitoring and control problems and leverage scaled

ad-hoc messaging, fine grained mobility data and cooperation to organically construct vehic-

ular services on demand. In our framework, vehicles act as mobile sensors and as data mules

(carrying and disseminating data). As we lack the tools to rapidly prototype and evaluate such

services, the framework incorporates discrete event simulation as a tool to measure, evaluate

and compare service protocols.

1

1.1. Motivation

Roads provide one of many transportation infrastructures within cities, allowing road vehicles

to travel from origin to destination via a set of routes. Road network topologies are typically

similar but unique (Figure 1.1). Within a road network, traffic is formed where vehicles conflict

with one another in the usage of the road network.

Figure 1.1.: Selection of road network topologies, viewed at the same scale [Jen08].

The underlying expectation from academia [CRK08, LMP+07, LH08, GBT+09, KH95, DS04],

government [Par09, BB06] and industry [NBH+11, Bar09, Waz11] (such as the One-Pair Ether-

Net Alliance Special Interest Group1) is that road infrastructures can be monitored and con-

trolled to improve the performance of the city, reducing traffic delays, increasing flows and

improving city operations. Management decisions affect the users of the road network (for

example vehicles, drivers and pedestrians). Some examples of management methods include

the use of road rules, traffic lights and information boards. Road management can either be

applied by a road management authority (for example traffic light control) or by the users of

the roads themselves (for example vehicles and drivers deciding on actions such as over-taking

or ordering at four-way stops). In each case, it is desirable that management of the road net-

1http://www.opensig.org/

2

work should seek to improve the performance of the road network while safely enabling vehicles

to journey from origins to destinations.

In general ITS services seek to benefit city users, city planners and city administrators

[Baz07]. Some proposed ITS include safety systems (warning systems, collision avoidance,

virtual traffic signalling), security systems (anti-theft and car location applications), and driver

information systems (maps, smart navigation). Some ITS envision new control techniques

and automation using ‘smart cities’ [RT11, NBH+11] and ‘smart cars’ [Var93]. Systems are

capable of automatically identifying, adapting to and solving traffic problems to optimise the

performance of the road network. Thus far, approaches have either used large and costly

centralised architectures or isolated road-side infrastructures [BB06, Tho04, Par09]. Success

has been mixed and road management remains a costly problem in many cities.

The economic costs associated with a badly performing road network are significant [AS94,

PJP09, LH08, GBT+09]. Sub-optimal management may result in travel delays, traffic slow

downs, excessive fuel usage, vehicle wear, increased pollution and accidents which in turn

translate into monetary costs. Each year thousands of people die in road accidents with the

costs of accidents inside the European Union estimated as much as 1% of Gross Domestic

Product [Par09]. With traffic management already a problem and city populations expected

to grow in size in the future, traffic within the United Kingdom is projected to cost £22 billion

per year by 2025. In 2008, 93% of CO2 emissions in the United Kingdom were attributed

to road vehicles resulting in negative environmental effects [Par09]. While the estimated costs

associated with road vehicles are large, the costs of managing road networks are also significant.

The Department for Transport (DfT) in the United Kingdom estimate the costs of maintaining

a centralised road management and payment system to cost between £2-5 billion per year.

Given these problems and costs, a great deal of research and development has followed the

application of computing technologies to traffic management problems. Broadly these systems

are defined as Intelligent Transportation Systems (ITS) [BB06, Sie11] (Figure 1.2).

The proliferation and ubiquity of mobile devices like smartphones has beneficially resulted in

the reduced cost of various electronic components. Sensory and communication components like

cameras, accelerometers, radios and GPS are available at low cost to device builders and system

developers. As such, various devices are now becoming embedded in a wide variety of physical

objects. Within the past decade, efforts have been made within the ITS domain to provide

3

Figure 1.2.: A typical ITS scenario. Multiple vehicles interact with both centralised ITS ser-
vices via 3G data networks, one another (via V2V interactions) and road-side
infrastructure (via V2I interactions). Vehicles and infrastructure use GPS satel-
lites to find position data and calculate speed and orientation data. Decentralised
vehicular services operate without service providers (servers) and mobile phone
networks.

Vehicle-to-X (V2X) technologies2 [IEE10, Sie11]. These technologies allow vehicles and road-

side infrastructure to communicate with one another. Figure 1.2 depicts some typical V2X sub-

scenarios within a more global ITS scenario, where vehicles interact with one another, road-side

infrastructures, positioning services (like GPS) and mobile phone networks to provide vehicular

services. The combination of V2X and high accuracy positioning presents the opportunity

of enhancing traffic services using decentralised approaches (removing service dependence on

centralised infrastructure networks such as 3G/4G). If decentralised, previously expensive and

costly centralised services can be reduced in cost providing benefit to city users, planners and

administrators [Kom10, WER+03, Enk03, LMP+07].

We should be careful to note that centralised systems consider that road networks embed

sensors and road-side equipment alongside or within roads. Centralised processing of road

data occurs for the management of the road network. Many sensors exist, however a single

decision making entity exists to handle these sensory inputs. Decentralised systems distribute

the processing of data and management of the road network, ideally close to the producers

2V2X are sometimes referred to as Car-to-X (C2X) systems.

4

and consumers of road data. This could be in vehicles as explored in this thesis, or road-side,

or a combination of the two. More generally, decentralised systems have the potential to be

more cost-effective, more reliable and more scaleable with many low-end processors in vehicles

or roadside versus high-end processors in remote cloud servers. Any estimates of costs need

to consider all the costs including hardware and software costs, communication costs, costs

of installation and maintenance, costs of compliance to environmental and safety standards,

costs of insurance and legal liability. Furthermore costs can be incurred by many parties,

infrastructure providers, by those in charge of road planning and maintenance, by vehicle

manufacturers, by software/service providers and by drivers.

1.2. Centralised and Decentralised Vehicular Services

Within the thesis we divide vehicular services into: centralised and decentralised services based

on a number of criteria (Table 1.1). Both centralised and decentralised vehicular services

assume that vehicles are capable of sensing attributes about their local environment. For

example, position, orientation, speed and time. Using positioning (spatial), time (temporal)

and memory attributes, a vehicle can heuristically construct more complex abstractions to

define both its own state and the state of the immediate environment which it exists within.

Current architectures used in traffic management are centralised. Some approaches use cloud

infrastructures [Waz11, HWH+10].

Centralised Decentralised

Messaging extended (dependent on mobile data
network availability)

limited (less than 1 kilometer, de-
pendent on ad-hoc wireless radio
broadcast range)

Interactions small scale, long duration large scale, short duration and op-
portunistic

Cooperative indirectly directly

Table 1.1.: Service differentiation.

Centralised architectures typically collect, analyse and manage transportation by interpreting

vast amounts of data in a centralised management location or authority. An advantage of this

is that centralised services are largely available in terms of uptime and simple to develop.

Mobile data networks (e.g. 3G/4G) allow vehicles to both access a central service, but also

improves the collecting capabilities of the service. Vehicles use a limited number of client-server

5

interactions to access services (small scale interactions). Data sharing is indirect using the

intermediary authority. The predominant disadvantage of their use is geographic cost [Par09].

As road networks are large (with cities measuring tens kilometers in diameter), the scaling of

a centralised solution is often prohibitively large. The cost to the service provider is that they

maintain a static infrastructure for both the collection and storage of data. Hence, a third

party is required to fund and maintain the centralised services. Many centralised approaches

require large hierarchies of sensors to collect data. Ideally, traffic management requires that

services equally sense all regions of a road network.

Within the V2X domain [LMP+07, WER+03], vehicles and road-side infrastructure cannot

broadcast to others beyond their wireless communication range or local proximity. Vehicles

use intermittent intervals of contact to disseminate data and services within the road network.

Vehicles are assumed, due to their size, to be capable of holding large data stores. Decentralised

systems share and cooperate with one another directly, yet only have a subset of available

vehicles to cooperate with (those within local communication range). Vehicles require scaled

interactions to maximise the chance that data will be disseminated to other vehicles in future

contact intervals. V2X technologies, combined with vehicles, allow for decentralisation, such

that they remove the requirement for services to use a server and mobile phone network for

traffic management (given the ITS domain described in Figure 1.2).

1.3. Challenges

Traffic management within cities is challenging as road networks are dynamic and large. Road

network usage and traffic is dynamic, for example, city road traffic may experience certain

peak usage in the morning and evenings as people commute to and from home. The physical

size of a road network presents challenges to monitoring. In general, road managers monitor

road use, analyse this use (using a variety of methods, for example using heuristics, simulation

and/or statistical methods) and decide on actions by which to ‘improve’ the operation of road

sections. This management is complicated by the fact that decisions applied to one region

of road network influence adjacent regions [LH08, HRBW81, GBT+09]. Assuming that an

extensive centralised road management service exists, the results of management decisions may

be monitored, analysed and modified more rapidly to adapt to changes in the road network. For

6

example we might see increasing traffic levels due to either a new traffic source or congestion

due to an accident. Ideally, management decisions could better adapt to changes in traffic if

centralised systems had more precise data about the intended current or future usage of the

road network. For example, if vehicles shared their intended routes with management systems,

the road network could measure the number of vehicles intending to use a road section. Traffic

lights might be adapted to more efficiently handle these intentions (in reality actuated traffic

lights are polled when vehicles drive over sensors in the road, however they lack detail on the

future road choices of an individual vehicle).

Decentralised vehicular services developed within the framework are particular as vehicles

share data about their past, present and future movement using V2X techniques. Using feed-

back, the decentralised services continuously adapt service operation to achieve a performance

goal. Notably, while a multitude of use cases and applications have been proposed for the V2X

setting we lack tools to build, port and evaluate services [LMP+07]. Furthermore, vehicles

require means of deriving complex data from positioning (spatial) and time (temporal) primi-

tives, and the decentralisation and scaling of services makes reasoning about them increasingly

complicated. Developers are presented with questions on how a decentralised service is set to

operate when scaled, i.e. will system performance be similar for increasing numbers of vehi-

cles? What data, when shared achieves the best outcome? How often should we share data?

The costs and complexity of deploying a large scale system require that the creators of such

systems have confidence of correct operation. There are challenges to collecting, sharing and

computing data within the distributed environment. Decentralised data is typically not ad-

dressable or immediately accessible. Broadcasting produces redundant data and methods of

data management are necessary to manage the effects of redundancy.

There are many other issues that will impact the adoption of vehicular services. Examples

include security, privacy, trust, incentives, compliance with safety standards and legal liability.

These are important issues but are outside of the scope of thesis. As an example, if we consider

legal liability, vehicles are currently required to be driven by a human driver if they are to

operate on a road network - the Google car in Nevada is an exception. If an accident were

to occur, the drivers involved, might be liable based on the circumstances of the accident. If

vehicles do not have drivers then who is responsible if a vehicle is involved in an accident?

Many legal obstacles will need to be overcome if driverless vehicles are to be permitted.

7

1.4. Hypothesis and Assumptions

The primary hypothesis of the thesis is to determine the practicality and performance of de-

signing and using decentralised vehicular services for traffic monitoring and control. The thesis

specifically considers decentralised vehicular services that make use of the IEEE 802.11p Wire-

less Access for Vehicular Environments (WAVE) standard for short messages. Decentralised

solutions are compared with centralised ones. The key contribution is the design and implemen-

tation of a novel framework for the design and simulation of large-scale decentralised vehicular

services. It incorporates a new simulator, Geographic Urban Simulator (GUS) with a number

of mobility and communication features that are not available or hard to apply using other

simulators, namely (a) control emulation, (b) geographic positioning, (c) dynamic mobility and

(d) short messaging. To assess the applicability of the framework, two contrasting traffic moni-

toring and control services are developed and simulated: a decentralised travel time estimation

service and a intersection control service.

The framework allows us to develop decentralised vehicular services. In turn, we use the

GUS to evaluate the feasibility of services, simulating large-scale Vehicle-to-Vehicle (V2V)

scenarios and comparing these results to centralised approaches. We focuses on two traffic

management case studies: (a) estimated travel time mapping (Chapter 4) and (b) intersection

traffic management (Chapter 5). The work differs from current and previous work in terms

of our focus on decentralised V2V services which use adaptive message broadcast protocols,

modifiable mobility patterns, feedback loops [AM08] and scaled interactions between vehicles to

provide vehicular services to one another.

The framework makes several assumptions concerning object and messaging constraints. It

assumes that: (a) all vehicles are mobile, (b) all vehicles communicate with one another using

Wave Short Messages (WSM), (c) broadcasts occur every 100 milliseconds, (d) vehicles are

able to accurately record their position, and (e) the mobility of a vehicle is constrained to a

road network. In this thesis we consider vehicle only architectures, where all processing is done

by vehicles i.e. there is no road-side infrastructure for sensing, processing or control. More

complex architectures that use vehicles, road-side and cloud infrastructures are also feasible

and may lead to better performance and other properties. We believe that our framework is

able to model and simulate services for such architectures, but a detailed evaluation requires a

8

much longer time-frame and reconsideration of the overall design and evaluation methodology

needed for mixed mobile and static infrastructures spanning city-wide locations.

1.5. Contributions

We make the following significant contributions:

Framework: a novel framework for the development of decentralised, mobility sharing and

feedback-driven vehicular services (Chapter 3). The framework provides a scaffolding for

service construction. It allows us to abstract complex heuristics and distil service devel-

opment while focusing attention on protocol design and traffic management problems;

Dynamic Mobility Specification: a simplified mobility specification for use in modelling

and specifying vehicle movements at run-time (Section 3.2.3). The mobility specification

considers mobility in terms of geographic mobility plans which may be modified during

the operation of a service. Mobility patterns are not limited to just historic patterns but

include the capability of specifying future expected mobility (known as future tracks).

Patterns can be synthesised or converted from real trace datasets;

Geodetic Simulator: a new geodetic simulation environment, the GUS is used for the sim-

ulation and evaluation of decentralised services on real city road networks (Chapter 3).

The simulation framework emulates the geographic positioning interfaces available to pro-

tocols and services. The simulator allows us to build and simulate services using Java,

such that protocols may be assessed and directly ported to mobile device platforms like

Android3. Evaluation within the simulator provides confidence in the services developed

prior to deployment testing;

Travel Time Estimation: a novel decentralised travel time estimation service and protocol

(Chapter 4) is successfully demonstrated, highlighting the feasibility and trade-offs of

constructing decentralised traffic mapping services. Vehicles map travel times using geo-

graphic positioning and time data. Travel time tuples (fragments of mobility) are shared

with neighbouring vehicles to provide vehicles with dynamic travel time maps, which may

be used to dynamically re-route vehicles to allocate traffic to underutilised roads. We

3http://www.android.com/

9

measure the performance of the approach in terms of messaging, data recency and data

availability;

Intersection Control: a novel decentralised intersection control service (Chapter 5) is de-

veloped and compared in relation to existing intersection control approaches. Vehicles

approaching an intersection share mobility fragments with one another to order them-

selves through a road intersection without colliding. We find that, while decentralisation

is feasible and potential benefits exist, rapid adaptation requirements make the service

difficult for use with human drivers. Rather driver-less vehicles may be better suited to

such services [Thr10, Thi11].

1.6. Statement of Originality and Publications

This thesis describes work carried out in the Department of Computing at Imperial College

London between 2008 and 2011. I declare that the work presented in this thesis is my own,

except where acknowledged. During this period the following related publications have been

authored in collaboration with a number of my colleagues:

Rudi Ball and Naranker Dulay. Enhancing Traffic Intersection Control with Intelligent

Objects. First International Workshop the Urban Internet of Things 2010: Programming

the Real-Time City. Tokyo, Japan. December 2010 [BD10].

Leonardo Mostarda, Rudi Ball, Naranker Dulay. Distributed Fault Tolerant Controllers.

DAIS 2010: 141-154. May 2010 [MBD10].

Enrico Scalavino, Giovanni Russello, Rudi Ball, Vaibhav Gowadia, Emil Lupu. An Op-

portunistic Authority Evaluation Scheme for Data Security in Crisis Management Sce-

narios. 5th ACM Symposium on Information, Computer and Communications Security.

April 2010 [SRB+10].

Rudi Ball, Naranker Dulay. Approximating Travel Times using Opportunistic Network-

ing. 2nd IEEE Intl Workshop on Opportunistic Networking. April, 2009 [BD09].

10

1.7. Thesis Structure

The remainder of the thesis is presented as follows:

Chapter 2 is concerned with describing the state of the art in traffic management. We

explore past and current approaches as well as the limitations of existing methods and

models. We discuss new wireless technology standards applicable to the transport domain

and works in Vehicular Ad-hoc Networks (VANETs), Multi-agent Systems (MAS), Intel-

ligent Transportation Systems (ITS) and Geographic Information Systems (GIS) which

seek to find solutions to specific traffic management problems.

In Chapter 3 we discuss and motivate our vehicular framework, a means by which we

may construct decentralised vehicular services. Services developed with the framework

use shared and fragmented mobility data (both past and future), feedback loops, heuris-

tics, sensory data and actuation for their provision. We describe a software architecture

in which a protocol and application are provided to a driver in an advisory capacity. The

second portion of the chapter is concerned with the implementation of the framework

known as the Geographic Urban Simulator (GUS) on top of a discrete event simulator

known as Java in Simulation Time (JiST). The combination of JiST and GUS allows us to

develop decentralised traffic management services in Java. Furthermore, we simulate ser-

vices prior to deployment such that we may assess and estimate future service behaviour

within traffic scenarios. GUS makes decentralised vehicular service development highly

accessible. We briefly compare the performance of the GUS with alternative simulators.

In Chapters 4 and 5 we present two decentralised vehicular services: (a) travel time es-

timation and (b) intersection control. For each service we develop and present a single

protocol, which has been constructed using the framework from Chapter 3. Each solution

is implemented in Java and evaluated using discrete event simulation methods. For each

service we assess the suitability of the solutions and evaluate the assumptions, limita-

tions and trade-offs of the approaches in comparison with existing traffic management

approaches.

In Chapter 6 we conclude by summarising the contributions of the work. We also discuss

future research directions.

11

2. Background

In this chapter we describe and evaluate related work, concepts and technologies for vehicular

services. As traffic management is an old problem, several approaches have attempted to

improve the efficiency and control of road networks, with varying success. We consider the

successes, failures and trade-offs exhibited by these systems, as well as their architectures and

methodologies.

2.1. Complex Systems

Cities have been viewed as complex systems with large numbers of road users (both pedestrians

and vehicles) [Bat07, Baz07]. Road users and road infrastructure influence one another and

hence represent a large number of interconnected components or entities. Modelling large scale

complex systems is difficult and computationally intensive requiring methods to optimally

model individual elements within a system. For example, a modelled vehicle may consist of

hundreds of interacting components. In a homogeneous vehicle simulation, these components

are replicated for every vehicle existing within the road system. The addition and emulation

of other systems, such as messaging and physical phenomena, interactions between vehicles,

increase the complexity of such systems yet further.

When distributed components within the system interact with one another in simple be-

haviours they lead to complex behaviours [GM57, Bat07]. A behaviour which evolves over

time due to large scale interactions is known as an ‘emergent behaviour’ [Lew74]. Emergent

behaviours are sometimes counter-intuitive and unexpected. A variety of emergent behaviours

are associated with processes in biology, chemistry and physics. For example flocking be-

haviours have been deemed an emergent behaviour of birds and fish [Rey87]. Emergent be-

haviours may be negative, however various control and feedback driven processes have benefited

12

from emergent behaviours including [VVPV97, PDAV08]. Understanding system behaviours

is paramount within the context of complex services. An awareness of emergent behaviour is

necessary as it guards against unintended effects and side effects produced by specific design

decisions and patterns [Ste90].

2.2. Vehicles

Present and future vehicular services rely on the availability of a number of enabling tech-

nologies and vehicular capabilities. Vehicles represent atomic communicating components in

vehicular systems. Some technologies to enable such systems are already widespread and em-

bedded within mobile devices like smartphones. Others are expected to become more widely

used and available within the coming decade. As vehicles are mobile, we focus on mobile de-

vice capabilities and wireless radio communications standards. These capabilities influence the

modelling and design considerations made when considering complex vehicular services.

2.2.1. Computational Devices

Vehicular devices can be split into two groups, namely: (a) personal mobile devices and (b)

onboard vehicle-based devices. Personal mobile devices are separable from a vehicle, while

onboard computers are embedded within a vehicle. This presents subclasses of devices which

differ in their capabilities. Both groups are capable of storing gigabytes of data, more than

sufficient for many applications. Personal mobile devices embed a variety of sensors including

accelerometers, digital compasses, decibel meters, cameras, light sensors and Global Positioning

System (GPS) chip-sets. Wireless technologies like Bluetooth (IEEE 802.15x) and WiFi (IEEE

802.11a/b/g/n) can also be used to sense data about the local area in which a device resides.

Mobile phone network cell information allows for granular positioning [Zan09], while GPS

typically provides more accurate positioning.

Onboard computing technologies were initially used as diagnostic computers within modern

vehicles. With access to hundreds of on-board sensors (accessing data such as tyre pressure,

engine mixture ratios, brake wear measurements, etc.) These onboard devices collect, analyse

and monitor the health status of a vehicle - automatically alerting the driver to maintenance

problems. As technology has progressed, the onboard computer has also become responsible

13

A

B

C

Figure 2.1.: Trilateration scenario: a vehicle determines its location to lie in the intersection of
three mobile cell tower signals (A ∩ B ∩ C).

for in-car services such as navigation, communications and safety. Platforms like Android1 are

helping to combine group capabilities. Notably, embedded vehicular computers have access to

more low level vehicle data, while personal devices are limited to their own mobile sensors.

Both groups are assumed to use the vehicle electrical system as a power source implying that

devices have a limitless source of energy. This is a major differentiating factor between Mobile

Ad-hoc Networks (MANETs) and Vehicular Ad-hoc Networks (VANETs), where MANETs

typically have limited stores of electrical power in the form of cells.

2.2.2. Position and Mobility

For V2X approaches, accurate positioning is extremely important as the distances and toler-

ances between moving vehicles are typically small. Collating position and time data we can infer

and calculate a number of other attributes about a vehicle, such as speed, bearing (orientation)

and predicted track [PS96]. Furthermore, an error is associated with each position calculation.

Using geographic positioning we can associate an object point on the irregular surface of the

Earth (using Geodetic standards). Maps and sets of optimisation algorithms are capable of

providing extra contextual information. To improve positioning accuracy, approaches like Dif-

ferential GPS (DGPS) have been developed as an enhancement (improve accuracy below the

5 meter range [PS96]).

Where GPS is not available, it is possible to find a vehicle’s position with increased gran-

ularity using the trilateration of mobile phone network cell data (Figure 2.1). However, the

error is often no better than a few hundred meters. Similarly, vehicles can use their proximity

1http://www.android.com

14

Figure 2.2.: Example mobility trace (history) shows a vehicles movement between a set of
geographic positions (circles). The time (t) when a vehicle existed at a location or
sampled its position is shown by the set of times between U and Y.

to known road infrastructure to calculate position. For example, some services, using collected

databases of WiFi router positions (e.g. Skyhook), provide a geographic position using the

overlap, proximity and signal strength of WiFi signals [CCC+06, Kaw09, Zan09]. Proximity

positioning using Bluetooth, WiFi and cell information is often favourable in situations where

a GPS signal is either weak or not available; however it is typically more granular. Position

accuracy with all wireless systems is affected by a number of conditions including weather

conditions, radio signal reflection and interference, speed and network availability.

Where the position of a vehicle is observed over a sequence of time instances, vehicles are

said to possess a mobility [CBD02]. For example, a vehicle driving a route from origin to

destination would be constrained to produce a conforming mobility pattern to match the road

network where such patterns are recorded as trace datasets (Figure 2.2). Recorded mobility

datasets are known as ‘real traces’ while traces generated from algorithms and heuristics for

simulation are known as ‘synthetic traces’.

2.2.3. Vehicular Communications

If considering individual inter-vehicle communications or links, communications between ve-

hicles and fixed infrastructures can be split into either (a) long-range and (b) short-range

communications. As specified by the IEEE 802.11p standard, short-range communications

consider techniques limited to 1000 meters, while long-range communications consider tech-

niques beyond 1000 meters. The rapid adoption of mobile devices has seen the creation of

large mobile cellular phone networks to provide coverage for service delivery. The principle ba-

sis behind these large and costly networks is to provide a centralised connective infrastructure.

The integration of mobile phone technologies into vehicles allows vehicles to communicate with

15

one another over long-range distances (as far as mobile phone network coverage allows). Both

third and fourth generation data networks (3G and 4G) provide an assortment of techniques

for data to flow between vehicles and fixed infrastructure (e.g. HSPA/WCDMA and quad-band

GSM/GPRS/EDGE), although no simple standard exists for data flow. In situations where

mobile coverage is poor these services cannot be used (e.g. inside tunnels). Mobile network

data is generally slow in comparison to more immediate methods of proximity communication

such as ad-hoc WiFi.

Since 2001 initiatives by the motor vehicle industry have sought to allow vehicles to com-

municate with one another directly using ad-hoc means for the provision of collision avoidance

and safety systems [For11, HFI+07, Sie11, JD08]. A new V2X derivative standard was pro-

posed to support reliable broadcast communications at high speed (where connections could

be established at relative object velocities of up to 500 kph), longer range communications,

in the presence of multipath reflections and operate with overlapping ad-hoc networks. An

extended version of the WiFi IEEE 802.11a radio standard was derived in the form of IEEE

802.11p for V2X scenarios. The standard has been included in the Dedicated Short Range

Communications (DSRC) and Wireless Access in Vehicular Environments (WAVE) standards

family [JD08, IEE10].

Figure 2.3.: Wireless Access for Vehicular Environments (WAVE) stack.

WAVE operates in the 5.85 to 5.925 GHz range, uses a half-duplex radio link, considers

a minimum 200 meter (maximum 1000 meters) communication range and a 6 to 27 Mbps

throughput. The standard, being half-duplex, does not allow concurrent send and receive com-

munications. Each communications cycle occurs every 100 milliseconds. Within the OSI stack

16

(Figure 2.3), WAVE handles the application, presentation, session, transport and networking

layers, while DSRC handles the data link and physical layers. Incorporated WAVE compo-

nents provide a resource manager and messaging, networking (addressing, routing and WAVE

Short Messaging) and security services (secure message formatting). IEEE 802.11p supports

two different packet transmission stacks, namely IPv6 [Int08] using service channels and the

WAVE Short Message Protocol (WSMP) which allows services at the application layer to con-

trol radio channels and transmission power. With vehicles having large reserves of electrical

power and fuel, wireless communications do not place large demands on the total energy us-

age of the vehicle. While a number of alternative communications methods exist, including

Bluetooth [FP05], ZigBee [BPC+07] and WiMAX (Worldwide Interoperability for Microwave

Access, IEEE 802.16) [PH09], WAVE is specifically tailored for V2X scenarios.

WAVE provides us with a secondary method of communicating between vehicles using a sim-

plified connectionless paradigm, namely short wireless broadcasts. While connection-orientated

overlays could be constructed from connectionless components, broadcast based store-and-

forward approaches are useful in contexts where data is broadcast rather than unicast or

multicast to specific destinations. In comparison to IP approaches, communication discovery

and setup times do not exist with WSMP. A trade-off of using broadcasts to disseminate data

is that data management is fundamental to WSMP operation. Broadcasting favours applica-

tions where all vehicles may use a particular data stream. For example, all vehicles may be

interested in the weather readings within a particular region. Epidemic routing presents itself

as a method to copy data to all vehicles within a system.

While a variety of wireless communications standards exist we focus on IEEE 802.11p mes-

saging. Message management can be split according to the OSI layer (Figure 2.3), where the

stack provides UDP/TCP/IPv6 provisions separately to WAVE Short Messaging (WSM). Thus

far, VANET approaches have largely considered network layer UDP/TCP/IPv6 and not WSM

capabilities.

2.3. Vehicular Ad-hoc Networks

Where multiple vehicles interact with one another using ad-hoc communication, they form

Vehicular Ad-hoc Networks (VANETs). VANETs represent the dynamic wireless networks

17

Figure 2.4.: Overlay network where messages are routed within a VANET from A to B.

formed by vehicles as they move along a road network over time [LW07]. Multiple ad-hoc

links give the illusion of a permanently connected network over time. Each vehicle operates as

both a router of data when connected and as a data mule when disconnected (carrying data

from one location to another). This assumes that vehicles are addressable. Layers construct

overlay abstractions to simplify systems (Figure 2.4). As vehicles are mobile and wireless

ad-hoc communication range is limited. Such networks are normally ‘best effort’. In this

sense, VANETs attempt to construct a network given the limited ad-hoc connectivity between

vehicles.

A large variety of Vehicular Ad-hoc Networking (VANET) works have investigated ap-

proaches to routing packets using overlays (Figure 2.4) above intermittently connected ad-hoc

wireless networks; some include [MGL04, LHT+03, MWH01, PGHC99, MM09, LJC+00, VB00,

LHT+03, SPR05, LM07, BCSW98, ABFeH07, BGJL06, BMJ+98]. Specifically we focus on a

subset of routing approaches.

Flooding approaches represents the simplest method of message communication within a

VANET. As no message store is assumed to be held by each vehicle, each message received

by a listening vehicle is instantly re-broadcast. Flooding achieves a minimal end-to-end

delay in message dissemination (i.e. best performance). A trade-off of this performance is

that flooding systems suffer from maximum message overheads, as well as cyclic copying.

18

Flooding serves as a method to determine the minimum end-to-end messaging delay as

well as the maximum overheads expected for a given scenario.

Gossip or epidemic routing approaches use a memory store to record retrieved messages.

At a later time the vehicle re-transmits the store to neighbouring vehicles. Gossip and

epidemic style dissemination while following a similar approach as that of flooding [VB00],

notably store and carry data. They are hence considered store-and-forward approaches.

The dissemination of data, as in flooding, resembles the infection of a virus in a biological

system. Assuming a connected non-mobile network, if every node forwards a message

propagation requires O(1) + log2n + lnn rounds to reach all n nodes [DGH+87]. Gossip

protocols are differentiated by their management of retrieved data and design properties

which decide when and where to broadcast previously retrieved messages. For example,

Self-Limiting Epidemic Forwarding proposed by El Fawal et al. [FyLBS+06] attempts to

limit the negative effects of message redundancy by applying adaptive ageing, limiting

the forwarding factor and controlling message broadcast rates. Other protocols use time

events to decide when to broadcast data [SPR05], some use neighbour counts, some

broadcast based on acknowledgement of message retrieval, some the type of the receiver

[PGHC99], some aggregate data retrieved, some depend on the content of a message

(content-based approaches) [MM09] and some use positioning information, geographic

measurements or a knowledge of mobility to determine broadcast and retrieval [BCSW98,

LM07, MGL04, MWH01, DSW06, LJC+00].

Gossip protocols are in effect a form of controlled flooding which attempt to optimise the per-

formance of flooding and reduce the overheads. Similar strategies and routing algorithms used

within Delay Tolerant Networks (DTNs) and Opportunistic Networks (ONs) are sometimes

applied to VANETs. DTN works, initially proposed by Cerf [CBH+01], sought to address chal-

lenges pertaining to messaging in ‘heterogeneous’ networks where networks were disconnected

for extended periods of time - an issue common with the operation of an inter-planetary net-

work. DTN work was initially motivated to integrate disrupted networks where disruption oc-

curred due to message failure, fault, the unavailable routers or limited power [Fal03, BHT+03].

Messages are ‘bundled’ together to improve messaging performance. DTNs use ‘virtual’ net-

work infrastructures to route data. In contrast, ONs approaches like Haggle [SHCD06], do not

19

possess a known or indexed infrastructure. ONs (sometimes referred to as Pocket Switched Net-

works) consider a similar context to DTNs however, routing devices are mobile and networks,

dynamic and sparse.

2.4. Control Systems

Control systems have long been used to manage, command or regulate the actions of compo-

nents within various applications (e.g. control units and industrial process control systems).

Control systems process sets of inputs and compose sets of outputs based on rules (distilled as

if-then-else rules). Within the vehicular environment control systems are used to manage sens-

ing, processing and actuation. There are many approaches to applying control - we illustrate

the differences between Feedback Control Systems (FCS) [AM08] and Multi-Agent Systems

(MAS). Both approaches have been used or proposed for the provision of ITS services.

2.4.1. Feedback Control Systems

Within engineering, FCS are a practical method to solve problems where optimal operation is

known to exist within a bounded region of measurable performance [AM08]. Where control

systems use a series of functions to process inputs and return outputs, feedback allows a function

to re-evaluate a previous output in a future time step. This provides the function a means of

comparing an output in a previous time step with the output computed in the present time

step. Both positive and negative feedback are possible.

Systems use feedback loops to adapt control based on present and past inputs [Bak09].

Applied controls are either continuous (where actions manage the system continuously) or

discrete (where controls are applied at specific time instance). In effect, feedback allows a

controller to be self-correcting and self-regulating. For this reason, FCS are commonly used to

deal with dynamic situations or scenarios, where controllers need to adapt to measured errors

and maintain the operation of a system within a threshold band of operational performance.

FCS is a well developed area of engineering and commonly associated with industrial systems.

As such, FCS have been present on vehicles for a long time in both analogue and digital forms.

An example feedback control system is cruise control. Cruise control feedback systems attempt

to maintain a specific speed within a bound. For instance, if a vehicle is set to cruise at 40

20

mph a vehicle attaining 35 mph will automatically speed up or readjust its speed to match

the desired cruising speed. Control systems have been implemented as a set of concurrent

processes which monitor and respond to changes in an environment. A requirement of many

control systems is their operation as real-time software. Real-time assumes that such systems

are capable of reacting appropriately to changes in the environment - a clock is added within

the control. Timely response is often required due to the nature and applications where these

systems are applied.

2.4.2. Multi-agent Systems

Multi-agent Systems (MAS) are characterised as systems of multiple interacting ‘intelligent’

agents [SV00]. Agents are partially autonomous and decentralised. Each agent holds a local

view of its environment. Communities of agents are often termed ‘agent societies’. Simple

reflexive agents are themselves an evolved form of control system architecture. Agents take as

input a series of ‘percepts’ (perceptions) from an environment and sensors interpret percepts

to produce a state view of the world. A set of condition-action-rules are subsequently used

to interpret appropriate actions via actuators, which in turn effect the environment. Reflexive

agents highlight a single feedback loop. The looping action is normally continuous and non-

terminating.

MAS offer a method by which designers can improve system efficiency (via asynchronous

parallelism), robustness and reliability (failed agents can be replaced by redundantly available

agents), reduce costs (simpler components reduce the cost and complexity of systems) and

allow for scalability (the system can be scaled to solve larger problems without reducing per-

formance) [Wei99]. Agents are usually homogeneous and replicated. Specifically MAS attempt

cooperation in distributed problem solving and coordination.

2.5. Simulation

As interest in V2V systems has grown so has the need for tools and methods to measure

the feasibility of approaches. Few real V2V systems exist. Experiments using vehicles are

often expensive, difficult to setup and in the case of complex scenarios measurements some-

times non-repeatable. Large corporations have typically been the only groups able to afford

21

Figure 2.5.: Simulation: frameworks provide a simulator with mobility models, communication
models, protocols or applications and scenario parameters. We assume that the
simulator holds its own internal object model which includes vehicular models.

both simulation and actual vehicles to robustly evaluate system and application performance

[For11, Thr10]. As a consequence most approaches have depended on simulation rather than

analytical means as a way of testing the feasibility of protocols and applications. To simulate

and experiment with vehicular scenarios many approach vehicular simulation by separating

vehicle mobility and messaging simulation. Figure 2.5 illustrates this approach.

Within the scope of V2V simulators, the majority of simulators available are VANET simu-

lators. The simulators focus on network layer routing and not specifically protocol and appli-

cation (service) construction. Furthermore, no single framework considers all micro and macro

simulation features and many differ considerably from one another in terms of the metrics used

to measure protocol and application performance.

Simulator architectures typically follow a similar process. Multiple individual vehicle mobil-

ities are modelled. The combination of mobilities produces a collection of vehicular scenarios.

A framework is used to superimpose applications above these mobility and communications

layers. Metrics and traces are used to measure protocol or application performance. As such

simulators require at least three constituents: (a) mobility models, (b) methods to model ad-

hoc communication networks and (c) protocol logic. A set of scenario parameters are used to

consider variations in vehicle capabilities and protocol settings.

Simulation trade-offs exist in terms of realism, computation, time and accuracy. Typically,

as simulators attempt to provide a more realistic simulation more features are added to the

simulator. Depending on the implementation, more features can result in more ‘accuracy’

in estimating how a protocol or application may behave if applied to real vehicular networks.

However, more features require more time and computing resources when simulating a scenario.

22

Given these trade-offs, it is recommended that the protocol or application designer identify

those features which are considered most relevant to a specific application and most useful

in answering the specific question being posed about a system. While a number of VANET

simulators exist [GC08, MI04, ABFeH07, MWS+05, Cha99, KOK09, Sch88], many simulators

consider just the communications models for packet switching and do not include methods by

which to stipulate unique vehicle parameters or mobility patterns.

2.5.1. Mobility Models

The intention of using traces is that they ‘realistically’ describe the movement of vehicles in

space for a given scenario. As building and deploying real services is costly, overlay network

protocols and applications are typically simulated in combination with traces to gauge service

feasibility using various metrics. As V2X services are ad-hoc, service performance is directly

affected by mobility. A problem with traces is that many are scenario specific and consider

small vehicle populations and only a few interactions between objects over short durations.

Furthermore, accurate traces are costly to acquire and privacy concerns make release of some

trace data a legal problem for organisations. For the purposes of experimentation, accurate

large scale and long duration realistic traces are rare or not available publicly. This is partly

because mobility trace datasets have commercial value.

However, a number of scenario specific and open vehicular networking trace data sets exist

[FGH+06, Mah07, JHP+03, EP05]. The DieselNet initiative has provided the GENI test-bed

and a number of traces [BGJL06]. The project used 35 DieselNet buses containing ‘Diesel Brick’

computers. Bricks provided DHCP WiFi access to passengers and pedestrians in proximity of

buses. As time has progressed, it has become easier for commercial companies to collect such

datasets given services such as Google Latitude [Bar09] and Waze [Waz11].

A lack of real traces has motivated the generation of synthetic mobility traces. These traces

represent movement patterns based on sets of algorithms. The algorithms attempt to ‘realisti-

cally’ generate mobility traces [HFB09]. As synthetic traces are based on algorithms, there is

often a concern that such traces are not realistic enough to effectively measure the performance

of the system. Vehicles, while constrained to travel along road networks, are affected by a mul-

titude of conditions (both internal and external to a vehicle). Fine grained mobility traces may

be required to mimic second by second movement, while coarser grained methods may consider

23

larger time intervals between object positions. Several works highlight the effect which mobility

traces have had on the performance of VANET protocols [CBD02, Bet01a, YLN03].

Various methods have been used to synthesise VANET traces. More recent traffic simulation

models have used ‘macro’ and ‘micro’ simulation [Hel01]. Macro-mobility simulations attempt

to model influences such as road topology, constraining speed limits, lanes, overtaking, safety

rules, traffic signs, weather conditions etc. which effect a vehicle. Micro-mobility simulations

attempt to simulate driver behaviours and behaviours between interacting drivers, ‘driving

attitude’, including a number of commercially licensed traffic simulators exist for traffic man-

agement and analysis in city planning such as PARAMICS [CD96], CORSIM [OZRM00] and

TRANSIMS [NBB99].

These simulators cannot be modified to access mobility data due to licensing. A secondary

issue is that applications and communications protocols cannot be layered above such traffic

simulators. PARAMICS, CORSIM and TRANSIM have been noted to use the TIGER road

database [TIG04] which provides maps below an accuracy of 50 meters. However, road data is

provided without meta-data (e.g. speed limits, traffic direction, road altitude, traffic lights).

Random Waypoint models typically choose a random destination for a specific vehicle and

then route the vehicle across a road network [Bet01b, PGHC99]. The usage of Random Way-

point models, while widely used and incorporated in some simulators like the Scalable Wireless

Ad-hoc Network Simulator (STRAWS) [CB05], was considered harmful to VANET studies by

Yoon et al. [YLN03]. More modern synthetic models have used ‘macro-simulators’ to construct

traces using city maps and GPS coordinates - vehicles being constrained by the irregular road

networks of differing cities. Mobility simulators, have in some cases attempted to simulate

traffic within city road networks. The traffic flow simulator Videlio was used by Lochert et al.

[LHT+03] to produce a number of traces for the city of Berlin (6.25 km x 3.45 km area).

The micro-mobility simulator CanuMobiSim2 is a standalone mobility generator [THB+02,

SMR05]. It includes a collection of physical and vehicular mobility models, and has been

used to generate synthetic traces. Given the availability of real road topologies provided with

geographical data files, the simulator generates traffic by creating and assigning a number

of routes using Dijkstra’s shortest path algorithm [Dij59]. An alternative mobility method

creates attraction locations which vehicles attempt to gravitate towards. Traces generated can

2http://canu.informatik.uni-stuttgart.de/mobisim

24

be used in QUALNET and NS-2 (Section 2.5.2). VanetMobiSim3 by EURECOM provides

an extension for macroscopic and microscopic vehicular mobility [FHFB07]. VanetMobiSim is

capable of generating Voronoi tessellation maps to mimic city road structures (Figure 2.6(b)).

Road detail includes separate directional vehicle flows and the identification of intersections and

overpasses. The combination of CanuMobisim and VanetMobiSim provides a highly ‘realistic’

set of models.

(a) 10 x 10 Grid. (b) Voronoi.

Figure 2.6.: Generated road topologies.

Naumov et al. [NBG06a], using the multi-agent microscopic traffic simulator (MMTS),

extended synthesis to include a number of driver behaviours to trace generation over 24 hour

periods. Driver behaviour was influenced by perceived road congestion. 260,000 vehicle traces

were generated for the city of Zurich for a 24 hour period. Since this work a number of

traffic and mobility simulators have become available including SUMO [KSB09], Traffic and

Network Simulation Environment (TRANS) [PRL+08], Mobility Model Generator for Vehicular

Networks (MOVE) [HFB09], VanetMobiSim [HFBF06] and others [HFB09]. Tonguz et al.

[TVB09] propose a cellular automata approach to construct traffic mobility model. A benefit

of trace synthesis is that one can apply many different patterns with some random seedings;

however traces may not be real.

3http://vanet.eurecom.fr

25

2.5.2. VANET simulation

Some widely used VANET simulators include Network Simulator 2 (NS-2) [GC08, MI04],

QUALNET [ABFeH07], GrooveNet [MWS+05], OPNet [Cha99], Opportunistic Networking

Environment (ONE) simulator [KOK09], CSIM [Sch88] (Lockheed Martin), as well as others.

Argonne was an early ITS simulator for centralised systems [EDH+96]. We detail a subset of

simulators which are relevant to V2V service simulation.

Argonne Simulation Framework: One of the oldest parallel microscopic simulation frame-

works is the Argonne Simulation Framework (ASF) developed by Ewing et al. [EDH+96]

which was specifically concerned with ITS applications. The ASF aimed to provide a

platform for large-scale and centralised ITS services. These services used a centralised

controller for vehicle management. Within the framework vehicles with built in nav-

igational computers were connected to a Traffic Management Center (TMC) via data

links. Road and weather data was periodically updated and associated with road map

data, providing dynamic route planning. The TMC would track vehicle movements and

provide advisories to drivers using a detailed graphical display to achieve traffic control.

Argonne also attempted to ‘realistically’ model human response times by considering ve-

hicle details, road conditions, weather and driver personality type. A detraction of the

ASF was that it is highly service specific.

Network Simulator 2 originally developed at University of California-Berkeley, is an object

orientated discrete event simulator. The simulator and its components are written in

C++. A secondary language, OTcl is used to script simulation scenarios, specify scenario

events and protocols. Simulation results can be either analysed further or visualised using

various post-processing tools. NS-2 considers small scale simulations. To simulate ad-hoc

networking scenarios, NS-2 relies on a collection of extensions to incorporate mobility

models. For example the National Highway Traffic Safety Application (NHTSA) was

constructed as an extension to consider DSRC standards. While NS-2 has been widely

used to model routing protocols for both static and mobile networks, a detraction from

using NS-2 is its complexity. Application scripts must be written using OTcl. OTcl is

not directly portable. The addition of new components or the modification of existing

components requires training in both C++ and OCL.

26

QUALNET4 is a feature rich proprietary network simulator [ABFeH07]. QUALNET as an

extension, enables simulations to consider Mobile Ad-hoc Networks. The simulator pro-

vides performance measurements for scenario based ad-hoc networks using an OSI lay-

ered architecture. Each layer in the model is itself an object with its own variables and

structures. Messages transferred between nodes (vehicles) are exchanged between lay-

ers. QUALNET is modular, thus enabling simulations to be run on parallel distributed

systems. The simulator supports IEEE 802.11a/b/g and WiMAX layers, however, a dis-

advantage of QUALNET is such that it is non-service specific. Mobility models are not

easily incorporated into the simulator. Similarly, the proprietary nature of the software

makes it difficult to amend specific aspects of the simulator.

Optimized Network Engineering Tools (OPNET)5 is a proprietary discrete event sim-

ulator for the simulation of system processes [Cha99]. Its initial use was the simulation of

static networks. OPNET provides a number of useful tools for the simulation of ad-hoc

systems. Recently, the tools for mobility specification and integration have improved.

OPNET simulates low level networking and physical layer operation within the OSI

model. A disadvantage of OPNET is one of processing requirements. Simulations, due

to their highly detailed simulation of the radio can consume more time than otherwise

is common with other approaches. To counter this, OPNET can be executed in parallel,

on clusters of machines.

OMNeT++ 6 is a discrete event simulation environment which can be used to build V2V

simulations. OMNeT++ provides a component architecture for models. Components are

programmed in C++ and used to build models using a high-level language known as NED.

To improve its ease of use, OMNeT++ provides a number of graphical user interfaces.

While a number of extensions offer mobile networking options, the ‘Mobility Framework’7

is commonly used for the simulation of VANET routing protocols. As more extensions are

added, OMNeT++ will become increasingly popular as a network simulation platform

as it provides a significant number of tools for simulation analysis and visualisation.

GrooveNet 8 is a self contained simulation tool which models V2V communications, incorpo-

6http://www.omnetpp.org
7http://mobility-fw.sf.net
8http://www.seas.upenn.edu/ ˜ rahulm/Research/GrooveNet

27

rating mobility models constructed from TIGER road maps and topographies [MWS+05].

At initialisation, each vehicle is associated with its own mobility model. The simulator is

capable of simulating thousands of concurrent vehicles and provides a method of hybri-

dising experiments to allow one to attach real vehicles to the simulator while simulating

further vehicles. GrooveNet uses a geographic map model to position vehicles, providing

a collection of four mobility models and a selection of communication models for simula-

tion. Furthermore, the mobility model allows one to stipulate the source and destination

addresses of a particular vehicle (as a selection of waypoints). Communication models

are capable of injecting faults in message retrieval, such as dropped packets. GrooveNet

however lacks a method of outputting traces which may be used in comparable simulators.

2.6. Vehicular Frameworks

Vehicular frameworks provide scaffolding for the construction of vehicular applications. We

highlight two specific frameworks by Kim [Kim07] and Leontiadis [LM07, Leo09, LCM09a,

LCM09b] as they focus on traffic data. The framework by Kim [Kim07] is used for traffic in-

formation dissemination. Kim’s motivation is that other simulation approaches to VANETs do

not provide frameworks which support both transportation issues and communications within

a single framework design. The framework is specifically structured to consider traffic data dis-

semination performances in VANETs. The framework considers low level data dissemination

and routing for vehicles in grid scenarios. Kim uses a combination of two propriety systems,

PARAMICS and QUALNET to simulate the framework. Within the approach, PARAMICS

provides microsimulation mobility. These mobilities are connected directly to the QUALNET

network simulator, allowing the framework to simulate IEEE 802.11a messaging. Mobilities

consider variable speed vehicles, allowing vehicles to over-take and re-route based on traffic

levels perceived within the road network.

Work by Leontiadis et al. [LM07, Leo09, LCM09a, LCM09b] provides a content dissemination

framework for vehicular networks which uses push and pull techniques. In comparison to Kim,

Leontiadis focuses on the control aspects of push and pull dissemination strategies in vehicular

environments. Leontiadis considers centralised traffic authorities, who use a mixture of vehicles

and ‘info stations’ to collect and share data about a city. The framework is used to route and

28

maintain information in specific geographic locations. Pushing data broadcasts content to a

subset of other vehicles. Geographic data is used to aid dissemination and filter messages, with

vehicle mobility patterns being predicted to improve dissemination. Notably, the framework

was tested on a small set of vehicles driving on a real road network.

2.7. Intelligent Transportation Systems

From a global view, Intelligent Transportation Systems (ITS) represent ‘technologies and sys-

tems engineering concepts to develop and improve transportation systems of all kinds’9. By

definition, ITS encompass a broad set of computing systems and technologies which seek to

enhance road networks. ITS approaches are often non-specific and could be applied to road

networks, shipping lanes and aircraft. ITS include both passive management systems (e.g. toll

collection, emergency alert beacons, traffic signals, navigation, passenger information, speed

cameras and monitoring systems) and active data systems (e.g. payment systems, weather in-

formation systems, travel and assistance systems, adaptive cruise control, fleet management).

Many implemented solutions are not specifically highlighted as ‘ITS’ solutions as ITS lack

both a coherent taxonomy of paradigms and as such are not specific in the development of

services, and many methodologies are highly fragmented. One of a set of examples of a real

world centralised traffic control systems is that provided by the Tokyo Traffic Control Center

(TTCC) [Ino76]. TTCC computers are fed sensory data from a number of sources, including

cameras, vehicle counters and inductive loops embedded within the road network. 15,154 traffic

signals and over 1000 intersections are sensed and controlled by human operators using various

strategies to reduce congestion along city roads. As well as directly controlling traffic lights

and signals, the controllers update drivers with traffic information using FM radio stations

and traffic information boards. Similar approaches to the TTCC have been undertaken by

other government agencies including the Houston TranStar (HTS) in the United States [Sus05]

and the Highways Agency (HA) [Vic00] in the United Kingdom. The HA while similar to the

TTCC also provides drivers with traffic forecasts using data analysis. Such approaches are

large and highly dependent on a large infrastructure of sampling sensors.

There are large costs associated with their setup, operation and maintenance. Sensors are

9http://ewh.ieee.org/tc/its

29

positioned at strategic locations along the road network. The size of a city makes the roll-

out of sensors over the entire road network prohibitively expensive. Hence such agencies often

confine their traffic control to highways. However all roads are interconnected and each adjacent

road section can influence its neighbouring section. Furthermore applying feedback (influencing

drivers to change their route or drive) is challenging since not all vehicles using the road system

are likely to be aware of changes in traffic or congestion. This limits control centres to using

information boards and traffic lights as a means by which to manage traffic. Such systems

represent an extreme set of centralised solutions. Given the large costs and complications

associated with monitoring and controlling traffic various ‘hybrid’ solutions have been proposed

and some have been implemented.

A significant set of work has sought to collect data about the road network using mobile

phones and vehicles. We specifically focus on vehicle data collection. CarTel [HBZ+06] collects,

processes, delivers, and visualize data from sensors located on mobile units in vehicles. A CarTel

node gathers and processes sensor readings locally before delivering them to a central portal,

where the data is stored in a database for further analysis and visualization. Nericell (Traffic

Sense)[MPR08] and Pothole Patrol (PP) [EGH+08] provide ‘rich’ sensing data, detecting and

reporting various road conditions including traffic. In the case of Nericell, data is provided

using mobile phone accelerometers, microphones, cellular radios and GPS positions. Phones

detect potholes, bumps, braking, and ‘honking’. Pothole Patrol vehicles are specially equipped

with a multitude of sensors which gather data about roads. Potholes are identified using simple

machine-learning techniques. Various online communities have been formed to share location

and map data (crowd source), these include Open Street Map (OSM) [Goo07, Ope11] and

works from the MIT Senseable City Lab [CRK08, PHL+10, CCL+11]. The OSM community is

a volunteer collaboration effort for the generation of detailed worldwide maps. Senseable City

uses crowds of users to collect and share data via a centralised authority (or central systems).

WikiCity [CRK08] and similar approaches [CCL+11] advocate the use of a community of

citizens to collect and share data about the city using mobile phones. The MIT Syn(c)ity

[MKDL+11] (and Affective Intelligent Driving Agent) proposals seek to provide a centralised

computer guide to a driver, recommending routing throughout a city based on driver statistics,

preferences, their social network, the state of the vehicle and known traffic conditions.

Traffic control and feedback approaches include the Mobile Millennium Project [HWH+10],

30

the Waze crowd-sourcing service [Waz11], Google Latitude [Bar09]. The Mobile Millennium

Project (MMP), undertaken by UC Berkeley in San Francisco, implemented a traffic-monitoring

system using more than 5000 mobile phones. The mobile phones were associated with individual

vehicles. Sets of vehicles gathered GPS position data and state data about the road network.

Data was uploaded to a central authority via the mobile phone network and processed. The

central authority’s analysis of the road network was sent back to vehicles in real-time. Data

was collected by managing ‘virtual trip lines’ or data collection points to improve the privacy

of users. In effect the system analysed short fragmented GPS traces. Similar approaches have

been undertaken by both Waze [Waz11] and Google Maps [Bar09], where user trace data is

used to approximate the traffic occurring along a road network. Waze differs in that it includes

community broadcasts from drivers (for example, users may report seeing a traffic accident at

a location).

Such approaches use vehicles and drivers to sense the state of the road network over time.

MMP, Waze, GL, WikiCity and others are feedback approaches, requiring that a central au-

thority (server) continue to exist to provision traffic control. Criticisms levelled at centralised

systems include issues failure, maintenance and privacy. However, if the central authority is

unavailable then the service is unavailable. The authority is required to maintain a central sys-

tem to service users of the service. The centralised nature of the system requires that a service

provider collect and analyse data. Users need to be sufficiently trustworthy of the provider

as their location data is often considered sensitive and private to many users. Furthermore,

users need to able to trust the guidance being provided by the authority itself. As with many

distributed approaches, the service requires that data be crowd-sourced. As more users use the

service, we expect more data sources and hence improved analysis.

In contrast to centralised approaches, decentralised solutions have constructed small scale

vehicular services on VANETs. The Mobile Environmental Sensing System Across a Grid

Environment (MESSAGE) initiative by Imperial College London has sought to sense pollution

within cities [HLP11]. Vehicles use standard WiFi (IEEE 802.11g) and WiMax (IEEE 802.16)

communications to share and upload data to a central server when the opportunity arises

to do so. Effectively the VANETs produced allow vehicles to collect data using delay tolerant

routing approaches. Similar small scale systems have been produced by the Cooperative Vehicle

Infrastructure System (CVIS) [GPR+10] and CARLink [SN09] and the CAR2CAR consortium

31

Approach Architecture Sensors Comms. Advice

TTCC [Ino76] centralised static POTS indirect
HA [Vic00]
HTS[Sus05]

CarTel [HBZ+06] centralised mobile GPRS none
PP [EGH+08]

Nericell [MPR08] centralised mobile GPRS none

OSM [Goo07, Ope11] centralised mobile 3G none

Senseable City Lab centralised mobile 3G indirect
[CRK08, CCL+11]

MMP [HWH+10] centralised mobile 3G direct
Waze [Waz11]

GL [Bar09] centralised static & mobile 3G direct

MESSAGE [HLP11] decentralised static & mobile WiFi & WiMax none
CVIS [Kom10]

CARLINK [SN09] mixed static & mobile WiFi & WiMax indirect

Table 2.1.: A comparison of implemented systems.

[LMP+07].

CARLINK10 was developed to provide a wireless traffic service platform between the cars

[SN09]. Both V2V and V2I interactions were considered. As with MESSAGE, static road-side

base stations were used to collect vehicle data such as weather and traffic data. This data was

stored in a central database. The database was then used to push updates back to the vehicle

passing the base station. Two significant applications were developed: (a) the FSF (Finding

and Sharing Files) service and (b) a puzzle bubble game. The applications were constructed

in a Java based application called JANE that provided a means of testing the usage of real

vehicular services using the CARLINK model. CARLINK has successfully constructed small

and working V2V networks which comprise a hybrid of V2V and V2I interactions. Large-scale

vehicular systems have not been constructed.

Table 2.1 identifies a number of characteristics of the systems in terms of centralisation

versus decentralisation, the provision of mobile and static sensors, requirements for a data net-

work infrastructure and whether the service can directly (e.g. messaging individual vehicles)

or indirectly (e.g. information boards) advise vehicles about changes. By classifying these sys-

tems it is apparent that no single implementation considers operating a decentralised advisory

application using V2V interactions.

10http://carlink.lcc.uma.es

32

2.8. Summary

In this chapter we considered related work which has influenced and motivated our vehicular

framework. We began the chapter by highlighting the cost of inefficiency within the road

network and the need for low cost traffic management in cities. Emerging technologies are

making ITS and similar services cheaper as time progresses; however, even given the reduced

hardware costs, the relative costs of building centralised traffic control services are prohibitively

high for many cities. We highlighted some real world examples and discussed the use of vehicles

as sensors within the city to reduce the costs associated with such systems. Major investments

need to be made in sensory infrastructures as well as communications networks for centralised

authorities to operate services. Systems must be set up, deployed and maintained. Many cities

are large covering significant geographic areas.

With the advent of V2X technologies it may be possible to remove the necessity for a cen-

tralised authority and build more decentralised services. These services are broadcast based,

decentralised and scalable and use V2X interactions to construct and supply a vehicular service.

In the remainder of the thesis, we present and motivate a new framework for the development

and evaluation of decentralised vehicular services, which uses scaled vehicular interactions and

mobility to provide vehicle-based applications and services.

33

3. Decentralised Vehicular Services

Framework

In this chapter we present the decentralised vehicular framework which features a geodetic

(geodesy) based scaffolding methodology for developing decentralised vehicular services. Spa-

tial and time based calculations are used to record and estimate fine grained mobility patterns.

Decentralised vehicular services reactively leverage shared mobility fragments, messaging and

feedback loops to repeatedly adapt state data stored about the world, thereby providing traffic

management services. The framework makes it easier for developers to develop vehicular ser-

vices such as decentralised traffic management services. The inclusion of simulation within the

framework provides a means of improving our confidence in a prototyped service. Furthermore,

the combination of framework specific features (particularly dynamic mobility in combination

with messaging and feedback loops) are not available in other vehicular frameworks.

The chapter begins by defining the framework’s requirements (Section 3.1). We then de-

scribe the framework model, as well as the layered world sub-models and the vehicle model

(Section 3.2). The section also describes the specification of mobility in terms of routes, plans

and fragments. Finally, we discuss the simulation methodology used to evaluate prototyped

decentralised services constructed using the framework (Section 3.3). The framework is used

as a tool to develop and evaluate mobility-based decentralised traffic management services in

subsequent chapters.

3.1. Requirements

Our framework is concerned with addressing the following requirements:

Mobility. Previous frameworks have considered mobility as permanent and related works

34

have largely focused on the message routing overlays produced by vehicles over time

(for example message routing protocols [ABFeH07, BMJ+98, BGJL06, LW07]). In these

scenarios, vehicle mobility is predetermined. In other words, a vehicle is expected to

adhere strictly to the route chosen at the start of travel. Vehicles do not react to data

which may be available within the environment. Decentralised vehicular services adapt

to changes in their environment and this includes mobility adaptation as services share

mobility data with one another. Hence we require a mobility specification which is non-

permanent, flexible, easily understood and fine-grained. In this context, fine granularity

(or high resolution) is necessary as vehicular services need to consider precise geographic

distances as well as precise vehicle movements over time. Error tolerances are also limited.

For example, vehicles pass each other on dual carriage-ways with very little distance

between them. Flexibility is required as vehicles may seek to change their mobility at

run-time; communicating these changes is necessary given limited messaging capabilities.

A trade-off of mobility flexibility is complexity. A variety of changes may occur and

vehicles may change their mobility rapidly within small measurable distances. We derive

a number of complex mobility functions from raw geographic position and time data. We

address fine-grained and planned mobility in Section 3.2.3.

Decentralised Control. Vehicles are required to serve and provide services to themselves

and one another in a series of ad-hoc contacts. Vehicles act as sensory inputs and users

of data. Each vehicle acts as a component of a larger vehicular community. Vehicles

are required to assess inputs and effect the desired output actions specified as a group

behaviour. To achieve this vehicles are required to handle actuation and messaging

events between themselves, neighbouring vehicles and their environment. We require

a means of specifying control and a set of interfaces by which we may interpret and

effect control. A protocol provides a procedure for regulating messaging and control

between vehicles. Vehicular services are the result of sequences of inter-vehicle contacts

and multiple decision making stages within the message passing process. We assess how

vehicles specify service control in Section 3.2.3.

Cooperation and Scalability. To operate, decentralised services require scaled numbers of

interactions between populations of vehicles. The ability of a decentralised service to

35

support a large numbers of vehicles without impeding service performance is referred to

as scalability. Vehicles are required to cooperate with one another in the provision and

usage of services. In other words, vehicles work together to provide a correctly operating

service. Without cooperation decentralised services are limited in their ability to affect

change or achieve goals and thereby become non-beneficial. As increasing numbers of

vehicles use the road network and wireless radio communication, a number of challenges

occur in terms of resource usage and optimisation.

Performance. The performance of a decentralised vehicular service should seek to better the

performance of a centralised or competing approach with similar or reduced performance

requirements, costs and overheads. Measurements used to compare performance between

competing centralised and decentralised services are often problem specific; however, a

number of performance measures are more global in their applicability, notably those

relating to messaging and mobility. The framework requires a means of measuring and

comparing performance between competing approaches. As metrics are specific, we com-

pare performance individually in the context of two traffic traffic scenarios (Chapters 4

and 5).

Fault Tolerance. The road environment in which vehicles operate is highly dynamic. As

such a decentralised service must adapt to faults which might occur during run-time.

Inducing faults in various components of the framework is necessary to consider how a

service adapts to faults, for example messaging faults and unexpected mobility changes.

Decentralised services are required to operate in the presence of fault, resolving fault on-

the-fly. For example, the exit of a vehicle from a community of vehicles should not incur

a significant loss in service performance, and vehicles should be capable of recovering

from such a fault. Similarly, the ability of a service to tolerate change during operation

is scenario specific. We consider tolerances in more detail in Chapters 4 and 5.

Extensibility. The framework is required to include mechanisms by which we may enhance

and improve the modelling of vehicular services, thereby improving our confidence in

a service operating correctly at deployment. As such, the framework is coupled with

simulation for modelling. Due to resource constraints, the model chooses core features

deemed most important for the modelling of vehicular services. For example the mod-

36

elling of vehicles and the messaging between vehicles. The more complex the model, the

more computationally intensive the framework. The model used provides a confidence

in understanding the feasibility and operation of a service. To improve confidence the

framework needs to be extensible. The simulation approach used is modular and we

discuss its use in Section 3.3.

Some orthogonal qualitative requirements are not addressed within the framework. They

include:

Trust. The definition of trust within computing is varied, yet a core requirement of systems

and services. The framework assumes that all vehicles within the model are ‘trustworthy’.

We assume that vehicles acting within a service ‘honestly’ collect, share and use data.

We assume that a trust model might be overlaid on a decentralised service. For example

decentralised social trust systems are one such approach [Gol10]. A lack of trust can have

significant effect on cooperating systems, forcing vehicles to limit their interaction. The

accuracy and integrity of data is called into question and the quality of service provision

as well. Trust is itself a large problem and beyond the scope of the framework presented.

Privacy. Within decentralised vehicular services, data is shared between vehicles for the cre-

ation of a service. As data is broadcast wirelessly, it is possible for eavesdropping to

occur. Data and the detection of transmissions and interpretation of mobility data may

be used to infer personal information over time about the details of a particular vehicle

or a subset of service users. As with trust, the privacy issues relating to vehicular services

are not assessed with the thesis.

Incentives. The incentives or rewards for decentralised vehicular services are not specifically

detailed, however we assume that vehicles may be motivated to use vehicular services

for their own benefit (not necessarily the benefit of the entire community i.e. altruism).

The problem of incentive is itself a larger problem. There are clearly questions to why

a driver would be inclined to become part of a community of vehicles if becoming part

of that community does not benefit them. Vehicles are required to expend their own

resources (for example communications, privacy, energy and storage) to enable service

provision. Decentralised services do attempt to reduce the costs of traffic management,

37

but for those costs to be shared amongst users the users need to adopt the technologies,

either by choice or by requirement.

3.2. Framework

In the previous section we considered the requirements of a decentralised vehicular framework.

The decentralised services presented are expected to exhibit complex behaviours which are

the consequence of feedback loops, cycles, shared mobility data, varying inputs and outputs,

and adaptation. Our requirements seek to focus the framework on providing abstractions for

mobility and control, cooperation and scalability as well as the accurate measurement of the

performance of a service in relation to both decentralised and centralised approaches. In the

following sections we detail the decentralised framework.

3.2.1. World Model

Vehicular services are required to operate in a real and physical setting. Simulating such a

perfectly real setting is computationally infeasible within simulation due to complexity. Hence,

we extract a subset of real world features and model these features attributes, characteristics

and abilities as a set of layered sub-models which in combination construct a world model. In

contrast to static networks, vehicular networks are mobile and ever-changing. This adds extra

complexity to models. For example, we repeatedly re-evaluate the position of vehicles spatially

to determine whether those vehicles are within proximity of one another.

The approach used by the framework is modular in its design to achieve extensibility. In-

habiting the world are a collection of mobile and static objects. Vehicles represent a subset of

mobile objects. In terms of the world model, vehicles represent processing and communicating

elements. Each vehicle executes its own protocol(s) in timed execution cycles (however, pro-

tocols are not required to execute at each cycle). In effect the framework model comprises a

bounded but discrete geodetic mobility and messaging model and a separate feedback driven

vehicular architecture (Figures 3.1 and 3.2). World position within the framework uses the

World Geodetic System 1984 (WGS84) standard [NDM+89, Tru04]. The world model con-

sists of three interacting layers: a transportation layer, a mobility layer and a messaging layer

(Figure 3.1). Included in the model is a discrete clock to mark transitional time-steps. As the

38

Figure 3.1.: Layered model: vehicles (V1 to V5) exist on a transportation network. Each
vehicle records its past mobility as well as routing information on how to reach its
destination using the road network.

approach is geodetic, all objects residing in the world use a common waypoint (W) specification

to define geographic position on the surface of the Earth:

waypoint = (latitude, longitude, altitude)

For example:

waypoint = (51.498538,-0.176468, 123m)

This usage of waypoints allows us to consider position as it would be considered in the real

world space (inside a city road network). In other words, a virtual mapping of a vehicle in

simulation corresponds with an actual world mapping. Algorithms which calculate precise

geographic position typically require more computing resources and time.

However, there are some advantages to using geographic positioning. As vehicles and services

use maps, geographic data and GPS standards to define various layers, we need not convert

or lose granularity when using geodetic sources. For instance we can overlay road maps atop

39

real world geographic topologies, which more accurately specify the real world road networks

vehicles are travelling. Services are directly portable. Stipulating spatial positions is more real-

istically considered in terms of the real data available to a vehicle in time. Vehicles themselves

use the world model as a reference by which they may note their location as waypoints, sense

attributes about the space and message one another by querying various layers. Higher layers

are dependent on the lower layers.

Transportation layer. This layer represents the base dependency layer. Data which defines

the transportation layer is provided by road maps. Vehicles mobility is constrained

by the road network. However, the framework relationship between mobility and the

road network is loose such that road networks act as guides for vehicle mobility. The

transportation layer models roads in terms of their meta-data such as point-to-point

direction and speed limit. Other timed constraints can also exist for intervals of time.

For instance, a road may only be available for use during particular hours of the day.

By referencing the transportation model, mobility is specified within these contextual

constraints.

Mobility Layer. This layer represents the movement of a vehicle as a set of past, present

and future positions in the form of traces. The split of mobility and transportation

layers mean that mobility is flexible and dynamic (changeable at run-time). Each vehicle

monitors and amends its own mobility state for every time-step (t). We discuss mobility

as it is related to the vehicle in more detail in Section 3.2.3.

Messaging Layer. This layer models wireless radio communication between vehicles. Again,

constraints are used to model the broadcasting and receiving of messages according to

the known particulars of a given wireless standard. Manipulating the layer has the ability

to change the characteristics of messaging. For example, inducing dropped messages.

The combination of these layers seeks to represent the mobility and messaging events experi-

enced by an individual object existing in geographic space over successive time-steps. Notably,

the mobility of an object is dependent on the constraints of the transportation network. In

turn, the derived messaging network is dependent on the mobility of vehicles and the con-

straints applied at each layer. As the world model is modular it allows us to classify and apply

40

different controls at successive layers. For example, changing the maximum communication

range of a message would be applied by modifying the messaging layer or reducing the speed

limit might be modified by adjusting the transportation layer.

3.2.2. Time

In reality, time is continuous. Within the framework, time is considered discrete for the pur-

poses of simulation. The framework assumes that a global synchronised clock exists at a present

time-step (t). Furthermore, we assume that vehicles and objects are synchronised with this

clock. Erroneous clocking has the potential to negatively affect a service, however the effect

is dependent on the clock interval and the service. We use an offset (k) to specify past and

future times. The past is denoted by negative offset time (t−k), while the future is denoted by

positive offset time (t + k). The interactions between vehicles are not modelled continuously;

rather signals such as messages need time to be received in a next time-step. It holds that

a signal sent in the previous time-step (t − 1) is received only in the present time-step (t).

Clocking modelled the IEEE 802.11p standard Wave Short Message (WSM) broadcast rate.

3.2.3. Vehicular Model

In the previous section we considered the world model in which both static road-side objects

and vehicles exist. In the following section we consider the vehicular model. Figure 3.2 shows

the component architecture used by both vehicles and static objects.

Objects and Vehicles

Objects and vehicles represent the atomic constituents of the framework model. We call the

collaboration of vehicles a service (i.e. it requires two or more vehicles to enable or enact a

vehicular service). Specifically, these elements provide a means of architecting decentralised

services by separating the world model from protocol design and execution. Base objects are

deemed static (non-moving) elements, while vehicles are considered derived mobile elements

(movable). Both are capable of executing a protocol and thereby a service. Protocols retain

core reactive functionality for dealing with messaging and sensory inputs. Figure 3.2 shows the

object and vehicle architecture which consists of a selection of components. The operation of

the architecture is cyclic. Each vehicle protocol execution loops periodically.

41

Figure 3.2.: Vehicle architecture: a specialised extension of an Object. The architecture shown
does not include management components required to manage protocols and ap-
plications.

In each time-step, received messages and sensory data from the local proximity are sampled.

Sensory inputs are queued in the sensory queue, while retrieved messages are queued in a

message inbox. A polling call provides the messages and sensory data to the protocol loop for

processing as parameters. For each cycle multiple protocols may exist simultaneously. Message

payloads are matched to protocols. The protocol loop is also provided a interface to access

library functions and a read-write store to store successive data beyond the present execution

cycle or time-step (t). An application, interfacing with the protocol loop provides a driver to

a vehicular service based on the data which has been collected, processed and shared between

vehicles. We assume that actions may be taken either automatically by the vehicle or by the

driver.

At the end of each cycle, queued actions are actuated and queued messages are broadcast. If

other vehicles are within local proximity of the actions and message broadcasts of a vehicle, then

they may act on these new data. As such, two feedback loops are created between broadcasting

and/or actuating vehicles and listening and/or sensing vehicles. Where listening/sensing vehi-

cles do not react the feedback loop is broken. Notably, vehicles monitor and manage messages

to ensure that self-cyclic messaging does not occur (self messaging from previous time-steps

via neighbours).

42

Figure 3.3.: An example route for a single vehicle travelling between A and B signified by the
sequence of waypoints (W0 to W6).

Mobility and Fragments

Within our framework mobility is defined as the change in position of an object over a series of

time-steps. Mobility is assumed to be dynamic, such that it may change as a vehicle travels the

road network. We assume that mobility is unique to every vehicle, specifically as vehicles are

not allowed to collide with one another over time, but also because different vehicles typically

attempt to travel from source (A) to destination (B). Mobility data is held within the store

(Figure 3.2).

A method of mobility specification is a requirement of the framework as vehicles require

mobility data to travel and vehicular services share mobility data to provide decentralised

services to themselves and one another. The mobility of a typical vehicle (V) is constrained by

the road network. The attributes of position, proximity, bearing (orientation) and speed can

all be sensed or derived by an object or vehicle which may also access positioning and time

data, for example GPS data. We assume vehicles journey from a source to a destination. Such

a journey is specified as a route R, which is a totally ordered list of n waypoint positions where

n ∈ N. For example we may write a R as the sequence:

R =

[

W0,W1,W2,W3, ...,Wn

]

Figure 3.3 depicts one such possible road network and R consisting of a sequence of way-

points connecting two geographic waypoints A and B. R is typically coarse in its description

43

of movement. When associated with time data, a route (R) is considered a plan of how a

vehicle should travel and when it expects to travel a particular waypoint. An infinite number

of intermediary positions are possible between waypoint elements inside the route. A pro-

cessed form of R, called a track, associates a sequence of positions with a unique clock time

(t). Waypoint-time pairs of the form (waypoint,t) give the expected position of a vehicle in

time, where t ∈ Z given that the current time is t. The example Tc+f combines current (c) and

future (f) waypoint-time pairs. Time-steps follow that t ≤ u ≤ v ≤ w ≤ z. These time-steps

are associated with a set of unique waypoint positions found in R. The association implies that

a vehicle was, is or shall be at a specific position in time.

Tc+f =

































(W0, t)

(W1, u)

(W2, v)

(W3, w)

...

(Wn, z)

































As such, mobility is specified for each vehicle as an in-order sequence beginning at a start po-

sition and ending at a destination. Past mobility is recorded as a trace history. The coarseness

of a simple track creates a granularity problem as we need to specify precisely the continuous

positions of vehicles in intermediate positions and times. Let us suppose that time progresses

to a new current time-step (t). Future mobility is estimated as a future track (f). Suppos-

ing that a vehicle travels an ordered track of unique positions from W0 to W6 beginning at

a previous time, a trace history for a routing from the present position W3 through to the

previous position W0 in n-many previous time-steps from the present time may be represented

by the trace history h. Similarly a future track for a routing from W3 to W6 in n-many future

time-steps may be estimated as f . Increased fragments typically add granularity to mobility.

The comparison between h and f is illustrated as the ordered set of array values:

44

h =

























(W3, t)

(W2, t− k)

...

...

(W0, t− n)

























f =

























(W3, t)

(W4, t+ k)

...

...

(W6, t+m)

























The complete mobility of a vehicle is hence a union of past, present and future positions

(h ∪ f). A recognisably different characteristic of f is that of its generation and estimation.

To generate f requires the usage of an algorithm to estimate the position of a vehicle in future

time-steps. The accuracy and quality of f is hence dependent on the algorithm used to estimate

future movement. There may be multiple future tracks to a destination and estimation requires

processing. Regardless, a requirement of both future track and trace history mobilities are that

they remain associated to a specific position on the road network at a specific time. Subsets

of the tracks are considered mobility fragments. Fragments represent pairs of waypoint-time

tuples. For example the set [(W0, x), (W1, y)] is such a mobility fragment for two arbitrary

times x and y, where x ≤ y. We may infer a great deal of information from fragments. The case

studied vehicular services considered in later chapters use mobility fragments as a means by

which to provide services. As these mobility fragments represent intervals between waypoints

they represent both past and predicted future mobility.

Sensing and Actuation

A variety of sensors and actuators could be provided to a vehicle protocol; however the frame-

work currently models just two sensory inputs, namely positioning data (waypoints) and clock

data (t). Each protocol polls sensory inputs from the sensory queue and the local clock every

time-step. We derive complex mobility data from these base inputs. For instance, for every

time-step beyond the first time-step, a vehicle can calculate a bearing and speed by refer-

ring to h and sundry stored mobility fragments. Bearing refers to the navigational orientation

of a vehicle (also known as the forward axis), measured in degrees. By default the framework

considers bearing in terms of relative bearing (the direction of the vehicle as it is travelling).

45

Figure 3.4.: Vehicles V1 and V2 travelling in opposite but parallel directions, within a measur-
able range of one another.

The speed of a vehicle represents its physical speed in relation to its previous positioning (for

example meters per second).

Figure 3.4 shows an example scene containing four vehicles. Vehicle V1 is within proximity of

V2, V3 and V4 and vice versa. Each vehicle holds a differing relative measurement concerning

their position, bearing and speed to one another. A bearing to the north compass is used as

a relative positioning method for multiple vehicles. In the example, vehicle V1 and vehicle V2

are both travelling in complementary directions to one another (V1 on a 0◦ bearing and V2

on a 180◦ bearing). We know that V2 is travelling at a speed of 8 meters per second. If we

combine the mobility data of both, we are able to calculate relative proximity and orientation

data, as well as the relative angles between vehicles (V2, V3 and V4).

The range between V1 and V2 represents the distance (D) between the vehicles. Within a

minimum distance vehicles are said to be within proximity of one another. At this particular

time instant, V1 sees B at a 90◦ angle and V2 sees V1 at a 90◦ to itself, where each vehicle

direction represents its bearing axis. As the mobility model is geodetic, mobility specifications

contain a high level of granularity. This granularity, refers to the accuracy between calculat-

ing the distances, bearings and speeds of objects when using geographic data. For instance

calculating D using the geodetic Vincenty formulae [Vin75] results in a maximum error of 0.5

millimetres given the Earth’s curvature. Within the framework, we assume vehicles are capa-

46

ble of accessing vehicular data, either directly in the form of vehicle state or indirectly using

sequences of trace history fragments. Combining mobility data with sensory data constructs

increasingly rich contextual information about a scene or location. Vehicles are hence provided

a means of determining the state of the environment within which they exist (allowing for

error).

Messaging

Within the model, vehicles and static objects broadcast messages. The framework models the

V2X IEEE 802.11p standard WAVE Short Messages (WSMs). WSMs are short and broadcast-

based, well suited to decentralised vehicular protocols. WSMs are provided as a standard

message packet type along with IPv6 capabilities within the IEEE 802.11p standard [IEE10].

At the base level, inter-vehicle messaging within the model is asynchronous and non-blocking.

Objects broadcast a message (M) without requiring an acknowledgement (ack) of message re-

ceipt. Messages contain service payloads (P) which are protocol specific. Messages received

and ready for broadcast are queued in MessageQueue data-structures. Messages broadcast

are popped off the queue and sent into the world messaging space.

1 broadcast(MessageQueue Q){

2 for (int n = 0 ; n < Q.length; n++)

3 world.add(Q.pop());

4 }

Broadcasts are either triggered by protocol events, time-outs or a combination of the two.

Messaging is achieved over successive time-steps, with messages filtered by geographic position

and transmission time-step. Message retrieval is dependent on the broadcasting vehicle’s com-

munication range (CR). For example, a M containing P is time-stamped and if sent in t, then

we assume vehicles buffer received messages in the next execution time offset t + k. Message

queues allow a vehicle to store a message from all previous time-steps until the message queue

is handled and flushed.

Messages within Q are filtered prior to being provided to a prototype protocol. Most no-

tably, messages must be from a previous time-step and within proximity of the broadcaster.

Vehicles filter out messages which they may have sent in a previous time-step (M.bid, where

47

bid represents the vehicle identity of the message broadcaster).

This filtering and allocation (with the unseen cost of simulating fault) of messages is costly

requiring n2 calculations to determine proximity, added to n calculations for message alloca-

tion, added to n calculations for fault emulation - for each cycle of simulation. In a non-mobile

context repeated proximity and message allocation calculations are not required, making static

systems significantly less complex and less computationally intensive to simulate messaging.

From the world perspective, we express the conditional retrieval of a message as the filtering

receive function.

1 MessageQueue receive(MessageQueue Q){

2 for (int n = 0 ; n < Q.length; n++){

3 Message M = Q.get(n);

4 if (proximity(M,CR) && (previousTimeStep(M)) && (M.bid != bid) { }

5 else { Q.remove(n); }

6 }

7 return Q;

8 }

An object does not pause the protocol cycle between messaging (a vehicle typically calls

broadcast(Q) periodically according to the broadcast period). Given a subset of objects

within communication range of a broadcaster, a broadcast message is assumed to reach all

listening or receiving objects. From the point of view of receiving objects, messages are unicast

to them. In reality, broadcasted messages reach only a subset of the vehicles within commu-

nication range of the broadcaster due to errors commonly found while transmitting radio data

(wireless messaging is modelled as unreliable).

We distinguish the limited communication range as a spherical distance from the broadcaster,

however in reality it is more likely that this communication range would be irregular (as radio

signal propagation effects occur within the surrounding environment). If a neighbouring vehicle

exists within the communication range and the message has been received without error or

corruption, the neighbouring vehicle is deemed to have correctly received a message. Message

fault is modelled as link failure. Figure 3.5 shows an example set of timelined interactions

between three vehicles (V1, V2 and V3).

48

At t, V2 broadcasts a message M1. V1 receives the broadcasted message from V2, while V3

does not as it resides outside the communicable range of V1. At t+k, V2 broadcasts a message

M3 which is received by both V1 and V3, however a fault occurs in the retrieval of M3 by V3

and the complete message is not retrieved or buffered for processing by t+2k. The framework

models message faults as link failures.

Figure 3.5.: Messaging scenario.

While seemingly trivial, large scale broadcasts present a number of challenges to the protocols

that use them. A trade-off of non-acknowledged broadcasting (pure flooding or epidemic rout-

ing) is its use of bandwidth. For instance, flooding is typically wasteful in applications where

sampled data does not change rapidly and where the capacity of a communication link between

nodes is limited (as data requires both storage and communication capacity). Flooded mes-

sages travel through the communications network rapidly. The redundancy of data is typically

high as data may be duplicated for each successive time-step. The duplication and merging of

data requires message and data management at both message retrieval and message broadcast

- effectively filtering stored and forwarded data. Redundancy is beneficial to an extent when

dealing with fault and erroneous data (data integrity). Within wireless feedback driven appli-

cations, such as those described in later chapters, flooding is beneficial as it updates the most

recent state of each vehicle to each other vehicle. Vehicles ‘eavesdrop’ on potentially useful

information which is then incorporated or dismissed. A harmful effect of redundancy is that it

typically uses large amounts of resources.

49

For example, bandwidth and storage management schemes are required. The mobility of

vehicles and their intermittent contact with multiple contacts complicates management even

further as sub-branches of a vehicular network are likely to change. A significant problem and

inefficiency is that messages and data can recycle (loop back). For example a vehicle V1 may

broadcast data at t. Vehicle V2 may retrieve a payload from V1 and rebroadcast a subset of

t-data back to V1 at a future time instance. The need for cyclic data management is dependent

on the protocol application goal and the developers intended use of redundancy. Figure 3.6

shows the wrapper Message structure, which uses both hop lists and created time time-stamps

to manage message redundancy.

Figure 3.6.: Message structure.

Figure 3.7.: Example Payload.

Each Message structure wraps the protocol specific Payload and holds at least a 60 byte

header to identify and filter messages on retrieval. A selection of fields identify each message

broadcaster (bID), hop contacts, Waypoint position and created time time-stamp. The hop

contacts field is used to identify the occurrence of looping redundant messages. Both hop

contact and time-stamp fields provide a means of managing message redundancy. IEEE 802.11p

uses a set 1400 byte packet size for WSM data packets. Hence Payload data sizes are limited

to a maximum size of 1340 bytes. A hash is used for message integrity. The data held within

50

a Payload (P) is general. Within the services presented in later chapters, P is specified to hold

mobility fragments, which are interpreted heuristically using the function library to abstract

more complex contextual information about the road network and neighbouring vehicles. An

example payload with mobility fragments contains an ordered set of waypoint-time pairs (W,t)

at t = 7.

In the example, we are provided a set of payloads (Figure 3.7). A message M from V3 at time

7 is received containing the traces from waypoints W1 to W6. Other messages are received

from V1 and V2. V2 shares no track mobility data. Similarly, payloads may contain data

which reports sensing or actuation at particular time-steps. The number of groups formed

by vehicles due to proximity are potentially exponential of O(2n) cost and therefore highly

computationally intensive.

Feedback, Protocols and Applications

The architecture (Figure 3.2) leverages feedback [AM08]. We call systems which include human

decision making in the feedback loop, advisory or recommendation systems. A trade-off of

feedback is that it adds significant complexity, not only because protocols are parallel between

vehicles, but also because inter-relating feedback loops change at successive time-steps due to

mobility. As vehicles travel they form multiple feedback loops with one another, both physically

through the environment and via messaging (Figure 3.8). The structure of these feedback loops

and systems change, consequently dynamism makes formalising these changes challenging.

Within decentralised services, feedback is leveraged to adapt service operation. Services

which continuously update or refine themselves to maintain a measured operation are well

suited for decentralised services. However, feedback loops require developers to think slightly

differently about a problem. Notably, a service needs to be written while considering the often

gradual adaptations vehicles must make to achieve a state. As time progresses services should

attempt to adapt themselves towards a goal state. Specifying this goal state often requires a

utility metric to calculate the error between the current state and the goal state. Figure 3.8

shows the feedback loop for a single vehicle, assuming that a driver follows the protocol (Pr).

A starting state X results, after processing, as a resultant state Y.

51

Figure 3.8.: Simplified data feedback loop as a block diagram.

The set of inputs (i) include the clock (t) as well as a summation of messages (m*) by

neighbouring vehicles (N). Each Pr is furthermore provided a unique geographic position (p)

for each vehicle. Therefore i = (t, m*, p). We write the simplified vehicle feedback loop as:

Y

X
=

Pr

1 +NPr
= V

The complexity of parallelism is simplified here using N. However, N and the structure of

feedback parallelism is dependent on the proximity of vehicles to one another (which is measured

geographically and measured against the communication range). Mobility affects the structure

of feedback and the connectivity between feedback loops. Where multiple vehicles inter-act,

we require the expansion of N of the form V1 + V2 + V3 + ...+ Vn for n-many vehicles (Figure

3.9).

Figure 3.9.: Parallel feedback.

To determine whether feedback adaptation should occur a vehicle requires a data store and

a set of conditions to compare previous states with the present state and thereby choose the

appropriate actions necessary to optimise service. Adaptation is a response which seeks to

optimise vehicular behaviour to improve either individual or group performance. Protocols

52

attempt to leverage both messaging and mobility which exist in the vehicular architecture.

Feedback is however dependent on the ability of the vehicle or object to store state data from

previous time-steps. A service should seek to continuously adapt towards equilibrium service

operation. In this example, a metric value of 1.0 represents true equilibrium, removing the

need for further adaptation (Figure 3.10).

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 2 4 6 8 10

M
et

ric

Elapsed Time (seconds)

Figure 3.10.: Services ideally adapt towards equilibrium performance over time.

Decentralised vehicular services are comprised of protocols (Pr), applications and payloads.

Within the framework, services are assumed homogeneous between vehicles. In other words,

vehicles all use the same service components; however, it is possible to have more than a single

derivative of a protocol operating simultaneously. Each service requires at least one protocol.

Protocols specify the sequence of procedures executed when receiving both sensory data and/or

messaging data - determining how to handle message inputs in combination with positioning

and time information. Protocols are responsible for interpreting retrieved messages, interpret-

ing sensory data, monitoring the local clock, executing the specified protocol, constructing new

broadcast messages for the next time-step and if granted access - applying actuation using

actuators of the vehicle (Figure 3.2). Multiple protocols are capable of running simultaneously

providing differing or complementary vehicular services. However, conflicting services should

be avoided, for example those services which may produce race conditions or contention of

resources between one another.

53

1 MessageQueue Protocol(MessageQueue inbox, long t, Waypoi nt p, Store s){

2 //Filtering

3 ...

4 //Processing

5 ...

6 //Finalisation

7 if (condition(t,p,s) == 0){

8 Payload p = new Payload();

9 Message msg = new Message(p);

10 ...

11 outbox.push(msg);

12 }

13 return outbox;

14 }

Figure 3.11.: Procedural transitions for each protocol loop.

Protocols are defined in terms of state transitions and procedures. Each protocol developed

uses a protocol template, allowing the developer to focus on messages and sensory data coming

in, as well as output messages and actuations. On the cycling of the clock (t), a time-out

occurs, forcing the periodic execution of the protocol.

The specification of the protocol loop is broken into three phases: (a) filtering, (b) processing

and (c) finalisation (Figure 3.11). For each Message retrieved by a vehicle, the Payload is

identified using the payload type identifier and queued for processing. Payloads are typically

not in-order and reflect only the previous time interval. The processing phase applies the

actions of the protocol - we explore specific protocols in later chapters. The processing section

uses interfaces to access sensory data via the function library (Table 3.1) and a local bounded

store. Processing results in the creation and buffering of new messages for later broadcast.

The combination of control and messaging allows sensory inputs and messages to influence

54

control as well as to affect change using communication and actuation in a future time-step,

while considering the various existing feedback loops (Figure 3.2). Applications within the

framework do not modify the operation of a protocol; rather they observe data streaming

through the protocol and thereby provide an interface between the protocol and the driver

concerning the state of a service. The driver in turn can facilitate changes to the operation of

a vehicle which thereby effecting the data or state provided to the protocol. The operation of

the service is subsequently dictated by the dependencies existing not only between a vehicle

and its neighbours, but with the previous interactions of itself and its neighbours in all past

interactions. Hence the actions taken by a vehicle are a summation of previous states and

actions in previous time-steps. We call this linking of feedback loops - dependency.

Dependencies

To observe service operation during development, developers have a number of options. They

may either observe the behaviour of the system using visualisation methods and metrics and/or

they may interpret behaviour from recorded actions. The dependencies existing between vehi-

cles reference the reactive adaptation vehicles take in response to changes in their environment.

They provide one of many possible means by which we may review service behaviour in a graph-

ical form. An example dependency can be considered, where a vehicle V2 is following V1 with a

following distance. If V1 brakes, then V2 is required to adapt to change made by V12 to ensure

the following distance is corrected (and equilibrium is maintained). V2 is thus dependent on

V1, but V1 is not dependent on V2.

Figure 3.12.: Dependency: vehicles communicate with one another in various time intervals.
The actions made by one vehicle effect the actions of another vehicle through
feedback. We represent this effect using directed arrows and weighting. In this
example, V2 is dependent on V1. For example 95/14 depicts the 95 adaptations
which V1 imposed on V2 and the 14 adaptations imposed by V2 on V1.

55

Within the framework, dependencies can be graphed for given time intervals associated with

contacts. Figure 3.12 shows an example of the dependencies existing between a collection of

vehicles (V1 to V9). Within feedback-based protocols vehicles may alter their data or actions

based on previous interactions between vehicles they may not have themselves come into contact

with. In the dependency example V1 influences both the sub-graph of V2 contacts and V2

itself. Dependencies typically make protocols challenging to build and introduce complexities

in protocol design. Understanding dependency serves to determine when a vehicle should

broadcast messages. Network analysis provides methods by which to interpret dependency

graphs and thereby understand visualise the effects of a particular protocol between vehicles.

3.2.4. Function Library

The function library within the framework derives complex data from position (spatial) and

time (temporal) data primitives. Various geographic algorithms [Rog07, Vin75] are used to

calculate position, distance and bearing using waypoints. Using heuristics and linking functions,

data is used to abstract contextual information about the state of the environment in which

a vehicle resides. Functions allow us to refer to geographic locations in terms of sectors and

regions. For example, a Message may exist ‘ahead’ of a vehicle. We might determine a vehicles

position within proximity to other waypoints. Table 3.1 and Appendix A.5 show our primary

set of library functions, however further functions can be derived to extend the capabilities

available to a service. The function library provides a toolbox of off-the-shelf algorithms.

From primitive position and time (*) functions we derive a number of complex func-

tions. However, there are nuances in the precision and accuracy of particular functions, as

well as assumptions made by those functions. An example of this problem is estimating the

precise future track of a vehicle. Future track is challenging and is itself a separate problem

of estimation and prediction. Within the framework, the future track is inferred using a given

route (R). A vehicle uses the route (R) as a plan and combines the route with an average

speed (S) to calculate the interim positions given execution cycle length. The plan provided

is hence expanded to associate a set of time instances with a set of estimated future positions.

In effect, the granularity of the plan is improved to allow vehicles to predict where a vehicle

will be located along the road network in T future time steps.

A problem with estimating vehicle mobility in the future is that such estimations are likely

56

Function Description

time() * Return the present clock time (t).
position() * Return the geographic waypoint (W) of the ve-

hicle in the present time instant.

bearing() Returns the relative angle to 0◦ given the direc-
tion of travel between geographic positions in
the previous time instance and the present time
instance.

speed() Return the instantaneous speed of the vehicle
using the waypoint from the previous time and
the present time instance.

distance(X,Y) Calculate and return the Vincenty [Vin75] dis-
tance (in meters) between waypoints X and Y 1.

bearingBetween(W1,W2) Return the smallest angular difference (θ) be-
tween two waypointsW1 andW2 from the view-
point of W1 and the bearing of the determining
vehicle.

isAhead(M ,θ) Return a boolean result determining whether
a broadcasting vehicle (broadcasting M) exists
within an angle of θ degrees of the receiver.

proximity(M ,D) Return a boolean result determining whether
another broadcasting vehicle (broadcasting M)
is within a minimum distance (D) of the re-
ceiver.

getClosestMessage([M]) Return the message (M) which was, in the pre-
vious time-step, the closest geographically.

destination(W ,B,D) Return the waypoint destination given a present
position (W), a bearing (B) and distance (D).

nextPosition(W ,B,S) Return the predicted next waypoint of a vehicle
given a starting position (W), a bearing (B) and
speed (S).

getTrace(T) Return the ordered set of waypoint-time pairs
for the trace history limited to the last T time-
steps.

getRoute() Return the ordered set of waypoints which spec-
ify the route (R) for a vehicle.

getFutureTrack(R,S,T) Return the ordered set of waypoint-time pairs
for the future track limited to the next T time-
steps for a given route (R) at a given speed (S).

isFollowing(M) Ascertain if the message broadcaster of message
(M) is being followed by the receiver. If a broad-
caster has similar bearing and is ahead of the
receiver, then the receiver returns true.

meet(P ,Q,D) Given two future tracks, P and Q, estimate the
time-step when the owner of future track P will
come within proximity (D) of the owner of fu-
ture track Q.

Table 3.1.: Primitive and derived library functions.

57

to change due to events and dependencies. However the cost of estimation is less than a brute

force approach as vehicles are constrained to travel on roads. Long range time scaled position

predictions are typically more inaccurate than short time scales. Vehicles are dependent on

the interactions occurring between a vehicle and its neighbours and the road infrastructure in

future time steps, which often may not be known. Hence the longer ahead a vehicle estimates

future mobility the more likely that mobility is erroneous. Future track is estimated by ex-

panding the intended route of a vehicle. The route is converted into a fine grained mobility

plan. The more long range an estimation in terms of time or distance, the more resources are

necessary. The meet function depends on the assumptions and quality of estimations made by

getFutureTrack algorithm.

Functions which abstract the complexities of spatial and temporal references are beneficial

such that they simplify the manner in which a protocol considers scenarios which are influenced

by position and time. For example, determining if a vehicle is ahead of another vehicle removes

the consideration of intermediary primitives to calculate this position information.

Human Drivers

The services constructed with the framework are considered advisory services. Such services

enhance the data available to a driver or community. Vehicle drivers represent the highest

component in the architecture, interpreting observations of the physical environment and data

provided by the service application. A driver’s response to these recommendations and advice

may result in an actuation, similar to that produced by the protocol loop in an automated

setting. Without the presence of a protocol loop and the application as a service, a driver is

limited to just physical observation of the road scene. This limits the driver, as messaging can

typically retrieve positioning data from objects beyond the sensory range of a driver. In the

presence of an application a driver is typically provided an enhanced view of the world space -

filtering both physical data from the scene and information provided by the service application.

Hence, a driver is modelled in our framework as a filter to input data. A driving filter value of

0 corresponds to no actuation on the part of the driver, whilst a filter value of 1.0 corresponds to

actuation on all received inputs. We assume that the driver has a minimal response time when

dealing with both application alerts (provided by a user interface) and physical observations.

While major improvements have been made to driver-less vehicles [Thr10], the model seeks to

58

share responsibility of vehicle routing with the driver in situations where the protocols may

need modification. The legal ramifications of fully automated driving have yet to be clearly

specified. For instance, in the event that a vehicle needs to complete a U-turn, a driver is given

responsibility of taking over the task - after this has been completed the vehicle may re-engage

usage of an automatic-drive system. Similarly, while vehicles in the future may become driver-

less, in the meantime vehicles will have drivers, who will have varying responsibility for driving

the vehicle.

3.3. Simulation

In an ideal development environment, a simulation tool would be consulted as a means to

accurately model (without error) how a system would behave if deployed. However perfectly

realistic simulation is computationally infeasible. Also, attaining the ideal simulation environ-

ment is challenging particularly as modelling real world processes is also itself challenging. For

example, simulators for weather prediction (considered a complex system) use large clusters of

high performance computers to model a variety of atmospheric and geographical components,

where regions interact (communicate) with one another.

Even given these capabilities, weather prediction is an inexact science. To balance these

trade-offs, simulators typically select the essential features of models and systems to approx-

imate performance. This adds to the challenges of simulation. Different simulators focus on

differing measures and aspects of systems operation, some contain similar features but model

systems uniquely. In the following section we describe the Geographic Urban Simulator (GUS),

its architecture, usage of Java in Simulation Time (JiST) and operation.

3.3.1. Java in Simulation Time

JiST was initially provided for building Discrete Event Simulators, termed virtual machine-

based simulation. In comparison to other simulation frameworks, JiST is highly efficient, out-

performing many optimised simulation run-times both in execution time and memory con-

sumption [BHvR05a, BHvR05b]. It also inherits a number of features from the Java language

including reflection, type-safety and garbage collection characteristics. The JiST architecture

is comprised of four components: a compiler, a bytecode rewriter, a simulation kernel and a

59

virtual machine. In a simulation, JiST converts an existing virtual machine into a simulation

platform, by embedding simulation time semantics at the byte-code level. Simulations are

written in Java, compiled using a regular Java compiler, and run over a standard, unmodified

virtual machine. The process is illustrated in Figure 3.13. JiST allows us to construct large

scale simulations.

Figure 3.13.: Code/JiST compilation/rewriter process [BHvR05a].

3.3.2. Geographic Urban Simulator

The Geographic Urban Simulator (GUS) is a modular JiST extension for the simulation of large

scale decentralised vehicular services. GUS implements the decentralised vehicular framework

within a simulation environment. Appendix A provides more detail on the GUS architecture

and its performance including code metrics and object hierarchies.

GUS focuses on providing a number of mobility and communication features that are not

easily applied or available using other simulators, namely (a) control emulation, (b) geographic

positioning, (c) dynamic mobility and (d) short messaging. The code of a decentralised ser-

vice (protocols and applications) are written as if being deployed on real devices. In contrast

to the scripting approaches used in other simulation frameworks [MI04, Cha99, HJ08], de-

centralised services are written in Java as they would exist if deployed on devices (e.g. An-

droid Dalvik devices). The developer only needs to concentrate on the Payload , Protocol

and Application components of the service. Short message payloads in the GUS use the

WAVE Short Message standard. A direct trade-off of increased Payload , Protocol and

Application realism is a reduction in the performance of GUS. The complexity of the

Protocol and Application increases the resources used by the GUS. Increasing the number

of simulated vehicles in the system also increases time costs.

The core of simulator consists of three layers: (a) the Java Virtual Machine (JVM), (b) the

JiST framework, (c) the GUS modules. Figure 3.14 illustrates this layered architecture. GUS

60

uses user parameters, a service protocol, payload description and mobility traces to simulate a

given scenario.

Before a simulation, GUS requires a set of mobility patterns with which mobility can be

specified for a given population of vehicles. Mobility patterns are derived either from real

traces or from synthetic traces. A converter allows the GUS to use traces from a variety of

mobility sources [NBG06a, Goo11, BGJL06]. These sources are interpreted as sets of mobility

specifications. The GUS mobility specification is used to describe the geographic route and

movement of a vehicle. Below is an example specification for a straight line route from A to B

given in the form [(A):S:(B)].



















(32.263,−114.572) : 8.0 : (32.262,−114.573)

(32.262,−114.573) : 6.2 : (32.291,−114.588)

...

(32.232,−114.324) : 5.0 : (32.277,−114.589)



















The sequence states the start position (A) of a vehicle at the first latitude-longitude pair

(32.263,-114.572). That it may travel at a maximum speed of 8.0 meters per second towards

(B) at (32.262,-114.573). Extended and linked sequences are capable of producing complex

routes through a road network. Importantly, specifications are themselves interpreted as a

plan rather than a fixed routing of a vehicle from A to B. The plan can be modified in the

form above, such that a vehicle service may dynamically route itself through the road network.

This allows modelled vehicles to apply actuation, for example brake, accelerate or turn.

Figure 3.14.: GUS Simulation process.

A decentralised service is the combination of Payload and Protocol components. An Ap-

plication component is optional as an interface to the Protocol. Parameters provided to the

simulator include the number of vehicles for a given experiment, elapsed experiment times,

61

default communication range, dropped packet percentage, as well as other values to be used

by the service. For each simulation, a log of results is created that can be interpreted and

analysed either visually or using a variety of metrics (including message counts, drop message

counts, contacts seen, the position of interactions, the number of vehicles which reached their

destination successfully, service specific metrics etc.). Metrics can be split into physical and

networking metrics. Physical metrics consider calculations within the physical environment of a

vehicle, for example, distance calculations. Networking metrics consider communications met-

rics, for example, packet size, message delay, message throughput. Measurements are recorded

every 100 milliseconds and adds to the computational load placed on the simulator. We still

expect service developers to test the operation of protocols on real test-beds and devices.

GUS uses a collection of helper applications to interpret and visualise data, including GraphML2

and GNUplot3. Due to a significant lack of mobility traces, the default mobility generator used

with the GUS, scrapes public navigation directions from Google Maps [Goo11] and Open Street

Map [Ope11]. By specifying two geographic positions (a start position and an end position)

and a range distance for a particular zone, the generator chooses a number of random locations

within the zone. These random locations represent the origins and destinations for vehicles.

Querying navigation websites provides driving directions in the Keyhole Mark-up Language

(KML) format. KML directions are interpreted and converted into GUS’s mobility specifi-

cation format previously discussed. KML directions are used as they associate a significant

amount of meta-data with road sections (including speed limits and expected road section travel

times). Such maps present a good source for data as the routings provided are influenced by

meta-data, for example road width and speed limit data.

3.3.3. Performance Comparison

GUS simulation performance is largely dependent on the hardware on which the simulator

is executed. Figure 3.15 presents benchmark tests for messaging protocols which do not use

decentralised internal data structures for unique vehicle storage. For example, it is possible for

a protocol to implement and manage its own unique data stores during simulation. Benchmarks

were conducted on a single Intel Core 2 Duo 2.80 GHz machine with 3.72 GB of usable memory.

2http://graphml.graphdrawing.org
3http://www.gnuplot.info

62

Reading the benchmark mappings, from bottom to top, we can ascertain the time required to

simulate scaled populations of vehicles. Notably, the benchmarks provided do not consider the

running on clusters of machines.

 1

 10

 100

 1000

 10000

 0 200 400 600 800 1000 1200 1400 1600 1800

E
la

ps
ed

 T
im

e
(s

co
nd

s)

Simulation Time (seconds)

1 vehicle
10 vehicles

100 vehicles
1000 vehicles

Figure 3.15.: GUS performance: elapsed experiment time versus simulation time.

JiST has been compared in previous work to NS-2 [KS07]. In comparison to previous ap-

proaches, GUS simulation performance was better than NS-2 but worse than GLOMOSIM and

SWANS (Table 3.2). The GUS is directly motivated by the successes achieved through the

composition of JiST and SWANS [BHvR05b]. JiST/SWANS presents a high performance and

lightweight VANET simulation environment in which Java-based message routing protocols can

be written and evaluated. In terms of modelled communication layers, SWANS models the OSI

stack to mimic message transmission in VANET scenarios. However, SWANS has drawbacks.

Notably, SWANS does not support dynamic or changing mobility. That is, vehicles cannot

modify their routing at simulation time. SWANS also does not support the implementation or

swapping of protocol loops. Simulation statistics and metrics are not typically output, unless

explicitly called. The ultimate aim of modelling and simulation using GUS is to achieve a best

effort measure which approaches as close as possible the performance of a real world deploy-

ment of a decentralised vehicular service.

Lower performance in GUS is partly due to the complexity of the simulation components (e.g.

Protocol , Payload and Peer objects). As a trade-off of enabling prototyping, performance

was seen to decline for larger scale systems. On a single processor, GUS is capable of simulating

63

Nodes NS2 GLOMOSIM SWANS GUS

100 1070.4s 12.6s 6.4s 221.32s
1000 - 948.6s 67.8s 2111.9s
10000 - - 683.8s 24538.2s

Table 3.2.: Simulation performance comparison.

systems much larger than 10,000 nodes. As vehicles are heterogeneous in state and complex in

their operation, increased resources are used.

3.3.4. Discussion

Simulation is itself a challenging problem. As computational capabilities are limited, simulator

designers need to make choices about which features to implement in a given simulator. The

more features or realism found within the simulation model, the larger the resource require-

ment. Hence, design choices are made while considering the trade-offs of given approaches.

GUS specifically allows us to rapidly swap and prototype protocols in Java (a commonly used

language). In particular, GUS allows dynamic changes to model mobility and protocol proper-

ties at simulation time. Mobility traces can be input from a variety of sources (both synthetic

and real). Synthetic trace generation tools which leverage mapping services like OSM [Ope11]

and Google Maps [Goo11] allow us to consider different mobility maps for different cities. In

contrast to other approaches, protocols are written as prototypes, in order to achieve a balance

between levels of abstraction and implementation.

GUS leverages a relational database for the collection of simulation results and metrics. A

collection of helping tools allow a protocol designer to analyse the performance of protocols.

As a trade-off of providing these features, the GUS makes assumptions concerning the realistic

transmission of messages within urban environments. GUS messaging does not accurately

consider the network and physical layers occurring in other OSI based simulators. Noise (e.g.

multi-path reflections, attenuation, etc.) and disruptions which might effect a radio signal in an

urban setting are considered to challenging and computationally intensive to model. Rather,

GUS drops complete messages to simulate packet loss and message fault.

An issue with the GUS is that it is tailored specifically to evaluate decentralised vehicu-

lar service protocols, making implementing and comparing protocols with other architectures

difficult and prone to errors and differing semantics. A solution to this is to adequately and

64

accurately present comparable components and scenarios to various simulators as standard

benchmark scenarios. These benchmark scenarios do not exist in the literature. By repeatedly

simulating scenarios and monitoring their results, simulation provides the framework a means

of improving confidence in a service’s behaviour. Indeed, if simulations run for a long time

without error we improve our confidence in the approach further.

3.4. Summary

In this chapter we began by detailing the requirements of a decentralised vehicular framework.

We described our vehicular simulation framework for the construction of decentralised, scalable

broadcast-based, feedback-driven, vehicular services. The framework provides a scaffolding

on which decentralised vehicular services are prototyped. In contrast to other approaches,

mobility within the framework is considered fine grained, highly accurate, flexible and shareable.

Vehicles construct services through sensing, inter-vehicle messaging and the sharing of mobility

fragments. Increasingly complex geodetic methods and functions are derived and used to

calculate the distances, angles and relative speeds of objects. While seemingly simple, scaled

services present challenges to developers as vehicles rely on mobility and feedback loops to

construct decentralised services in a dynamic and ever changing environment.

The Geographic Urban Simulator (GUS) is used to simulate services developed within the

framework. Simulation provides tools and means by which we reason about and evaluate

protocols and decentralised services, thereby improving our confidence in the feasibility and

operational behaviour of the service prior to deployment. The framework provides a method

of abstracting away the complexities of service design allowing developers to focus on the

Protocol, Payload and Application components of a service. The Java in Simulation Time

(JiST) framework was briefly described in conjunction with the features embedded within the

GUS. We concluded by comparing and critiquing GUS in comparison with other simulation

methods (NS-2, GLOMOSIM and SWANS).

The following chapters elaborate on the framework using two case studies, namely travel

time estimation and intersection control. Centralised versions of these services are complex

and costly. Using our framework we develop, evaluate and compare decentralised solutions.

65

4. Travel Time Estimation

In the previous chapter we detailed our geodetic based framework and simulation framework.

The framework presents us with a method for developing and simulating large-scale decen-

tralised vehicular services. To assess the practicality and performance of the framework, this

chapter develops a decentralised travel time estimation service. The service is non-safety crit-

ical and while seemingly trivial is complicated by the dynamism and scale of road networks.

In the next chapter, we consider the problem of intersection control, which is a safety-critical

service and operates over significantly shorter periods of time. Using mobility fragments and

their derived travel times, the service presented collects and shares recorded travel times. In

turn collected and disseminated travel times are integrated to model traffic patterns on the

road network. Given the availability of such mappings, vehicles can make informed estimates

about the travel times required to travel from a present position to an end position. Shared

trace fragments improve the accuracy of travel time estimations as they enhance estimation

methods. In contrast to methods which use inductive loop detectors [Kri08, Rob05], our travel

time estimation service is decentralised scalable and feedback driven.

We begin the chapter by detailing the problem of travel time estimation (Section 4.1). We

highlight the need to determine the time required for vehicles to discover a minimal dataset

for estimation (i.e. their availability in comparison to centralised approaches) and the capacity

needed by a decentralised approach to improve on a centralised vehicular service in terms of

performance. Travel times are defined in relation to the road network. Metrics used are defined

in Section 4.2. Section 4.3 describes the service scenario. The mobility traces simulated are

sourced from two sources: (a) driving directions services and (b) the ETH trace data-set. We

discuss the mobility traces used in Section 4.4. The service protocol we use (Collect-Merge-

Share protocol) is presented in Section 4.5 and evaluated in Section 4.7. We use four city maps

to validate results and interpret the affect of differing mobility patterns. Before concluding, we

66

discuss the advantages and disadvantages of the approach as well as future extensions of the

application (Section 4.8).

4.1. Problem

Travel time estimation refers to the process of estimating the elapsed time required to travel from

a start position to an end position using a road network [Kri08]. Commonly this measure is

referred to as the estimated time of arrival (ETA). Estimation is typically used in vehicle routing

algorithms as a means by which to predict route performance. To accurately estimate the travel

time between two geographic positions, algorithms consider both travel times and contextual

data about the state of the road network. For centralised approaches, accurately estimating the

time to arrival on road networks is highly challenging partly because road networks are both

very dynamic and monitoring dynamic changes in the network is difficult (requiring repeated

sensing). By interpreting the travel times collected by a community of vehicles, such data can

be used to estimate the flows and delays occurring across a road network.

Many commonly found in-car navigation devices already provide drivers with ETA infor-

mation as they drive. However, ETA algorithms used to calculate such estimations often use

just two complete data sources: road maps and speed limits (static data). Maps are assumed

complete such that roads and speed limits existing in reality exist within a dataset and are

not prone to change significantly over time. Estimations do not incorporate rich or dynamic

contextual meta-data about the road network (dynamic data). Travel time data allows a vehi-

cle to periodically re-evaluate the current state of the road network and heuristically infer the

state of the road network in time. The decentralisation of this task is well suited to vehicles

supporting V2X technologies. Furthermore, travel estimations and their mappings present a

foundational layer on which higher level vehicular services such a vehicular re-routing strate-

gies can be applied. The travel time estimation service considered within this chapter is a

decentralised service and uses: (a) road maps and (b) incomplete shared travel time overlays

from collections of vehicles and (c) varying sample times.

Given a road network, a challenging question to answer at any time is: “What is the best route

from the current position to a given destination?” This query is regularly made to centralised

mapping services. Firstly, the criteria for ‘best’ route is largely dependent on the criteria chosen

67

Figure 4.1.: A simple example of a road network (left) and one of several routes from A to Z
(right).

by the user. Such criteria may refer to a route with shortest path time, least number of turns

etc. Secondly, the time when a query is made may affect the route and estimation provided.

As road networks are dynamic, some road sections may perform well at off peak times, but

not at peak times. Estimations provided are dependent on the quality of the datasets used to

calculate an estimate. We consider travel time estimation as the process of predicting, within

error, the elapsed time required to travel from one geographic position (A) to another (Z) using

a transportation network and a specific subset of the road network. Estimations provide the

driver or navigation system with a best effort means by which to differentiate sets of routes.

Thus far, most estimation approaches have considered limited datasets in their prediction of

travel times. While a number of routing algorithms already exist, many algorithms rely on

graph datasets as a means of representing the costs of using specific road sections in their

routes.

Road networks are often represented as weighted directed graphs (Figure 4.1). A directed

road network, G = (V,E), contains a set of road intersections (vertices, V) and a set of

connecting road sections (edges, E). While the structure of the road network or graph remains

largely static over time, the associated state and loading of road sections tends to change over

time. Hence the associated contextual weights fluctuate or change as time progresses. One

example solution is provided by the ordered set of intermediary road sections (a,b,c,d,e,f),

which is a subset of E. Given methods of calculation we can estimate the travel time between

two geographic positions using speed, time and distance formulas. There are some limitations

of this estimation. An estimation made using this method assumes that only a single vehicle

exists on the road network in time and that this vehicle is not influenced by any other aspects

68

of the road network. In reality, vehicles are influenced and effected by a large number of

factors (some not easily measured or predicted) including weather, road maintenance, vehicle

congestion etc. To improve the quality of an estimation we require rich contextual datasets.

This contextual data serves to improve the estimation models used. The type of contextual

data available to a vehicle is limited by the sensory capabilities of the vehicle. Vehicles are

capable of monitoring their own geographic position using GPS and timing their travel using

an on-board clock. Hence, vehicles can record the experienced travel time required to travel a

road section.

Even if we are able to accurately sense the state of the road network, we are presented with

a further problem, namely that roads are dynamic. The road network is constantly changing

and travel times which have been collected may not be applicable to the current or future state

of the road network or be up-to-date. Effectively, the travel times recorded lose their value as

time progresses. Mobility trace data about the paths of vehicles needs to be collected, filtered

and analysed repeatedly and continuously to maintain a view of the road network state. Some

centralised approaches have sought to collect such contextual data for the benefit of the road

network and the reduction of traffic. Unfortunately, practical trade-offs exist in achieving the

ideal of complete road network knowledge. Centralised solutions commonly require large sets of

costly sensors to collect road data, for example vehicle counters, cameras and induction loops.

Implemented approaches have integrated stationary (static) sensors at fixed points throughout

a road network to measure the movement of vehicles. While the sensory costs of this approach

are continuously declining, such centralised systems entail expensive management, deployment

and maintenance costs. An alternative solution is to use vehicles to collect data and upload

this data to a central authority for processing [HWH+10]. In effect, vehicles record and submit

to an authority, their experienced travel time using a road section. While estimation datasets

are improved, a reliance is made on a central authority to provide such a service. Such a central

authority remains a single point of failure and may control access to specific travel data.

4.2. Metrics

For a given journey, Estimated Time of Arrival (ETA) represents a predicted future time instant

when a vehicle is expected to reach its destination, while the Actual Time of Arrival (ATA)

69

represents the time recorded by a vehicle reaching its destination (derived from the finish time).

Hence, the accuracy of a calculated ETA at a previous time can be measured by calculating

the error (e) between the initial ETA and ATA.

e = |ATA− ETA|

Ideally, the ETA should equal the ATA. In reality, the accuracy of ETA is affected by events

and obstacles occurring along the route. Road traffic, congestion, weather, maintenance and

other issues affect vehicle journeys and often degrade the accuracy of the ETA. The ATA

can be seen alternatively as a measure of the real performance of a series of road sections.

Subsequently, we can infer that if a road section is not performing optimally, then we should

avoid it if performance is less than an alternative route. Among the questions to consider are:

What data to collect? When to share this data? How to manage the data? What data is

relevant? What data is not relevant? Is more recent data more applicable than older data?

The challenge of building a vehicular service using feedback is made more manageable by

using a phased approach as discussed in Section 3.2.3. The problem of travel time estimation

using feedback can be broken into three data challenges: (a) data collection, (b) data sharing

and (c) data management. Data collection questions not only what data is relevant for travel

time estimation, but also how does it lose its relevance over time. Specifically we measure

the time taken to collect or update travel times and the quality of this data. Data sharing is

necessary as a vehicle has limited sensor range. For example, a single vehicle cannot drive and

sample all road sections simultaneously. The sharing mechanism employed is a one-to-many

relationship between vehicles. This broadcast approach to travel times produces multiple copies

of data (redundancy). Hence, we require a means by which to manage travel time data. More

samples translate into an increased dataset and, depending on the diversity of data, a richer

dataset.

Using the framework, travel time estimation, within this context, is dependent on the collec-

tion, sharing and management of recorded travel times. The ad-hoc networks formed within

the network are often unpredictable. Estimation is calculated using limited knowledge. For

instance, estimating the travel time from A to B, we may know nothing else than the physical

layout of a road network in the form of a map. Provided we have a route, we can use such

70

a map and an average speed to predict how long it would take to travel from A to B. This

calculation is optimistic (a best possible outcome). While a road network map typically con-

veys geographic and road rule information, for example speed limits and controls, it lacks the

attribution of up-to-date contextual (road state) information. This travel time estimation can

be described as the function:

function(route, map, speed) → ETA

An estimation function provided with route , map and speed data, estimates the travel

time required. The estimation calculated is compared with the ATA which results in an error

deviation (either positively or negatively). This approach is insufficient for significantly larger

errors. An extended approach to such an estimation calculation is to use sampled travel times

experienced by other vehicles to enhance the accuracy of the estimation calculation. We can

consider such a calculation as the function:

function(route, map, dataset) → ETA

This approach to estimation is influenced by the incorporation of sampled travel times in the

form of a dataset . The inclusion of sampled travel times requires that we collect and share

data between vehicles. In this approach, an ideal travel time estimation calculation would have

available to it the up-to-date data pertaining to all sections of road within a road network at all

present and past times. Approaching this ideal is challenging. To build a dataset containing the

contextual attributes of all road sections would require a large scale infrastructure of sensors. A

large collection of data would need to be sampled periodically and stored. Centralised solutions

to the problem of travel time estimation already exist - however, centralised solutions thus far

have been maintenance-intensive and expensive to deploy.

Data collected has typically not been up-to-date and lacking in resolution. Furthermore, such

data is typically not automatically fed back to drivers using the road network - rather, control

is applied by the traffic authority using road infrastructure, for example traffic lights. The

problem of travel estimation within this chapter specifically focuses on the use of vehicles as a

divide and conquer strategy to the collection and sharing of travel times for the estimation of

travel throughout a road network. Without a centralised system and a standing infrastructure

71

of sensors, we evaluate whether a decentralised approach can leverage a community of vehicles

to achieve the goal of calculating a more accurate estimated travel time using sampled travel

times. Vehicles are limited to sharing data via local ad-hoc broadcast and using position, speed

and time data.

4.3. Scenario, Aims and Assumptions

The scenario considered is defined in routing research as using a static scenario [DSSW09].

Beginning her or his journey, a driver of a vehicle queries the on-board navigational computer

for directions to reach a destination. Using a local lookup or via the Internet, the driver is

presented with a set of driving directions and route specifying how a vehicle can reach its

destination. Included with these directions is an ETA and a displacement estimation. We

assume that the route provided represents the estimated shortest time between two positions

using a shortest path algorithm [Dij59, DSSW09] and vehicle speed data (road speed limits

and vehicle performance data).

A combination of route and directions is used by the driver to reach her or his intended desti-

nation (such as seen in the route in Figure 4.1). We assume that drivers follow these directions

without modifying their route. The scenario is replicated for each vehicle driving along the

road network. Each navigational computer does not estimate the travel times associated with

the provided route, rather vehicles estimate their journey time using the experienced sampled

travel times collected and shared by the community of vehicles (where available). The protocol

developed addresses the following questions:

1. How long does it take for a vehicle to find all travel times relevant to itself. Alternatively,

how much time is required for a vehicle to estimate its own route from collected travel

times? (Section 4.7.4)

2. How long does it take for a vehicle to find all travel times for a sampled road network?

(Section 4.7.3)

3. What is the communication overhead of such a service? (Section 4.7.2)

4. What estimations can be made from known travel times? (Section 4.7.4)

72

5. What estimations can be made about unknown travel times? (Section 4.6.1)

6. Can we produce travel time maps comparable to those provided by related works [WBT+10]?

(Section 4.7.5)

7. Can we produce travel time graphs usable for dynamic routing scenarios [DSSW09]?

(Section 4.7.5)

We assume that vehicle mobility is constrained to each vehicle’s specified route. Vehicles have

the capability of finding their own position, measuring the time to travel between sub-positions

and communicating wirelessly with neighbouring vehicles using ad-hoc WiFi (IEEE802.11p

WAVE standard [BRCMGCRH08]). As vehicles drive their route, broadcast is data collected

by themselves or other past contacts. A vehicle, because of its size and energy provision, allows

us to assume that each vehicle is capable of providing large data store capacity.

4.4. Mobility Traces

While a number of mobility datasets have recorded road use within cities, their characteristics

and type (for example bus, taxi and car networks) makes them inappropriate for use within

our application scenario. For instance, bus routes present us with periodic traces, covering only

certain routes, yet they do not record a large number of proximity contacts between vehicles.

While taxi traces are more random in their routing, they do not exhibit many interactions

between other taxis. In other words the datasets for taxis do not consider groups of vehicles,

rather individual taxis. Given these two examples, available vehicular datasets do not consider

random interactions between vehicles or scale the number of vehicles using a road network

within a particular region.

For the purposes of experimentation we used two source datasets, namely: (a) generated

bespoke traces and (b) traces from the ETH Realistic Vehicular Traces dataset [NBG06a].

Bespoke traces were generated using routing directions provided by Google Maps1 and Open

Street Maps2. Given a chosen start and end position, directions were queried, just as they

would be by a driver. The directions were pre-processed to produce a trace common with the

1http://maps.google.com
2http://www.osm.org

73

framework. Resulting mobility patterns are seen to tend to use main roads rather than arterial

roads.

Mobility patterns are thus more consistent with mobility patterns observed in reality, where

a sizeable proportion of drivers use their GPS navigation systems to route themselves through

a city. The prevalence of traffic along specific road sections is subsequently seen in results

produced. The sum patterns of mobility traces for separate sample areas can be seen in Fig-

ure 4.8. The secondary, ETH trace dataset has been used by a selection of previous works

[DMP+10, YLL+10]. ETH traces [NBG06a] represent realistic traces generated by the MMTS

model. The MMTS model has been used to model the behaviour of the inhabitants of Switzer-

land using statistical census data. The traces represent 24 hours of vehicular mobility for a 250

x 250 kilometer coverage of Switzerland. Traces were enhanced from their raw form to form a

high resolution dataset.

4.5. Collect-Merge-Share

To map the state of the road network, we develop the Collect-Merge-Share (CMS) protocol

that first fragments available ATA trace histories and fits these fragmented travel times atop

of a road network map. We assume that trace histories are aligned to available road maps,

such that the traces more accurately follow mapped road sections. In effect noisy trace data is

cleaned and filtered to produce more manageable maps (Figure 4.2). Trace histories provided

imply direction using timestamps. We assume that the earlier timestamped data represent

starting positions while ending positions are identified by more recent timestamps.

The acts of collecting, merging and sharing data are related to store-and-forward methodolo-

gies found in other protocols. The specifics of the travel time estimation aims require that we

use bespoke components to transport and manage data. The framework architecture is mod-

ified slightly to provision the new application (Figure 4.3) - however the entire protocol relies

on a limited number of instructions. In this form of the architecture the messaging feedback

loop remains intact, while the actuation loop is removed. The protocol loop does not influence

any actuators on board the vehicle and we do not allow the drivers to re-route themselves when

provided new travel time maps. Travel times are transported using a modified Payload and

managed using a MapStore component (Appendix B.1). The MapStore holds data-structures

74

Figure 4.2.: Real raw trace histories (left) and geographic map (right), illustrate the error
inherent in present positioning methods. We assume that the vehicle is able to
reconcile both datasets in pre-processing.

to index, merge and select travel time tuples for sharing. Sensor data and messages are collected

at each computation cycle and presented to the loop which contains the Collect-Merge-Share

(CMS) protocol. There are no modifications to the base framework architecture; rather addi-

tional analysis and application layers access the MapStore to visualise and graph travel time

tuples. Each Message holds a single Payload, each Payload multiple travel time tuples. Travel

Time tuples are expressed in the form: [A,B,ATA, TS].

Here A and B waypoints represent the start and end positions of a road section (a travel

time fragment of vehicle mobility). ATA represents the experienced and associated fragment

travel time, TS the associated sample time time-stamp. For example, we represent a data filled

tuple as:

[(51.50094,−0.1237), (51.50079,−0.11993), 32.2s, 235959− 010111]

Read simply, the road section from 51.50094,-0.12370 to 51.50079,-0.11993 is measured to

have taken 32.2 seconds to travel at 23h59 on 1st January 2011. MapStore manages the merg-

ing and selection of tuples. Tuples are stored within the MapStore data structure and added

to MapStore, either by a vehicle sampling or a vehicle receiving messages from neighbouring

vehicles (sharing). In the first case, sampling produces new tuples. In the second case, sharing,

messages are stripped of their Payload tuples and unique or not previously seen tuples are

75

Figure 4.3.: Travel time estimation architecture. Shaded components are modified from the
original framework architecture described in Chapter 3.

merged with the current MapStore travel time collection. Within this context, management

is required to reduce the redundancy data stored. The protocol loop is provided read-write

access to MapStore such that MapStore can be queried for subsets of elements. Within the

architecture, a protocol can, on MapStore selection, construct new Messages for periodic broad-

cast. Layered with MapStore is the final application used to construct and visualise travel time

graphs. While drivers are included in the architecture, our experiments measured and tested

the application provision and not the final feedback actions of the driver. For instance, a driver

would influence mobility by dynamically re-routing or changing the speed of the vehicle as the

travel time estimation service operated.

Protocol execution is divided into three phases following the framework as a guide: (a) collec-

tion, (b) merging and (c) sharing (Algorithm 1). Our approach uses an epidemic opportunistic

networking approach [VB00] and WAVE Short Messages (WSM). The Collect-Merge-Share

(CMS) protocol is provided a large set of parameters including a set of received input messages

(MI), a clock (t), a reference to the core Mobility object (R) and aMapStore data structure (S)

for the storage and management of travel time tuple data. The clock object provides current

time and stopwatch readings, where the stopwatch measures the elapsed time until it is reset.

The stopwatch is required to measure the elapsed time taken to travel between waypoints.

During the collection phase (lines 1 to 6), a vehicle determines whether it has begun driving a

new road section. To do this, the sub-routine R.newSection() matches the present position

76

Algorithm 1: Collect-Merge-Share

Input: A set of received messages MI, a mobility resource R, a MapStore data-store S, a
clock t and a broadcast period bp

Output: A set of broadcast messages MO

1 begin
// if beginning a new road section

2 if R.newSection() then
// extract a road section fragment

3 A← R.getWaypoint(previous)
4 B ← R.getWaypoint(present)

// store travel time tuple
5 S.merge([A,B, t.stopwatch, t.now])
6 t.stopwatch ← 0

// strip each message of its payload and merge each tuple held
within the payload

7 for m ∈MI do
8 for tuple ∈ m.payload do
9 S.merge(tuple)

// periodically construct new broadcast messages using the
store tuple selection

10 if isPeriod(t,bp) then
11 tuples ← S.selectTuples()
12 payloads ← tuples.split

// allocate payloads to messages
13 for p ∈ payloads do
14 nm ← newMessage(R)
15 nm.payload ← p
16 MO.append(nm)

17 return MO

of a vehicle to the internal map and consults any previous positions stored within the mobility

object (R). R maintains both records of mobility history and plans. Depending on the road

topology, road sections tend to begin and end at road intersections. The vehicle calculates

the distance between it and the route waypoints provided. If the vehicle has changed its

road section, we construct a new travel time tuple using the previous-before-last and last

route positions (A and B), the present elapsed-time stopwatch value, time-stamp and vehicle

identifier. The tuple is merged with S and the stopwatch is reset.

As tuples are entered into the S they are compared to filter out cyclical data (redundant

tuples) using a ‘seen list’ and insert road sections into the MapStore. We achieve this by using

hashing tuples. For example, Figure 4.4 shows the merging process (steps 1 - 4) for an existing

77

Figure 4.4.: Travel time tuple merging example. [A,B] and [P ,Q] are first checked to determine
if they are redundant. If not redundant samples, travel times are stripped and
added to the MapStore.

road section ([A,B]) and a new road section ([P ,Q]) in step 5. Travel times are associated

with the particular road section. A separate index, not shown, stores the waypoint positions

of AB and PQ. The merging phase (lines 7 to 9) is concerned with the addition of tuples

from messages. Another hash is used to index and match road sections (for example [A,B]) to

entries in the MapStore. Each road section in the MapStore contains a linked list of (multiple)

travel time samples. In those cases where the tuple already exists but does not match the hash

value, a new tuple is added to the MapStore (Figure 4.4).

As a single commuting vehicle is unlikely to spend all its time driving all roads (exceptions

to this include buses, delivery vans and taxis), hence the sharing phase allows vehicles to

collect travel times about other parts of the road network using ad-hoc message passing via

broadcasting (lines 10 to 14). Sharing, itself, consists of three operations: (a) tuple selection,

(b) message construction and (c) message broadcast. A selection strategy is used to determine

which tuples to share with neighbouring vehicles for the next subsequent cycle. The method

of selection has a bearing on which data is disseminated into the immediate vicinity. Hence

selection methods affect the driving experience of a given vehicle. The selection of tuples is split

into 1400 byte payloads and each new message is associated with a payload. Once messages

are queued, they are ready for broadcast.

Selection strategies can be split into geographic and attribute-based strategies - thus selection

criteria could be more complex. Figure 4.5 presents a geographic-based strategy, a radial

78

selection of tuples from MapStore. MapStore is queried to select stored tuples which exist

within a certain distance of the present position of a vehicle. A variety of selection methods

are possible.

Figure 4.5.: Example radial geographic selection from the point of view of single vehicle. We
assume the vehicle to have already populated MapStore with tuples about the
road network. The shaded region represents the travel times to be selected from
MapStore for inclusion in a new Message.

In contrast, attributed selection could be made to query tuples which are recent or road

sections which have at least M-many samples or filter specific samples made by a single vehicle

(vehicle identifier). For the purposes of implementation, we use a radial geographic selection of

the road network, thereby providing neighbouring vehicles with travel time tuples concerning

the immediate travel space. Selection presents us with a means of prioritising the sharing of

specific travel time tuples but at a trade-off of foregoing other data. A secondary limitation

or filtration from selection is the construction of Messages. Thus, vehicles periodically broad-

cast a subset of their MapStore using the selection strategy employed - we could expect the

strategy used within a system to be either homogeneous (all vehicles use a single strategy)

or heterogeneous (many different selection strategies). Data is disseminated according to a

store-and-forward paradigm as commonly found in opportunistic networks.

It is notable that each vehicle holds its own subset of the known road network data as a

result of the roads driven and the interactions between vehicles sharing road network data.

For example, considering a set of vehicle MapStores SV1, SV2, ..., SVN, where N represents the

number of vehicles within the system, it is unlikely that the MapStore of one vehicle will be

the same as the MapStore of another (SV1 6= SV2).

79

4.6. Estimation and Mapping

While a protocol is responsible for the collection and sharing of travel time tuples, the analysis

of travel time estimation is applied within the application layer. The application processes

data by first estimating the travel times and then associating travel times with road sections.

This section discusses the estimation algorithm and the maps produced by the service.

4.6.1. Estimation Algorithm

While the CMS protocol is operating, we can assume that the estimation service residing on each

vehicle is provided with a road map, the local MapStore and common libraries which contain

methods to estimate travel times. As the MapStore contains road sections and associated travel

time lists, the estimation of a route’s estimated travel time is a combination of both known and

unknown travel times. When provided a route to estimate, this is broken into a set of mobility

fragments. These fragments are matched against sampled travel times (stored tuples within

MapStore). If one or more sampled travel times can be associated with a fragment entry - the

pair is said to be known.

If more than a single sampled travel time fragment exists for a road section, we interpret

the travel time as an arithmetic mean, the sum of sampled travel times for a particular road

section divided by the number of samples. Included in the calculations are minimum and

maximum travel times. Where no sampled travel times exist for a road section, we denote

the road section as being unknown. In unknown cases, we revert to a predictive calculation -

estimates are calculated as the optimal travel time to travel the particular road section (with

knowledge of the speed limits). The approach attributes costs to the usage of a road section

and a number of extended strategies could be used to estimate the travel time for a given road

section, including linear or exponential weighted moving averages. The accuracy of a mean

is improved by providing a measure of deviation using maximum (worst case) and minimum

(best case) travel times. It is unclear which estimation of travel time is best suited for the

application. To find a best method may require that we analyse the usage of strategies and

their outcomes.

80

Figure 4.6.: Data availability problem. A centralised approach to data sharing with a central
authority (top), and a decentralised approach (bottom). Filled nodes represent
data which has been shared between a source in successive time-steps from 0 to 1.

4.6.2. Data Recency and Availability

A primary goal of the framework is that it produces a working decentralised vehicular service via

the stipulation of a protocol. A set of measurements is used to analyse the protocol performance

in relation to centralised services. We divide the evaluation of the decentralised service into (a)

MapStore, (b) messaging and (c) visualisation issues. Decentralisation highlights a necessity

to understand both the behaviour of the system as a whole and the behaviour of individual

vehicles, which through local behaviour generates a global behaviour. Behaviour in this context

refers to the actions or refinements of the system under specified scenarios. For example, how

do the actions of vehicles change the sharing of data? What parameters improve performance?

What are the trade-offs of altering parameters? How does the decentralised service compare

to the centralised service?

Central to the performance of a travel time estimation service is measuring the recency and

availability of data. While both centralised and decentralised vehicular services seek the same

81

(a) Road network. (b) Travel times map overlay.

Figure 4.7.: Travel Time map visualisations.

goal, the overheads associated with decentralisation are not immediately obvious. For example,

naive simple services may upload their data to a central authority in a single transmission, yet

they also require a download of shared data in a successive time-step. If we assume centralised

services query while simultaneously updating, we consider this action to cost two transmissions.

Once data has been shared within a decentralised setting, it is available locally to a vehicle.

This requires only a single broadcast. The trade-off is that decentralised data then resides in

distribution and is unavailable to neighbouring vehicles which may seek to use such data in the

next time-step. Hence data in decentralised systems is inherently stale. This data availability

problem comparison is visualised in Figure 4.6. Our experiments seek to determine the speed

of sharing collected ATA data. Depending on the user of a map, the mapping algorithm used

may be different. For instance, maps provided to a driver are generally simpler in form to those

provided to city administrators, traffic authorities and city planners. The solution presented

uses provided maps to highlight positions of interest. Figure 4.7(a) illustrates a road section

within the mean travel time graph depicting travel times as edge weights - the graph removes

the spatial association with the map. Such graphs can be presented to a routing algorithm to

find the shortest route of travel between two geographic positions. The graph can be matched

to the road network and coloured to represent the flow or lack of flow existing along a road

section (Figure 4.7(b)). Similarly, mean travel times can be replaced with other MapStore data,

such as tuple recency, vehicle samples, sample sizes (the number of samples for a particular

road section), minimum, maximum and unknown/known travel times.

82

4.7. Evaluation

Within the following section we show and evaluate a subset of results specific to exploring

scalable Collect-Merge-Share (CMS) performance. To test the feasibility of the CMS protocol,

the protocol was prototyped and simulated using our framework’s Geographic Urban Simula-

tor (GUS). We highlight a subset of scenarios which include (a) a synthesised grid, (b) two

synthesised mobility datasets constructed using OSM maps (for the cities of London and San

Francisco) and (c) a portion of mobilities from the ETH trace dataset [NBG06b]. While the

results produced were exhaustive, for the four specific mobility scenarios, we focus on the

performance of the protocol in terms of adapting mappings and the message feedback cycles

produced. Reiterating the problem, the aim of the service is to collect, share and map the

current or near current state of the road network, given available data. The intended service

result is the production of travel time maps and graphs which represent the state of the road

network. Maps can be used or referenced visually by the driver of a vehicle and graphs may

be interpreted by a navigational computer for routing. These maps and directed graphs can

thereby be used by various off the shelf routing algorithms to re-route a vehicle as travel time

tuples are shared [Dij59, SSV08]. We do not consider the outcomes of re-routing during travel

and the consequence of feedback issues arising. Rather the travel time application presents

itself as an example system to which the framework can be applied and measured. Due to the

dynamic mobility and change in mobility of vehicles, adaptive andmultipath routing approaches

present themselves as possible solutions to dynamic routing problems.

4.7.1. Simulation Parameters

Simulation in our framework requires the provision of mobility trace patterns, simulator pa-

rameters, protocol parameters and a prototype protocol (decentralised service). The mobility

patterns used vehicle mobilities within a 2.5 by 2.5 kilometer geographic region (Figure 4.8)3.

Synthesised mobility patterns were computed using scraped Open Street Map (OSM) and

Google Maps data (Appendix A.2). Vehicle routes used either simple or extended versions of

Dijkstra’s algorithm for single-source shortest path traces [Dij59, DSSW09]. The mean Es-

timated Time of Arrival expected for vehicles travelling at an average speed of 8 meters per

3We chose to use this confined region and limited area for simulation as these limits had been specified in
related works.

83

second (28.8 kilometers per hour) was specific to the mobility pattern used. Vehicles either

travelled through the region or drove to specific positions within the region.

Table 4.1 considers the statistical properties of grid and city mobilities used, where each

mobility set specified more than 1000 patterns. The table shows the maximum, minimum and

mean travel times for each road network sample set.

Region Minimum Maximum Mean Std. Deviation Mean Travel Distance

Grid 25s 742s 267s 151s 2.1km
London 17s 575s 199s 100s 1.5km

San Francisco 33s 545s 166s 85s 1.38km
Zurich 18s 509s 190s 97s 1.52km

Table 4.1.: Input mobility patterns: each regional dataset used contained over 1000 vehicle
movements. Values represent the ‘ideal’ mobility travel times.

Protocol parameter settings were homogeneous to all vehicles within the road network. The

protocol processing cycle was repeated every 0.1 seconds (100 milliseconds) with broadcast

windows4 specified for 12.5, 25 and 50 second time-outs. All four example road networks differ

visibly in their structure. The San Francisco sample area was most similar to synthesised

grids containing many regular square blocks, while London and Zurich represent organically

constructed road networks - road networks which grew over time without significant planning

by city planners.

WAVE has a theoretical maximum communication range of 1000 meters. Previous perfor-

mance work by Kai-Yun et al. [HKHL10] suggest that the efficient communication range for

WSM exists within the 100 to 300 meter range, where a 3 Mbit/s throughput yielded a max-

imum packet loss of 9% [IEE10, Eic07]. Given these throughput and packet size values we

calculated a maximum broadcast or upper limit of 30 Payloads per second for travel time data.

The broadcast interval was randomised to avoid transmission collisions with other communi-

cating vehicles. Message loss percentages were applied to complete messages (i.e. we drop

complete WSMs instead of packets, but follow previous works).

Simulation parameters specified a constant population of vehicles within the road network

at any time. In other words, as vehicles exited the road network, new vehicles are created and

introduced into the road network to maintain the vehicle population within a region. The sys-

4Windows represent time slots within which a vehicle may broadcast messages.

84

(a) Grids (e.g. 12x12). (b) San Francisco.

(c) London. (d) Zurich [NBG06b].

Figure 4.8.: Road networks (2.5 x 2.5km).

tem was expected to adapt to these vehicle losses and increases. Vehicles were set a maximum

speed of 8 meters per second (28.8 kilometers per hour following United States Transportation

guidelines [Mas06]). Vehicle movement was restricted to the waypoints, direction and speed

limit provided when a vehicle began its journey. Travel times stored with a vehicle’s Map-

Store were provided “unlimited” storage capacity to reflect the likely storage capacity that

future vehicles might have (in the order of several hundred gigabytes). Each travel time tuple

was stored in a frame format (Table 4.9). Given a total tuple size of 44 bytes, a vehicle can

potentially broadcast 11700 tuples per second. We used a maximum broadcast period of 25

85

Figure 4.9.: Travel Time payload.

Parameter Symbol Value Unit

Communication Range CR 200 meters
Maximum Random Broadcast Interval BP 12.5, 25, 50 seconds

Maximum Speed S 8 meters per second
Tuple-selection radius (random) TS 2500 meters

Received Message Loss RML 0 - 50% messages

seconds and considered 5, 15 and 25 second broadcast period, chosen as these vehicle speeds

corresponded with the potential opportunity for vehicles to make contact given their relative

speeds and broadcast range5. A lower maximum broadcast interval was expected to increase

the probability of communication between vehicles. Each experiment was repeated ten times

for each scenario. The experiments presented consider varying parameters and hence mean

results.

By monitoring the MapStore we are indirectly able to interpret interactions between vehicles,

the types of roads vehicles are driving (straights, corners or high density blocks) and predict

when vehicles are likely to retrieve updated estimations. In the remainder of this section we

highlight the (a) message numbers, (b) MapStore growth, (c) route discovery times and (d)

visualise the travel time estimation maps as heatmaps.

4.7.2. Message Counts

Table 4.2 shows the typical mean broadcast message counts per minute for increasing vehicle

populations versus increasing broadcast period (BP) for various cities. Vehicle populations

(POP) increased between 250 and 1000 vehicles per 2.5 x 2.5 kilometer area. Notably, fewer

messages are broadcast than the ideal, as some vehicle mobilities are shorter than others, where

mobility patterns are influenced by the city road network.

5We used statically chosen broadcast periods based on the number of times a vehicle might make contact with a
communication range of 200 meters at a speed of 8 meters per seconds. Broadcast period could be optimised

86

Number of Vehicles (POP)
Map BP 250 500 750 1000

12.5s 1173 2320 3540 4732
Grid 25s 477 1121 1702 2282

50s 260 500 842 1174

12.5s 1159 2378 3567 4782
London 25s 554 1150 1761 2350

50s 276 557 865 1158

12.5s 1176 2351 3245 4670
San Francisco 25s 582 1166 1751 2372

50s 286 568 852 1179

12.5s 1152 2378 3565 4754
Zurich 25s 567 1152 1757 2383

50s 253 567 881 1170

Table 4.2.: Mean broadcast message counts (per minute) for increasing vehicle populations
(POP) versus increasing broadcast period (BP).

Table 4.3 shows the ratio of received messages to broadcasts for varying vehicle populations

(POP) and varying BP. The value represents the redundancy or number of copies made, per

broadcast. For example, for the city of London, given a 12.5 second BP, payload data was

copied a mean of 14 times for each broadcast made given a population of 250 vehicles. Varying

the BP did not significantly effect the receive-broadcast ratio (R:B). However, for each city

road network a BP of 25 seconds was seen to raise the R:B factor slightly. For example varying

BP for Zurich yielded a 4.4% increase in retrieval for a vehicular population of 250 vehicles.

Notably we see the reverse effect in larger vehicle populations. While we use a set or unchanging

BP, the result suggests that the BP can be optimised or varied to maximise the R:B for a given

road network or city domain. For increasing vehicular populations we saw a linear increase

in the R:B ratio. Hence a direct relationship exist between increasing vehicle populations and

message dissemination. Improving dissemination reduces the staleness of travel time data.

Figure 4.10 shows the mean number of messages received per minute per vehicle for each

road network, where we vary the broadcast period and increase the vehicular population within

the road network. All road networks show a declining R for increasing broadcast period;

however, within the cities of London and Zurich, message retrieval finds a steady performance

for populations of 1000 vehicles (marginal R increase approaches 0). Hence, performance is

changed little for increasing period. Using this information, the service can use this information

to change as vehicle speed changes.

87

 20

 40

 60

 80

 100

 10 15 20 25 30 35 40 45 50

M
ea

n
M

es
sa

ge
 R

ec
ei

ve
s

(R
/m

in
/v

eh
.)

Broadcast Period (seconds)

GRID

POP=250
POP=500
POP=750

POP=1000

 0

 50

 100

 150

 200

 250

 300

 350

 400

 10 15 20 25 30 35 40 45 50

M
ea

n
M

es
sa

ge
 R

ec
ei

ve
s

(R
/m

in
/v

eh
.)

Broadcast Period (seconds)

LONDON

POP=250
POP=500
POP=750

POP=1000

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500
 550

 10 15 20 25 30 35 40 45 50

M
ea

n
M

es
sa

ge
 R

ec
ei

ve
s

(R
/m

in
/v

eh
.)

Broadcast Period (seconds)

SAN FRANCISCO

POP=250
POP=500
POP=750

POP=1000

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

 10 15 20 25 30 35 40 45 50

M
ea

n
M

es
sa

ge
 R

ec
ei

ve
s

(R
/m

in
/v

eh
.)

Broadcast Period (seconds)

ZURICH

POP=250
POP=500
POP=750

POP=1000

Figure 4.10.: Comparison of mean message per vehicle per minute retrieval for different road
network topologies for increasing broadcast periods (seconds).

88

Number of Vehicles (POP)
Map BP 250 500 750 1000

12.5s 4.69 9.45 14.32 19.51
Grid 25s 4.79 9.41 14.13 19.40

50s 4.79 9.63 14.23 19.21

12.5s 14.38 28.61 42.45 62.32
London 25s 13.61 28.5 42.61 61.73

50s 13.29 27.94 44.12 56.55

12.5s 14.1 27.05 42.04 54.50
San Francisco 25s 14.3 28.47 41.47 56.30

50s 13.83 28.13 42.99 55.83

12.5s 15.11 28.73 46.34 61.84
Zurich 25s 15.8 29.36 45.56 61.21

50s 15.12 30.51 46.87 61.62

Table 4.3.: Mean ratios of received messages to broadcasts (R:B), given Table 4.2, for increasing
vehicle populations (POP) versus increasing broadcast period (BP) for varying road
maps. Each value represents the mean redundancy for each message broadcast.

to reduce message redundancy and messaging overheads, as the increased population serves to

balance the need for increased messaging.

A result of scaling or increasing vehicle population is that the probability of message colli-

sions increases. To avoid message collisions the CMS determines a broadcast time from the

broadcast window. Effectively the broadcast time is calculated at a time less than or equal

to the broadcast window size. Depending on the number of vehicles receiving a message - a

broadcast copies tuples to other vehicles. As the population of vehicles within the cities is

increased we see a linear increase in the multiple of messages received versus broadcasts made.

Effectively, increasing the population or density of vehicles in the city increases the number of

connections between vehicles and thereby improves the rate at which data can travel through

the vehicular network. The trade-off cost of this increase in vehicle population is increased

pressure on limited bandwidth.

In summary, the R:B ratio growth is linear for all road networks. However, the marginal

increase in R:B multiple is steeper for city road networks than grids. This is largely due to the

constraints of mobility due to realistic road networks. Real road networks limit the number of

alternative routes which a vehicle might use and thereby improve the facilitation of message

dissemination.

89

4.7.3. MapStore Growth

In the previous subsection we showed the effect of (a) varying BP and (b) varying vehicle

populations on the retrieval performance of vehicles. MapStore growth is in turn reliant on

the retrieval of tuple payloads from neighbouring vehicles. An understanding of the tuple

inflows into MapStore presents a means of understanding the outcomes associated with specific

protocol design choices. MapStore growth is monitored by considering the MapStore index and

unique travel time fragment counts. MapStore has two means of growing, namely through (a)

the sampling of tuples or (b) the sharing of tuples. The MapStore held by a vehicle represents

the known state of the road network in a previous time instant from the view point of a single

vehicle. As tuples are shared the state of each vehicles MapStore is normalised towards an

average MapStore state. Figure 4.11 compares index (i) and unique fragment growth (u) for

the four cities. The figures represent a global comparison of MapStores for vehicles driving a

city road network.

As multiple vehicles explore the road network the entire road network is both labelled and

ATA associated. MapStore index is seen to grow towards a maximum count, indicating that

vehicles are successfully associated with at least a single tuple with each known road section.

In contrast, the count of unique tuples continued to grow linearly, as updates are made about

the state of the road network. In this context, the MapStore index and the MapStore fragment

counts are separate.

Each index represents the number of road sections known by a vehicle. Each unique tuple

made unique as it represents a road section, but a sample at a different timestamp (a one-to-

many relationship). Expressed as a hash-map, the index represents the keys of the MapStore

while the unique tuples represent the actual tuple values stored. The index of each map has

an upper bound, specified by the number of unique identifiers associated with road sections.

Hence, the size of the MapStore index shows us when the community of vehicles has suc-

cessfully found at least one travel time for a discovered road section. Notably the index is

rapidly found, providing a gauge on how long it might take a new vehicle to learn about the

travel times associated with a given city area. The more intricate the road map, the more road

sections and therefore the longer the time required to map the entire city area. We see this in

comparing the maximum index (max-i) curves for the grid and city maps. For instance, San

90

 0

 500

 1000

 1500

 2000

 2500

 0 600 1200 1800

N
um

be
r

of
 T

up
le

s

Elapsed Time (seconds)

GRID

mean-i
max-i

mean-u

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 600 1200 1800

N
um

be
r

of
 T

up
le

s

Elapsed Time (seconds)

LONDON

mean-i
max-i

mean-u

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 600 1200 1800

N
um

be
r

of
 T

up
le

s

Elapsed Time (seconds)

SAN FRANCISCO

mean-i
max-i

mean-u

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 600 1200 1800

N
um

be
r

of
 T

up
le

s

Elapsed Time (seconds)

ZURICH

mean-i
max-i

mean-u

Figure 4.11.: MapStore growth (POP=250, CR=200m, BP=12.5s, RML=0%) for 1800 seconds
of simulation time.

91

Francisco (a less intricate road network) peaks at approximately 1000 tuples, while London

peaks at more than 2000 tuples. In each plot we also compare the mean index. The mean is

significantly lower, due partly to the fact that new vehicles enter the road network without any

knowledge or mapping of the local space. The mean number of unique tuples (mean-u) is seen

to grow linearly but degrade similarly as time progresses. Mean-u distorts at a longer time

interval as a consequence of vehicles exiting the road network. As vehicles exit tuples which

have not been shared cease being available to the community of vehicles. MapStore growth

results point to vehicles rapidly mapping their space. These new vehicles skew the plotted

MapStore. However, from these plots we can ascertain that individual MapStore sizes exist

between 0 and max-i values.

The growth of MapStore is misleading in terms of its functional growth. While the curves

exhibit the properties of logarithmic growth (of the form y = ln(x)), individual vehicle stores

grow and fit fragments as successive averaged logistic curves of the simple form:

M(t) =
1

1 + e−t

The tuple size (M(t)) is functionally associated with time (t). The logistic curve allows

us to predict the performance of the MapStore by monitoring the derivative growth of both

index and unique tuple values. Given the sample road networks it took less than 837 seconds

(approximately 15 minutes) for vehicles in each road network to learn more than 80% of each

road network. While MapStore growth is seen to reach a maximum level once all road sections

have been indexed - it is notable that logistic growth occurred for subsequent time steps.

Effectively MapStore growth is continuously occurring as old road sections are re-driven and

vehicles update their data about a particular region. The logistic function produced suggested

that when the mean MapStore growth rate becomes zero the vehicle holds data about all road

sections within the sample region. Hence, similar behaviour and MapStore growth is repeated

as time progresses and the new state of the road network is sampled.

A trade-off of decentralisation is that once tuples are collected they remain distributed until

shared. This effects the accessibility of tuple data and hinders the travel time estimations to

consider old data. In contrast, centralised approaches instantly upload collected tuples in a

central and commonly accessible central authority. Data used in centralised estimation would

92

therefore be less stale than decentralised data. Previously, MapStore index results suggest the

minimum required time to discover at least one tuple for each road section, represented as the

time interval where the derivative MapStore index growth, tends towards 0 or flattens (Figure

4.11). This measure seeks to find where the community of vehicles give each other at least one

ATA for each road section within the road network.

4.7.4. Route Discovery

Following from known and unknown travel estimation, we measure the distributions of times

required to estimate travel times using only ATAs after 1800 seconds of service operation. In

other words, how long does it take for us to make estimations using only known travel times?

The Route Discovery Time (RDT) represents the elapsed time taken to completely estimate a

route from known sampled travel times held within the MapStore. RDT is highly dependent

on the road network, a vehicle’s route, the number of contacts occurring between a vehicle and

its neighbours and the speed of a vehicle.

Road network topology influenced RDT as vehicles were bottlenecked to follow specific mo-

bilities. The grid structure presents the most divergent road network and as such RDT per-

formance was worst in the network. The mean RDT requiring 216.4 seconds with a standard

deviation (SD) of 121.8s. The cities of London and Zurich had similar RDT performance.

Mean RDT requiring 139.8 seconds (SD = 92.7 seconds) in London and 189.4 seconds (SD =

96.4 seconds) in Zurich. San Francisco performed best with a mean RDT of 78.4 seconds (SD

= 71.4s).

As MapStore growth showed, vehicles initially entering a new road network were required to

sample the road network. Hence the time taken to perform route discovery is longer, because

few samples existed in the early operation of the service. As MapStore grows to its maximum

achievable level, the subsequent RDT is reduced. Hence, in an unexplored road network RDT

is high, while in an explored network RDT is short (less than the maximum previous RDT),

however data may be stale. This short RDT is shown by the resultant frequency of RDT

expressed as a percentage of discovery times (Figure 4.12).

For example, for the city of London, 9% of travel time estimations could be based on ATA

data, as vehicles entering the road network are instantly provided at time 0. Another 25% of

vehicles found estimations relevant to them within 60 seconds. In comparison, more than 60%

93

 5

 10

 15

 20

 0 120 240 360 480 600

F
re

qu
en

cy
 (

%
)

Discovery Time (seconds)

GRID

 0

 5

 10

 15

 20

 25

 30

 0 120 240 360 480 600

F
re

qu
en

cy
 (

%
)

Discovery Time (seconds)

LONDON

 5

 10

 15

 20

 25

 30

 35

 0 120 240 360 480 600

F
re

qu
en

cy
 (

%
)

Discovery Time (seconds)

SAN FRANCISCO

 0

 5

 10

 15

 20

 25

 30

 0 120 240 360 480 600

F
re

qu
en

cy
 (

%
)

Discovery Time (seconds)

ZURICH

Figure 4.12.: Route Discovery Time (RDT) distributions for selected city mobilities for 1800
seconds of simulation (POP=250, CR=200m, BP=12.5s and RML=0%).

of vehicles within the San Francisco region discovered relevant ATAs relevant to their journeys

within 60 seconds. For each mobility, each differing road network, the outcome was similar. As

time progressed the normal distribution of RDT shifted from right to left (i.e. closer to shorter

discovery times). We see a large number of routes (purely estimated on ATAs) found within

0 to 60 seconds of a vehicle entering the road network. More extended RDT was seen where

vehicles were travelling longer routes (hence the RDT was typically longer) and where vehicles

were initial explorers of the road network.

The distributions specifically show the times required for a vehicle to find estimations relevant

to its own journeys. For the cities, these times are significantly rapid, with vehicles finding

ATA route estimations within less than 5 minutes. RDT performance is seen to be skewed in

favour of cities as city road networks typically constrain more vehicles to use main roads as

they travel through a region. Grid RDTs, while shifting left, take longer to find, as the grid

road networks are less constrained compared to the city road networks (vehicles fan out more

94

evenly).

4.7.5. Maps for Travel Time Estimates

The final objective of the service is to map travel time estimates. We provide two mappings,

namely heatmaps and graphs. Historically, mapping has provided an accessible means by which

to view summarised data. As each MapStore is unique (due to previous contacts, events and

dependencies) each vehicle map represents its own view of the state of the road network at a

particular time. In comparison to a centralised service, all data is uniform between vehicles,

as all vehicles use a single data source. The maps are an approximation of the true state of

the total fragments available. Figures 4.13, 4.14, 4.15 and 4.16 visualise traffic overlays for a

subset of vehicles. The maps represent the known state of the road network after 15 minutes

of operation. Specifically the maps shown represent the number of fragments known for a

particular road section (i.e. the number of tuples and values associated with a particular road

section index). Heatmaps are an accessible means by which drivers and city administrators

may interpret the state of the road network [CRK08]. The hotter a region of the road network,

the more a vehicle knows about that road section. Interpreted in an alternative way, heatmaps

present the density of vehicles within varying locations of the road networks considered. A

driver may seek to avoid well known (sampled) road sections and choose routes using less well

known routes or vice versa based on choice of data. A decision on how to interpret the data

is dependent on the driver. The same maps might be interpreted by city administrators to

route or reorganise traffic flows using road rules. Other data could similarly be mapped and

presented in the same manner.

In terms of performance, heatmaps highlight regions of road which form traffic bottlenecks.

For example, the commonly modelled grid is seen to linearly distribute traffic (Figure 4.13).

The absence of bottlenecks in the grid means that there may be little benefit in strategically

routing along the grid given the dispersal of traffic. As vehicles are distributed linearly due to

the regularity of the pattern, R:B was a multiple lower than that found in city road networks.

The road networks of cities such as London, San Francisco and Zurich main roads represent

bottlenecks in cities which benefits service provision as more vehicles are available to share data

along a particular arterial road. While London and Zurich demonstrate singular road bottle-

necks (Figures 4.14 and 4.16), road networks within the grid and San Francisco both distribute

95

LAT LON

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10

LAT

LO
N

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

Figure 4.13.: Grid heatmaps showing surface (above) and mapping (below).

96

LAT LON

 0

 5

 10

 15

 20

 25

 0

 5

 10

 15

 20

 25

LAT

LO
N

 0

 5

 10

 15

 20

 25

Figure 4.14.: London heatmaps showing surface (above) and mapping (below).

97

LAT LON

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

 0
 2
 4
 6
 8
 10
 12
 14
 16
 18
 20

LAT

LO
N

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

Figure 4.15.: San Francisco heatmaps showing surface (above) and mapping (below).

98

LAT LON

 0

 5

 10

 15

 20

 25

 30

 35

 0

 5

 10

 15

 20

 25

 30

 35

LAT

LO
N

 0

 5

 10

 15

 20

 25

 30

 35

Figure 4.16.: Zurich heatmaps showing surface (above) and mapping (below).

99

traffic to secondary intersections (Figures 4.13 and 4.15). The occurrence of bottlenecks allows

re-routing methods to more adequately identify those road sections to be avoided.

The heatmaps generated are produced from the same data as the networks illustrated in

Figure 4.17. Figure 4.17 shows the state of the MapStores of two vehicles (X and Y) at times

varying times (143.9 and 561.8 seconds) for the city of San Francisco. We use directional graphs

to store the road network state. In comparison, the two graphs differ in terms of the number

of known road sections (graph X is smaller in size compared to graph Y as fewer tuples have

been sampled and shared). As time progresses, the MapStore grows and the visualised road

network increases in size. These road network graphs can be used without modification for the

dynamic re-routing of a vehicle using off-the-shelf routing algorithms.

4.7.6. Message Failure and Redundancy

To determine the effect of dropped messages on the service, we simulated received link failures

as received message losses (RML) of between 0% and 50% of messages retrieved (R). Figures

4.18, 4.19 and 4.20 select a subset of dropped packet experiments and considers the effect

of message loss on the growth of the sizes of MapStore index (mI) and unique tuple counts

(mU), namely (|mI| ≤ |mU|). In Figure 4.18 the MapStore index is affected only slightly by

increased RML. However in Figure 4.19 we see that the number of unique travel times stored

inside MapStore declines significantly beyond at 25% RML. A smaller mU considers that while

MapStore may map a regional road map, the richness of data is limited. For example, for the

city of Zurich, mU declines from 2254.69 fragments for 0% message loss to 1748.58 fragments

for 50% loss. Hence a typical vehicle has fewer ATA to compare to one another and therefore

the quality of ‘known’ estimations are lowered. As expected, this mU decline is partly due

to fewer redundant tuples surviving successive hops between vehicles (Figure 4.20 shows the

tuple redundancy count - the count of the number of tuple copies which are discarded during

operation). The decline of mR is most significant in Zurich as the road network is more

constrained than other road networks from the set. For increasing RML, RDT was seen to

shift right, thereby highlighting reduced performance.

We see an inverse relationship between MRL and redundant fragment counts (mR). As in-

creased numbers of messages are lost, the number of redundant fragments available to vehicles

declines. The significant redundancy in the system is negative such that extra bandwidth,

100

(a) Vehicle X after 143.9 seconds of travel holds 232 fragments.

(b) Vehicle Y after 561.8 seconds of travel holds 1290 fragments.

Figure 4.17.: San Fransisco Travel Time road network graphs. Edge labels represent the most
recent travel times for an associated road point. Each node represents a labelled
geographic position (POP=250, CR=200m, BP=12.5s, RML=0%).

101

 0

 100

 200

 300

 400

 500

 600

 0 10 20 30 40 50

N
um

be
r

of
 T

up
le

s

Received Message Loss (%)

MAPSTORE INDEX (mI)

GRID
LONDON

SAN FRAN
ZURICH

Figure 4.18.: Mapstore index (mI) tuples for increasing received message losses, after 1800
seconds of simulation time (POP=250, CR=200m, BP=12.5s).

 0

 500

 1000

 1500

 2000

 2500

 0 10 20 30 40 50

N
um

be
r

of
 T

up
le

s

Received Message Loss (%)

MAPSTORE UNIQUE TUPLES (mU)

GRID
LONDON

SAN FRAN
ZURICH

Figure 4.19.: Mapstore unique (mU) tuples for increasing received message losses, after 1800
seconds of simulation time (POP=250, CR=200m, BP=12.5s).

management and resources are necessary to share already shared data. However, the redun-

dancy observed has a counter effect such that it makes the service more resilient to failure, and

fragments have the possibility of existing for longer periods of time. Techniques to manage

fragment selection may be applied to improve performance and make the service more efficient,

for example, removing stale travel times from the service, only resending tuples a fixed number

of times or limiting tuple hop counts.

4.8. Discussion

The Collect-Merge-Share protocol advocated in this chapter is lightweight. The estimation of

travel times is an example of a “slow” decentralised vehicular service. To map the road network,

vehicles share their own and others experienced mobility with neighbouring vehicles. Travel

102

 5000

 10000

 15000

 20000

 0 10 20 30 40 50

N
um

be
r

of
 T

up
le

s

Received Message Loss (%)

MAPSTORE REDUNDANT TUPLES (mR)

GRID
LONDON

SAN FRAN
ZURICH

Figure 4.20.: Mapstore index (mR) tuple redundancy for increasing received message losses,
after 1800 seconds of simulation time (POP=250, CR=200m, BP=12.5s).

time tuples disseminate slowly through the network. Travel time data sharing and processing

is also not safety critical. Several trade-offs are associated with the usage of such a service. A

core issue is the dynamic or changing nature of the state of the road network. Any estimation

made by any vehicle will have some error associated with that estimation, as the road network

is likely to change over time. The MapStore approach presented can be extended to include

other data such as the number of neighbouring vehicles seen in a location. Further statistical

data mining and network metrics can use raw travel time data collected to produce probabilistic

results. Indeed, various centralised analysis methods can be applied to the MapStore of each

vehicle.

Our experiments indicate that navigational maps already confine traffic to specific road

sections more than others. There is no clear distribution, except in grid maps, of vehicle

mobility over the entire map. This is visible in the heatmaps produced. It could be argued

that present navigational routing techniques may be negatively affecting the road networks

of various cities. This point raises the question: should all vehicles and drivers be provided

with the same set routes when querying the same starting and ending positions? Such a

question leads us to assessing the paradoxical effect of complete information about the road

network, where all vehicles are assumed to know the state of every road section and travel

time. With this information it could be argued that all vehicles will re-route themselves by

what they deem to be the lowest cost time routes. Paradoxically, the system would move

traffic to previously experienced road sections. The traffic and congestion would simply move

to another road section and not be equally distributed over a collection of roads. The protocol

103

developed in this chapter has not assessed the feedback effect of vehicles re-routing using such

maps; however, having incomplete information about the road network, is in this paradoxical

case beneficial. One approach to combating this paradox with a centralised solution may be

to randomise the routes provided to all querying vehicles. Centralised approaches to dynamic

re-routing have proposed providing multiple routes to a driver or choosing a random route with

similar properties from a collection of routes to a destination.

With such large road networks, it could be argued that computing routes in distribution is

too computationally intensive and as such is better suited to processing away from the vehicle.

A number of improvements have been made to handle large road routing [DSSW09]. Work

by Sanders et al. has produced a method processing routes on mobile devices with minimal

waiting time to the user [SSV08]. Even given these significant improvements - the majority of

commuters in a city are unlikely to query extremely long routes (very often). Hence the actual

storage capacity and analysis of the road network hierarchy may be sufficient, and storage and

computational capacity already available on many vehicles may be more than required.

4.9. Conclusions

In this chapter we have investigated the feasibility and evaluated the performance of a new

decentralised travel time estimation service. As vehicles travel they record their mobility in

the form of trace histories. Trace histories are fragmented and shared with nearby vehicles

to approximate a travel time estimation service which would normally be constructed using

centralised approaches. Results show that such a decentralised service can approximate the

operations of centralised service. A disadvantage of decentralisation is that travel time data

sharing is not as immediate and mapped data is typically minutes old and fragmented, but

approximates the operation of the road network. Data takes time to disseminate via the road

network and data dissemination is highly dependent on the availability of vehicles. Increased

vehicle populations and decreased broadcasting period improved service performance at the ex-

pense of messaging overheads. Decentralised vehicular services are capable of operating within

the presence of data fault and failure due to the redundancy of data. Redundancy, however,

requires data management else resource usage is inefficient. There is room for performance

improvement using optimisation techniques. Travel time data is just one example of city data

104

which can be mapped. Various other stakeholders within the city may be interested in other

sensory data, such as weather, pollution and road surface information.

The service considered within this chapter considered only messaging feedback. Also, the

feedback cycle was typically long, operating of the period of 12.5 seconds or more is considered

‘slow’ feedback. In the next chapter we investigate a safety critical problem of decentralised

intersection control, where feedback is required to be ‘fast’, such that vehicles may adapt their

behaviour to correctly order themselves through an intersection.

105

5. Intersection Control

In the previous chapter we used the framework to develop a decentralised travel time estimation

advisory service for drivers. The service used fragments of past vehicle mobility data and

timestamps to associate recorded travel times with road sections and thereby map the road

network. The service continuously remaps and modifies the current travel time view held by

a vehicle such that a driver can be better advised on traffic conditions. As a service, travel

time estimation operates over hours and is not considered time or safety critical. Within this

chapter we explore the problem of intersection control. In contrast to the travel time estimation

service, intersection control is a safety critical problem. The failure of the service could result

in significant harm to the parties involved in any accident. The service operates at a shorter

period than that for the travel time estimation service. The purpose of the development of

a second service is to highlight the range of services that the framework can be applied to.

Intersection control is an important and very difficult traffic management problem and has

very different constraints and goals to the time estimation service.

The chapter begins by defining the intersection control problem and its patterns of mobility

(Section 5.1). In Section 5.2 and Section 5.3 we outline related works, approaches and systems,

as well as considering metrics used to measure the performance of road intersections. In Section

5.4 we detail the intersection scenario and Section 5.5 follows with our decentralised intersection

control protocol. We evaluate the protocol in Section 5.6. We conclude the chapter with a

discussion (Section 5.7), highlighting the trade-offs, outstanding issues and threats inherent in

intersection control.

Two important contributions are made. Firstly we present, compare and demonstrate a

protocol for decentralised intersection control. The protocol uses a set of collision avoidance

techniques to direct vehicles through the intersection. Secondly, we compare the performance

of the protocol to competing centralised traffic management approaches. Our protocol uses

106

ad-hoc messaging, collision avoidance and shared plans as a means by which to reduce delay,

adapt a journey and maximise the efficient usage of a traffic intersection.

5.1. Problem

Traffic management literature [Lit09, GE68, Ino76, Hai63] defines an intersection as an ‘at-

grade’ junction at which two or more transport axes cross at the same level. Within the

context of a road network, these axes are roads. Defined alternatively, the road intersection

represents the overlapping join of two roads. Vehicles intending to traverse the intersection

are required to carefully navigate the intersection so as to avoid a collision with not only other

vehicles, but often pedestrians and other road side objects (Figure 5.1). The traffic intersection

problem is a useful micro-scenario from which to understand complex global traffic systems as

the intersection often represents a bottleneck in the flow of vehicles (opening or closing the flow

of a road section).

Figure 5.1.: Scenario: intersection with vehicles A, B and C competing to traverse the inter-
section in minimal time.

The definition of a road intersection used in this chapter is common to previous work by

Baldessari et al. [LMP+07], Giridhar and Kumar [GK06], Hirankitti et al. [HKH07] and

Dresner and Stone [DS04]. Two straight roads intersect one another at a perpendicular angle.

There are two lanes with traffic flowing in opposite directions. The problem can be simplified

107

in processing terms. An intersection processes vehicles and the processing strategy used aims

to direct vehicles flowing into the intersection, where an optimal outflow of vehicles would be

a flow indistinguishable from the normal operation of an non-intersectioned road. The ideal,

while perhaps unattainable, serves as an ever present goal towards which best efforts approaches

can be used to achieve a sub-optimal flow strategy.

Figure 5.2 provides a representation of the intersection commonly used in related works.

Letters denote significant positions and arrows depict the direction that vehicles should follow.

The “intersection” is defined by the set of regions (labelled I, J, K, L). Vehicles can travel in

lanes in opposite direction. Yet, where an intersection occurs, vehicles must be organised so

that crossing vehicles do not collide. Traffic travelling from perpendicular angles is required

to turn or cross existing flows to correctly navigate the intersection to travel onwards to one

of three other goals in the subset of originating points. We should note that the natural

organisation of intersection specifies that no more than two vehicles can collide at I, J, K or L.

An example route can be defined as the set of points which a vehicle must reach, including those

sub-positions, where a sub-journey may be specified by the route which uses A→ I → K → B.

There are twelve possible routes to negotiate the intersection, formulated in three sets (Table

5.1). Using these routes we build traces which provide us with repeatable scenarios with which

to evaluate the performance of varying protocols.

(a) Road intersection. (b) Driving routes.

Figure 5.2.: An intersection: vehicles can enter and exit from one of four compass points. A
vehicle can travel one of 12 mobility patterns.

108

STRAIGHTS TURNINGS CROSSINGS

A → I → K → B A → I → C F → L → J → I → C
F → L → J → E F → L → H D → J → I → K → B
D → J → I → C D → J → E G → K → L → J → E
G → K → L → H G → K → B A → I → K → L → H

Table 5.1.: Intersection mobility patterns: the patterns represent all accepted vehicle routes
and traversals of the 4-way two-lane intersection.

There are a number of motivating factors associated with achieving intersection control.

Direct factors include safety (collision avoidance) and performance issues (maximising vehicle

throughput). Vehicles traversing the intersection could collide if two or more vehicles attempt

to use the same road network space concurrently. Collisions have the potential to kill. Secondly,

performance aims to maximise throughput of an intersection to improve the rate at which vehi-

cles enter and exit the system. However a number of secondary motivations include alleviating

vehicle congestion in another region, reducing vehicle emissions, reducing experienced delay

and improving the experience of driving. The intersection problem is predominantly one of

flow control. An efficient intersection can be seen as an intersection which ideally does not

hinder flow - however this is difficult. Roads leading to and leading out of an intersection are

typically at right angles, requiring vehicles to slow to a manageable speed if turning or crossing

the intersection. Vehicles which are turning or crossing the intersection require extra time to

make turns safely. This slowing causes delays. To traverse an intersection, vehicles also require

a following distance and gap by which they may cross. If no gaps are available then we see

congestion occurring and thereby delay affecting vehicles.

5.2. Related Approaches

Road intersection control has a significant history of previous work. In the past, intersections

were controlled without the aid of technology using generalised road rules. An example of

this scenario is the four-way stop. All vehicles are required to stop before continuing their

journey, decelerating and then accelerating, only continuing if having right of way. Other

vehicles yield when the intersection is being used. A detraction of the four-way stop is that it

turns the intersection into a single throughput queue, reducing the potential throughput of the

intersection. The most widely adopted technological method to improve flow is the usage of

109

(a) Timed Traffic Control (TTC)

(b) Distributed Multi-agent System

Figure 5.3.: Related traffic light architectures.

traffic signals (for example via traffic lights). In certain instances, vehicles spend a significant

amount of time waiting for a signal to change, even if no other vehicles are using the intersection

at that time.

Most computer-based approaches to intersection control are centralised. While older traffic

light systems used timing as a mechanism by which to control flows (Figure 5.3(a)), more

recent methods have attempted to use agents to manage and operate traffic light control (Fig-

ure 5.3(b)). Proposals include Fuzzy Controllers [LLK99], Fuzzy Controllers that use Neural

Networking [SKY99], Machine Learning and Classification approaches [BTAH04, MK94] and

Multi-Agent approaches [HKH07, DMEP05, BCNR04]. Balmer et al. [BCNR04] consider

agent-based approaches and the benefits of real-time observation on traffic flows and organi-

sation, including the computational scale of the problem. They consider the procedure known

as “4-step processing”. Layers of computation and mobility are split into physical and men-

tal layers. A feedback mechanism is used to “learn” behaviour. Strategies are generated and

adapted to provide an increasingly improved strategy for each successive simulation executed.

110

In this way the model uses a period-to-period replanning approach developed in simulation to

revise applied mobility strategies. Adaptation requires speed. If a system can adapt quickly to

changes, then performance should not be detrimentally affected.

Hirankitti et al. [HKH07] presented a multi-agent approach utilising a single agent to control

a set of traffic lights at an intersection. They demonstrated the usage of a rule-based approach

for traffic management (simulated in NetLogo), defining the operation of an agent which con-

tinuously checks the status of the intersection and acting upon it as a observe-think-act cycle.

Their approach considers traffic congestion is due to the improper traffic conditions that con-

trol traffic lights. Each traffic light is controlled by its own agent program and traffic lights.

The approach seeks to reduce the delay time of vehicles at each junction. At each time-step,

each agent controls all traffic lights at the road junction using an observe-think-act cycle. A

supervisory agent is required. A large number of Condition-Action (CA) rules are generated,

with 13 rules controlling the traffic-lights in different traffic conditions. In their results, the

average-delay time is improved through the use of a collaborative approach.

In work by Doniec et al. [DMEP05], competitive multi-agent coordination is explored in

the context of deadlock avoidance. The avoidance of deadlock is achieved using “anticipatory”

methods, first defined by Rosen [Ros85]. The authors consider that the “observed traffic” is

the “sum of all actors” and their actions. In our work, we consider the “sum of some” to be a

better approach. Doniec et al. use various situation matrices to define the scenarios which an

agent can find itself in. The matrices represent the crossing and interactions of two vehicles.

SignalGuru [KPM11] uses mobile phones to identify and predict the traffic signal schedules

of traffic lights, advising drivers on how they may maintain or improve traffic flow. Vehicles

learn and schedule patterns with one another. SignalGuru predictions are reported to reduce

vehicle fuel consumption by an average of 20.3%. Greenwave [GBT+09] proposes a distributed

traffic management system which uses cameras and multi-agent algorithms to manage traffic

intersection control.

Dresner and Stone [DS04] propose a reservation-based intersection control method, removing

the necessity for physical traffic lights. However their requirement is that vehicles are auto-

mated and driver-less, such as those provided by the Google driver-less car initiative [Thr10].

The process of reservation begins when an approaching vehicle requests a slot from a central

intersection manager (IM). The vehicle provides to the IM its estimated time of arrival at the

111

intersection and mobility data concerning its state and limitations (i.e. how quickly can the

vehicle accelerate or decelerate?). The traversal of the intersection is simulated by the IM in

relation to other vehicles also requesting use of the intersection. If a slot is not possible, the

vehicle decelerates and is required to try again at a later time. The protocol developed does

not consider physical issues relating to the limited movement of the vehicle. Moreover, multiple

objects around the intersection may require slotting (e.g. pedestrians, parked vehicles). A key

component is that vehicles should be autonomous. This is unlikely to happen in one step. This

means that some vehicles would be driver-less and some would contain drivers. It is noteworthy

that some of these problems are being considered by Google’s driver-less cars initiative [Thr10].

Figure 5.4.: Decentralised service approach: vehicles are advised uniquely (using virtual traffic
lights).

In contrast to previous and current work, the protocol and algorithms described within this

chapter consider a decentralised feedback-based and mobility sharing architecture (Figure 3.2).

Where traffic lights do not exist, vehicles cooperate using messaging to safely organise and

traverse a shared intersection. A virtual traffic light represents the advisory application to a

driver (Figure 5.4).

5.3. Intersection Control Metrics

The usage of both actuation and messaging feedback warrants extended performance analysis.

The intersection control service is measured using message counts, vehicle throughput, travel

times, delay counts, delay times, delay time-stamps and collision counts.

112

Vehicle Throughput represents the rate of vehicles successfully traversing an intersection

or road system, measured as the number of vehicles successfully exiting the intersection.

Typically this is expressed in vehicles per hour. We sum the number of vehicles exiting

the system at all four exit positions (using counts at each of the four exits North, East,

South and West). Each individual vehicle is measured in terms of its route. On entry

into the intersection vehicles hold an allocated specified route from the route set in Table

5.1. The specified static route is processed as a set of waypoints known as a journey plan.

Each vehicle possesses a set pattern plan on how to use the intersection. Travel time

(TT) is calculated for each vehicle and measures the elapsed time recorded from the time

instant of a vehicle entry to vehicle exit (termed alternatively as a simplified end-to-end

delay).

Estimated Travel Time is derived from the Estimated Time of Arrival (ETA). An estimated

travel time is calculated using the displacement to the exit of the intersection, versus the

maximum legal speed allowed. Vehicle delay time can be defined as the measured cost

of adaptation (the extra elapsed time taken to travel a route). For each vehicle, delay

is calculated as the difference between elapsed travel time and the estimated travel time

taken to successfully travel through the intersection.

Delay is calculated as the difference between the ETA and the actual travel time. Delay

counts, count the number of delay instances or times when a vehicle delays itself through

action. The delay time refers to the time cost of these delay counts. Each vehicle route

assumes that no delay shall exist along a route. An optimal journey is a journey without

delay. Delay measurement is specific to the time and length of travel being measured

- for instance a vehicle may be delayed and then make-up the delay (reduce the delay

incurred) in subsequent time. Where delay times and counts are 0 we term a vehicle

to experience “no delay”. If delay is negative we term the travel time as ‘gained’ time,

and thus a vehicle has operated beyond the optimal delay time expected. Mean delay is

calculated, given a delay time sample space using the arithmetic mean.

Given a rate of vehicle input into the intersection from one of the four entry positions,

vehicle throughput measures the mean rate of successful exit of vehicles using the intersection.

Effectively, we measure the number of vehicles successfully exiting the road intersection at

113

each time instant. The delay count measures the number of occasions (delay instances) where

a vehicle reduces its speed (brakes). Assuming a vehicle was not delayed, the vehicle would exit

the intersection in optimal time. Delay time quantifies delays as a time cost. Where a vehicle

comes within a minimum distance of another vehicle we deem two vehicles to have collided.

While this is a metric, its existence identifies a protocol failure - collision is unacceptable. The

aim is to minimise delay count and delay time, while maximising throughput and maintaining

safety (without incurring no collisions between vehicles).

The Level of Service (LoS) rating is used by the traffic management industry to categorise

traffic and congestion conditions over a particular road section, grading a road between best and

worst grades - given favourable conditions (for example good lighting and weather conditions)

[Lit09]. A best grade performance for a free road provides a throughput of 700 vehicles per hour

per lane while a worst grade performance is measured beyond a throughput of 2200 vehicles per

hour per lane. A problem with the LoS is that it considers speeds in excess of 48 kilometers per

hour, where cornering vehicles are required to reduce their speed even lower to safely traverse

the intersection.

5.4. Scenario, Aims and Assumptions

As previously mentioned, our scenario follows that presented in previous work [HKH07]. As

a vehicle begins its journey, the driver of the vehicle inputs the intended destination of the

vehicle into the navigational computer. A route is computed and a set of planned driving

directions are provided to the driver. For a four-way intersection, four sets of vehicles may

enter at each time instance from entry positions North (position A), South (position D), East

(position F) and West (position G). We assume that no two vehicles enter at the same position

at the same time instant (else a collision would occur between vehicles). Vehicles are separated

by a following distance (often stipulated by driving handbooks as a two to three second delay

[Mas06]). The aim of each vehicle is to drive a route from a entry position to a exit position

without colliding with other vehicles. It is the aim of the intersection as a whole, to induce a

minimal mean total delay to all vehicles using the intersection.

We assume that vehicles employ the vehicular framework architecture. As each vehicle

travels within a minimum range of the intersection, the vehicle matches its plan to one of the

114

twelve available mobility patterns (Table 5.1). We also assume that vehicles are capable of

communicating with one another via broadcasts using IEEE802.11p WAVE Short Messaging

packets [IEE10]. There are no traffic lights visible to any of the drivers. Where a vehicle

contains a driver, the driver is advised via a user interface (for example heads-up-display or

audio prompts) on how to adjust her or his speed to avoid collision. The driver subsequently

interprets these commands to adjust her or his mobility. We consider the probability of a driver

following or disregarding a recommendation for adjustment. Where a vehicle is automated and

without a driver, the vehicle automatically adapts its mobility to optimise the operation of the

system. With multiple vehicles intent on using the intersection and the possibility of collisions

occurring, vehicles are required to negotiate with one another to avoid collision and avoid an

intersection reaching gridlock (a state of congestion where queues of vehicles prevent other

vehicles from using the intersection).

5.5. Intersection Control Protocol

Our intersection control protocol uses shared state and mobility data to organise vehicles

through an intersection. In the following section we begin by specifying the utility functions

required by the protocol. These utility functions (Section 5.5.1) include methods for ranking,

collision control and fault tolerance.

5.5.1. Utility Functions

Future Track

The future track (F), discussed in Chapter 3, is estimated from a mobility plan, is repeatedly

calculated and refined every 100ms (as required by IEEE 802.11p WAVE). The constraints of

the intersection scenario imply vehicles using an intersection have a limited number of means

by which to traverse the intersection. This reduces the complexities of estimating a future

track. F represents the set of estimated positions of a vehicle in future time-steps (T). Future

tracks, a set of ordered waypoint-time pairs, are shared as a means of informing neighbouring

vehicles of a vehicle’s intended usage or goal of the intersection, a method of avoiding collision

and ordering vehicles through the intersection.

115

getFutureTrack(R.plan , R.speed , T) → F

We calculate the future track using the mobility plan provided by the mobility resource (R)

as well as the current speed (the mobility pattern for the intersection). While the future track

could conceivably be attached to a message payload, future tracks retrieved from neighbouring

vehicles are calculated and expanded locally, a trade-off in favour of reduced message size versus

increased computation. This is an implementation issue. Future tracks, once processed, provide

an ordered sequence of waypoint-time pairs which predict the future mobility of a vehicle within

a future time limit. Each future time instance is calculated. For instance, we may predict a

set time ahead or a set distance ahead. For the purposes of the traffic intersection we calculate

the future track for every position up until the vehicle has exited the traffic intersection area.

A new future track is calculated for each cycle and the old version is discarded.

Collision

Our collision avoidance algorithm (Appendix C.1) determines the waypoint location (X) where

two vehicles are estimated to collide. Compared future tracks identify three possible collision

scenario, either (a) collision while crossing, (b) collision while following or (c) no collision.

In (a) two vehicles contend for the same road section at the same time. In (b) a vehicle

following collides with a vehicle ahead of it which it is following. The algorithm calculates X

by comparing the future tracks (A and B) of two vehicles. Where A and B cross at a distance

less than the specified minimum separation or sweep distance (D) we return the displacement

distances of each vehicle (U and V) and the collision waypoint (X).

collision(A,B,D) → [U, V,X]

This data is used by the protocol to advise the driver how to minimally adapt the speed of

the vehicle to avoid a collision. These values are used by the ranking algorithm to determine

the ordering of vehicles through the intersection. Choosing a separation distance which is sig-

nificant enough to avoid collision with another vehicle is crucial. Notably the future tracks

are provided by vehicles themselves. Hence, these future tracks represent the estimated posi-

tions of movement in future time-steps. We assume that future track estimations are accurate.

116

Cyclically rechecking for collision is required as the intersection is highly dynamic. As the

intersection is a resource dependencies exist on its usage in scenarios of contention.

Ranking Condition

Where two or more vehicles approach the intersection the question that arises is - ’who has

right of way? Who is allowed to use the intersection and in what order?’ Road rules normally

dictate this. For instance, vehicles generally yield to other vehicles approaching from the side

of the driver. This presents some challenges to decentralised solutions. No traffic lights or

centralised authority is directing traffic or stating when a particular vehicle may use the traffic

intersection. To organise vehicle priority in the event of a predicted collision vehicles rely on

a ranking condition. The ranking condition is a condition function which returns the deemed

priority or rank of n-many vehicles - resolving which vehicle should use the intersection first.

The ranking condition when provided the properties of n-many vehicles returns the identity of

the vehicle which is given priority. For example, a ranking condition for two vehicles may be

expressed as:

ranking(pA, pB) → V

In this example, the ranking condition is provided a set of parameters (pA and pB) from two

vehicles A and B. Ranking assumes that both vehicles know pA and pB. Parameters include

speed, future track and perhaps other contextual data. We also assume the ranking condition

used is known to both vehicles and that both vehicles apply the same ranking condition to the

parameters provided. If this is true, then both vehicles A and B are expected to calculate the

same result (V). Heuristically, if both vehicles have the same data, they can determine how

other vehicles are expected to adapt and thereby adapt their mobility correctly. Within the

context of the traffic intersection scenario, we consider a ranking using just two parameter sets.

Fault Tolerance

Intersections are expected to continue operating in the presence of messaging and/or sensory

failure. The severity of a failure should elicit a response from a vehicle to take a safety critical

decision. A number of failures could exist in the operation of the protocol. In a severe failure of

a vehicle component a driver would normally remove herself or himself from the flow of traffic.

For instance, in a tyre puncture a vehicle would park the vehicle out of the flow of traffic on the

117

side of a road. Similarly, we expect the same actions to be taken by a vehicle in the presence

of a component failure or in the case of sensory failures.

Wireless communication can be unreliable. Intersection control and collision avoidance is

safety critical. It is important that the protocol loop be capable of tolerating the loss of

broadcast messages. The protocol executes every 100 milliseconds. While messages are being

broadcast at a very high rate we improve the coverage of messaging by ensuring that messages

are rebroadcast by neighbouring vehicles for a specified cycle count. Hence, if a vehicle fails

to retrieve directly, it retrieves a message indirectly in the second cycle (from a neighbouring

vehicle). Where only two vehicles are approaching an intersection this redundancy does not

exist. Message rebroadcast and a low broadcast period is employed as a method to increase

the chance of a message retrieval in the presence of failure.

5.5.2. Protocol

Our Intersection Control Protocol called the Vehicle Back-off Protocol (VBP) [BD10], attempts

to maximise flow by providing vehicles opportunities to cross an intersection using gaps in

traffic. The protocol strategy to maintain vehicle flow is motivated by work conducted by

Helbing and Lammer [LH08] and centralised approaches like SCOOT [TFD98], as well as

work by Reynolds [Rey87]. These multi-intersection adaptation methods, while considering

a different scenario, highlight a maintenance of flow as a main goal for sequences of multiple

intersections to perform effectively. The intersection in this context can be thought of as a

switch - where the trade-off of improving flow in one direction is the starvation of flow in the

crossing. Our VBP protocol is most similar to work by Ferreira et al. [FFCa+10] where traffic

lights are replicated virtually and presented in a customised form to the driver (vehicles use

the intersection in customised traffic cycles). The work by Ferreira et al. does not consider

the human driver within their system or consider what effect message faults may have on the

operation of the system. Platoons of vehicles can still hinder flow in a particular direction

if a crossing stream of vehicles is constant. The approach by Ferreira et al. is not purely

decentralised and vehicles do not share mobility or negotiate.

Figure 5.5 shows two scenarios which the protocol is required to handle: (a) following (vehi-

cles V1 and V2) and (b) collision scenarios (vehicles V2 and V3). A vehicle determines which

adaptation to use based on the geographic location of a message and the contents of the future

118

Figure 5.5.: Protocol adaptation scenarios. Vehicles (V1, V2 and V3) require adaptation to
follow and avoid other vehicles while still ordering themselves to minimise overall
intersection delay and maximise overall intersection throughput. V1 is following
V2. V3 and V2 adapt with one another to avoid collision at X in a future time-step.

track. Messages are to prioritise adaptations.

The following scenario requires that a vehicle maintain a following distance which is signifi-

cant enough to maintain both safety and flow. Adaptation should occur such that two vehicles

avoid one another correctly without detrimentally affecting vehicle flow. The combination of

scenarios can transmit contention. For example, if V3’s adaptation requires that V2 reduce

speed, then the distance between V2 and V1 shall close and V1 will be required to adapt

(indirectly) to the actions of V3 (hence we complete a dependency between vehicles where V2

depends on V3, V1 depends on V2). The messaging link between V1 and V2 is labelled as

M3. V1 and V2 broadcast state based data to one another due to broadcasts. The feedback

element of the control is required to keep the state of all vehicles in a optimal state for best

effort mobility. In the collision scenario, V3 and V2, if in contention, both calculate their

collision point at X by using each other’s future tracks. They calculate the distance between

them and the collision point as well as the time to collision. Using a ranking condition the

vehicles determine who has right of way and who must yield. If both V2 and V3 adapt in

the same way, we would expect an accident to occur and therefore both vehicles in the VBP

determine right of way by monitoring their speed, distance and time to X. If both vehicles are

precisely the same distance away from X then vehicles act randomly to remove contention. The

119

more time a vehicle has to avoid collision the more minor incremental adaptation in mobility

through feedback. A working alternative to random priority is the usage of vehicle identifiers

to determine intersection traversal.

The protocol algorithm (Algorithm 2) leverages long range messaging to achieve this - ve-

hicles adapt their mobility at extended distances to improve flow. In VBP, if two vehicles

are contending for the same road space in the future, the vehicle furtherest from exiting the

intersection reduces its speed. VBP considers the opportunity of applying strategies to im-

prove cross flow by sharing vehicle future tracks as mobility fragments (a vehicle’s intended

traversal of the intersection). A trade-off of the approach is the possibility of gridlock if the

intersection is overwhelmed by vehicles. Another disadvantage is that VBP requires ‘gaps’ or

separation within traffic to allow for crossings. VBP uses the time before two vehicles meet to

adapt mobility through the sharing of future tracks. The aim is that the overall operation of

intersection be improved (to minimise delay and maximise throughput).

VBP employs both short-range and long-range strategies to avoid the probability of collision

and thereby reduce the probability of having to substantially modify mobility (slow the vehicle

to a complete stop). Messages are filtered by region and adapted to differently based on their

existence within the separate regions (Figure C.1). A short-range strategy determines and

adapts mobility if a vehicle is within the immediate vicinity. A long-range strategy adapts

mobility for more distant orderings. Both strategies avoid collision (Algorithm 3).

For each cycle in the operation of the protocol, retrieved messages from the previous time-step

are stored in the MI queue (Message Input queue). A mobility resource object (R) contains

the journey plan of a vehicle and calculates a new future track (ft) at each cycle given the

mobility plan of a vehicle (Figure 5.2 and Table 5.1). R provides an interface to position,

direction and speed as well as other derivative framework functions.

Initially the protocol filters mobilities from neighbouring vehicles which affect the present

journey plan using future tracks (filtering phase, lines 5 to 17). As described in Section 5.5.1,

each vehicle estimates which other vehicles are set to collide with it at future time-steps. We

consider two geographic retrieval areas to collect and filter messages. The first 180 degree

orientation cone is used to gauge whether an object is ahead of another object (isAhead). A

second cone of higher priority identifies the existence of vehicles directly ahead (inFront).

We use the isAhead and isCrossingTrack to provide a first pass subset of future tracks.

120

Algorithm 2: Vehicle Back-Off

Input: A set of received messages MI, a mobility resource R, a pre-calculated partition
distance pd, a clock t and a broadcast interval z

Output: A set of broadcast messages MO

1 begin
// Filtering Phase

2 cI ← ∅
3 cE ← ∅
4 L←∞
5 foreach m ∈MI do

// Find closest short-range and closest long-range message s
6 if isCrossingTrack(m) then
7 ∆b← distance(R.position, m.position)
8 if (∆b < pd) ∧ (isAhead(m)) then
9 cI ← m

10 break

11 else
12 if isCrossingIntersection(m) then
13 [d1,d2,X] ← collision(R.ft,m.ft)
14 if (d1 6= ∅) ∧ (∆b < L) then
15 L← ∆b

16 cE ← m

17

// Collision Avoidance Phase
18 if exists(cI) then

// Short-range collision exists
19 reduceSpeed

20 else if exists(cE) ∧¬ exists(cI) then
// Long-range collision exists

21 [d1,d2,X] ← collision(R.ft,cE.ft)
22 ∆d = |d1− d2|
23 Q = calcDisplacement(R.ft)
24 P = calcDisplacement(cE.ft)

// Collision Avoidance Phase
25 if Q > P then
26 reduceSpeed
27 else if (Q = P) ∧ (priority) then
28 reduceSpeed
29 else
30 increaseSpeed

31

32 if (¬ exists(cI)) ∧ (¬ exists(cE)) then increaseSpeed
// Sharing Phase

33 if t mod z = 0 then
34 nm← newMessage(R)
35 MO.append(nm)

36 return MO

121

Messages are filtered into two closest message queues, closest internal (cI) and closest external

(cE) using the partition distance (pd). A short-range strategy handles immediate collision

threats and following distances. An IsCrossingIntersection function determines if the

future track is the broadcasting neighbour leaving or entering the intersection.

The collision avoidance phase is priority driven (lines 18 to 32). The long-range strategy is

typically applied first when no short range messages exist. pd is recalculated as the minimum

separation distance with an additional two second variable separation (as is usually stipulated

by law [Mas06]).

pd = separation + 2× current speed

The long-range strategy tests for a collision occurring in the future. This provides a [d1,d2,X]

tuple if a collision is predicted. d1 represents the total step-wise distance calculated from the

local future track (R.ft), while d2 represents the total step-wise distance calculated from the

neighbouring vehicle and its computed future track stored within its payload. A position X

represents the position where the two vehicles are expected to come within close proximity of

one anther. The distances d1 and d2 are compared to provide ∆d which if less than pd suggests

to us that a gap in traffic is already taken and one vehicle must delay itself to follow behind

the contended position.

The final phase of sharing (lines 33 to 36), periodically broadcasts a new message (nm)

containing state data to all neighbouring vehicles. Neighbouring vehicles then are able to

determine their own local adaptation in the next cycle. The message (nm) is placed into the

MO queue (Message Output queue). Vehicles re-adapt every cycle towards an equilibrium goal

of no-collision.

5.6. Evaluation

Our evaluation of the VBP considered more than 1440 experiments or 240 hours of protocol

simulation time. Parameter settings were selected from transportation guidelines [Lit09, GE68,

AS94, TvA01] and replicated for all vehicles entering the road intersection and each experiment

was executed at least five times to ensure a sufficient sample of results. Using mobility patterns

(Table 5.1), vehicles were injected (input) into an intersection at rates between 500 and 2000

122

vehicles per hour. The outcome of intersection control presents the throughput as an output

rate (vehicles per hour) and the incurred delay as the experienced mean and maximum delays

effecting vehicles. Hence we seek to maximise vehicle throughput and reduce delay without

incurring collisions (increasing vehicle flows [LH08]). A collision would represent a safety

critical failure on the part of the protocol. Our protocol performed, in most cases, better than

comparable centralised approaches. We consider the trade-offs of the approach and highlight

issues of gridlock in input rates above 1500 vehicles per hour.

Experiments sought to determine:

protocol messaging performance - the volume of messages sent, received and measure the

number of messages acted on (Section 5.6.3);

delay and throughput performance in comparison to centralised approaches (Section

5.6.2);

identify scenarios in which protocol failure occurred (Section 5.6.4);

compare performance to existing intersection control approaches (Section 5.6.5);

identify trade-offs exhibited by varying parameters.

5.6.1. Setup and Parameters

The setup and parameters used to test the protocol were consistent with parameters used

to measure saturated traffic [LH08]. We used results applied to individual intersection control

strategies, including: unsignalised, roundabout and timed traffic light controls (60 second cycle).

Each road vehicle was sized as 4.88 meters long and 1.8 meters wide. Each road was set at

6 meters in width. A 100 meter leadup distance exists to reach the intersection, with each

intersection covering a 6 meter by 6 meter area. A maximum speed of 7 meters per second was

used as this is deemed an appropriate approach speed for blind intersections [Mas06] (within

100 feet, approximately 30 meters from an intersection). For the first lead-up (100 meters prior

to the intersection) a vehicle was required to reduce its speed to 2.5 meters per second. This

slower speed allowed vehicles to make safe turns.

A limited 200 meter communication range was used. Intersection control payloads were

short in comparison to message sizes considered in Chapter 4 comprising only 96 bytes. 0%,

123

Parameter Value Unit

Communication Range 200 meters
Broadcast Interval 0.1 seconds

Maximum Straight Speed 7 meters per second
Maximum Turn Speed 2.5 meters per second

Received Packet Loss (RPL) 0, 9, 12 % packets

Vehicle Input 500, 1000, 1500, 2000 vehicles per hour (vph)

9% and 12% packet loss was applied to received messages [IEE10, Eic07] hence the protocol

was simulated in the presence and without the presence of dropped packets. The vehicle input

rate per hour was varied between 500 and 2000 vehicles per hour for all compared protocols

and control methods. Vehicle rates equal to and above 1500 vehicles per hour exceeded the

capacity of the road intersection. Experiments conducted beyond 2000 vehicles per hour were

seen to overwhelm the intersection - vehicle throughput was too low and collisions between

vehicles occurred. These vehicle input rates were chosen as upper rates were seen to saturate

and overwhelm centralised methods using the same parameters.

Message payloads (Figure 5.6) contain a vehicle’s geographic position (Waypoint), bearing,

speed and future track data stored as a series of 64-bit floating point numbers (doubles). The

protocol assumes that WSM packets are discarded immediately after use due to immediate

message staleness. The future track, as presented in Chapter 3, represents the planned route a

vehicle intends to drive and is stored as an ordered sequence of Waypoint positions. As a vehicle

moves through the intersection, intermediary Waypoints in the future track are removed. When

exiting an intersection a vehicles holds only the intersection end Waypoint.

Figure 5.6.: VBP payload.

5.6.2. Delay and Throughput

Ideally, intersection control attempts to minimise the mean delay experienced by each vehicle

using an intersection - resulting in a maximisation of throughput. Centralised traffic manage-

124

ment approaches typically produce cyclical delay. In contrast, VBP is typically seen to produce

irregular patterns of delay and throughput. This is visible by comparing the total instances

of delay and total throughput occurring between varying approaches. Within the patterns is

we should be aware of the period of patterns and the number of patterns occurring within an

elapsed time interval.

 0

 10

 20

 30

 0 50 100 150 200 250 300

C
O

U
N

T

DELAY: TTC

 0

 10

 0 50 100 150 200 250 300

C
O

U
N

T

ELAPSED TIME (seconds)

DELAY: VBP

Figure 5.7.: Delay: Comparison of TTC and VBP delay instances for a single experiment, given
a 300 second sample.

 0 60 120 180 240 300

ELAPSED TIME (seconds)

THROUGHPUT: TTC

 0 50 100 150 200 250 300

ELAPSED TIME (seconds)

THROUGHPUT: VBP

Figure 5.8.: Throughput: Comparison of TTC and VBP throughput instances for a single
experiment, given a 300 second sample.

Figure 5.7 shows the typical total instances of delay occurring at an instant of elapsed

time (the metric approach is used by traffic authorities [GE68, Hel01]). Timed Traffic Control

(TTC) exhibits both cyclical and larger units of total delay instances. Interpreting the patterns

125

 5

 10

 15

 20

 25

 30

 35

 40

 45

 500 750 1000 1250 1500 1750

D
el

ay
 (

se
co

nd
s)

Rate (vehicles per hour)

MEAN
MAX

Figure 5.9.: VBP delay performance for varying intersection input rates (vehicles per hour).
Delay is seen to grow linearly for increasing vehicle input rates. However, as the
vehicle rate is increased, the deviation of delay is also seen to increase. This is
coupled with an increasing divergence between maximum and mean delays.

of delay and delay tells us about the behaviour of vehicles using the intersection. On the

intersection itself, ‘saw’ shaped delays are seen as vehicles backed up behind one another. TTC

throughput (Figure 5.8) shows a similar effect, with groups of vehicles exiting the road network

at just prior to 60, 120 and 240 seconds. These grouped patterns of throughput are a sign of

platooning vehicles. In contrast, the total delay instances experienced with VBP are smaller

and more randomly dispersed due to slow adaptation on part of vehicles as they approach

the intersection (Figure 5.7). VBP delays are an order of magnitude smaller than those of

TTC. VBP throughput is more irregular, with gaps existing between consecutive throughput

instances (Figure 5.8). The grouping of vehicles is less severe and platooning does not typically

occur on the scale seen in TTC.

VBP delay (Figure 5.9) and throughput (Figure 5.10) performance for successive vehicle

input rates was seen to be linear. In Figure 5.9 we compare the mean and maximum delay

experienced by vehicles for flows between 500 and 1500 vehicles per hour, with error bars

describing the standard deviation of results for successive experiments. Figure 5.10 shows

the actual vehicle throughput versus the set vehicle input rate. As expected, the throughput

(output) for an intersection is seen to perform below the input rate. The diagonal input rate

represents ideal intersection throughput. The performance of a service is hence measured by

126

 500

 750

 1000

 1250

 1500

 500 750 1000 1250 1500

T
hr

ou
gh

pu
t (

ve
hi

cl
es

)

Rate (vehicles per hour)

OPTIMAL
MEAN

Figure 5.10.: VBP throughput performance for varying intersection input rates (vehicles per
hour).

how close the throughput performance comes to this ideal.

5.6.3. Messaging and Adaptation

Message broadcast is dependent on the broadcast period specified (Section 5.5.2). For indi-

vidual scenarios message growth was at first exponential and then linear, where exponential

message growth was observed in the initial start-up of the intersection (new vehicles entering

the empty intersection). The number of vehicles existing within the intersection was shown to

affect the marginal increase in broadcast messages for a given elapsed time. Similarly, message

retrieval is directly dependent on broadcasts, hence message retrieval counts grow as a multiple

of the number of vehicles within proximity of the broadcaster.

Table 5.2 shows protocol performance for varying vehicle inflows (vehicles per hour) and

packet losses. The table presents the mean number of message broadcasts (B) and receives (R)

counted per minute, as well as the mean number of adaptations (A). The R:B ratio highlights

the redundancy of messages and the multiplying effect of broadcast given the population of

vehicles attempting to traverse the intersection. The A:B ratio focuses on the number of

adaptations given the number of broadcasts made.

Broadcasts multiply the number of messages received by neighbours, a consequence of the

broadcasting action. We assume that drivers would react to advice by adapting their speed as

advised by the VBP protocol. The linked adaptations of vehicles highlighted the dependencies

127

between vehicles (Appendix C.3). Message retrieval was seen as exponential for increasing

vehicle inflows. We see a direct increase in the number of messages received and the number of

adaptations (speed up or slow down) made by vehicles to reorder themselves. This is expected

as the vehicle population within the intersection increases, thereby increasing the number of

broadcasts. Also, an increase in vehicle density increases the probability of contention or

collision and thereby increases the likelihood of required avoidance by adaptation. We see the

exponential growth the ratio of adaptations versus broadcasts (A:B) common to all results for

varying packet loss.

(a) No packet loss.

Rate Broadcasts σ Receives σ Adaptations σ R:B A:B
(per minute) (per minute) (per minute) (ratio) (ratio)

500 3556 13 18024 154 99 11 5.07 0.03
750 4914 32 37857 369 274 24 7.70 0.06
1000 7764 197 95702 5193 1432 247 12.33 0.18
1250 8934 1001 141105 16628 2046 262 15.79 0.23
1500 12133 240 254769 12072 3496 235 21.00 0.29

(b) 9% received packet loss.

Rate Broadcasts σ Receives σ Adaptations σ R:B A:B
(per minute) (per minute) (per minute) (ratio) (ratio)

500 3562 22 18071 246 87 14 5.07 0.02
750 4949 8 38280 140 292 15 7.73 0.06
1000 7006 33 74922 580 863 15 10.69 0.12
1250 9219 127 133063 4247 1951 153 14.43 0.21
1500 11803 370 224829 14367 3212 273 19.05 0.27

(c) 12% received packet loss.

Rate Broadcasts σ Receives σ Adaptations σ R:B A:B
(per minute) (per minute) (per minute) (ratio) (ratio)

500 3373 12 16118 125 82 8 4.78 0.02
750 4926 14 37714 175 289 35 7.66 0.06
1000 6958 36 68874 806 794 100 9.90 0.11
1250 9175 224 130356 5803 1949 270 14.21 0.21
1500 12940 1879 275111 100168 3529 1085 21.26 0.27

Table 5.2.: Message counts and adaptations made, for varying input rates (vehicles per hour)
and varying packet loss, where σ represents measured standard deviation.

A major consideration for vehicles using the intersection is the increase in messages. At

minimum inflows, each vehicle is expected to handle on average approximately 6 messages per

execution cycle. In contrast, at maximum vehicle inflows, approximately 20 messages exist per

128

execution cycle. Hence it is required that WAVE Short Message (WSM) hardware be capable

of processing and queuing these messages readily to reduce the likelihood of protocol error. In

this case, retrieving a message too late could have a detrimental effect on the performance of

the intersection and the safety of vehicles.

 0

 0.5

 1

 1.5

 2

 2.5

 500 750 1000 1250 1500 1750

A
da

pt
at

io
ns

 p
er

 v
eh

ic
le

Rate (vehicles per hour)

Figure 5.11.: Number of adaptations per vehicle for increasing vehicular input flows (vehicles
per hour).

Figure 5.11 shows the mean number of adaptations made by vehicles for changing flows. For

less dense intersections, 500 and 750 vehicles per hour, the low requirement of adaptations

means that some vehicles do not need to adapt to the changing vehicle flows. Between 750 and

1000 vehicles per hour there is a sharp rise in the requirement for adaptation, from 0.36 to 1.43

adaptations per vehicle. Again from 1250 to 1500 vehicles per hour we see a marked increase

from 1.63 to 2.33 adaptations per vehicle.

Increased packet loss was seen to both reduce received messages and directly reduce the

number of adaptations occurring. When comparing 0%, 9% and 12% packet loss, the A:B

values were reduced for associated vehicle flows. For example, A:B was 3% of messages for a

vehicle rate of 500 vehicles per hour with no packet loss, while A:B was 2% of messages for a

vehicle rate of 500 vehicles per hour with 9% packet loss.

5.6.4. Dropped Packets and Deadlock

To simulate failure, 9% to 100% of retrieved messages were dropped for flows of between 500

and 1500 vehicles per hour. Figure 5.12 presents a collision matrix showing the mean number

of collisions experienced by vehicles where varying the dropped packet counts between 0%

and 100% and increasing vehicular flow between 500 and 1500 vehicles per hour. The matrix

129

highlights the probability of collision given varying conditions. For example, we should expect

collisions to occur at vehicle rates of 500 vehicles per hour where the packet loss is in excess of

70%. Similarly, we find that the protocol is likely to fail for 9% message loss at vehicle flows

of 1500 vehicles per hour.

As was consistent with message dependency, failure in messaging caused vehicles to collide

and hence the protocol was seen to be less than robust in certain scenarios, where vehicles

could not communicate at the current time-step. A possible solution to this would be to have

vehicles retain a model of the intersection in store. Where a vehicle had no data about the

position, speed or bearing of another vehicle, errors were made in calculating the appropriate

action required to avoid collision - hence vehicles collided. Such collisions typically took place

due to failure within the protocol short-range scenario handler (where the time and distance

between vehicles was already limited by proximity).

10 20 30 40 50 60 70 80 90

Receive Packet Loss (%)

500

750

1000

1250

1500

R
at

e
(v

eh
ic

le
s

pe
r

ho
ur

)

 0

 100

 200

 300

 400

 500

 600

 700

 800

C
ol

lis
io

ns

Figure 5.12.: Collision matrix maps the number of collisions occurring for increased numbers
of dropped receive packets and increasing input flows (vehicles per hour).

Where adaptations were not correctly managed and vehicle densities are significant, VBP

performed less well leading to gridlock occurring at the intersection. Within a deadlocked

position, vehicles from all four input roads cannot pass through the intersection due to inter-

locking needs. A vehicle may be attempting to cross, but is blocked by a second vehicles. In

turn the blocked vehicle blocks another vehicle and so on. This locking makes the intersection

unusable. Hence the protocol fails to operate in certain instances where vehicle input rates

are above 1500 vehicles per hour. VBP as a protocol is unable to identify or resolve deadlock

130

scenarios automatically as it is concerned with ordering rather than deadlock resolution. In

certain intersection scenarios, deadlock is unavoidable give particular vehicular behaviour.

5.6.5. Performance Comparisons

VBP performance is directly comparable to single intersection scenarios, including unsignaled,

roundabout, timed traffic management (TTC) and actuated timed traffic management (ATTC)

strategies. For comparison, our TTC and ATTC results used a 60 second split cycle (30 seconds

red and 30 seconds green), where ATTC assumes the presence of inductive loops at each of the

four approaches to the intersection. The decentralised protocol is not directly comparable to the

SCOOT [HRBW81, TFD98], Sydney Coordinated Adaptive Traffic System (SCATS)[Low82],

Greenwave [GBT+09] and Lammer et al. [LH08] algorithms as all consider linked road sections

and uneven traffic inputs from specific input roads. These approaches prioritise traffic flow

along a single axis. SCOOT purports a maximum 30% overall improvement to traffic flow for

connected intersections.

 0

 50

 100

 150

 200

 250

 300

500 1000 1500 2000

D
el

ay
 (

se
co

nd
s)

Input Flow (vehicles per hour)

COMPARISON: DELAY

TTC
TTC-ACTUATED
UNSIGNALISED
ROUNDABOUT

VBP

Figure 5.13.: Comparison of delay per vehicle between Timed Traffic Control (TTC), Actuated
TTC, unsignalised, roundabout and VBP for varying vehicle input rates between
500 and 2000 vehicles per hour. A lower delay value is preferable.

In simulation, mean VBP performance was similar to alternative approaches for intersections

handling up to 1500 vehicles per hour. Within scenarios with flows greater than or equal to

1500 vehicles per hour most VBP simulations failed in deadlock after less than 588 seconds

of operation. In comparison to centralised approaches, VBP had varying performance benefit,

131

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

500 1000 1500 2000

T
hr

ou
gh

pu
t (

ve
hi

cl
es

 p
er

 h
ou

r)

Input Flow (vehicles per hour)

COMPARISON: THROUGHPUT

TTC
TTC-ACTUATED
UNSIGNALISED
ROUNDABOUT

VBP

Figure 5.14.: Comparison of throughput between Timed Traffic Control (TTC), Actuated TTC,
unsignalised, roundabout and VBP for varying vehicle input rates between 500
and 2000 vehicles per hour. A higher throughput is preferable.

showing suitability for particular vehicle rates, however the VBP strategy failed for higher

vehicle inputs. Figure 5.13 shows that VBP delay was minimised in comparison with all

other approaches for vehicle populations of between 500 and 1500 vehicles per hour. Vehicular

throughput (Figure 5.14) exceeded all other approaches with VBP throughput for 1500 vehicles

per hour was 1372 vehicle per hour or a 91% input to output success.

Performance benefit is dependent on delay or throughput priorities. Notably, roundabout

performance failed in scenarios where vehicles flow from a no yielding position. Vehicles stopped

and yielded flow for long enough to starve flow and cause congestion. Hence, roundabouts are

useful in scenarios where the largest traffic flows are originating from a non-yielding position.

Similarly VBP was only successful in scenarios where vehicles made enough space for other

vehicles to cross and where enough spacing was maintained. An altruistic incentive is required

to exist for VBP to operate. This is not the case in roundabouts - yielding is specified by road

rules. Hence both VBP and roundabouts have their trade-offs.

The performance of the intersection is predominantly affected by the inter-relationships be-

tween flow, distance, messaging and safety. Intersection performance is finite provided a follow-

ing distance and physical limitations of a vehicle and its occupants. An intersection can only

physically accommodate and process a limited number vehicles. Similarly, the strategy used to

maintain flow for an intersection is affected by the rate at which vehicles enter the intersection.

132

Figure 5.14 shows the performance drop loss where input rate exceeds the limitations of the

VBP strategy. Experiments with rates beyond 1500 vehicles per hour showed the protocol to

fail to maintain sufficient throughput and collisions were more likely to occur. At certain vehi-

cle input rates, vehicles soon saturated the intersection beyond capacity. A subsequent effect of

this was that the number of messages communicated within the intersection rose significantly.

This presents the problem that if vehicles become densely populated within a region, they have

the capacity to reduce the effectiveness of decentralised services operating within the vicinity.

VBP is seen to reduce the mean delay affecting all vehicles. However, the intersection

experiences a throughput ‘short-fall’, seen in Figure 5.14. This throughput perfromance is a

result of speed controls employed by a VBP vehicle as it enters an intersection. For example,

where a vehicle approaches the intersection from A to I or G to K (Figure 5.2). Prior to

intersection traversal, vehicles maintain a following distance. However, instead of some vehicles

lowering their speed at the intersection, all vehicles lower their speed. Traditional approaches do

not require a safety speed as a vehicle crosses I, J, K or L in the intersection. Vehicles entering

the intersection are thereby moving more slowly than vehicles in alternative approaches. Lower

throughput is a consequence of this initial slow approach to the intersection and the inter-

leaving of vehicles to reduce mean delay. Exiting the intersection, vehicles accelerate to the

legal maximum speed specified. Results show that decentralisation is feasible, VBP is however

lacking as it does not outperform traditional approaches in terms of throughput.

5.7. Discussion

Ideal traffic intersection control seeks to reduce the delays experienced by vehicles, while also

maximising vehicle throughput [HRBW81, TFD98, Low82, GBT+09, LH08]. VBP attempts to

improve vehicular flow such that such flows may reduce mean delay and improve throughput

for varying inflows (vehicle rates entering the intersection). Maintaining correct flow is highly

beneficial. Yet, traffic intersection control is a bounded problem. Where contention occurs

between two or more vehicles, one or more vehicles must typically adapt or yield their mobility

for the benefit of the system as a whole. A vehicle must trade-off between delay and safety for

the maintenance of throughput. The intersection itself is limited physically by its capacity to

hold vehicles. If a vehicle does not yield or order itself, we see reduced flow on specific input

133

roads and in a worst case scenario we see deadlock. The required adaptation problem is well

suited to decentralised feedback driven solutions.

However, collision avoidance is a safety-critical concern and a primary challenge. The type of

collision avoidance used in VBP is more complex as it combines spatial and temporal mobility

data to communicate more complex mobility patterns between vehicles. VBP represent a

strategy to maximise the usage of an intersection. Within the problem of intersection control,

delay may be classified as a secondary aim and as such timed traffic management systems

attempt to partition and allocate time either according to a regime of “fairness” or specifically

to demand (for example inductive loops and the employment of sensors). Importantly these

control systems have safety critical elements (orange lights) or periods in which the intersection

can be reset to deal with a new collection of crossing vehicles. VBP attempts to maximise the

usage of the intersection by focusing on collision avoidance and adapting speed to “nudge” the

operations into a state of minimal delay. VBP then attempts to maintain this state of operation

within the intersection. The example given in this chapter may be considered a simplified model

of traffic intersection control, yet it provides a base comparison on which further work can be

applied. A more realistic approach may take into account the added complexities of such an

intersection, including pedestrian mobility, weather and road conditions. However we should

still be clear as to measure system performance in terms of collision, delay and throughput. As

public traces for intersection usage were not available, we used synthesised mobility traces. Real

intersection traces would more accurately describe and measure an intersection for presently

used protocols; however, as vehicles adapt their mobility pure traces would only provide more

realistic start and end points for given intersections. There is room for improving the VBP to

more intelligently handle changing technical and environmental conditions occurring within the

intersection domain. For example, we have not considered emergency scenarios, where vehicles

might obstruct traffic flow, but still be part of the intersection control system.

The results presented illustrate the difficulties traffic intersections pose to vehicular flows.

Trade-offs exist in terms of safety, delay, throughput and speed. In terms of decentralised

control, one of the significant problems with collision avoidance lies with positioning and future

track estimation. Vehicles require an extremely accurate measure of where they are, how fast

they are moving and where they are estimated to be in the future. Improvements to the

future track estimation method are possible, for instance providing the future track estimation

134

algorithm with more contextual information about the environment and nearby vehicles. The

data collected at intersections by the service not only facilitates intersection control, but also

presents a means by which city administrators and mapping systems can observe the flows

occurring at particular intersections.

5.8. Conclusions

In this chapter we have described and evaluated a new decentralised intersection control proto-

col which we have named the Vehicle Back-off Protocol (VBP). Within limits and for specific

parameter settings, VBP is seen to reduce mean delay in comparison with some presently

available centralised intersection control approaches. A significant issue with the protocol is

that it produces large numbers of messages which, in large densities, could overwhelm present

technologies and their capability of retrieving and computing within the short time intervals

necessary to ensure safe intersection control. As an advisory service, VBP requires that vehi-

cles have highly reliable inter-vehicle communication but that they also act rapidly to adapt

to changes made by neighbouring vehicles using the intersection. Human drivers are unlikely

to make these adaptations quickly enough.

The VBP protocol and service illustrates both usage of the framework to construct decen-

tralised traffic management services and the potential for decentralisation within the context

of intersection control to improve flows. Notably, VBP does not require the deployment or

maintenance of traffic lights. Hence, there are significant opportunities to improve the flow of

vehicles using a single two-lane intersections where vehicles may be aware of one another over

larger distances (perhaps kilometers rather than meters).

135

6. Conclusions and Future Work

Previous and current computing approaches to traffic management have almost exclusively

focused on centralised control systems. While such approaches improve service availability, and

data access times, and allow for authoritative control, their usage comes at great cost in terms

of setup, deployment and maintenance requirements. The inclusion of V2X technologies within

vehicles, as part of Intelligent Transportation Systems (ITS), enables us to develop alternative

decentralised approaches which leverage vehicular interactions, mobility patterns, feedback and

scale as a means by which to construct and provide services which mimic centralised services.

This mimicry, while seen to be feasible, requires the consideration of a number of trade-offs of

which some are scenario specific. Yet, such decentralised services are complex to develop as

vehicles are both mobile, dynamic and messaging. The framework provides us with a tool by

which we may develop and evaluate decentralised traffic management services.

6.1. Summary

Within the thesis we began by outlining and motivating decentralisation. Thus far, traffic

management solutions have come at significant cost with most solutions being centralised and

monolithic in their design. The advent of V2X technologies in vehicles allows us to consider

decentralised alternatives to reduce the costs of such traffic management systems.

As V2X frameworks and tools are lacking, we addressed the issue of providing a geodetic

scaffolding framework for the development and evaluation of decentralised vehicular services.

Decentralised vehicular services represent and alternative means by which to construct traffic

management systems. They are characterised by their: (a) decentralised ad-hoc operation, (b)

use of wireless broadcasts, (c) use of feedback control loops, (d) sharing of mobility data, (e)

inter-vehicle cooperation and (f) adaptation. Our case studies used positioning (spatial) and

136

time (temporal) data to derive more complex functions. Dynamic mobility fragments were

used to specify mobility. Fragments were shared to enable vehicles to adapt to one another for

service provision.

In contrast to other approaches (which typically use packet switching standards) and packet

switching overlays (for example IPv6), our framework uses short broadcast messages modelled

on WAVE Short Messages [IEE10], part of the Vehicle-to-X (V2X) communication standards.

In Chapter 2 we considered the state of the art proposals motivating vehicular services, which

consist predominantly of Intelligent Transportation Systems (ITS) and Smart City initiatives.

While many application proposals have been made, few concrete systems have been successfully

implemented. We described the related work affecting the architecture of the framework as

well as simulation frameworks which have been used to simulate vehicular ad-hoc networks

(VANETs).

In Chapter 3 we presented a new geodetic vehicular framework for decentralised services. The

framework sought to address the requirements of mobility specification, decentralised control,

cooperation and scalability, fault tolerance and extensibility. We did not consider issues of

trust, privacy or incentives within such services.

The framework consists of a layered world model, comprised of mobility and messaging over-

lays which are modelled in the Geographic Urban Simulator (GUS). The GUS is an integral

part of the framework, allowing us to develop, simulate and evaluate prototyped decentralised

services. The framework provides an architecture and abstraction for service construction.

Services are built from protocols that are provided messaging, time and sensor inputs over

successive execution cycles. Inputs are processed by each service protocol and at the end of

each cycle both actuation events and/or message broadcasts occur. The framework and indi-

vidual protocols are feedback driven and broadcast-based, using collected and shared mobility

fragments.

Vehicles communicate with one another using ad-hoc gossip style messaging. Protocols

are short and imperative. Most significantly services share and interpret modifiable geodetic

mobility fragments (past, present and future) to enable many services. Feedback control loops

are used to repeatedly adapt the operation of services within a set of equilibrium goals -

improving their operation through successive interactions (both actuation and messaging). A

consequence of leveraging the interactions between vehicles is that the code for services is

137

written more simply. A trade-off is that systems are limited in their ability to adapt due to

communication ranges. Service code, once written, is simulated in detail using the GUS, prior

to deployment, to demonstrate and validate behaviour. Prototyped services are easily portable

to mobile devices such as Android platform devices.

To demonstrate the use of the framework, we explored the behaviours of decentralised vehic-

ular services by developing and simulating two traffic management services: (a) a decentralised

travel time estimation service and (b) a decentralised intersection control service. Each service,

while using similar components, is a unique sub-scenario of traffic management.

In Chapter 4 we described a distributed travel time estimation service which seeks to map

changing travel times to road maps. The service provides a means by which to assess traffic and

congestion on the road network over time. Vehicles collect and share their experienced mobility

as travel time tuples (mobility fragments). The service uses a slow feedback cycle and periodic

broadcasts to monitor, disseminate and adapt travel time data held about the state of the road

network. We successfully demonstrated how such a decentralised service would operate in the

context of failure, and considered the benefits of such maps and data to both drivers and city

administrators. Data was visualised to build heatmaps. Maps constructed were often unique

to a particular vehicle as a vehicle’s data was a function of the contacts which had occurred in

previous time-steps.

The service requires no central authority for its operation. As a trade-off data availabil-

ity was slower. Vehicles were dependent on contacts and community sharing for mapping.

By increasing the vehicle population we improved service performance and availability. The

availability and redundancy of data proved to support service operation even in the context

of limited failure; however, a trade-off of this success was that both messaging and processing

resources were somewhat inefficient and message management was required to optimise the

advantages and disadvantages of data redundancy. Travel time data is just one example of

data which can be mapped. Various other stakeholders within the city may be interested in

mapping other sensory data, such as weather, pollution and road surface information. Future

work could use the protocol and service developed to dynamically re-route vehicles through the

city road networks - in an attempt to avoid traffic or heavily used sections of the road network.

Such a dynamic re-routing service would attempt to solve the complete information problem

discussed in Section 4.8.

138

In Chapter 5 we described a new decentralised intersection control service. In comparison

to the travel time estimation service, the approach use a faster feedback cycle that broadcast

messages every 100 milliseconds (the limit of WSM broadcasting). Using messaging and mod-

ifications in mobility, vehicles approaching an intersection cooperated using a control protocol

called the Vehicle Back-off Protocol (VBP) to avoid collision and order themselves through

the intersection. The protocol was seen to operate well for minimal packet loss scenarios. The

approach failed where packet loss exceeded 9% and vehicle inflow rates (vehicles entering the

intersection) exceeded 1500 vehicles per hour. Successful VBP performance approached the

performance of a roundabout without the negative characteristics of halting individual feeds

of traffic, as is the problem in roundabouts. While the decentralised approach is feasible,

messaging requirements exceeded the limitations of present IEEE 802.11p WAVE technologies.

Furthermore, the approach requires that human drivers react and adapt beyond their ability to

adjust vehicle speed instantaneously to avoid collisions and maximise gaps in traffic. While the

intersection service would fail in reality, the protocol points to gains which could be achieved

if vehicles ordered themselves over extended distances.

6.2. Similarities, Limitations and Trade-offs

Comparing the costs of centralised and decentralised approaches is difficult. There are hard-

ware and software costs, communication costs, costs of installation and maintenance, costs of

compliance to environmental and safety standards, costs of insurance and legal liability. Fur-

thermore costs can be incurred by many parties, infrastructure providers, by those in charge

of road planning and maintenance, by vehicle manufacturers, by software/service providers, by

drivers. A proper comparison would require a rigorous approach to modelling such costs. This

is complicated by the fact that V2X and other technologies are evolving very quickly and any

particularly economic model or technical solution might be superseded before it has a chance

to establish itself.

Several similarities, limitations and trade-offs exist between centralised and decentralised

vehicular services. Both centralised and decentralised services depend on vehicles to collect

and share data. The more vehicles existing on the road network, the more sensory samples

available and the more probable the likelihood is of vehicle interaction - given an implied

139

density of vehicles and the constraints which road systems make on vehicles. Centralised

service data is stored in a logically central location (central authority). Vehicles consult a

single and known authority to access services. Data is potentially highly available with time

bounded access. In contrast, decentralised approaches sample data in a particular geographic

region of a vehicular network, yet this data takes time to disseminate. Hence, data is typically

older in comparison to centralised data stores. However, decentralised services do not suffer

from issues of failure as centralised approaches. As decentralised services are scaled up they

require increased management for the organisation and control of data.

Centralised services depend on a mobile data network and authority to transport data.

Interactions with the central authority can be initiated via point-to-point data streams (for

example IPv6), as long as mobile data connectivity is available (within cities this connectivity

is almost always available except in regions of bad coverage). While mobile data networks are

available, the addition of millions of cars may place considerable pressure on their performance.

Indeed, it would cost mobile data networks more if centralised services were used by all. As

vehicular services are position-based, both approaches assume highly accurate measurement,

approximation and positioning methods. Without accurate data, services could suffer from

failure with the outcomes effecting vehicle safety and performance. While a decentralised

service may not deliver instantaneous service, we have shown that data dissemination can

communicate data within minutes over short distances.

Both centralised and decentralised services require a critical mass of vehicles to cooperate

with one another for services to become effective. Without vehicles or infrastructure to sense

the road network, service provision is not possible. Furthermore, the data collected and shared

must be relevant to the locality in which vehicles intend using the service. It is left to the

protocol developer to determine what data is more relevant given message positions, payloads,

recency, hop counts and contacts. For example, a vehicle collecting data about New York is

not particularly useful to data being used by a vehicle in London. The value of data can be

considered from the point of view of sensory input and relevance. A vehicle might be measured

broadly by the accuracy and number of samples provided. For example bus networks due to

their regularity are likely to provide regular data about specific parts of a road network. Yet,

similarly, the data provided is more relevant to some vehicles than others.

Both centralised and decentralised vehicular services need to be scalable. Decentralised ser-

140

vices do not require the improvement of computational capacity or the provision of a networking

infrastructure as found in a centralised client-server infrastructure. For instance, central au-

thorities may act as bottlenecks and as single points of failure. Decentralised vehicular services

are more resilient to network failure in terms of their independence from mobile phone net-

works. Given a densely populated road network, when a vehicle is no longer part of the vehicle

community we lose valuable sensory data, but we do not lose the overall service (once again

this is dependent on the density of vehicles). In dense vehicular networks the redundancy of

data, due to broadcasting, improves service resilience. As we reduce the vehicle population,

resilience decreases. However, in sparse vehicle communities, data is not capable of persist-

ing unless vehicles re-enter the road network. An example of this scenario is vehicles exiting

the road network at the end of a day of travel. Many cities see their road networks unused

overnight while populations sleep. Hybridising vehicular services to use both WAVE standards

and mobile data networks (as well as static road-side objects) may have significant benefits.

6.3. Discussion

Previous chapters have demonstrated the feasibility of building decentralised services in soft-

ware as well as the methods of measuring management methods. WAVE messages and their

integration into vehicles and road-side infrastructure will allow them to message one an-

other to build decentralised services. Strong motivation for V2X use comes from industry

[Sie11, LMP+07, Thr10, Bar09]. The future openness of V2X standards is questionable. For

instance, it is unlikely that safety critical applications, such as collision avoidance and inter-

section control systems, should be accessible to all developers. Legal requirements will likely

dictate what will be acceptable in terms of automation and service access.

A limitation of vehicular services demonstrated within the thesis, is that we assume that

vehicles are altruistic. In reality, vehicles and drivers may not be altruistic, however services

such as Waze [Waz11] are examples of communities which act altruistically to improve service

performance. However, a question arises as to whether vehicles would share beneficial data

with other vehicles in a setting where sharing that information would affect their quality of

service. For example if vehicles are competing for road resources would they share information.

This problem refers back to the problems of complete information - where it should be noted

141

that the physical limitations of vehicles existing in the real world make acting on all complete

information more challenging. For example, a vehicle may have complete information about

the city, but be unable to act to benefit itself because of, for instance, being too far away from

an unused road.

6.4. Future Work

The work presented in this thesis offers a great deal of scope and opportunity for future work.

A large number of challenging problems still exist within the vehicular domain where solutions

could have significant benefit in reducing the costs associated with traffic management systems.

We divide future work into short-term and long-term challenges. Short-term challenges reflect

those challenges which might be immediately considered by using the framework. While long-

term challenges encompass challenges which require the adoption of real ITS technologies and

standards.

6.4.1. Short-term Challenges

While shown to be feasible in simulation, the protocols and services developed using the frame-

work, make a number of simplifying assumptions and would benefit from a number of optimi-

sations. Travel time estimation could benefit from both data aggregation and geographic data

selection techniques. Data mining techniques might be applied to travel time data collected

over extended periods of time to explore traffic patterns over extended time intervals. Similarly,

the VBP could benefit from storing and estimating extra positioning data about the past and

expected future locations of neighbours. VBP does not consider the effect of realistic pedes-

trian usage on control, which is expected to make control more complicated. This remains a

challenge to the protocol.

One of the objectives of our framework is service portability. While services have been

written in Java as imperative feedback loops and simulated, the thesis has not investigated the

actual deployment of a protocol onto a set of real vehicles. Such work would serve to calibrate

framework results and metrics in relation to a real world deployment, measuring the quality of

the Geographic Urban Simulator (GUS). Indeed, one of the initial intentions of the GUS was

that it provide a means by which to rapidly port protocols to Android devices. A significant

142

issue related to testing is the capability of scaling such real systems to the scales necessary

to correlate simulation performance with real world scaled systems. The need for simulation

is motivated by the fact that even in the context of real systems, testing and evaluation will

continue to be required prior to deployment. It would be infeasible to re-deploy test services

on vehicles repeatedly due to time constraints. Rather, simulation of a service would help to

build confidence in an approach prior to deployment testing.

An outstanding challenge is the consideration of the complete information problem. Given

a mapping application, it may be possible for all vehicles to know at all times the traffic

and density affecting all roads within the city. This complete knowledge of the road network

presents a problem if all drivers act to use the ‘best’ route to reach a destination. The problem

can be distilled as a centralised scenario. Given two roads, where one is free of traffic, this may

motivate all vehicles using a congested road to use the empty road, thereby moving congestion

to the free road and rendering the previously congested road, free of traffic. The effect of

dynamic routing using a decentralised vehicular service is not known. Simulating such systems

may be a way to build up a better understanding of how such systems would effect driver

behaviour in reality. The GUS is well suited to exploring this problem.

The focus of the thesis has been on the provision of vehicular services that only use vehicle-

to-vehicle communications. Preliminary results for hybrid architectures that use vehicles, road-

side nodes and/or remote cloud-based servers point to improvements in the dissemination of

data as well as the control of vehicles in specific scenarios [WBT+10][Waz11].

6.4.2. Long-term Challenges

A number of new applications such as pollution monitoring, population density monitoring,

dynamic re-routing, safety systems (for example accident detection) and city maintenance sys-

tems are potentially well suited to using decentralised approaches. The travel time estimation

application presented could be modified to operate with train services. Largely disconnected

train systems like the London Underground could benefit from such an approach, where trains

and passengers would share mobility data. Operators and travellers would benefit from shared

estimations concerning the state of the underground rail network. The roll out of such tech-

nology might be easier in comparison with the cost of deploying new sensors and technologies

deep underground and across such an expansive train network.

143

A selection of works have considered VANET and automotive security problems and meth-

ods [MNBJ11, KCR+10, CMK+11, AB11], as well as privacy issues [QWDFZ11]. Security

and privacy challenges remain. In the context of intersection control or other safety critical

applications, the opportunity to break the system presents a significant threat (even in non-

safety critical scenarios). Privacy issues exist in the sharing of location and trace data. Using

vehicular traces an attacker could infer information about where a person may live or work.

Such data also presents data holders with a method of profiling drivers - for example, insurance

companies may be interested in the number of kilometers a driver is driving and where they

drive. The usage of such data could increase premiums for the driver. The distribution of a

vehicular service in a decentralised form does allow individual vehicles to use pseudonyms to

increase levels of anonymity. For instance, pseudonyms could be used for as long as a service is

being used. A new pseudonym could then be generated when using the service again. However,

a trade-off of anonymity is that it reduces accountability - vehicles which attempt to break the

system are difficult to remove from the service as we cannot identify these misbehaving vehicles

using identifiers.

6.5. Closing Remarks

The traffic monitoring and control domain is a non-trivial problem domain and developing

systems has long been a challenging issue. Obvious solutions do not exist to a multitude

of traffic management problems. For many years traffic management has been the focus of

research for many mathematicians, physicists and engineers. In the long run, solutions may

only be capable of reducing traffic inefficiencies within limits. This is partly because road

networks have a limited capability and capacity to enable the flow of vehicles from location

to location. While security, trust, privacy and incentives are challenges to the adoption of

vehicular services, a number of other orthogonal issues remain unsolved. They present varying

barriers to the adoption of decentralised vehicular services in the context of both mapping

and intersection control, as well as other applications. For both applications, a critical mass of

adoption is required to enable decentralised mapping to occur. If the set of vehicles using travel

time estimation services are too small, then services cannot be provided. In ther context of

intersection control, lack of adoption may result in lives lost. Outside the technical challenges

144

exist legal challenges to the operation of autonomous or semi-automous vehicles. The legal

libility of whom is to blame in the event of a failure of a service is questionable. Alternatively,

the legal ramifications of automation may require that all vehicles are automated.

For the immediate future, human beings are likely to remain the core supervisory component

in vehicles; as such, vehicles don’t always behave in a predictable way. While there have

been many successes in automating driving [Thr10], it may be some time before computers

take complete control over driving, if ever. In the interim, we are likely to see automation

and adaptive computing used in particular scenarios, for example vehicle platooning, safety

stopping and automated parking. It is perhaps not unlikely that the trend of automation in

vehicles may be similar to that seen during the adoption of aeroplane autopilot technologies.

Autopilots within aviation became increasingly complex and today the pilot is often irrelevent

to the flight and landing of an aircraft.

A number of companies have started to consider decentralised ITS services [Sie11, LMP+07,

Waz11, Thr10, For11]. The adoption of a collection of proprietary centralised services sug-

gests that vehicular services are now practicable, affordable and beneficial to drivers. Decen-

tralised vehicular services offer alternative approaches to centralised approaches. While there

are trade-offs to decentralised services, their usage has the potential to reduce costs, improve

road efficiency and provide city users and city managers a means by which to harness and lever-

age vehicles to sense the city, process this data and improve city operation. A hybridisation

and merging of centralised and decentralised service characteristics and architectures may be

beneficial to a number of traffic management problems.

145

Bibliography

[AB11] Tansu Alpcan and Sonja Buchegger. Security Games for Vehicular Networks.

IEEE Transactions on Mobile Computing, 10(2):280–290, February 2011.

[ABFeH07] S. Ahmed, M. Bilal, U. Farooq, and Fazl e Hadi. Performance analysis of

various routing strategies in mobile ad hoc network using QualNet simulator.

In Emerging Technologies, 2007. ICET 2007. International Conference on,

pages 62 –67, nov. 2007.

[AM08] Karl Johan Astrom and Richard M. Murray. Feedback Systems: An Intro-

duction for Scientists and Engineers. Princeton University Press, Princeton,

NJ, USA, 2008.

[AS94] Richard Arnott and Kenneth Small. The economics of traffic congestion.

American Scientist, 82(September-October):446–455, 1994.

[Bak09] S.C.G.U.A. Bakshi. Feedback Control Systems. Technical Publications, 2009.

[Bar09] Dave Barth. The bright side of sitting in traffic: Crowdsourcing road conges-

tion data. http://googleblog.blogspot.com/2009/08/bright-side-of-sitting-

in-traffic.html, 2009. [Online; accessed October-2011].

[Bat07] M. Batty. Cities and complexity: understanding cities with cellular au-

tomata, agent-based models, and fractals. MIT Press, 2007.

[Baz07] Ana L. C. Bazzan. Traffic as a complex system: Four challenges for computer

science and engineering, 2007.

[BB06] A.R. Beresford and J. Bacon. Intelligent transportation systems. Pervasive

Computing, IEEE, 5(4):63 –67, oct.-dec. 2006.

146

[BCNR04] Michael Balmer, Nurhan Cetin, Kai Nagel, and Bryan Raney. Towards truly

agent-based traffic and mobility simulations. In AAMAS ’04: Proceedings of

the Third International Joint Conference on Autonomous Agents and Multi-

agent Systems, pages 60–67, Washington, DC, USA, 2004. IEEE Computer

Society.

[BCSW98] Stefano Basagni, Imrich Chlamtac, Violet R. Syrotiuk, and Barry A. Wood-

ward. A distance routing effect algorithm for mobility (dream). In MobiCom

’98: Proceedings of the 4th annual ACM/IEEE international conference on

Mobile computing and networking, pages 76–84, New York, NY, USA, 1998.

ACM.

[BD09] Rudi Ball and Naranker Dulay. Approximating Travel Times using Oppor-

tunistic Networking. In 2nd IEEE Intl Workshop on Opportunistic Network-

ing, May 2009.

[BD10] Rudi Ball and Naranker Dulay. Enhancing Traffic Intersection Control with

Intelligent Objects. In First International Workshop the Urban Internet of

Things 2010 - Programming the real-time city., December 2010.

[Bet01a] Christian Bettstetter. Mobility modeling in wireless networks: categoriza-

tion, smooth movement, and border effects. SIGMOBILE Mob. Comput.

Commun. Rev., 5:55–66, July 2001.

[Bet01b] Christian Bettstetter. Smooth is better than sharp: a random mobility

model for simulation of wireless networks. In Proceedings of the 4th ACM

international workshop on Modeling, analysis and simulation of wireless and

mobile systems, MSWIM ’01, pages 19–27, New York, NY, USA, 2001. ACM.

[BGJL06] John Burgess, Brian Gallagher, David Jensen, and Brian N. Levine. Max-

Prop: Routing for Vehicle-Based Disruption-Tolerant Networking. In Pro-

ceedings of IEEE Infocom 2006, Barcelona, Spain, April 2006.

[BHT+03] S. Burleigh, A. Hooke, L. Torgerson, K. Fall, V. Cerf, B. Durst, K. Scott,

147

and H. Weiss. Delay-tolerant networking: an approach to interplanetary

internet. Communications Magazine, IEEE, 41(6):128–136, June 2003.

[BHvR05a] Rimon Barr, Zygmunt J. Haas, and Robbert van Renesse. Jist: an effi-

cient approach to simulation using virtual machines. Softw., Pract. Exper.,

35(6):539–576, 2005.

[BHvR05b] Rimon Barr, Zygmunt J. Haas, and Robbert van Renesse. Scalable Wireless

Ad hoc Network Simulation, chapter 19, pages 297–311. CRC Press, August

2005.

[BMJ+98] Josh Broch, David A. Maltz, David B. Johnson, Yih-Chun Hu, and Jor-

jeta Jetcheva. A performance comparison of multi-hop wireless ad hoc net-

work routing protocols. In MobiCom ’98: Proceedings of the 4th annual

ACM/IEEE international conference on Mobile computing and networking,

pages 85–97, New York, NY, USA, 1998. ACM.

[BPC+07] Paolo Baronti, Prashant Pillai, Vince W.C. Chook, Stefano Chessa, Alberto

Gotta, and Y. Fun Hu. Wireless sensor networks: A survey on the state of

the art and the 802.15.4 and zigbee standards. Computer Communications,

30(7):1655 – 1695, 2007. Wired/Wireless Internet Communications.

[BRCMGCRH08] J.C. Burguillo-Rial, E. Costa-Montenegro, F. Gil-Castineira, and

P. Rodriguez-Hernandez. Performance analysis of ieee 802.11p in urban envi-

ronments using a multi-agent model. In Personal, Indoor and Mobile Radio

Communications, 2008. PIMRC 2008. IEEE 19th International Symposium

on, pages 1 –6, sept. 2008.

[BTAH04] L Bull, A Tomlinson, Jd Addison, and Bg Heydecker. Towards distributed

adaptive control for road traffic junction signals using learning classifier sys-

tems. In In L. Bull, pages 276–299. Springer, 2004.

[CB05] David R. Choffnes and Fabián E. Bustamante. An integrated mobility and

traffic model for vehicular wireless networks. In Proceedings of the 2nd ACM

148

international workshop on Vehicular ad hoc networks, VANET ’05, pages

69–78, New York, NY, USA, 2005. ACM.

[CBD02] Tracy Camp, Jeff Boleng, and Vanessa Davies. A survey of mobility models

for ad hoc network research. Wireless Communications and Mobile Com-

puting, pages 483–502, 2002.

[CBH+01] V. Cerf, S. Burleigh, A. Hooke, L. Torgerson, R. Durst, K. Scott, E. Travis,

and H. Weiss. Interplanetary internet (ipn): architectural definition, 2001.

[CCC+06] Liwei Chan, Jirung Chiang, Yichao Chen, Chianan Ke, Jane Hsu, and Hao-

hua Chu. Collaborative localization – enhancing wifi-based position esti-

mation with neighborhood. In Links in Clusters, Proc. International Conf.

Pervasive Computing (Pervasive 06, pages 50–66, 2006.

[CCL+11] Francesco Calabrese, Massimo Colonna, Piero Lovisolo, Dario Parata, and

Carlo Ratti. Real-time urban monitoring using cell phones: A case study in

rome. IEEE Transactions on Intelligent Transportation Systems, 12(1):141–

151, 2011.

[CD96] Gordon D. B. Cameron and Gordon I. D. Duncan. Paramics: Parallel micro-

scopic simulation of road traffic. The Journal of Supercomputing, 10:25–53,

1996. 10.1007/BF00128098.

[Cha99] Xinjie Chang. Network simulations with OPNET. In Simulation Conference

Proceedings, 1999 Winter, volume 1, pages 307 –314 vol.1, 1999.

[CMK+11] Stephen Checkoway, Damon McCoy, Brian Kantor, Danny Anderson, Hovav

Shacham, Stefan Savage, Karl Koscher, Alexei Czeskis, Franziska Roesner,

and Tadayoshi Kohno. Comprehensive experimental analyses of automotive

attack surfaces. In Proceedings of the 20th USENIX conference on Security,

SEC’11, pages 6–6, Berkeley, CA, USA, 2011. USENIX Association.

[CRK08] Francesco Calabrese, Carlo Ratti, and Kristian Kloeckl. Wikicity: Real-

time location-sensitive tools for the city. Handbook of Research on Urban

Informatics: The practice and Promise of the Real-Time City, 2008.

149

[DGH+87] Alan Demers, Dan Greene, Carl Hauser, Wes Irish, John Larson, Scott

Shenker, Howard Sturgis, Dan Swinehart, and Doug Terry. Epidemic al-

gorithms for replicated database maintenance. In PODC ’87: Proceedings

of the sixth annual ACM Symposium on Principles of distributed computing,

pages 1–12, New York, NY, USA, 1987. ACM.

[Dij59] E. W. Dijkstra. A note on two problems in connexion with graphs. Nu-

merische Mathematik, 1(1):269–271, December 1959.

[DMEP05] Arnaud Doniec, Ren M, Stphane Espi, and Sylvain Piechowiak. S.: Dealing

with multi-agent coordination by anticipation: Application to the traffic

simulation at junctions. In: EUMAS, 2005:478–479, 2005.

[DMP+10] Tathagata Das, Prashanth Mohan, Venkata N. Padmanabhan, Ramachan-

dran Ramjee, and Asankhaya Sharma. Prism: platform for remote sensing

using smartphones. In Proceedings of the 8th international conference on

Mobile systems, applications, and services, MobiSys ’10, pages 63–76, New

York, NY, USA, 2010. ACM.

[DS04] Kurt Dresner and Peter Stone. Multiagent traffic management: A

reservation-based intersection control mechanism. In Proceedings of the

Third International Joint Conference on Autonomous Agents and Multia-

gent Systems - Volume 2, AAMAS ’04, pages 530–537, Washington, DC,

USA, 2004. IEEE Computer Society.

[DSSW09] Daniel Delling, Peter Sanders, Dominik Schultes, and Dorothea Wagner. En-

gineering route planning algorithms. In Algorithmics of Large and Complex

Networks. Springer, 2009.

[DSW06] A. G. Dimakis, A. D. Sarwate, and M. Wainwright. Geographic gossip :

Efficient aggregation for sensor networks. In 5th International Symposium

on Information Processing in Sensor Networks (IPSN 2006), Nashville, TN,

April 2006.

[EDH+96] Thomas Ewing, Ezzat Doss, Ulf Hanebutte, Thomas Canfield, Alenka Brown

150

van Hoozer, and Adrian Tentner. Argonne simulation framework for

intelligent transportation systems. http://www.osti.gov/bridge/

servlets/purl/219342-RDvURk/webviewable/219342.pdf , April

1996.

[EGH+08] Jakob Eriksson, Lewis Girod, Bret Hull, Ryan Newton, Samuel Madden, and

Hari Balakrishnan. The pothole patrol: using a mobile sensor network for

road surface monitoring. In Proceeding of the 6th international conference

on Mobile systems, applications, and services, MobiSys ’08, pages 29–39,

New York, NY, USA, 2008. ACM.

[Eic07] S. Eichler. Performance evaluation of the ieee 802.11p wave communication

standard. In Vehicular Technology Conference, 2007. VTC-2007 Fall. 2007

IEEE 66th, pages 2199 –2203, oct 2007.

[Enk03] W. Enkelmann. Fleetnet - applications for inter-vehicle communication. In

Intelligent Vehicles Symposium, 2003. Proceedings. IEEE, pages 162 – 167,

june 2003.

[EP05] Nathan Eagle and Alex (Sandy) Pentland. CRAWDAD

data set mit/reality (v. 2005-07-01). Downloaded from

http://crawdad.cs.dartmouth.edu/mit/reality, July 2005.

[Fal03] Kevin Fall. A delay-tolerant network architecture for challenged internets.

In Proceedings of the 2003 conference on Applications, technologies, archi-

tectures, and protocols for computer communications, SIGCOMM ’03, pages

27–34, New York, NY, USA, 2003. ACM.

[FFCa+10] Michel Ferreira, Ricardo Fernandes, Hugo Conceição, Wantanee Viriyasita-

vat, and Ozan K. Tonguz. Self-organized traffic control. In Proceedings of

the seventh ACM international workshop on VehiculAr InterNETworking,

VANET ’10, pages 85–90, New York, NY, USA, 2010. ACM.

[FGH+06] Richard M. Fujimoto, Randall Guensler, Michael P. Hunter, Hao

Wu, Mahesh Palekar, Jaesup Lee, and Joonho Ko. CRAW-

151

DAD data set gatech/vehicular (v. 2006-03-15). Downloaded from

http://crawdad.cs.dartmouth.edu/gatech/vehicular, March 2006.

[FHFB07] Marco Fiore, Jerome Harri, Fethi Filali, and Christian Bonnet. Vehicular

mobility simulation for vanets. In Proceedings of the 40th Annual Simulation

Symposium, pages 301–309, Washington, DC, USA, 2007. IEEE Computer

Society.

[For11] Ford Motor Company. Ford’s intelligent vehicles, 2011. [Online; accessed

October-2011].

[FP05] E. Ferro and F. Potorti. Bluetooth and wi-fi wireless protocols: a survey and

a comparison. Wireless Communications, IEEE, 12(1):12 – 26, feb. 2005.

[FyLBS+06] Alaeddine El Fawal, Jean yves Le Boudec, Kave Salamatian, A. Self, and

Limiting Epidemic Service. Self-limiting epidemic forwarding. Technical

report, In the First IEEE WoWMoM Workshop on Autonomic and Oppor-

tunistic Communications, 2006.

[GBT+09] Dominic Greenwood, Branislav Burdiliak, Ivan Trencansky, Hartmut Arm-

bruster, and Christian Dannegger. Greenwave distributed traffic intersection

control. In Proceedings of The 8th International Conference on Autonomous

Agents and Multiagent Systems - Volume 2, AAMAS ’09, pages 1413–1414,

Richland, SC, 2009. International Foundation for Autonomous Agents and

Multiagent Systems.

[GC08] B.S. Gukhool and S. Cherkaoui. Ieee 802.11p modeling in ns-2. In Local

Computer Networks, 2008. LCN 2008. 33rd IEEE Conference on, pages 622

–626, oct. 2008.

[GE68] D.C. Gazis and L.C. Edie. Traffic flow theory. Proceedings of the IEEE,

56(4):458 – 471, april 1968.

[GK06] A. Giridhar and P.R. Kumar. Scheduling automated traffic on a network of

roads. Vehicular Technology, IEEE Transactions on, 55(5):1467 –1474, sep.

2006.

152

[GM57] H.H. Goode and R.E. Machol. System engineering: an introduction to the

design of large-scale systems. McGraw-Hill series in control systems engi-

neering. McGraw-Hill, 1957.

[Gol10] Jennifer Golbeck. Computing with Social Trust. Springer Publishing Com-

pany, Incorporated, 2010.

[Goo07] Michael F. Goodchild. Citizens as voluntary sensors: spatial data infras-

tructure in the world of web 2.0. International Journal of Spatial Data

Infrastructures Research, pages 24–32, 2007.

[Goo11] Google. Google maps. http://maps.google.com , October 2011.

[GPR+10] G.P. Grau, D. Pusceddu, S. Rea, O. Brickley, M. Koubek, and D. Pesch.

Vehicle-2-vehicle communication channel evaluation using the cvis plat-

form. In Communication Systems Networks and Digital Signal Processing

(CSNDSP), 2010 7th International Symposium on, pages 449 –453, july

2010.

[Hai63] Frank A. Haight. Mathematical theories of traffic flow / [by] Frank A. Haight.

Academic Press, New York :, 1963.

[HBZ+06] Bret Hull, Vladimir Bychkovsky, Yang Zhang, Kevin Chen, Michel

Goraczko, Allen Miu, Eugene Shih, Hari Balakrishnan, and Samuel Mad-

den. Cartel: a distributed mobile sensor computing system. In In 4th ACM

SenSys, pages 125–138, 2006.

[Hel01] Dirk Helbing. Traffic and related self-driven many-particle systems. Reviews

of Modern Physics, 73:1067, 2001.

[HFB09] J. Harri, F. Filali, and C. Bonnet. Mobility models for vehicular ad hoc net-

works: a survey and taxonomy. Communications Surveys Tutorials, IEEE,

11(4):19 –41, 2009.

[HFBF06] J. Harri, F. Filali, C. Bonnet, and Marco Fiore. Vanetmobisim: generating

realistic mobility patterns for vanets. In Proceedings of the 3rd international

153

workshop on Vehicular ad hoc networks, VANET ’06, pages 96–97, New

York, NY, USA, 2006. ACM.

[HFI+07] M. Hayashi, S. Fukuzawa, H. Ichikawa, T. Kawato, J. Yamada, T. Tsuboi,

S. Matsui, and T. Maruyama. Development of vehicular communication

(wave) system for safety applications. In Telecommunications, 2007. ITST

’07. 7th International Conference on ITS, pages 1 –5, june 2007.

[HJ08] Ólafur Ragnar Helgason and Kristján Valur Jónsson. Opportunistic net-

working in omnet++. In Simutools ’08: Proceedings of the 1st interna-

tional conference on Simulation tools and techniques for communications,

networks and systems and workshops, pages 1–8, ICST, Brussels, Belgium,

Belgium, 2008. ICST (Institute for Computer Sciences, Social-Informatics

and Telecommunications Engineering).

[HKH07] Visit Hirankitti, Jaturapith Krohkaew, and Christopher J. Hogger. A multi-

agent approach for intelligent traffic-light control. In World Congress on

Engineering, pages 116–121, 2007.

[HKHL10] Kai-Yun Ho, Po-Chun Kang, Chung-Hsien Hsu, and Ching-Hai Lin. Imple-

mentation of wave/dsrc devices for vehicular communications. In Computer

Communication Control and Automation (3CA), 2010 International Sym-

posium on, volume 2, pages 522 –525, may 2010.

[HLP11] I.W.-H. Ho, K.K. Leung, and J.W. Polak. Stochastic model and connectivity

dynamics for vanets in signalized road systems. Networking, IEEE/ACM

Transactions on, 19(1):195 –208, feb. 2011.

[HRBW81] P. B. Hunt, D. I. Robertson, R. D. Bretherton, and R. I. Winton. SCOOT: A

traffic responsive method of coordinating signals. Technical report, TRRL,

1981.

[HWH+10] Juan C. Herrera, Daniel B. Work, Ryan Herring, Xuegang (Jeff) Ban, Quinn

Jacobson, and Alexandre M. Bayen. Evaluation of traffic data obtained via

154

gps-enabled mobile phones: The mobile century field experiment. Trans-

portation Research Part C: Emerging Technologies, 18(4):568 – 583, 2010.

[IEE10] IEEE. IEEE Standard for Wireless Access in Vehicular Environments

(WAVE) - Networking Services. IEEE Std 1609.3-2010 (Revision of IEEE

Std 1609.3-2007), pages 1 –144, 30 2010.

[Ino76] H. Inose. Road-traffic control with the particular reference to tokyo traffic

control and surveillance system. Proceedings of the IEEE, 64(7):1028 – 1039,

july 1976.

[Int08] Internet Society. Internet protocol, version 6 (ipv6) specification, 2008. [On-

line; accessed October-2011].

[JD08] D. Jiang and L. Delgrossi. Ieee 802.11p: Towards an international stan-

dard for wireless access in vehicular environments. In Vehicular Technology

Conference, 2008. VTC Spring 2008. IEEE, pages 2036 –2040, may 2008.

[Jen08] E.J. Jenkins. To scale: one hundred urban plans. Routledge, 2008.

[JHP+03] Jorjeta G. Jetcheva, Yih-Chun Hu, Santashil PalChaudhuri, Amit Kumar

Saha, and David B. Johnson. Crawdad data set rice/ad-hoc-city (v. 2003-09-

11). Downloaded from http://crawdad.cs.dartmouth.edu/rice/ad-hoc-city,

sep 2003.

[Kaw09] Nobuo Kawaguchi. Wifi location information system for both indoors and

outdoors. In Proceedings of the 10th International Work-Conference on

Artificial Neural Networks: Part II: Distributed Computing, Artificial In-

telligence, Bioinformatics, Soft Computing, and Ambient Assisted Living,

IWANN ’09, pages 638–645. Springer-Verlag, Berlin, Heidelberg, 2009.

[KCR+10] Karl Koscher, Alexei Czeskis, Franziska Roesner, Shwetak Patel, Tadayoshi

Kohno, Stephen Checkoway, Damon McCoy, Brian Kantor, Danny Ander-

son, Hovav Shacham, and Stefan Savage. Experimental security analysis

of a modern automobile. In Proceedings of the 2010 IEEE Symposium on

155

Security and Privacy, SP ’10, pages 447–462, Washington, DC, USA, 2010.

IEEE Computer Society.

[KH95] Douglas A. Kurtze and Daniel C. Hong. Traffic jams, granular flow, and

soliton selection. Phys. Rev. E, 52(1):218–221, Jul 1995.

[Kim07] Hyoungsoo Kim. A Simulation Framework for Traffic Information Dissem-

ination in Ubiquitous Vehicular Ad hoc Networks. PhD thesis, University of

Maryland, 2007.

[KOK09] Ari Keränen, Jörg Ott, and Teemu Kärkkäinen. The one simulator for dtn

protocol evaluation. In SIMUTools ’09: Proceeding of the 2nd International

Conference on Simulation Tools and Techniques, New York, NY, USA, 2009.

ACM.

[Kom10] Paul Kompfner. Cooperative urban mobility handbook, 2010.

[KPM11] Emmanouil Koukoumidis, Li-Shiuan Peh, and Margaret Rose Martonosi.

Signalguru: leveraging mobile phones for collaborative traffic signal sched-

ule advisory. In Proceedings of the 9th international conference on Mobile

systems, applications, and services, MobiSys ’11, pages 127–140, New York,

NY, USA, 2011. ACM.

[Kri08] Rajesh Krishnan. Travel time estimation and forecasting on urban roads.

PhD thesis, Imperial College London, 2008.

[KS07] Frank Kargl and Elmar Schoch. Simulation of manets: a qualitative com-

parison between jist/swans and ns-2. In Proceedings of the 1st international

workshop on System evaluation for mobile platforms, MobiEval ’07, pages

41–46, New York, NY, USA, 2007. ACM.

[KSB09] Jonghyun Kim, Vinay Sridhara, and Stephan Bohacek. Realistic mobility

simulation of urban mesh networks. Ad Hoc Networks, 7(2):411 – 430, 2009.

[LCM09a] Ilias Leontiadis, Paolo Costa, and Cecilia Mascolo. A hybrid approach

for content-based publish/subscribe in vehicular networks. Pervasive Mob.

Comput., 5:697–713, December 2009.

156

[LCM09b] Ilias Leontiadis, Paolo Costa, and Cecilia Mascolo. Persistent content-based

information dissemination in hybrid vehicular networks. In Proceedings of

the 2009 IEEE International Conference on Pervasive Computing and Com-

munications, pages 1–10, Washington, DC, USA, 2009. IEEE Computer So-

ciety.

[Leo09] Ilias Leontiadis. A Content Dissemination Framework for Vehicular Net-

working. PhD thesis, University College London, 2009.

[Lew74] G.H. Lewes. Problems of life and mind. Number v. 1 in Problems of Life

and Mind. Trubner & co., 1874.

[LH08] Stefan Lammer and Dirk Helbing. Self-control of traffic lights and vehicle

flows in urban road networks. Journal of Statistical Mechanics-theory and

Experiment, 2008.

[LHT+03] C. Lochert, H. Hartenstein, J. Tian, H. Fussler, D. Hermann, and M. Mauve.

A routing strategy for vehicular ad hoc networks in city environments. In

Intelligent Vehicles Symposium, 2003. Proceedings. IEEE, pages 156 – 161,

june 2003.

[Lit09] Todd Litman. Transportation cost and benefit analysis techniques, estimates

and implications, January 2009.

[LJC+00] Jinyang Li, John Jannotti, Douglas S. J. De Couto, David R. Karger, and

Robert Morris. A scalable location service for geographic ad hoc routing.

In MobiCom ’00: Proceedings of the 6th annual international conference

on Mobile computing and networking, pages 120–130, New York, NY, USA,

2000. ACM.

[LLK99] Jee-Hyong Lee and Hyung Lee-Kwang. Distributed and cooperative fuzzy

controllers for traffic intersections group. IEEE Transactions on Systems,

Man, and Cybernetics, Part C, 29(2):263–271, 1999.

[LM07] Ilias Leontiadis and Cecilia Mascolo. GeOpps: Opportunistic Geographi-

cal Routing for Vehicular Networks. In Proceedings of the IEEE Workshop

157

on Autonomic and Opportunistic Communications. (Colocated with WOW-

MOM07), Helsinki, Finland, June 2007. IEEE Press.

[LMP+07] Massimiliano Lenardi, Cornelius Menig, Timo Peichl, Matthias Rckl, Di-

eter Seeberger, Markus Straberger, Hannes Stratil, Hans-Jrg Vgel, Benjamin

Weyl, and Wenhui Zhang. Car-2-Car Communication Consortium - Mani-

festo. DLR Electronic Library, 2007.

[Low82] P.R. Lowrie. Scats: Sydney coordinated adaptive traffic system - a traffic

responsive method of controlling urban traffic, 1982.

[LW07] Fan Li and Yu Wang. Routing in vehicular ad hoc networks: A survey.

Vehicular Technology Magazine, IEEE, 2(2):12 –22, june 2007.

[Mah07] Ratul Mahajan. CRAWDAD trace set microsoft/-

vanlan/connectivity (v. 2007-09-14). Downloaded from

http://crawdad.cs.dartmouth.edu/microsoft/vanlan/connectivity, Septem-

ber 2007.

[Mas06] Massachusetts Department of Transportation. Design build procurement

guide. http://www.mhd.state.ma.us/downloads/designGuide/

CH_6_a.pdf , January 2006.

[MBD10] Leonardo Mostarda, Rudi Ball, and Naranker Dulay. Distributed Fault Tol-

erant Controllers. In 10th IFIP international conference on Distributed Ap-

plications and Interoperable Systems (DAIS), Lecture Notes in Computer

Science, May 2010.

[MGL04] Prasant Mohapatra, Chao Gui, and Jian Li. Group communications in

mobile ad hoc networks. Computer, 37:52–59, 2004.

[MI04] Daniel Mahrenholz and Svilen Ivanov. Real-time network emulation with

ns-2. In Proceedings of the 8th IEEE International Symposium on Dis-

tributed Simulation and Real-Time Applications, pages 29–36, Washington,

DC, USA, 2004. IEEE Computer Society.

158

[MK94] Sadayoshi Mikami and Yukinori Kakazu. Genetic reinforcement learning for

cooperative traffic signal control. In International Conference on Evolution-

ary Computation, pages 223–228, 1994.

[MKDL+11] M. Martino, K. Kloeckl, G. Di Lorenzo, J. Dunnam, E.R. Kang, and C Ratti.

syn(c)ity: Vizualising the potential of a predictive in-car recommendation

system. http://senseable.mit.edu/papers/pdf/2010_Martino_

et_al_Syn(c)ity_Internet_of_things.pdf , December 2011.

[MM09] M. Musolesi and C. Mascolo. Car: Context-aware adaptive routing for

delay-tolerant mobile networks. Mobile Computing, IEEE Transactions on,

8(2):246–260, Feb. 2009.

[MNBJ11] Bharati Mishra, Priyadarshini Nayak, Subhashree Behera, and Debasish

Jena. Security in vehicular adhoc networks: a survey. In Proceedings of

the 2011 International Conference on Communication, Computing &

Security, ICCCS ’11, pages 590–595, New York, NY, USA, 2011. ACM.

[MPR08] Prashanth Mohan, Venkata N. Padmanabhan, and Ramachandran Ram-

jee. Nericell: rich monitoring of road and traffic conditions using mobile

smartphones. In Proceedings of the 6th ACM conference on Embedded net-

work sensor systems, SenSys ’08, pages 323–336, New York, NY, USA, 2008.

ACM.

[MWH01] Martin Mauve, Jrg Widmer, and Hannes Hartenstein. A survey on position-

based routing in mobile ad-hoc networks. IEEE Network, 15:30–39, 2001.

[MWS+05] Rahul Mangharam, Daniel S. Weller, Daniel D. Stancil, Ragunathan Rajku-

mar, and Jayendra S. Parikh. Groovesim: a topography-accurate simulator

for geographic routing in vehicular networks. In Proceedings of the 2nd

ACM international workshop on Vehicular ad hoc networks, VANET ’05,

pages 59–68, New York, NY, USA, 2005. ACM.

[NBB99] Kai Nagel, Richard L. Beckman, and Christopher L. Barrett. Transims

for transportation planning. In In 6th Int. Conf. on Computers in Urban

159

Planning and Urban Management. Addison-Wesley, Reading,Massachusetts,

1999.

[NBG06a] Valery Naumov, Rainer Baumann, and Thomas Gross. An evaluation of

inter-vehicle ad hoc networks based on realistic vehicular traces. In Proceed-

ings of the 7th ACM international symposium on Mobile ad hoc networking

and computing, MobiHoc ’06, pages 108–119, New York, NY, USA, 2006.

ACM.

[NBG06b] Valery Naumov, Rainer Baumann, and Thomas Gross. An evaluation of

inter-vehicle ad hoc networks based on realistic vehicular traces. In MobiHoc

’06: Proceedings of the 7th ACM international symposium on Mobile ad hoc

networking and computing, pages 108–119, New York, NY, USA, 2006. ACM.

[NBH+11] M. Naphade, G. Banavar, C. Harrison, J. Paraszczak, and R. Morris.

Smarter cities and their innovation challenges. Computer, 44(6):32 –39,

june 2011.

[NDM+89] R.E. Neilan, T.H. Dixon, T.K. Meehan, W.G. Melbourne, J.A. Scheid, J.N.

Kellogg, and J.L. Stowell. Operational aspects of casa uno ’88-the first large

scale international gps geodetic network. Instrumentation and Measurement,

IEEE Transactions on, 38(2):648 –651, apr 1989.

[Ope11] Open Street Maps. Open Street Maps. http://www.osm.org , October

2011.

[OZRM00] L.E. Owen, Yunlong Zhang, Lei Rao, and G. McHale. Traffic flow simulation

using corsim. In Simulation Conference Proceedings, 2000. Winter, volume 2,

pages 1143 –1147 vol.2, 2000.

[Par09] Parliamentary Office of Science and Technology. Intelligent Transport Sys-

tems. http://www.parliament.uk/documents/post/postpn322.pdf, January

2009. [Online; accessed October-2011].

[PDAV08] H Van Dyke Parunak, Ph D, Ann Arbor, and Raymond S Vanderbok.

160

Managing emergent behavior in distributed control systems 1. Control,

1001(2007):1–8, 2008.

[PGHC99] G. Pei, M. Gerla, X. Hong, and C.-C. Chiang. A wireless hierarchical routing

protocol with group mobility. In Wireless Communications and Networking

Conference, 1999. WCNC. 1999 IEEE, pages 1538 –1542 vol.3, 1999.

[PH09] S.W. Peters and R.W. Heath. The future of wimax: Multihop relaying with

ieee 802.16j. Communications Magazine, IEEE, 47(1):104 –111, january

2009.

[PHL+10] Santi Phithakkitnukoon, Teerayut Horanont, Giusy Di Lorenzo, Ryosuke

Shibasaki, and Carlo Ratti. Activity-aware map: Identifying human daily

activity pattern using mobile phone data. In HBU, pages 14–25, 2010.

[PJP09] Giovanni Petri, Henrik Jeldtoft Jensen, and John W Polak. Global and local

information in traffic congestion. Europhysics Letters, 88(2):4, 2009.

[PRL+08] M. Piórkowski, M. Raya, A. Lezama Lugo, P. Papadimitratos, M. Gross-

glauser, and J.-P. Hubaux. Trans: realistic joint traffic and network sim-

ulator for vanets. SIGMOBILE Mob. Comput. Commun. Rev., 12:31–33,

January 2008.

[PS96] B.W. Parkinson and J.J. Spilker. Global positioning system: theory and

applications. Number v. 1; v. 163 in Progress in astronautics and aeronautics.

American Institute of Aeronautics and Astronautics, 1996.

[QWDFZ11] Bo Qin, Qianhong Wu, Josep Domingo-Ferrer, and Lei Zhang. Preserving

security and privacy in large-scale vanets. In ICICS, pages 121–135, 2011.

[Rey87] Craig W. Reynolds. Flocks, herds and schools: A distributed behavioral

model. In SIGGRAPH ’87: Proceedings of the 14th annual conference on

Computer graphics and interactive techniques, pages 25–34, New York, NY,

USA, 1987. ACM.

[Rob05] Steve Robinson. The development and application of an urban link travel

161

time model using data derived from inductive loop detectors. PhD thesis,

Imperial College London, 2005.

[Rog07] R.M. Rogers. Applied mathematics in integrated navigation systems. AIAA

education series. American Institute of Aeronautics and Astronautics, 2007.

[Ros85] Robert Rosen. Anticipatory Systems: Philosophical, Mathematical and

Methodological Foundations. Pergamon, 1985.

[RT11] Carlo Ratti and Anthony Townsend. Harnessing Residents’ Electronic De-

vices Will Yield Truly Smart Cities. Scientific American, August 2011.

[Sch88] Herb Schwetman. Using csim to model complex systems. In Proceedings of

the 20th conference on Winter simulation, WSC ’88, pages 246–253, New

York, NY, USA, 1988. ACM.

[SHCD06] J. Scott, P. Hui, J. Crowcroft, and C. Diot. Haggle: A Networking Archi-

tecture Designed Around Mobile Users. IFIP Conference on Wireless On

demand Network Systems (WONS 2006), 2006.

[Sie11] Kurt Sievers. Nxp demonstrates new car-to-x communication platform,

2011. [Online; accessed October-2011].

[SKY99] Teo Lian Seng, Marzuki Khalid, and Rubiyah Yusof. Tuning of a neuro-fuzzy

controller by genetic algorithms with an application to a coupled-tank liquid-

level control system. IEEE Transactions on Systems, Man and Cybernetics,

Part B: Cybernetics, 29:226–236, 1999.

[SMBI10] M. Slavik, I. Mahgoub, A. Badi, and M. Ilyas. Design and implemen-

tation of parallel jist to support distributed wireless network simulation.

In High-Capacity Optical Networks and Enabling Technologies (HONET),

2010, pages 154 –160, dec. 2010.

[SMR05] I. Stepanov, P.J. Marron, and K. Rothermel. Mobility modeling of outdoor

scenarios for manets. In Simulation Symposium, 2005. Proceedings. 38th

Annual, pages 312 – 322, april 2005.

162

[SN09] T. Sukuvaara and P. Nurmi. Wireless traffic service platform for combined

vehicle-to-vehicle and vehicle-to-infrastructure communications. Wireless

Communications, IEEE, 16(6):54 –61, december 2009.

[SPR05] Thrasyvoulos Spyropoulos, Konstantinos Psounis, and Cauligi S. Raghaven-

dra. Spray and wait: an efficient routing scheme for intermittently con-

nected mobile networks. In WDTN ’05: Proceedings of the 2005 ACM SIG-

COMM workshop on Delay-tolerant networking, pages 252–259, New York,

NY, USA, 2005. ACM.

[SRB+10] Enrico Scalavino, Giovanni Russello, Rudi Ball, Vaibhav Gowadia, and

Emil C. Lupu. An opportunistic authority evaluation scheme for data secu-

rity in crisis management scenarios. In Proceedings of the 5th ACM Sympo-

sium on Information, Computer and Communications Security, ASIACCS

’10, pages 157–168, New York, NY, USA, 2010. ACM.

[SSV08] Peter Sanders, Dominik Schultes, and Christian Vetter. Mobile route plan-

ning. In Proceedings of the 16th Annual European symposium on Algorithms,

ESA ’08, pages 732–743, Berlin, Heidelberg, 2008. Springer-Verlag.

[Ste90] Luc Steels. Towards a theory of emergent functionality. In Proceedings of

the first international conference on simulation of adaptive behavior on From

animals to animats, pages 451–461, Cambridge, MA, USA, 1990. MIT Press.

[Sus05] J.M. Sussman. Perspectives on intelligent transportation systems (ITS).

Springer Science+Business Media, 2005.

[SV00] Peter Stone and Manuela Veloso. Multiagent systems: A survey from

a machine learning perspective. Autonomous Robots, 8:345–383, 2000.

10.1023/A:1008942012299.

[TFD98] H. Taale, W.C.M. Fransen, and J. Dibbits. The second assessment of the

scoot system in nijmegen. In Road Transport Information and Control, 1998.

9th International Conference on (Conf. Publ. No. 454), pages 109 – 113,

April 1998.

163

[THB+02] Jing Tian, J. Hahner, C. Becker, I. Stepanov, and K. Rothermel. Graph-

based mobility model for mobile ad hoc network simulation. In Simulation

Symposium, 2002. Proceedings. 35th Annual, pages 337 – 344, april 2002.

[Thi11] Kyle Thibaut. Ford’s V2V System Helps Driver Avoid Colli-

sions. http://translogic.aolautos.com/2011/06/22/

fords-v2v-system-helps-driver-avoid-collisions-vide o,

2011.

[Tho04] C. Thompson. Everything is alive. Internet Computing, IEEE, 8(1):83 – 86,

jan-feb 2004.

[Thr10] Sebastian Thrun. What we‘re driving at.

http://googleblog.blogspot.com/2010/10/what-were-driving-at.html, 2010.

[Online; accessed October-2011].

[TIG04] TIGER/Line. Us geological survey (usgs) topographic maps, 2004.

[Tru04] S.A. True. Planning the future of the world geodetic system 1984. In Position

Location and Navigation Symposium, 2004. PLANS 2004, pages 639 – 648,

april 2004.

[TvA01] C. Tampere and B. van Arem. Traffic flow theory and its applications in

automated vehicle control: a review. In Intelligent Transportation Systems,

2001. Proceedings. 2001 IEEE, pages 391 –397, 2001.

[TVB09] O.K. Tonguz, W. Viriyasitavat, and Fan Bai. Modeling urban traffic: A

cellular automata approach. Communications Magazine, IEEE, 47(5):142

–150, may 2009.

[Var93] Pravin Varaiya. Smart cars on smart roads: Problems of control. IEEE

Transactions on Automatic Control, 38:195–207, 1993.

[VB00] A. Vahdat and D. Becker. Epidemic routing for partially connected ad hoc

networks, 2000.

164

[Vic00] R. Vickerman. Evaluation methodologies for transport projects in the united

kingdom. Transport Policy, 7(1):7 – 16, 2000.

[Vin75] Thaddeus Vincenty. Direct and inverse solutions of geodesics on the ellipsoid

with application of nested equations. Survey Review, XXII, April 1975.

[VVPV97] H. Van, Raymond S. VanderBok, H. Van Dyke Parunak, and Ph. D. Ray-

mond S. V. Managing emergent behavior in distributed control systems,

1997.

[Waz11] Waze. Real-time maps and traffic information based on the wisdom of the

crowd. http://www.waze.com, 2011. [Online; accessed October-2011].

[WBT+10] Daniel B. Work, Sbastien Blandin, Olli-Pekka Tossavainen, Benedetto Pic-

coli, and Alexandre M. Bayen. A traffic model for velocity data assimilation.

Applied Mathematics Research eXpress, 2010(1):1–35, 2010.

[Wei99] G. Weiss. Multiagent systems: a modern approach to distributed artificial

intelligence. Intelligent Robotics and Autonomous Agents. MIT Press, 1999.

[WER+03] L. Wischoff, A. Ebner, H. Rohling, M. Lott, and R. Halfmann. Sotis - a self-

organizing traffic information system. In Vehicular Technology Conference,

2003. VTC 2003-Spring. The 57th IEEE Semiannual, volume 4, pages 2442

– 2446 vol.4, april 2003.

[YLL+10] Qing Yang, Alvin Lim, Shuang Li, Jian Fang, and Prathima Agrawal. Acar:

Adaptive connectivity aware routing for vehicular ad hoc networks in city

scenarios. Mob. Netw. Appl., 15:36–60, February 2010.

[YLN03] J. Yoon, M. Liu, and B. Noble. Random waypoint considered harmful.

In INFOCOM 2003. Twenty-Second Annual Joint Conference of the IEEE

Computer and Communications. IEEE Societies, volume 2, pages 1312 –

1321 vol.2, march-3 april 2003.

[Zan09] Paul A Zandbergen. Accuracy of iphone locations: A comparison of assisted

gps, wifi and cellular positioning. Transactions in GIS, 13:5–25, 2009.

165

A. Framework

The following appendix provides extra detail about the structure and operation of the Geo-

graphic Urban Simulator (GUS).

A.1. GUS Architecture and Execution

The Geographic Urban Simulator is an extension for the JiST platform. The combined JiST-

GUS simulator comprises 104,301 lines of code, where the GUS extension makes up 32.4%

of the simulator. Figure A.1 shows the object hierarchy. Benchmark simulations supported

vehicle populations of up to 2218 vehicles per square kilometer. For comparison, the city of

San Francisco typically deals with populations of about 3800 vehicles per square kilometer on

a busy day. Due to resource constraints GUS has not been run with larger vehicle populations.

Simulating large vehicle populations requires days of simulation. The GUS does not support

parallel simulation, as JiST does not support it. However, work by Slavik et al. [SMBI10],

has sought to enhance JiST for parallel computing, where clusters could be used to simulate

a geographic region of a more extended road network. All experiments within the thesis were

conducted on an Intel Core 2 Duo T9600 chip-set with two 2.8 GHz processors, supporting

3.72 GB of usable RAM. The GUS was run on Windows 7 64-bit. Simulations took place over

hours, depending on the vehicle population size. The JVM typically used a maximum of 283

MB of memory during each simulation.

A single GUS simulation generates gigabytes worth of data depending on the length of a

simulation scenario. The default simulation length was 3600 seconds (60 minutes of simulation

time), where the GUS cycled every 100 milliseconds. This results in 36000 cycles per simulation

of a single vehicle and about 36 million protocol cycles for a community of 1000 vehicles. The

GUS recorded measurements for each messaging contact and mobility data, such that trace

166

Figure A.1.: Geographic Urban Simulator (GUS) object architecture.

167

analysis and visualisation could occur post simulation. A number of helping tools are used to

interpret data such as messaging interactions, dependencies and mobility. To handle these large

amounts of data the GUS uses a MySQL database to store data. The database was also used

to enable the simulation of larger vehicle populations, where memory limits where exceeded.

The trade-off of using the database as an intermediary message store was such that simulation

performance deteriorated. Messages which were normally cached in memory were now cached

on disk and thus the read-write disk accesses increased as well as slowed the simulation process.

Simulation parameters were provided as keyword command-line inputs or files. For instance,

mobility traces provided using file inputs (for example London-traces.txt).

Listing A.1: Simulation parameters.

1 java jist.runtime.Main -Xms128m -Xmx512m simulator.Main

2 end=3600000

3 numpeers=200

4 commrange=250

5 mobility=London-traces.txt

6 broadcastinterval=5000

7 dropRecM=50

In the command-line example provided (Listing A.1), end specifies the duration of the

simulation, numpeers the vehicle population to maintain within the scenario, commrange

the maximum broadcast range for each message, broadcastinterval the interval between

broadcasts (specified in milliseconds) and dropRecM the percentage of messages to drop dur-

ing simulation. The GUS allows flexible miscellaneous keywords use such that keywords are

service specific. In other words, a service developer can include new parameters which are not

static keywords for providing protocol or application specific inputs. The protocols considered

within the thesis, are in code an average of 126 lines of Java.

1 MessageQueue templateProtocol(MessageQueue inbox, long t, Waypoint p, Store s){

2 //Filtering

3 ...

4 //Processing

5 ...

168

6 //Finalisation

7 if (condition(t,p,s) == 0){

8 Payload p = new Payload();

9 Message msg = new Message(p);

10 ...

11 outbox.push(msg);

12 }

13 return outbox;

14 }

The GUS does not impede development of data-structures, which may be used by a service

protocol or application. An example of such an included and in-line data-structure is the

MapStore (Section B.1). All code developed in the framework is directly transferable for

Android Dalvik1 compilation and use as JiST limits its support to Java 1.4.2.

A.2. Trace Synthesis

GUS mobility traces were sourced from both a scraping scripts and from datasets used by

related work, including the ETH trace datasets [NBG06a]. Synthetic mobility traces were

constructed using GPX and KML driving directions 2, which themselves also contain other

road meta-data (Listing A.2) from Google3 and the Open Street Map4 databases.

Listing A.2: Code snippet to query GPX driving directions between A and B.

1 def getGPXDirections(A,B):

2 url = "http://navigation.cloudmade.com/45d5e7249f5f47 8ba704ac5202372006/" +

3 api/0.3/" + A + "," + B + "/car.gpx?tId=CloudMade"

4 gpx = urllib.urlopen(url).read()

5 return gpx

Extracted GPX directions are filtered to remove the driving directions as a list of waypoints.

The gaps between waypoints are filled or expanded to improve the granularity of the traces.

In other words, the algorithm increases the resolution of the trace, making mobility more fine

grained. The final result of synthesis is a specified trace of the form in Listing A.3, where inter-

1http://code.google.com/p/dalvik
2http://www.cloudmade.com
3http://maps.google.com
4http://www.openstreetmap.org/

169

mediary waypoints (geographic positions) are delimited by colons. In the mobility specification,

we specify the type of mobility trace for identification and the in-order mobility waypoints of

the vehicle. Notably, the maximum speed limit is not specified.

Listing A.3: A short synthetic mobility specification.

1 type=London-Individual-Trace mobility=[(52.538902,13 .381104):(52.538734,13.381275):

2 (52.538326,13.381703):(52.537704,13.382364):(52.537 113,13.38306):(52.536701,13.383546):

3 (52.535995,13.384395):(52.535931,13.384471):(52.535 191,13.385353):(52.534912,13.385669):

4 (52.53466,13.385943):(52.534306,13.386357):(52.5338 52,13.386961):(52.533508,13.387395):

5 (52.53347,13.387447):(52.533382,13.387576):(52.5333 48,13.387625):(52.533321,13.387667):

6 (52.533035,13.388051):(52.531734,13.389748):(52.531 868,13.390995):(52.532047,13.392756):

7 (52.532143,13.393675):(52.532181,13.394051):(52.532 242,13.394501):(52.532299,13.395001):

8 (52.532349,13.395454):(52.532387,13.395815):(52.532 41,13.395963):(52.53244,13.397037):

9 (52.532436,13.397168):(52.532459,13.397774):(52.532 471,13.398007):(52.532497,13.398618):

10 (52.532524,13.398791):(52.532578,13.398952):(52.532 501,13.399004):(52.53215,13.399263):

11 (52.531902,13.399449):(52.531704,13.399616):(52.531 307,13.399939):(52.530334,13.400775):

12 (52.530033,13.401033):(52.529911,13.401068):(52.529 739,13.40119):(52.529617,13.401269):

13 (52.529625,13.4015):(52.529652,13.402007):(52.52972 4,13.403261):(52.529713,13.403615):

14 (52.529678,13.403888):(52.5294,13.40548):(52.528755 ,13.409147):(52.528709,13.409405):

15 (52.528656,13.409641):(52.528603,13.40992):(52.5283 78,13.411175):(52.52816,13.411959)]

A.3. Geographic Distance

Geographic positioning is, always provided with an accuracy error. This error, may be a few

centimetres or hundreds of meters, depending on the quality of the data available from GPS

signals and the calculations made to trilaterate position. Assuming that positions are correct,

geodesic distance calculations determine the distance of one position from another. Adding

to the complexity is that the Earth is not a perfect sphere, but rather a geoid. Within cities,

these structures are most commonly man-made, however a large number of structures which

are primarily responsible for man-made structures are natural (for example hills, mountains,

rivers, lakes). The most common method of calculating distance is the usage of the Haversine

formula, however the formula and law of cosines are still in some cases inaccurate. A counter

to this is that we use the more modern and precise Vincenty algorithm (Listing A.4) in com-

170

bination with the WGS84 standard to calculate distance, to accuracies (on average) within

millimetres.

Listing A.4: The Vincenty algorithm [Vin75] in Java.

1 public double calcVincentyDistance(Waypoint posA, Waypoint posB){

2 double lat1 = posA.getLatitude(), lon1 = posA.getLongitude();

3 double lat2 = posB.getLatitude(), lon2 = posB.getLongitude();

4 double a = 6378137, b = 6356752.3142, f = 1/298.257223563; // WGS-84 ellipsoid

5 double L = this.degreesToRadians(lon2-lon1);

6 double U1 = Math.atan((1-f) * Math.tan(this.degreesToRadians(lat1)));

7 double U2 = Math.atan((1-f) * Math.tan(this.degreesToRadians(lat2)));

8 double sinU1 = Math.sin(U1), cosU1 = Math.cos(U1);

9 double sinU2 = Math.sin(U2), cosU2 = Math.cos(U2);

10 double lambda = L, lambdaP, iterLimit = 100, cosSqAlpha = 0, sinSigm a = 0,

11 double sinLambda = 0, cosSigma = 0, cosLambda = 0, sigma = 0, sinAlpha = 0;

12 double cos2SigmaM = 0;

13

14 do {

15 sinLambda = Math.sin(lambda);

16 cosLambda = Math.cos(lambda);

17 sinSigma = Math.sqrt((cosU2 * sinLambda) * (cosU2 * sinLambda) +

18 (cosU1 * sinU2-sinU1 * cosU2 * cosLambda) *

19 (cosU1 * sinU2-sinU1 * cosU2 * cosLambda));

20

21 if (sinSigma==0) return 0; // co-incident points

22 cosSigma = sinU1 * sinU2 + cosU1 * cosU2 * cosLambda;

23 sigma = Math.atan2(sinSigma, cosSigma);

24 sinAlpha = cosU1 * cosU2 * sinLambda / sinSigma;

25 cosSqAlpha = 1 - sinAlpha * sinAlpha;

26 cos2SigmaM = cosSigma - 2 * sinU1 * sinU2/cosSqAlpha;

27

28 if (Double.isNaN(cos2SigmaM)){ cos2SigmaM = 0; }

29

30 double C = f/16 * cosSqAlpha * (4+f * (4-3 * cosSqAlpha));

31 lambdaP = lambda;

32 lambda = L + (1-C) * f * sinAlpha * (sigma +

33 C* sinSigma * (cos2SigmaM+C * cosSigma * (-1+2 * cos2SigmaM * cos2SigmaM)));

171

34 }

35 while (Math.abs(lambda-lambdaP) \textgreater 1e-12 && --ite rLimit \textgreater 0);

36

37 if (iterLimit==0){ return Double.NaN; }

38 else {

39 double uSq = cosSqAlpha * (a * a - b * b) / (b * b);

40 double A = 1 + uSq/16384 * (4096+uSq * (-768+uSq * (320-175 * uSq)));

41 double B = uSq/1024 * (256+uSq * (-128+uSq * (74-47 * uSq)));

42 double deltaSigma = B * sinSigma *

43 (cos2SigmaM+B/4 * (cosSigma * (-1+2 * cos2SigmaM * cos2SigmaM)

44 - B/6 * cos2SigmaM * (-3+4 * sinSigma * sinSigma) *

45 (-3+4 * cos2SigmaM * cos2SigmaM)));

46

47 return b* A* (sigma-deltaSigma);

48 }

49 }

A.4. Geographic Bearing

Where the course represents the directional travel of an object, the bearing provides the direc-

tion in which one object is from another. The forward azimuth is used to calculate the bearing

between a source and destination position (Listing A.5). In the context of marine course and

bearing calculations, the track describes the actual path of an object through space over time.

Listing A.5: Calculating precise bearing in Java.

1 public double getBearingBetween(Waypoint from, Waypoint to){

2 Waypoint posB = to;

3 Waypoint posA = from;

4 double result = 0.0;

5 double latA = posA.getLatitude();

6 double lonA = posA.getLongitude();

7 double latB = posB.getLatitude();

8 double lonB = posB.getLongitude();

9 latA = this.degreesToRadians(latA);

10 latB = this.degreesToRadians(latB);

172

11 double dLon = this.degreesToRadians(lonB - lonA);

12 double y = Math.sin(dLon) * Math.cos(latB);

13 double x = Math.cos(latA) * Math.sin(latB) - Math.sin(latA) * Math.cos(latB) * Math.cos(dLon);

14 result = Math.atan2(y, x);

15 result = result * (180/Math.PI);

16 result = (result + 360) % 360;

17 return result;

18 }

A.5. Library Function Dependencies

Functions within the function library are geodetic (Figure A.2). All functions are derived from

the primitive position and time data collected by a vehicle over time. The hierarchy illustrates

the inclusion of higher level functions in the construction of lower level functions. Typically

functions further from the base primitives require more complex heuristics.

Figure A.2.: Hierarchy of derived library functions.

173

B. Travel Time Estimation

The following appendix contains extra information about the MapStore and its data-structures

as well as graphs which visually present the raw individual growth of MapStore.

B.1. MapStore Datastructure

The MapStore is a travel time tuple storage data-structure (Listing B.1). It is however not

optimised, as metrics were recorded and used to understand the behaviours of the travel time

estimation service over time. MapStore operation provides an indication on how well the travel

time estimation service performs at finding at least a single travel time for all road sections.

Listing B.1: MapStore methods.

1 class MapStore {

2 ArrayList<String> index;

3 HashMap<String,ArrayList<Tuple>> fragments;

4

5 int countAlreadySeen = 0;

6 int numberOfTuples = 0;

7 public int getNumberOfTuples()

8 public int getKeySize()

9 public int getValueSize()

10 public MapStore()

11 public void mergeTuple(Tuple t)

12 public ArrayList getTravelTimes(String section)

13 private void tallyEdgeRecorded(StringBuffer edge)

14 public boolean haveSection(String section)

15 }

Each MapStore stores unique travel time tuples, however we may have multiple travel times

associated with a particular road section. The MapStore associates road sections with zero

174

or more travel times, each with unique timestamps. The MapStore index stores the unique

identities of road sections (keys) with multiple travel times (values). In other words, a particular

road section may have many sampled travel times associated with it. As the road network

changes over time, a vehicle is capable of storing samples from different time periods. For

example, a road section may have a different travel time at different times during the morning

and evening. We assume that the service application component handles the interpretation of

this travel time data. This also poses a problem for selection algorithms as a strategy must

be chosen concerning which data to share given the bandwidth limitations of WAVE Short

Messages (WSM). The counter countAlreadySeen is incremented each time a redundant

tuple is merged by error. The numberOfTuples counter is updated each time a new Tuple

is added to the MapStore successfully.

175

C. Intersection Control

The following appendix contains pseudo-code describing the intersection control collision algo-

rithm, a description of the regional divisions made by a vehicle for the filtering of messages

and the dependencies exhibited as a result of adaptations occurring between vehicles.

C.1. Collision Avoidance Algorithm

Algorithm 3 is used to estimate whether two or more vehicles are to collide in a future time

instance. The algorithm determines and calculates the collision waypoint position (X) where

two sets of future tracks cross. When vehicles are compared against one another, we are

presented with one of three possible collision scenarios; either (a) collision while crossing, (b)

collision while following or (c) no collision. The algorithm is provided the future tracks of two

vehicles (future tracks A and B) and a specified minimum the separation distance (D). If no

collision is expected to occur the algorithm does not return the estimated displacements to a

collision point and a collision waypoint (X).

Future tracks conform geometrically to the road intersection. Where two waypoints are less

than or equal to D we consider this position the collision position X. In simulations D was

recalculated at each cycle to accommodate the changing speed of a vehicle. Where a collision

is detected, the displacement distances U and V are returned as well to determine which

vehicle is closer to X (distance calculations are not sufficient as the intersection contains turns).

Future tracks are in effect compared ‘side-by-side’ and the absolute difference in displacement

is compared to the D required for safe avoidance.

176

Algorithm 3: Collision Algorithm estimates the mobility of two vehicles (given their future
tracks A and B) to determine whether a collision is likely to occur in a future time-step
(t). The algorithm returns the displacement distances of each vehicle (U and V) and the
collision point (X)

Input: futuretrack A, futuretrack B, separation distance D

Output: distance U, distance V, Waypoint X
1 begin

// Assuming that length(A) = length(B)
// Temporary collision flag

2 F ← false
// For each future track position in time (t)

3 for t ← 1 to length(A) do
// Update the calculated displacements of the future tracks

A and B

4 U ← U + distance (A[t - 1], A[t])
5 V ← V + distance (B[t - 1], B[t])

// Calculate the distances between the estimated future
position waypoints

6 if distance(A[t], B[t]) ≤ D then
7 F ← true
8 X← A[t]
9 break

10 return (U ,V ,X)

C.2. Vehicle Regions

Each vehicle divides its local space into long-range and short-range regions (Figure C.1). A

region directly ahead of a vehicle is a considered of special importance for the avoidance of

immediate obstacles which may threaten the vehicle with collision. The Vehicle Back-off Pro-

tocol (VBP) prioritises messages and sensory data which is located within this danger region

and filters messages based on whether they exist within the short and long range regions. The

vehicular networks constructed within experiments illustrate both the mean contact counts

and the dependencies formed due to adaptations (A). Table C.1 considers the mean number of

contacts per vehicle, given received messages from and, of that set, the mean number of vehicles

with which contention existed and adaptation was required. As vehicle densities increased, in-

creased contention exists between vehicles to use the intersection, however the maximum mean

adaptations was limited to 6 interactions.

Figure C.1 depicts the regional space for a vehicle travelling in a vectored direction (left to

right). As vehicles turn or change their bearing the regional overlay changes and therefore

177

Figure C.1.: Vehicle regions. A moving vehicle maps short and long range locations to regions.
A danger region directly ahead of the vehicle is defined between two left (L) and
right (R) points. The danger sector can be made dynamic changing with the speed
of a vehicle. Obstacles detected within the danger sector in front of a vehicle are
handled with priority.

alters the sets of messages filtered.

C.3. Contacts and Dependencies

Input Rate 500 750 1000 1250 1500

Mean Contacts 10 16 22.5 31.5 43.5
Mean Adaptation 1 2 3.5 5 6

σ 1 1 2 3 3

Table C.1.: Mean number of contacts versus mean number of adaptations contacts (and asso-
ciated standard deviation σ).

A common problem seen in road networks is the transmission of dependency between groups

of vehicles. The actions of a vehicle in a previous time has the possibility of being transmitted

over subsequent collections of vehicles. Such as is seen in an example dependency graph (Figure

C.2). The graph illustrates the delay dependencies between interacting vehicles. The higher

the edge weight between transmitting vehicles the larger the incurred delay to a vehicle by

another vehicle. Vehicles with lower identifiers are older than those with higher identifiers.

An example dependency exists between 185 and 183. 185 adapts its behaviour to accom-

modate the mobility of 183. Linked vehicles have indirect effects on one another as well. For

example, vehicle 172 was indirectly effected by 166, even though they never made contact

178

Figure C.2.: An example dependencies graph showing the linked adaptations between vehicles
(nodes) as they negotiate their ordering to use the intersection. The dependency
graph allows us to see which vehicles influenced the mobility of which other vehi-
cles and hence provides a method of representation of run-time behaviour. Edge
weights represent the number of adaptation negotiations occurring between two
vehicles. The vehicle seen to receive more adaptations typically yields.

directly. We measure dependencies in terms of complete and separated adaptation graphs.

Adaptation is the consequence of contention. A complete dependency graph suggests that all

vehicles are through interconnections dependent on a previous vehicle from a previous time

step. Disconnected dependency graphs are seen in scenarios for lower input rates. Dependency

graphs are useful in understanding the behaviour of a road section, as they highlight vehicles

and actors within the scenario which have the most influence on the operation of the system.

179

