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1. Introduction

The shortest-path problem (see [1–3]) plays a fundamental
role in Petri nets theory, since it can be used to model
processes. The analysis of these models can show useful
information about the process. For example, deadlocks,
equilibrium points, and so forth can be identified by
computational analysis.

While it is possible to analyze such processes using the
existing classical theory through the Bellman’s equation with
the cost criterion ([4–15]), much of this theory has few
disadvantages. Bellman’s equation is expressed as a sum over
the state of a trajectory needs to be solved backwards in
time from the equilibrium point (target point). It results
in an optimal function when it is governed by Bellman’s
principle, producing the shortest path needed to reach
a known equilibrium point. Notice that the necessity to
know the equilibrium point beforehand when applying the
equation is a significant constrain, given that, in many
practical situations, the state space of a Petri net is too large
for an easy identification of the equilibrium point.

Moreover, algorithms using Bellman’s equation usually
solve the problem in two phases [16]: preprocessing and
search. In the preprocessing phase, the distance is usually
calculated between each state and the equilibrium points
(final states) of the problem, in a backward direction. Then,
in the search phase, these results are employed to calculate
the distance between each state and the equilibrium points,
leading the search process to a forward search.

Tracking the state space in a forward direction allows
the decision maker to avoid invalid states that occur in the
space generated by a backward search. In most cases, the
forward search gives the impression to be more useful than
the backward search. The explanation is that in the backward
direction, when the case of incomplete final states arises,
invalid states appear causing problems.

Shortest-path problem [17, 18] can be classified by
two key categories [19]: (a) the single-source shortest-path
problem where the goal is to find the shortest path from
a given node to a target node (e.g., the algorithms of
Dijkstra and Bellman-Ford); and (b) the all-pairs shortest-
path problem is a similar problem in which the objective is
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to determine the shortest path between every pair of nodes in
the net (e.g., the algorithms of Floyd-Warshall and Johnson).

We are concerned about the first case. However, we
consider dynamical systems governed by difference equations
described by Petri nets. The trajectory over the net is calcu-
lated using a discrete Lyapunov-like function. A Lyapunov-
like function is considered as a distance function denoting
the length from the source place to the equilibrium point.
This work is concerned with the analysis of the decision
process where a natural form of termination is ensured by
an equilibrium point.

Lyapunov-like functions can be used as forward trajec-
tory-tracking functions. Each applied optimal action pro-
duces a monotonic progress towards an equilibrium point.
Because it is a solution to the difference equation, naturally it
will lead the system from the source place to the equilibrium
point.

It is important to note that there exist areas of re-
search using Petri nets as modeling tool where the use
of a Lyapunov-like function is inherent. For instance, the
“Entropy” function is a specific Lyapunov-like function used
in Information Theory as a measure of the information
disorder. The “free Gibbs energy function” is a Lyapunov-like
function used in molecular biology for calculating the energy
change in a metabolic network.

This paper introduces a modeling paradigm for shortest-
path decision process representation in Petri nets theory.
The main point of this paper is its ability to represent the
characteristics related only with the global system behavior,
and those characteristics related with the trajectory-tracking
behavior.

Within the global system behavior properties, we show
notions of stability. In this sense, we call equilibrium point to
the place in a Petri net that its marking is bounded and it is
the last place in the net (sink).

In the trajectory-tracking behavior properties frame-
work, we define the trajectory function as a Lyapunov-
like function. By an appropriate selection of the Lyapunov-
like function, it is possible to optimize the trajectory. By
optimizing the trajectory, we understand that it is the
minimum trajectory-tracking value (in a certain sense). In
addition, we use the notions of stability in the sense of
Lyapunov to characterize the stability properties of the Petri
net. The core idea of our approach uses a nonnegative
trajectory function that converges in decreasing form to a
(set of) final decision states. It is important to point out that
the value of the trajectory function associated with the Petri
net implicitly determines a set of policies, not just a single
policy (in case of having several decisions states that could be
reached). We call “optimum point” the best choice selected
from a number of possible final decision places that may be
reached (to select the optimum point, the decision process
chooses the strategy that optimizes the trajectory-tracking
value).

As a result, we show that the global system behavior
properties and the trajectory-tracking behavior properties of
equilibrium, stability, and optimum-point conditions meet
under certain restrictions: if the Petri net is finite, then we
have that a final decision place is an equilibrium point.

The paper is structured in the following manner. The
next section discusses the motivation of the work. Section 3
presents the formulation of the decision model, and all
the structural assumptions are introduced there, giving a
detailed analysis of the equilibrium, stability, and optimum-
point conditions for the global system behavior properties
and the trajectory tracking behavior parts of the Petri net.
Section 4 presents the properties of the model. Finally, in
Section 5 some concluding remarks are outlined.

2. Motivation

In this paper, we consider dynamical systems in which the
time variable changes discretely, and the system is governed
by ordinary difference equations. Let us consider systems of
first-order difference equations given by

sn+1 = f
(
sn, an

)
, sn0 = s0, n ∈ Nn0

+ , (1)

where si with i ∈ N are the state variable of the system, s0 is
the initial state, ai and i ∈ N are the action of the system,
Nn0

+ = {n0,n0 + 1, . . . ,n0 + k, . . .}, n0 ≥ 0. The system is
specified by the state transition function f , which is always
assumed as a one-to-one function for any fixed a and n ∈ N,
continuous in all its arguments.

Lyapunov defined a scalar function L, called a Lyapunov-
like function, inspired by a classical energy function, which
has four important properties that are sufficient for establish-
ing the domain of attraction of a stable equilibrium point:
(a) ∃s∗ such that L(s∗) = 0; (b) L(s) > 0 for all s /= s∗; (c)
L(s) → ∞ when s → ∞; and (d) ΔL = L(si+1) − L(si) < 0
for all i, si /= s∗. The condition (a) requires the equilibrium
point to have zero potential by means of a translation to
the origin, (b) means that the Lyapunov-like function to be
semipositive defined, (c) means that there is no s∗ reachable
from some s, and (d) means that the Lyapunov-like function
has a minimum at the equilibrium point.

The main idea of Lyapunov is attained in the following
interpretation: given an isolated physical system, if the
change of the energy E for every possible state s is negative,
with the exception of the equilibrium point s∗, then the
energy will decrease until it finally reaches the minimum at
s∗. Intuitively, this concept of stability means that a system
perturbed from its equilibrium point will always return to it.

A system is stable [20, 21] if for a given set of initial states
the state of the system ensures (i) to reach a given set of states
and stay there perpetually or, (ii) to go to a given set of states
infinitely often. The conventional notions of stability in the
sense of Lyapunov and asymptotic stability can be used to
characterize the stability properties of discrete event systems.
An important advantage of the Lyapunov approach is that
it does not require high-computational complexity but the
difficulty lies in specifying the Lyapunov-like function for a
given problem.

At this point, it is important to note that the Lyapunov-
like function L is not unique, however the energy function
of a system is only one of its kind. A system whose energy E
decreases on the average, but not necessarily at each instance,
is stable but E is not a Lyapunov-like function.
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Figure 1: An illustrative example of finding the shortest path in a
grid world.

Lyapunov-like functions [22] can be used as trajectory-
tracking functions and optimal cost-to-target functions. As
a result of calculating a Lyapunov-like function, a discrete
vector field can be built for tracking the actions over the net.
Each applied optimal action produces a monotonic progress
(of the optimal cost-to-target value) toward an equilibrium
point. In this sense, if the function decreases with each
action taken, then it approaches an infimum/minimum (that
converges asymptotically or reaches a constant).

From what we have stated before, we can deduce the
following geometric interpretation of distance [22]: (a) L(s)
is a measure of the distance from the starting state s0 to any
state s in the state space (this is straightforward from the fact
that ∃s∗ such that L(s∗) = 0 and L(s) > 0 for all s /= s∗);
and (b) the distance from the stating state s0 to any state
sn in the state space decreases, when n → ∞. It is because
L(si+1)− L(si) < 0 for all i, si /= s∗.

A Lyapunov-like function can be considered as a distance
function denoting the length from the initial state to the
equilibrium point. It is important to note that the Lyapunov-
like function is constructed to respect the constraints
imposed by the difference equation of the system. In contrast,
a Euclidean metric does not take into account these factors.
For that reason, the Lyapunov-like function offers a better
understanding of the concept of the distance required to
converge to an equilibrium point in a discrete dynamical
system.

By applying the computed actions, a kind of discrete
vector field can be imagined over the search graph. Each
applied optimal action yields a reduction in the optimal
cost-to-target value, until the equilibrium point is reached.
Then, the cost-to-target values can be considered as a discrete
Lyapunov function.

In our case, an optimal discrete problem, the cost-to-
target values are calculated using a discrete Lyapunov-like
function. Every time a discrete vector field of possible actions
is calculated over the decision process. Each applied optimal
action (selected via some “criteria”) decreases the optimal
value, ensuring that the optimal course of action is followed
and establishing a preference relation. In this sense, the
criteria change the asymptotic behavior of the Lyapunov-like
function by an optimal trajectory-tracking value.

Usually, the criterion in optimization problems is related
with the choice of whether to minimize or maximize
the optimal action. If the problem is related with energy
transformations, as is classically the case in control theory,
then the criterion of minimization is applied. However, if
the dilemma involves a reward, typical in game theory, then
maximization is considered. In this work, we will arbitrary
consider the criterion of minimization.

The Lyapunov-like function can be employed as a
trajectory-tracking function through the use of an operator,
which represents the criterion that selects the optimal
action that forces the function to decrease and approaches
an infimum/minimum. It forces the function to make a
monotonic progress toward the equilibrium point. The
Lyapunov-like function can be defined, for example, as

L∗
(
sn+1

) = min
a∗∈A

L
(
f
(
sn, a∗n

))
(2)

which means that the optimal action is chosen to reach
the infimum/minimum. The function L∗ works as a guide
leading the system optimally from its initial state to the
equilibrium point.

Example 1. To illustrate the shortest-path problem, let us
consider a grid world (see Figure 1). At each time step, an
agent is able to select an action among a finite setA of actions,
for example, A = {Up, Down, Left, Right}. A transition
model specifies how the world changes when an action is
executed. An “equilibrium point” s∗ is a natural final state
of the system. Therefore, the shortest-path problem is a
search through the state space for an optimal path to the
equilibrium point s∗, using a deterministic transition model.
The value of a state s is a number V(s) that intuitively
speaking expresses the desirability of state s. For instance,
let us consider the state-value function V being equal to the
min function [23] as a specific Lyapunov-like function able
to lead an agent to an equilibrium point in a grid world.

Example 2. The relative entropy or Kullback-Leibler [24, 25]
distance between two probability distributions q1

i j|k and q2
i j|k

is defined as

V
(
q1, q2) =

N∑

i=1

N∑

j=1

q1
i j|k log

q1
i j|k
q2
i j|k

. (3)

In the above definition, we use the convention (based
on continuity arguments) that 0 log(0/q2

i j|k) = 0 and

q1
i j|k log(q1

i j|k/0) = ∞. The relative entropy is always

nonnegative and is zero if and only if q1
i j|k = q2

i j|k. V(q1, q2) is
a distance-like function between distributions since it is not
symmetric and does not satisfy the triangle inequality.

Example 3. Glycolysis pathway (see Figure 2) is well known
and described [11, 26, 27]. It is a ten-step catabolic pathway
that makes use of eleven different enzymes. The outcome are
the conversion of glucose in two molecules of pyruvate with
concurrent net production of 2 ATPs. Glycolysis process can
be divided in two stages: (1) the conversion of glucose to
glyceraldehyde 3-phosphate with a required input of 2 ATPs,
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(2) the conversion of glyceraldehyde 3-phosphate to pyruvate
with a net output of 4 ATPs.

Glycolysis can be informally explained from an energetic
perspective as follows. The initial amount of glucose may be
represented as a ball at the top of an irregular hill. Every
time the ball bounces, the hill represents a reaction state in
the breakdown of the sugar process. Each bounce of the ball
corresponds to a change in free energy level. This energy
change is modeled by the Gibbs energy function which is a
Lyapunov-like function. It is important to note that bounces
are irregular (reaching lower and higher energy levels) and
determined by the environment conditions. The final state
(pyruvate) is represented by the bottom of the hill where the
ball reaches a steady state (not bounces).

Let us explain the Petri net dynamics of the system model
as follows. Continuing with the ball and hill explanation, let
us suppose that the ball, representing the product pyruvate,
is at the bottom of the hill. And let us suppose that there is
no net force able to move the ball either up or down the hill.
That means that the reactions (forward and backward) are
evenly balanced. Therefore, the substances and products are
in equilibrium, and no net dynamics will take place. That is,
“the metabolic network system is in equilibrium.”

3. Formulation

We introduce the concept of decision process Petri nets
(DPPNs) by locally randomizing the possible choices, for
each individual place of the Petri net [23, 28].

Definition 1. A decision process Petri net is a 7-tuple
DDPN = {P,Q,F,W ,M0,π,U}, where

(i) P = {p0, p1, p2, . . . , pm} is a finite set of places,

(ii) Q = {q1, q2, . . . , qn} is a finite set of transitions,

(iii) F ⊆ I ∪ O is a flow relation, where I ⊆ (P × Q) and
O ⊆ (Q × P) such that P ∩Q = ∅ and P ∪Q /=∅,

(iv) W : F → N1
+ is a weight function,

(v) M0: P → N is the initial marking,

(vi) π: I → R+ is a routing policy representing the
probability of choosing a particular transition, such
that for each p ∈ P,

∑
qj :(p,qj )∈Iπ((p, qj)) = 1,

(vii) U : P → R+ is a trajectory-tracking function.

We adopt the standard rules about representing nets as
directed graphs, namely, places are represented as circles,
transitions as rectangles, the flow relation by arcs, and
markings are shown by placing tokens within circles [29].
As usual, we will denote z• = {y|(z, y) ∈ F} and •z =
{y|(y, z) ∈ F}, for all z ∈ I ∪ O. A source place is a place
p0 ∈ P such that •p0 = ∅ (there are no incoming arcs into
place p0). A sink place is a place p f ∈ P such p f • = ∅

(there are no outgoing arcs from p f ). A net system is a pair
Σ = (N ,M0) comprising a finite net N = (P,Q,F) and
an initial marking M0. A transition q ∈ Q is enabled at a
marking M, denoted by M[q〉, if for every p ∈ •q, we have
that M(p) ≥ 1. Such a transition can be executed, leading to

a markingM′ defined byM′ =M−•q+q•. We denote this by
M[q〉M′ or M[〉M′. The set of reachable markings of Σ is the
smallest (with respect to set inclusion) set [M0〉 containing
M0 and such that if M ∈ [M0〉 and M[〉M′, then M′ ∈ [M0〉.

The previous behavior of the DPPN is described as
follows. When a token reach a place, it is reserved for the
firing of a given transition according to the routing policy
determined by U . A transition q must fire as soon as all the
places p1 ∈ P contain enough tokens reserved for transition
q. Once the transition fires, it consumes the corresponding
tokens and immediately produces an amount of tokens in
each subsequent place p2 ∈ P. When π(ι) = 0 for ι ∈ I means
that there are no outgoing arcs in the place-transitions Petri
net (i.e., p ∈ ι is a sink).

In Figure 2, we have represented partial routing policies
π that generate a transition from state p1 to state p2, where
p1, p2 ∈ Pas follows .

Case 1. The probability that q1 generates a transition from
state p1 to p2 is 1/3. But, because q1 transition to state p2 has
two arcs, the probability to generate a transition from state
p1 to p2 is increased to 2/3.

Case 2. We set by convention for the probability that q1

generates a transition from state p1 to p2 is 1/3 (1/6 plus 1/6).
However, because q1 transition to state p2 has only one arc,
the probability to generate a transition from state p1 to p2 is
decreased to 1/6.

Case 3. Finally, we have the trivial case when there exists only
one arc from p1 to q1 and from q1 to p2.

It is important to note that, by definition, the trajectory-
tracking function U is employed only for establishing a
trajectory tracking, working in a different execution level of
that of the place-transitions Petri net. The trajectory-tracking
function U in no way change the place-transitions Petri net
evolution or performance.

Uk(·) denotes the trajectory-tracking value at place pi ∈
P at time k and let Uk = [Uk(·), . . . ,Uk(·)]T denote the
trajectory-tracking state of DDPN at time k. FN : F →
R+ is the number of arcs from place p to transition q (the
number of arcs from transition q to place p).

Consider an arbitrary pi ∈ P and for each fixed transition
qj ∈ Q that forms an output arc (qj , pi) ∈ O, we look at
all theprevious places ph of the place pi denoted by the list
(set) •pηij = {ph : h ∈ ηi j}, where ηi j = {h : (ph, qj) ∈
I , (qj , pi) ∈ O}, that materializes all the input arcs (ph, qj) ∈
I and forms the sum

∑

h∈ηi j
Ψ
(
ph, qj , pi

)
Uk
(
ph
)
, (4)

where Ψ(ph, qj , pi) = π(ph, qj)∗(FN(qj , pi)/FN(ph, qj))
and the index sequence j is the set κ = { j : qj ∈ (ph, qj) ∩
(qj , pi) & ph running over the set •pηij}.

Remark 1. •pηij denote the previous places to pi for a fixed
transition qj ∈ Q.
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Figure 2: Glycolysis and pentose-phosphate pathways model.

Continuing with all the qj ’s, we form the vector indexed
by the sequence j identified by ( j0, j1, . . . , j f ) as follows:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∑

h∈ηi j0
Ψ
(
ph, qj0 , pi

)
Uk
(
ph
)
,

∑

h∈ηi j1
Ψ
(
ph, qj1 , pi

)
Uk
(
ph
)
, . . . ,

∑

h∈ηi j f
Ψ
(
ph, qj f , pi

)
Uk
(
ph
)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (5)

Intuitively, vector (5) represents all the possible trajectories
through the transitions qjs to a place pi for a fixed i, where j
is represented by the sequence ( j1, j2, . . . , j f ) and f = #(κ).

Then, formally we define the trajectory-tracking function
U as follows.

Definition 2. The trajectory-tracking function U with
respect a decision process Petri net DDPN = {P,Q,F,W ,
M0,π,U} is represented by the following equation

U
qj
k

(
pi
) =

{
Uk
(
p0
)

if i = 0, k = 0,

L(α) if i > 0, k = 0, i ≥ 0, k > 0,
(6)

where

α =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∑

h∈ηi j0
Ψ(ph, qj0 , pi)U

qj0
k (ph),

∑

h∈ηi j1
Ψ(ph, qj1 , pi)U

qj1
k (ph), . . . ,

∑

h∈ηi j f
Ψ(ph, qj f , pi)U

qj f
k (ph)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (7)

the function L : D ⊆ Rn
+ → R+ is a Lyapunov-like function

which optimizes the trajectory-tracking value through all
possible transitions (i.e., through all the possible trajectories
defined by the different qjs), D is the decision set formed by
the j’s; 0 ≤ j ≤ f , of all those possible transitions (qj pi) ∈ O,
Ψ(ph, qj , pi) = π(ph, qj)∗(FN(qj , pi)/FN(ph, qj)), ηi j is the
index sequence of the list of previous places to pi through
transition qj , ph(h ∈ ηi j) is a specific previous place of pi
through transition qj .

Example 4. OR-Path (see Figure 3). Define the Lyapunov-
like function L in terms of the Entropy H(pi) = −pi ln pi
as L = mini=1,...,|α|(−αi lnαi):
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Figure 3: (Left): routing policy case 1. (Right): routing policy case 2.
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Figure 4: OR-Path Example.
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Figure 5: AND-path example.

(i) Uk=0(p0) = 0.2,

(ii) U
qa
k=0(p1) = L[Ψ(p0, qa, p1)U

qa
k=0(p0)] = minH[1∗

0.2] = H[0.2] = 0.321,

(iii) U
qb
k=0(p2) = L[Ψ(p1, qb, p2)U

qb
k=0(p1),Ψ(p1, qc, p2)

U
qb
k=0(p1)] = minH[1/3∗0.321, 2/3∗0.321] =

min[0.239, 0.329] = 0.239.

Example 5. AND-Path (see Figure 4). Define the Lyapunov-
like function L in terms of the Entropy H(pi) = −pi ln pi as
L = mini=1,...,|α|(−αi lnαi):

(i) Uk=0(p0) = 0.2,

(ii) U
qa
k=0(p1) = L[Ψ(p0, qa, p1)U

qa
k=0(p0)] = minH[1∗

0.2] = H[0.2] = 0.321,

(iii) U
qb
k=0(p2) = L[Ψ(p0, qb, p2)U

qb
k=0(p0)] = minH[1∗

0.2] = H[0.2] = 0.321,

(iv) U
qc
k=0(p3) = L[Ψ(p1, qc, p3)U

qc
k=0(p1) +Ψ(p2, qc,

p3)U
qc
k=0(p2)] = minH[1∗0.321 + 1∗0.321] =

H[0.642] = 0.284.

From the previous definition, we have the following
remark.

Remark 2. (i) Note that the Lyapunov-like function L
guarantees that the optimal course of action is followed
(taking into account all the possible paths defined). In
addition, the function L establishes a preference relation
because, by definition, L is asymptotic; this condition gives
to the decision maker the opportunity to select a path that
optimizes the trajectory-tracking value.

(ii) The iteration over k for U is as follows:

(1) for i = 0 and k = 0 the trajectory-tracking value is
U0(p0) at place p0 and for the rest of the places pi the
trajectory-tracking value is 0;

(2) for i ≥ 0 and k > 0 the trajectory-tracking value
is U

qj
k (pi) at each place pi, and is computed by

taking into account the trajectory-tracking value of
the previous places ph for k and k−1 (when needed).

Property 1. The continues function U(·) satisfies the follow-
ing properties:

(1) ∃pΔ ∈ P such that

(a) if there exists an infinite sequence {pi}∞i=1 ∈
P with pn −→

n→∞ pΔ such that 0 ≤ · · · <

U(pn) < U(pn−1) · · · < U(p1), then U(pΔ) is
the infimum, that is, U(pΔ) = 0;

(b) if there exists a finite sequence p1, . . . , pn ∈ P
with p1, . . . , pn → pΔ such that C = U(pn) <
U(pn−1) · · · < U(p1), then U(pΔ) is the min
imum, that is,U(pΔ) = C, whereC ∈ R, (pΔ =
pn);

(2) U(p) > 0 or U(p) > C, where C ∈ R, for all p ∈ P
such that p /= pΔ;

(3) for all pi, pi−1 ∈ P such that pi−1≤U pi then ΔU =
U(pi)−U(pi−1) < 0.

From the previous property, we have the following
remark.

Remark 3. In property 1 point 3, we state that ΔU = U(pi)−
U(pi−1) < 0 for determining the asymptotic condition of
the Lyapunov-like function. However, it is easy to show that
such property is convenient for deterministic systems. In
Markov decision process, systems are necessary to include
probabilistic decreasing asymptotic conditions to guarantee
the asymptotic condition of the Lyapunov-like function.

Property 2. The trajectory-tracking function U : P → R+ is
a Lyapunov-like function.

Proof. Proof comes straightforward from the previous defi-
nitions.

Remark 4. From Properties 1 and 2, we have the following :

(i) U(pΔ) = 0 or U(pΔ) = C means that a final state
is reached. Without lost generality, we can say that
U(pΔ) = 0 by means of a translation to the origin.
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(ii) In Property 1, we determine that the Lyapunov-like
function U(p) approaches to a infimum/minimum
when p is large thanks to property (d) of the defi-
nition the Lyapunov-like function (see motivation).

(iii) Property 1, point 3 is equivalent to the following
statement: ∃{εi}, εi > 0 such that |U(pi)−U(pi−1)| >
εi, for all pi, pi−1 ∈ P such that pi−1≤U pi.

Explanation. Intuitively, a Lyapunov-like function can be
considered as trajectory-tracking function and optimal cost
function. In our case, an optimal discrete problem, the cost-
to-target values are calculated using a discrete Lyapunov-
like function. Every time a discrete vector field of possible
transitions is calculated over the decision process. Each
applied optimal transition (selected via some “criterion,”
e.g., min(·)) decreases the optimal value, ensuring that the
optimal course of action is followed and establishing a
preference relation. In this sense, the criterion changes the
asymptotic behavior of the Lyapunov-like function by an
optimal trajectory-tracking value. It is important to note that
the process finished when the equilibrium point is reached.
This point determines a significant difference with Bellman’s
equation.

Example 6 (Conc-Path (see Figure 2)). Biochemical pathway
of the free energy profile of the glycolysis and pentose-
phosphate. The following was adapted from Biochemistry
Lehninger et al. [26] and Campbell and Farrel [30]. The
free energy changes were calculated using the steady-state
metabolite concentrations in RBC’s and the equation U =
RT ln([Products]/[Reactants]). U = 0 was set arbitrarily at
the end of the pathway after the pyruvate kinase step. The
overall reaction for the pathway is shown in Figure 1. Because
L : D ⊆ Rn → R+, we will use the function mini=1,...,|α|(αi ∈
D) to select the proper element of the vector α ∈ D:

(i) Uk=0(Glucose) = 17.17 kcal/mol;

(ii) U
qa
k=0(G6P) = L[Ψ(Glucose, qa,G6P)∗

U
qa
k=0(Glucose)] = G[Ψ(p0, qa, p1)U

qa
k=0(p0)] =

9.17 kcal/mol.

A decision is taken and qb is selected instead of qk based
in the environment condition modeled via the routing policy
(1/3, 2/3).

(i) U
qb
k=0(F6P) = L[Ψ(G6P, qb,F6P)∗Uqb

k=0(G6P)] =
G[2/3∗Uqb

k=0(p1)] = 8.98 kcal/mol.

(ii) U
qc
k=0(FBP) = L[Ψ(F6P, qc,FBP)∗Uqc

k=0(F6P)] =
G[Ψ(p2, qc, p3)∗Uqc

k=0(p2)] = 3.90 kcal/mol.

(iii) U
qd
k=0(DHP) = L[Ψ(FBP, qd,DHP)∗Uqd

k=0(FBP)] =
G[Ψ(p3, qd, p4)∗Uqd

k=0(p3)] = 3.71 kcal/mol.

The Conc-Path is calculated at p5.

(i) U
qd
k=0(GAP)=

{
L[Ψ(FBP, qd,GAP)∗Uqd

k=0(FBP)]

L[Ψ(DHP, qe,GAP)∗Uqe
k=0(DHP)]

=
{
G[Ψ(p3, qd, p5)∗Uqd

k=0(p3)]

G[Ψ(p4, qe, p5)∗Uqe
k=0(p4)]

= 4.00 kcal/mole.

(ii) U
qf
k=0(BPG) = L[Ψ(GAP, q f ,BPG)∗Uqf

k=0(GAP)] =
G[Ψ(p5, q f , p6)∗Uqf

k=0(p5)] = 3.71 kcal/mol.

(iii) U
qg
k=0(3PG) = L[Ψ(BPG, qg , 3PG)∗Uqg

k=0(BPG)] =
G[Ψ(p6, qg , p7)∗Uqg

k=0(p6)] = 4.10 kcal/mol.

(iv) U
qh
k=0(2PG) = L[Ψ(3PG, qh, 2PG)∗Uqh

k=0(3PG)] =
G[Ψ(p7, qh, p8)∗Uqh

k=0(p7)] = 4.20 kcal/mol.

(v) U
qi
k=0(PEP) = L[Ψ(2PG, qi,PEP)∗Uqi

k=0(2PG)] =
G[Ψ(p8, qi, p9)∗Uqi

k=0(p8)] = 4.00 kcal/mol.

(vi) U
qj
k=0(Pyruvate) = L[Ψ(PEP, qj , Pyruvate)∗

U
qj
k=0(PEP)] = G[Ψ(p9, qj , p10)∗Uqj

k=0(p9)] =
0 kcal/mol.

(vii) U
qj
k=0(Pyruvate) = 0 was set arbitrarily at the end of

the pathway, that is, after the pyruvate kinase step.

Remark 5. We are using [] to denote the OR-Path,
∑

to
denote the AND-Path, and {| to denote the Conc-Path.

4. Properties of the Model

We will identify the global system properties of the DPPN as
those properties related with the PN.

Theorem 1. The decision process Petri net DDPN =
{P,Q,F,W ,M0,π,U} is bounded by a place p∗ of the system.

Proof. Let us suppose that the DPPN is not finite. Then p∗ is
never reached. Therefore, it is possible to evolve in time n and
to reduce the trajectory function value over p∗. However,
the Lyapunov-like trajectory function converges to zero when
n → ∞ (or reached a minimum), that is, Un = 0 or Un =
C.

Theorem 2. Let DDPN = {P,Q,F,W ,M0,π,U} be a
decision process Petri net bounded by a place p∗. Then, a
Lyapunov-like trajectory function can be constructed if and
only if p∗ is reachable from s0.

Proof. (⇒) If U is a Lyapunov-like function then by the
previous theorem p∗ is reachable.

(⇐) By induction, let us construct the optimal inverse
path from p∗ to p0. At each discrete time n ∈ N in
descending order (n is the maximum place index) the place
of a system pn is observed and a transition qk ∈ Q leading
to pn−1 is chosen. We choose the trajectory function U as the
best choice set of states. We continue this process until p0 is
reached. Then, the trajectory function U is a Lyapunov-like
function.

Notation. Let N = {0, 1, 2, . . .}, Nn0
+ = {n0,n0 + 1, . . . ,n0 +

k, . . .}, n0 ≥ 0, R = (−∞,∞) and R+ = [0,∞).
Let us consider systems of first ordinary difference

equations given by

x(n + 1) = ψ
[
n, x(n)

]

x
(
n0
) = x0

for n ∈ Nn0
+ , (8)

where x(n) ∈ Rd and ψ : Nn0
+ × Rd → Rd is continuous in

x(n).
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Definition 3. The n-vector valued function φ(n,n0, x0) is a
solution of (8) if φ(n0,n0, x0) = x0 and φ(n + 1,n0, x0) =
ψ(n,φ(n,n0, x0)) for all n ∈ Nn0

+ .

Definition 4. The system (8) is said to be (see [20, 21])
practically stable if, given (λ,A) with 0 < λ < A, it holds
that
∣∣x0
∣∣ < λ =⇒ ∣∣x

(
n,n0, x0

)∣∣ < A, ∀n ∈ Nn0
+ , n0 ≥ 0. (9)

Definition 5. The system (8) is said to be (see [20, 21])
uniformly practically stable, if it is practically stable for every
n0 ≥ 0.

Definition 6. A continuous function α : [0,∞) → [0,∞)
belongs to class K if it is strictly increasing and α(0) = 0.

Let us consider [21] the vector function v(n, x(n)), v :
Nn0

+ × Rd → R
p
+ and let us define the variation of v relative

to (8) by

Δv = v
(
n + 1, x(n + 1)

)− v(n, x(n)
)
. (10)

Then, we have the following results [20, 21, 31, 32].

Theorem 3. Let v : Nn0
+ × Rn → R+ be a continuous

function in x, such that for β,α ∈ K , it holds that β(|x|) ≤
v(n, x(n)) ≤ α(|x|) and Δv(n, x(n)) ≤ w(n, v(n, x(n))) holds
for n ∈ Nn0

+ , x(n) ∈ Rn, where w : Nn0
+ × R+ → R is

a continuous function in the second argument. Suppose that
γ(n,u) ≡ u+w(n,u) is nondecreasing in u, 0 < λ < Aare given
and finally that α(λ) < β(A) is satisfied. Then, the stability
properties of

u(n + 1) = γ
(
n,u(n)

)
, u

(
n0
) = u0 ≥ 0 (11)

imply the corresponding stability properties of the system (8).

Proof. The stability properties are preserved for the follow-
ing.

(1) Practically stable. Let us suppose that u(n + 1) is
practically stable for (α(λ),β(A)) then, we have that u0 <
α(λ) ⇒ |u(n,n0,u0)| < β(A) for n ≥ n0, where u(n,n0,u0)
is the solution of (11). Let |x0| < λ, we claim that
|x(n,n0, x0)| < A for n ≥ n0. If not, there would exist
n1 ≥ n0 and a solution x(n,n0, x0) such that |x(n1)| ≥ A
and |x(n)| < A for n0 ≤ n < n1. Choose u0 = v(n0, x0),
then v(n, x(n)) ≤ u(n) for all n ≥ n0. ( If not v(n, x(n)) ≤
u(n) and v(n + 1, x(n + 1)) > u(n + 1) ⇒ γ(n,u(n)) =
u(n + 1) < v(n + 1, x(n + 1)) = Δv(n, x0) + v(n, x(n)) ≤
w(n, v(n))+v(n, x(n)) = γ(n, v(n))−v(n, x(n))+v(n, x(n)) ≤
γ(n,u(n)) which is a contradiction) . Hence we get that
β(A) ≤ β(|x(n1)|) ≤ v(n1, x(n1)) ≤ u(n1,n0,u0) < β(A)
(where the last inequality is because the condition |x0| < λ⇒
v(n0, x0) < α(λ)), which cannot hold therefore, system (8) is
practically stable.

(2) Stable. Suppose that system (11) is stable, that is,
for all ε > 0∃ξ = ξ(ε,n0) > 0 such that if u0 < ξ ⇒
|u(n,n0,u0)| < β(ε) for n ≥ n0. Now, since v is a continuous
function in x, there exists a δ = δ(ε,n0) > 0 such that if
|x0| < δ ⇒ |v(n0, x0)| < ξ then setting v(n0, x0) equal to

u0 by the comparison principle (which was implicitly proved
in point 1) implies that v(n, x(n)) ≤ u(n) for all n ≥ n0.
Taking δ equal to the one given from the continuity of v,
|x(n,n0, x0)| < ε for n ≥ n0. If not, there would exist n1 ≥ n0

such that |x(n1)| ≥ ε and |x(n)| < ε for n0 ≤ n < n1 but then

β(ε) ≤ β
(
x
(
n1
)) ≤ v

(
n1, x

(
n1
))

≤ u
(
n1,n0,u0

)
< β(ε)

(12)

which cannot hold therefore, we must have that
|x(n,n0, x0)| < ε for n ≥ n0 as desired.

(3) Asymptotically stable. We know that system (8) is
stable, the fact that it is asymptotically stable follows thanks
to

0 ≤ lim
n→∞β

(∣∣xn
∣∣) ≤ lim

n→∞v
(
n, x(n)

)

≤ lim
n→∞u(n) = 0 =⇒ lim

n→∞
∣
∣xn
∣
∣ = 0.

(13)

(4) Uniformly stable. Assume that the comparison
system is uniformly stable, meaning that ∃ξ = ξ(ε) > 0
(independent of n) such that u0 < ξ ⇒ |u(n,n0,u0)| < β(ε)
for n ≥ n0 and let δ > 0 independent of n such that |x0| <
δ ⇒ |x(n,n0, x0)| < ε, for n ≥ n0. Since v is a decreasing
function there exists a α εK such that v(n, x(n)) ≤ α(|xn|).
Then, choosing δ = α−1(ξ) works (if |x0| < δ = α−1(ξ) ⇒
v(n0, x0) = |v(n0, x0)| ≤ α(|x0|) < ξ) and choosing u0 =
v(n0, x0) we arrive to the inequality

β
(∣∣x(n)

∣∣) ≤ v
(
n, x(n)

) ≤ u
(
n,n0,u0

)
< β(ε). (14)

But δis independent of n. Therefore, the system (8) is
uniformly stable.

We will extend the last theorem to the case of several
Lyapunov functions. Let us consider a vector Lyapunov
function v(n, x(n)), v : Nn0

+ × Rd → R
p
+ and let us define

the variation of v relative to (8). Then, we have the following
theorem.

Theorem 4. Let v : Nn0
+ ×Rd → R

p
+ be a continuous function

in x, define the function v0(n, x(n)) = ∑p
i=1vi(n, x(n)) such

that it satisfies the estimates:

β
(|x|) ≤ v0

(
n, x(n)

) ≤ α
(|x|) for α,β ∈K ,

Δv
(
n, x(n)

) ≤ w
(
n, v
(
n, x(n)

)) (15)

for n ∈ Nn0
+ , x(n) ∈ Rd, where w : Nn0

+ × Rp
+ → Rp is

a continuous function in the second argument. Assume that
γ(n,u) � u + w(n,u) is nondecreasing in u, 0 < λ < J are
given and α(λ) < β(A) is satisfied. Then, the practical stability
properties of

u(n + 1) = γ(n,u(n)), u(n0) = u0 ≥ 0 (16)

implies the corresponding practical stability properties of system
(8).

Proof. (1) Let us suppose that u(n + 1) is practically stable
for (α(λ),β(A)). Then we have that

∑p
i=1u0i < α(λ) ⇒



International Journal of Computer Games Technology 9

∑p
i=1ui(n,n0,u0) < β(A), for n ≥ n0, where ui(n,n0,u0)

is the vector solution of (16). Let |x0| < λ, we claim that
|x(n,n0, x0)| < A for n ≥ n0. If not, there would exist n1 ≥ n0

and a solution x(n,n0, x0) such that |x(n1)| ≥ A and |x(n)| <
A for n0 ≤ n < n1. Choose u0 = v(n0, x0), then v(n, x(n)) ≤
u(n,n0,u0) for all n ≥ n0. Therefore we have that β(A) ≤
β(|x(n1)|) ≤ v0(n1, x(n1)) ≤ ∑p

i=1ui(n1,n0,u0) < β(A)
which cannot hold. As a result, system (8) is practically
stable.

(2) From the continuity of v with respect to the second
argument, it is always possible to make v0(n0, x0) <

∑p
i=1u0i <

α(λ) ⇒ v0(n, x(n)) ≤ ∑p
i=1ui(n,n0,u0) < β(A). We want

to prove that |x(n,n0, x0)| < A for n ≥ n0. If it is not
true, there exists an n1 ≥ n0 and a solution x(n,n0, x0)
such that |x(n1)| ≥ A and |x(n)| < A for n0 ≤ n < n1.
Then, we have that β(A) ≤ β(|x(n1)|) ≤ v0(n1, x(n1)) ≤
∑p

i=1ui(n1,n0,u0) < β(A)!, which proves our claim.

Remark 6. If in the point 1 of the proof it is not true that
v(n, x(n)) ≤ e(n,n0, e0) and v(n+1, x(n+1)) > e(n+1,n0, e0),
then we have that γ(n, e(n)) = e(n+ 1,n0, e0) < v(n+ 1, x(n+
1)) = Δv(n, x0) + v(n, x(n)) ≤ w(n, v(n)) + v(n, x(n)) =
γ(n, v(n))− v(n, x(n)) + v(n, x(n)) = γ(n, v(n)) ≤ γ(n, e(n))
which is a contradiction.

Then, we have the following result [21].

Corollary 1. From Theorem 5, the following hold.

(1) If w(n, e) ≡ 0, the uniform practical stability of (8)
which implies structural stability [21, 33] is obtained .

(2) If w(n, e) = −c(e), for c ∈ K , the uniform practical
asymptotic stability of (8) [21] is obtained .

Example 7. The diamond is the stable form of carbon at
extremely high pressures while the graphite is the stable
form at normal atmospheric pressures. Regardless of that,
diamonds appear stable at normal temperatures and pres-
sures, but, in fact, are very slowly converting to graphite.
Heat increases the rate of this transformation, but at normal
temperatures the diamond is uniformly practically stable.

For Petri nets, we have the following results of stability
[31].

Proposition 1. Let PN be a Petri net. Therefore, PN is
uniform practical stable if there exists a Φ strictly positive m
vector such that

Δv = uTAΦ ≤ 0. (17)

Moreover, N is uniform practical asymptotic stability if the
following equation holds:

Δv = uTAΦ ≤ −c(e), for c ∈K . (18)

Proof. Let us choose as our candidate Lyapunov function
v(M) = MTΦ with Φ and m vector to be chosen. It
is simple to verify that v satisfies all the conditions of
Theorem 3. Therefore, the uniform practical asymptotic

stability is obtained if there exists a strictly positive vector Φ
such that equation (17) holds.

Proposition 2. Let PN be a Petri net. Therefore, PN is
uniformly practically stable if there exists a Φ strictly positive
m vector such that

Δv = uTAΦ ≤ 0 ⇐⇒ AΦ ≤ 0. (19)

Proof. ⇒) Since uTAΦ ≤ 0 holds, therefore for every u we
have that AΦ ≤ 0.

⇐) This came from the fact that u is positive.

Remark 7. The if-and-only-if relationship of (19) exists from
the fact that u is positive.

Example 8. The biochemical pathway of the glycolysis
(Figure 1). The incidence matrix is as follows:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1 1 0 0 0 0 0 0 0 0 0
0 −1 1 0 0 0 0 0 0 0 0
0 0 −1 1 0 0 0 0 0 0 0
0 0 0 −1 1 1 0 0 0 0 0
0 0 0 0 −1 1 0 0 0 0 0
0 0 0 0 0 −1 1 0 0 0 0
0 0 0 0 0 0 −1 1 0 0 0
0 0 0 0 0 0 0 −1 1 0 0
0 0 0 0 0 0 0 0 −1 1 0
0 0 0 0 0 0 0 0 0 −1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(20)

Choosing Φ = [1, 1, 1, 1, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2], Φ >
0, we obtain that AΦ = [0, 0, 0,−1/2, 0, 0, 0, 0, 0, 0] conclud-
ing stability.

Definition 7. An equilibrium point with respect to a decision
process Petri net DDPN = {P,Q,F,W ,M0,π,U} is a place
p∗ ∈ P such that Ml(p∗) = S < ∞, for all l ≥ k, and p∗ is a
sink.

Theorem 5. The decision process Petri net DDPN =
{P,Q,F,W ,M0,π,U} is uniformly practically stable iff there
exists a Φ strictly positive m vector such that Δv = uTAΦ ≤ 0.

Proof. ⇒) It follows directly from Propositions 1 and 2.
⇐) Let us suppose by contradiction that uTAΦ > 0 with

Φ fixed. From M′ = M + uTA we have that M′Φ = MΦ +
uTAΦ > MΦ. Then, it is possible to construct an increasing
sequence MΦ < M′Φ < · · · < MnΦ < · · · which grows
up without bound. Therefore, the DDPN is not uniformly
practically stable.

Remark 8. It is important to underline that the only places
where the DPPN will be allowed to get blocked are those
which correspond to equilibrium points.

We will identify the trajectory-tracking properties of
the DPPN as those properties related with the trajectory-
tracking value at each place of the PN. In this sense, we
will relate an optimum point the best possible performance
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choice. Formally we will introduce the following definition
[23].

Definition 8. A final decision point p f ∈ P with respect to a
decision process Petri net DDPN = {P,Q,F,W ,M0,π,U}
is a place p ∈ P where the infimum is asymptotically
approached (or the minimum is attained), that is, U(p) = 0
or U(p) = C.

Definition 9. An optimum point pΔ ∈ P with respect to a
decision process Petri net DDPN = {P,Q,F,W ,M0,π,U} is
a final decision point p f ∈ P where the best choice is selected
“according to some criteria.”

Property 3. Every decision process Petri net DDPN =
{P,Q,F,W ,M0,π,U} has a final decision point.

Remark 9. In case that ∃p1, . . . , pn ∈ P, such that U(p1) =
· · · = U(pn) = 0, then p1, . . . , pn are optimum points.

Remark 10. The monotonicity of U guarantees that it is
possible to make the search starting from the decision
points.

Then, we can conclude the following theorem.

Theorem 6. Let DDPN = {P,Q,F,W ,M0,π,U} be a finite
decision process Petri net and let (p0, p1, . . . , pn) be a realized
trajectory which converges to pΔ such that ∃εi : |Ui+1 −
Ui| > εi (with εi > 0). Let ε = min{εi}, then the optimum
decision point pΔ is reached in a time step bounded by
O(U0/ε).

Proof. Let us suppose that pΔ is never reached, then, pΔ is not
a sink (the last place) in the decision process Petri net. So, it
is possible to find some output transition to pΔ. Therefore,
it is possible to reduce the trajectory function value over pΔ

by at least ε. As a result, it is possible to obtain a lower value
than C (that is a contradiction).

Theorem 7. Let DDPN = {P,Q,F,W ,M0,π,U} be a
decision process Petri net. Then, U converges to an optimum
(final) decision point pΔ(p f ).

Proof. We have to show that U converges to an optimum
(final) decision point pΔ(p f ). By the previous theorem, the
optimum decision point pΔ is reached in a time step bounded
by O(U0/ε), therefore U converges to pΔ.

Proposition 3. Let DDPN = {P,Q,F,W ,M0,π,U} be a
decision process Petri net and let pΔ ∈ P be an optimum point.
Then U(pΔ) ≤ U(p), for all p ∈ P such that p≤U pΔ.

Proof. We have that U(pΔ) is equal to the minimum or the
infimum. Therefore, U(pΔ) ≤ U(p) for all p ∈ P such that
p≤U pΔ.

Theorem 8. The decision process Petri net DDPN =
{P,Q,F,W ,M0,π,U} is uniformly practically stable iff
U(pi+1)−U(pi) ≤ 0.

Proof. (⇒) Let us choose v = Id(U(pi)), then Δv =
U(pi+1) − U(pi) ≤ 0. Then by the autonomous version of
Theorem 4 and Corollary 1 the DPPN is stable.

(⇐) We want to show that the DPPN is practically stable,
that is, given 0 < λ < A, we must show that |U(pi)| < A. We
know that U(p0) < λ and since U is nondecreasing, we have
that |U(pi)| < |U(p0)| < λ < A.

Theorem 9. Let DDPN = {P,Q,F,W ,M0,π,U} be a
decision process Petri net. If p∗ ∈ P is an equilibrium point,
then it is a final decision point.

Proof. Let us suppose that p∗ is an equilibrium point, we
want to show that its trajectory-tracking value has asymp-
totically approached an infimum (or reached a minimum).
Since p∗ is an equilibrium point, by definition, it is bounded
and it is a sink, for example, its marking can not be modified.
But, this implies that the routing policy attached to the
transition(s) that follows p∗ is 0 (in case there is such
a transition(s), i.e., worst case). Therefore, its trajectory-
tracking value can not be modified and since the value is
a decreasing function of pi, an infimum or a minimum is
attained. Then, p∗ is a final decision point.

Theorem 10. Let DDPN = {P,Q,F,W ,M0,π,U} be a finite
and nonblocking decision process Petri net (unless p ∈ P is an
equilibrium point). If p f ∈ P is a final decision point, then it is
an equilibrium point.

Proof. If p f is a final decision point, since the DDPN is finite,
there exists a k such that Uk(p f ) = C. Let us suppose that p f
is not an equilibrium point.

Case 1. Then, it is not bounded. So, it is possible to
increment the marks of p f in the net. Therefore, it is possible
to modify its trajectory-tracking value. As a result, it is
possible to obtain a lower value than C.

Case 2. Then, it is not bounded and it is not a sink. So, it
is possible to fire some output transition to p f in such a
way that its marking is modified. Therefore, it is possible to
modify the trajectory-tracking value over p f . As a result,
it is possible to obtain a lower trajectory-tracking value
than C.

Corollary 2. Let DDPN = {P,Q,F,W ,M0,π,U} be a finite
and nonblocking decision process Petri net (unless p ∈ P is
an equilibrium point). Then, an optimum point pΔ ∈ P is an
equilibrium point.

Proof. From the previous theorem, we know that a final
decision point is an equilibrium point and since in particular
pΔ is final decision point, then it is an equilibrium point.

5. Completeness

Theorem 11. Let DDPN = {P,Q,F,W ,M0,π,U} be a
decision process Petri net and let (p0, p1, . . . , pn) be a realized
trajectory which converges to p∗ such that ∃εi : |Ui+1 − Ui| >
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εi (with εi > 0). Let ε = min{εi}, then an optimum point p∗

is reached in a time step bounded by O(U0/ε).

Proof. Let us suppose that p∗ is never reached, then p∗ is
not the last place in the decision process Petri net. So, it is
possible to find some output transition to p∗. Therefore, it is
possible to reduce the trajectory function value over p∗ by at
least ε. As a result, it is possible to obtain a lower value than
C (that is a contradiction).

Remark 11. The complexity time O(U0/ε) differs with that
of the Dijkstra’s algorithm.

Remark 12. Each path in DDPN corresponds to a trajectory
of/in a given system. The trajectory-tracking function value
of U at the source place (Umon

0 ) divided by ε = min{εi}
equals the length of the shortest-path. Then, the infimum is
equivalent to the infimum length over all paths in DDPN.

Theorem 12. Let DDPN = {P,Q,F,W ,M0,π,U} be a
decision process Petri net. Then, U converges to a point p∗.

Proof. We have to show that U converges to a point p∗. By
the previous theorem, the optimum point p∗ is reached in
a time step bounded by O(U0/ε), therefore U converges to
p∗.

Proposition 4. The finite and nonblocking (unless p ∈ P is
an equilibrium point) condition over the DDPN can not be
relaxed.

Proof. (1) Let us suppose that the DDPN is not finite, that
is, p is in a cycle, then the Lyapunov-like function converges
when k → ∞, to zero, that is, L(p) = 0 but the DPPN has no
final place therefore, it is not an equilibrium point.

(2) Let us suppose that the DDPN blocks at some place
(not an equilibrium point) p ∈ P. Then, the Lyapunov-like
function has a minimum at place p, lets say L(p) = C but p is
not an equilibrium point, because it is not necessary to have
a sink in the net.

6. Conclusions

In this work, a formal framework for shortest-path decision
process problem representation has been presented. Whereas
in previous work, attention was restricted to tracking the
net using a utility function Bellman’s equation, this work
uses a Lyapunov-like function. In this sense, we are changing
the traditional cost function by a trajectory-tracking func-
tion which is also an optimal cost-to-target function for
tracking the net. This makes a significant difference in the
conceptualization of the problem domain. The Lyapunov
method introduces a new equilibrium and stability concept
in decision process.

References

[1] D. P. Bertsekas and J. N. Tsitsiklis, “An analysis of stochastic
shortest path problems,” Mathematics of Operations Research,
vol. 16, no. 3, pp. 580–595, 1991.

[2] D. Blackwell, “Positive dynamic programming,” in Proceedings
of the 5th Berkeley Symposium on Mathematical Statistics and
Probability, vol. 1, pp. 415–418, University of California Press,
Berkeley, Calif, USA, June-July 1965.

[3] C. Derman, Finite State Markovian Decision Processes, Aca-
demic Press, New York, NY, USA, 1970.

[4] F. Baccelli, G. Cohen, and B. Gaujal, “Recursive equations and
basic properties of timed Petri nets,” Journal of Discrete Event
Dynamic Systems, vol. 1, no. 4, pp. 415–439, 1992.

[5] F. Baccelli, S. Foss, and B. Gaujal, “Structural, temporal and
stochastic properties of unbounded free-choice Petri nets,”
Rapport de Recherche, INRIA, Sophia Antipolis, France, 1994.

[6] R. I. Bahar, E. A. Frohm, C. M. Gaona, et al., “Algebraic
decision diagrams and their applications,” Formal Methods in
System Design, vol. 10, no. 2-3, pp. 171–206, 1997.

[7] G. Ciardo and R. Siminiceanu, “Using edge-valued decision
diagrams for symbolic generation of shortest paths,” in Pro-
ceedings of the 4th International Conference on Formal Methods
in Computer-Aided Design (FMCAD ’02), M. D. Aagaard and
J. W. O’Leary, Eds., vol. 2517 of Lecture Notes in Computer
Science, pp. 256–273, Portland, Ore, USA, November 2002.

[8] G. Cohen, S. Gaubert, and J. Quadrat, “Algebraic system
analysis of timed Petri nets,” in Idempotency, J. Gunawardena,
Ed., Collection of the Isaac Newton Institute, Cambridge
University Press, Cambridge, UK, 1998.

[9] J. H. Eaton and L. A. Zadeh, “Optimal pursuit strategies in
discrete-state probabilistic systems,” Journal of Basic Engineer-
ing, vol. 84, pp. 23–29, 1962.

[10] B. Gaujal and A. Giua, “Optimal routing of continuous timed
Petri nets,” Automatica, vol. 40, no. 9, pp. 1505–1516, 2004.

[11] K. Hinderer and K.-H. Waldmann, “The critical discount fac-
tor for finite Markovian decision processes with an absorbing
set,” Mathematical Methods of Operations Research, vol. 57, no.
1, pp. 1–19, 2003.

[12] K. Hinderer and K.-H. Waldmann, “Algorithms for countable
state Markov decision models with an absorbing set,” SIAM
Journal on Control and Optimization, vol. 43, no. 6, pp. 2109–
2131, 2005.

[13] V. Khomenko and M. Koutny, “Verification of bounded Petri
nets using integer programming,” Formal Methods in System
Design, vol. 30, no. 2, pp. 143–176, 2007.

[14] A. F. Veinott, “Discrete dynamic programming with sensitive
discount optimality criteria,” Annals of Mathematical Statistics,
vol. 40, no. 5, pp. 1635–1660, 1969.

[15] H.-C. Yen, “A valuation-based analysis of conflict-free Petri
nets,” Systems and Control Letters, vol. 45, no. 5, pp. 387–395,
2002.

[16] A. S. Poznyak, K. Najim, and E. Gomez-Ramirez, Self-Learning
Control of Finite Markov Chains, Marcel Dekker, New York,
NY, USA, 2000.

[17] A. Auslender and M. Teboulle, “Interior gradient and proximal
methods for convex and conic optimization,” SIAM Journal on
Optimization, vol. 16, no. 3, pp. 697–725, 2006.

[18] S. Pan and J.-S. Chen, “Entropy-like proximal algorithms
based on a second-order homogeneous distance function for
quasi-convex programming,” Journal of Global Optimization,
vol. 39, no. 4, pp. 555–575, 2007.

[19] T. Cormen, C. Leiserson, R. Rivest, and C. Stein, Introduction
to Algorithms, MIT Press and McGraw-Hill, Cambridge, Mass,
USA, 2nd edition, 2001.

[20] V. Lakshmikantham, S. Leela, and A. A. Martynyuk, Practical
Stability of Nonlinear Systems, World Scientific, Singapore,
1990.



12 International Journal of Computer Games Technology

[21] V. Lakshmikantham, V. M. Matrosov, and S. Sivasundaram,
Vector Lyapunov Functions and Stability Analysis of Nonlinear
Systems, Kluwer Academic Publishers, Dordrecht, The Nether-
lands, 1991.

[22] R. E. Kalman and J. E. Bertram, “Control system analysis and
design via the “second method” of Lyapunov,” Journal of Basic
Engineering, vol. 82(D), pp. 371–393, 1960.

[23] J. B. Clempner, “Colored decision process Petri nets: mod-
eling, analysis and stability,” International Journal of Applied
Mathematics and Computer Science, vol. 15, no. 3, pp. 405–420,
2005.

[24] I. Csiszár, “Information-type measures of difference of prob-
ability distribution and indirect observations,” Studia Scien-
tiarum Mathematicarum Hungarica, vol. 2, pp. 299–318, 1967.

[25] S. Kullback and R. A. Leibler, “On information and suffi-
ciency,” Annals of Mathematical Statistics, vol. 22, no. 1, pp.
79–86, 1951.

[26] A. L. Lehninger, D. L. Nelson, and M. M. Cox, Principles of
Biochemistry, Worth, New York, NY, USA, 4th edition, 2004.

[27] H. Matsuno, S. Fujita, A. Doi, M. Nagasaki, and S. Miyano,
“Towards biopathway modeling and simulation,” in Proceed-
ings of the 24th International Conference on Applications and
Theory of Petri Nets (ICATPN ’03), vol. 2679 of Lecture Notes
in Computer Science, pp. 3–22, Eindhoven, The Netherlands,
June 2003.

[28] J. B. Clempner, “Towards modeling the shortest-path problem
and games with Petri nets,” in Proceedings of the Doctoral
Consortium at the ICATPN, pp. 1–12, Turku, Finland, June
2006.

[29] J. Desel and J. Esparza, “Free choice Petri nets,” in Cambridge
Tracts in Theoretical Computer Science, vol. 40, Cambridge
University Press, Cambridge, UK, 1995.

[30] M. K. Campbell and S. O. Farrell, Biochemistry, Brooks Cole,
Florence, Ky, USA, 4th edition, 2002.

[31] K. M. Passino, K. L. Burgess, and A. N. Michel, “Lagrange
stability and boundedness of discrete event systems,” Discrete
Event Dynamic Systems: Theory and Applications, vol. 5, no. 4,
pp. 383–403, 1995.

[32] Z. Retchkiman, “Place-Transitions Petri Nets: Class Notes,”
CIC-I.P.N., 1998.

[33] T. Murata, “Petri nets: properties, analysis and applications,”
Proceedings of the IEEE, vol. 77, no. 4, pp. 541–580, 1989.



International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2010

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive  
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation 
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation 
http://www.hindawi.com

Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of  Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and 
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of


