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INTRODUCTION
One of the most active and productive research fi elds in 
Neuroscience investigates the basic physiological mechanisms 
of the nervous system when dealing with the control of upper-
limb movements. The main obstacle to a deeper knowledge of 
such a system is due to the diffi culty to understand how the con-
trol system is able to interact with the anatomy and the physiol-
ogy in order to build and perfect the desired motor function 
refl ecting the required goal. To solve this point means fi rstly to 
discover the mechanisms dealing with the design, construction 
and maintenance of the neuronal networks. Then it means to 
understand how the networks succeed in solving problems of 
increasing complexity, even if they are composed by units whose 
single behaviour is too simple to explain the acquisition of any 
competency. To understand how new competencies are learned 
and adapted to different environments, the observation of the 
each single units is useless, while the study of the whole network 
can be much more effective.

Models offer a scientifi c approach to the comprehension of the 
nervous system: in particular, motor control mechanisms, which 
integrate several neuronal structures (i.e. perceptive, associative, cog-
nitive and motor), have often been studied by looking at the behav-
iour of possible artifi cial replicae, such as computational models.

It is diffi cult, if not impossible, to represent such a complex-
ity by using a conventional algorithmic approach where the data 
fl ow has to be clearly defi ned in any single instruction. Instead, 
soft computing offers a viable solution by moving the rationale 
of the modelling from the mathematic description of a behaviour 
to the understanding of the fundamental mechanisms behind 
it. Moreover, since soft criteria (Perl, 2004) accept statistically 
varying results when lying in a range of acceptable solutions, 
they simulate biological mechanisms in a way that is inspired to 
real life. The rationale of the biologically inspired modelling was 
used in several works of the motor control literature since the 

 pioneering work by Ito (1970). In motor control theory, a bio-
logically inspired model is an artifi cial system able to mimic the 
functional properties of a real biological system with respect to 
the following four criteria: (1) architecture, (2) learning behav-
iour (acquisition of motor skills), (3) functioning (in terms of 
control and execution of movements), (4) adaptability to different 
environments (force fi elds, presence of obstacles, etc.). Artifi cial 
Neural Networks (ANN) can be considered as the “most biologi-
cally inspired” among soft computing approaches, because of their 
ability to mimic the behaviour of biological neuronal networks 
with respect to the architecture, the mechanisms of competen-
cies acquisition, and the real-time processing of the information. 
Furthermore, a deeper insight in the different neural typologies 
can lead to a differentiation between the classic architectures (i.e. 
Hopfi eld, Multi-Layer Perceptron) focusing on activity levels only, 
and the ones resembling neurophysiologic functioning, including 
time properties (e.g. Spiking Networks). For simplicity reasons in 
this work the term ANN will comprehend both the cited struc-
ture types.

In this perspective article, the focus will be on a subset of those 
scientifi c contributions that proposed biologically inspired models 
as artifi cial paradigms for the control of goal-directed upper-limb 
movements, and tested the feasibility of biologically inspired mod-
els in a rehabilitative context. All the works dealing with upper-limb 
motor control (in vivo, in silico, and for robotic arms) where ANN 
are not used in a biologically inspired way will be left aside. The 
review of these latter works, though interesting, is beyond the scope 
of this contribution. Special attention will be instead devoted to 
those examples where the application tackles the motor impair-
ment as an effect of neuromuscular disorders. Then the authors 
will concentrate on future applications of the biologically inspired 
modelling as envisaged by some proposals ranging from robotics 
(Miyamoto et al., 1987; Glasius et al., 1996), to rehabilitation (Lan 
et al., 1994; Goffredo et al., 2008).
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DIM are able to forecast the sensorial consequences of an action, 
assessing the limb future state (i.e. position and velocity) from the 
knowledge of the actual state and the motor commands. On the 
contrary, the IIM can produce the motor commands, which modify 
the state in a controlled way. The differentiation concerns the dis-
cussion about: (i) the existence of an anticipative control of the 
movements, and (ii) the role of a central planning actuated before 
the trigger of the task connected to corrective processes based on 
the feedback system. It must be taken into account that the main 
strategies of motor control are the open-loop (feedforward) and 
the closed-loop (feedback) control: the former is related to all those 
systems based on the control of an end-effector without having 
any information about the state during the control (muscle length, 
end-effector position), but on a predetermined sequence of actua-
tor commands; the latter concerns the theories of control in which 
the information of the state available at any time step modifi es the 
outgoing of the motor commands in order to correct errors.

The presence of feedforward mechanisms is fundamental 
since sensorimotor control needs a signifi cant and highly variable 
amount of time (150–250 ms) to elaborate a motor reaction to a 
sensory feedback stimulus (Wolpert et al., 1998). The way these 
feedback and feedforward components of motor control interact 
was discussed in several studies, and among the possible implemen-
tations the ones based on ANN reveal good potentialities (Miall 
and Wolpert, 1996; Kawato, 1999). This will be object of the fol-
lowing paragraph.

NEURAL COMPUTATIONAL MODELS
Among the computational models for motor control, those based 
on a neural approach have often been indicated as biologically 
inspired. The reason derives from the features of the ANN, which 
are able to mimic the human neuronal structures in both archi-
tecture and behaviour. Indeed, a neural network is composed by 
a number of units linked through weighted connections, just as 
the human neuronal structures. Connections and weights link-
ing single units characterize the behaviour of an ANN and affect 
the contribution given from each unit to the propagation of the 
action potential through the whole network: this process is tuned 
through learning. Dealing with this context, in this paragraph the 
authors will review some representative works concerning biologi-
cally inspired neural models for the motor control on the basis of 
the four criteria proposed in the introduction. Thus, a classifi cation 
of these contributions will be done focusing on which work can be 
considered as biologically inspired in terms of:

1. architecture (Glasius et al., 1996; Billard and Mataric, 2001)
2. learning behaviour (Kawato et al., 1988; Izawa et al., 2003)
3. functioning (Fagg et al., 1997; Karniel and Inbar 1997; Harris 

and Wolpert, 1998; Tanaka et al., 2004)
4. adaptivity (Stroeve, 1998; Meulenbroek et al., 2001; Todorov 

and Jordan, 2002; Bernabucci et al., 2007b).

An interesting example of biologically inspired architecture 
was proposed by Billard and Mataric (2001) with a model for 
learning human arm movements by imitation. The model con-
sists of a hierarchy of ANN, and is composed by modules simu-
lating specifi c brain regions (i.e. temporal cortex, spinal cord, 

SOME THEORETICAL MODELS FOR THE DESCRIPTION OF 
MOTOR CONTROL MECHANISMS
Modelling the human motor control mechanisms aims at a clear 
understanding of the functionality of the motor system, from the 
movement implementation to the learning process. Thus the devel-
opment of the motor control skills derives from the acquisition 
of several competencies, including the cognitive ones. It is agreed 
that accuracy, robustness to changing environment, and adapt-
ability to altered conditions in living organisms result from the 
intrinsic capacity of a biological system to learn from experience, 
which, in the motor control framework, is its ability to develop a 
sensorimotor organization model. This is a direct consequence of 
the neural plasticity, which, starting from birth, allows changes at 
the neuronal and network level, thus providing refi nement of the 
model during the entire life cycle. Basically, the scientifi c modelling 
of these mechanisms can be divided into two main parts. The fi rst 
one focuses on the modelling of the kinematics and dynamics of the 
end-effectors, and directs the attention to an optimal simulation of 
the motor behaviour. The second one deals with the modelling of 
higher-level processes and takes into account the relation between 
the learning and the organization schemes of the movements (i.e. 
sensorimotor adaptation).

Several control architectures and sophisticated algorithms have 
been built up and largely adapted to motor control theories in order 
to aim at a deeper understanding of this process. Some problems are 
still under investigation, such as the integration of all the different 
brain areas that contribute to the computational process of motor 
skills learning (Willingham, 1998), and the interaction between 
the movement and the environment.

In the following, the authors will restrict the fi eld of interest to 
the modelling of the sensorimotor adaptation as the closest one to 
the biologically inspired philosophy. In this context, the design of 
the mechanisms for motor control needs to account for adaptivity, 
since the neuromuscular strategies depend on the environmental 
conditions as well as on the mechanical properties of the limbs 
(mass, geometry, viscosity of the muscles, etc.). This phenomenon 
was studied experimentally by modifying the environment in sev-
eral controlled ways, through visual (Abeele and Bock, 2001; Miall 
et al., 2004; Caselli et al., 2006) or mechanical distortions (Krakauer 
et al., 1999; Scheidt et al., 2000), stable (Conditt and Mussa-Ivaldi, 
1997) and unstable (Osu et al., 2003) interactions produced by hap-
tic interfaces. The evidence, provided by experimental data, that the 
Central Nervous System is able to account for dynamic compensa-
tions, led to the hypothesis of the existence of the so-called Internal 
Models (IM), which implement the neural mechanisms connecting 
input and output signals of the sensorimotor system in a feedfor-
ward fashion (Kawato, 1999). These architectures are considered 
as the keystone upon which the motor control takes shape and 
dynamically evolves. They intrinsically contain information about 
the mechanical properties of the human body in relation both to 
the environment and to the subject’s experience. The cerebellum is 
considered as the hypothetical site where the IM are gradually built 
and instantiated through practice and experience (Shadmehr and 
Mussa-Ivaldi, 1994). In order to build an effi cient IM, two differ-
ent functions need to be executed by the cerebellum, and they can 
respectively be associated with the direct internal models (DIM) 
and the inverse internal models (IIM) (Wolpert et al., 1998). The 
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 illustrating a  comprehensive neural-based model of the human 
arm was  presented in Karniel and Inbar (1997). The proposed 
model consists of a 2 DOF manipulator driven by three muscle 
pairs for the direct dynamic modelling, while the control archi-
tecture consists of an ANN generating neural outputs and a pulse 
generator that transforms the neural outputs into representative 
motor commands. This model is able to produce movements with 
features consistent with physiology. The working area is restricted to 
a limited region of the entire workspace and the learning algorithm 
is not properly biologically inspired. Bernabucci (2007a) proposed 
a multi-layer Perceptron ANN for the representation of an IIM 
for ballistic movements of an upper limb in a given environment. 
Movements generated by this controller reproduce the bell-shaped 
hand velocity profi les, thus giving results consistent with the move-
ment generation of a human arm.

If the functioning is a well solved problem, on the other hand, 
the adaptivity of the models to different environment situations 
is a challenging task. In Stroeve (1998) a multi-layer Perceptron 
is trained to simulate an IM: a desired task is executed by motor 
commands which adaptively depend on the environment. The 
control is performed by generating signals which result very similar 
to those extracted from real myoelectric data. The adaptability of 
this model was further assessed by comparing real data with the 
responses of the model (in terms of arm impedance) to external 
disturbances: Todorov and Jordan (2002) proposed a fundamen-
tal theoretical framework based on stochastic optimal feedback 
control able to explain adaptivity characteristics of human motor 
planning as a link between goal achievement and motor details 
variability. In Bernabucci et al. (2007b), a controller of an upper 
human arm model is being exposed to different conditions simu-
lating altered force environment, showing the adaptation ability 
to environmental modifi cations such as the insertion of different 
force fi elds acting on the end-effector. As a fi nal remark, it is to be 
outlined that sudden changes in the environmental conditions can-
not be managed by IIM and feedforward control schemes, whereas 
a mixed use of forward and inverse models of the dynamics could 
solve such a problem.

MOVING TOWARD APPLICATIONS
In a few cases, the computational models for motor control moved 
from the theoretical framework into the realm of application fi elds. 
Most studies aimed indeed at proposing a novel model generally 
validated by comparing real movements with the artifi cial ones exe-
cuted by a virtual arm. Among the few works successfully applied to 
real contexts, the control scheme proposed in Kawato et al. (1988), 
was used to control an industrial manipulator (Miyamoto et al., 
1987) and the study by Glasius et al. (1996) was tested to drive both 
a mechanical manipulator and an artifi cial arm.

A promising perspective for practical applications of computa-
tional models is given by the development of neural prostheses for 
rehabilitation embedding Functional Electrical Stimulation (FES) 
technology. Some preliminary attempts to use computational mod-
els as FES controllers have been proposed. For instance, (Lan et al., 
1994) implement an open-loop controller for a FES muscle stimula-
tor by using a recurrent feedback-feedforward ANN. The net is fed 
with kinematic information (i.e. desired trends of trajectory and 
angular velocity) and gives as output both the muscular stiffness 

primary motor cortex, premotor area, cerebellum) involved in 
visuo-motor learning and control. The learning is addressed to 
the modules of premotor area and cerebellum, the former simu-
lating an abstract representation of mirror neurons (Rizzolatti 
et al., 1996) and the latter allowing to master complex tasks by 
learning sequences of primitive movements. Both modules are 
implemented as Dynamical Recurrent Associative Memories (i.e. 
fully recurrent ANN without hidden units) and a Hebbian strategy 
is used for learning. The movements executed by an 11 Degrees 
Of Freedom (DOF) human model driven by this controller are 
similar to the real ones. Sensory information for movement plan-
ning was studied also in Glasius et al. (1996), where the issues of 
trajectory formation and obstacle avoidance are solved using a 
two-layer biologically inspired ANN, trained in an unsupervised 
way. The layers respectively represent the sensory map, which 
builds up the activity patterns from sensory information, and 
the time-evolving motor map, transforming activity patterns into 
motor commands.

Among the studies using ANN in motor control, those trying to 
implement IM are probably the ones in which learning behaviour 
better resembles that of human motor control. Basically three main 
learning paradigms for ANN can be defi ned: (1) supervised learn-
ing: an “external teacher” provides the net with the input-output 
pairs. The error is used to adapt the synaptic weights; (2) unsuper-
vised learning: the signifi cant features from the input population 
are self-recognised; (3) reinforcement learning (Sutton and Barto, 
1998): it works to maximise a reward or a reinforcement parameter, 
which infl uences weights modifi cation (increasing the probability 
of future rewards) and establishes the end of the learning phase. 
This paradigm is useful when a task can be decomposed into dif-
ferent sub-tasks, whose sequence can infl uence the overall reward 
value. In Kawato et al. (1988), a computational model for learning 
and controlling voluntary movements based on Hierarchical ANN 
was proposed. This scheme used ANN to implement both a DIM 
and an IIM: the fi rst provides a feedback signal for the training of 
the second. The IIM is trained by using the feedback error learning 
algorithm, to provide the proper motor commands when fed by the 
trajectory of the desired movement in the joints space. A similar 
approach is that proposed in Izawa et al. (2003), where an ANN 
representing the IIM of the upper limb is used as a state predictor 
in order to stabilize a Reinforcement Learning algorithm for an 
Actor/Critic ANN controller based on Temporal Difference Learning 
(Sutton and Barto, 1998).

Another fundamental purpose in the modelling of motor con-
trol systems for the upper limb is the imitation of human move-
ment (thus intending the biologically inspired functioning). Due 
to the high redundancy of arm movements, most models imitate 
sub-sets of motor tasks, generally planar and goal-directed. The 
works by Fagg et al. (1997), Karniel and Inbar (1997), Harris and 
Wolpert (1998), Tanaka et al. (2004), Bernabucci et al. (2007a), 
try to mimic the bell-shaped velocity profi le of the human move-
ment. Fagg (1997) presented a heuristic computational model 
based on ANN that learns motor programs such as infant’s reach-
ing strategy, that is bringing an arm to the target and correcting 
reaching movements. This “trial and error” architecture is able to 
produce, after some attempts, biologically plausible movements, 
characterised by bell-shaped tangential velocity profi les. A work 
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and the motor patterns to tune the FES stimulation parameters. 
The stimulated movements are executed with limited error on the 
fi nal position of the end-effector.

Another interesting work is that presented by Sepulveda et al. 
(1998) where neural networks were used to command a FES system 
for gait restoration in spinal-chord injured patients.

Some of the authors of this paper presented in Goffredo et al. 
(2008) the rationale for a novel FES-assisted system devoted to the 
upper-limb rehabilitation and controlled by a biologically inspired 
ANN. The system was envisioned as a means to rehabilitate post-
stroke patients revealing hemiplegia: the movement of the paretic 
upper limb is assisted by an “optimal” stimulation provided by the 
controller previously trained to associate kinematics to muscular 
activation patterns. The training is done on a set of movements (i.e. 
the kinematics) executed either by the therapist or by the patient’s 
sound arm in virtual/augmented reality.

In the authors’ opinion, the merging of biologically inspired 
modelling and assistive technology could improve the quality of 
life of people suffering from neuromotor disorders. In the projects 
funded by the European Commission in the FP7 into different 
research areas, biologically inspired models are accounted for prac-
tical applications (i.e. chemical sensors, rehabilitation, cognitive 
systems). Among those projects the one called TREMOR (FP7 
action ICT-2007.7.2, grant number ICT-2007-224051) proposes a 
wearable device based on FES technology to assist voluntary move-
ments of the upper limb through tremor minimization (Manto 
et al., 2009). The project, proposing an ANN model to drive the 
controller of the FES system, will indirectly test how biologically 
inspired models can renovate applications already proposed. In 
fact, FES for tremor reduction proposed in Prochazka et al. (1992) 
and Zhang and Ang (2006) opens the new issue of how to control 
the FES delivery.

The system proposed in the TREMOR project is composed 
by several parallel ANN (one for each DOF of elbow and wrist 
joints) implementing a mapping function between the kinemat-
ics of spatial joint confi guration (and/or inertial joint values) 
and the muscular activation patterns devoted to provide the best 
parameters for stimulation to a FES controller. A multimodal BCI 
system (intended as a BCI system integrating information gained 
from EEG signal with that obtained from other signals such as 
surface EMG and IMUs in a sensor fusion approach) is used to 

gain information about voluntary movements (EEG signal) and 
tremor  characteristics (that is onset frequency and amplitude from 
EMG and inertial measurement units). This information might be 
used to reduce tremor without affecting the execution of voluntary 
movements. The mapping function is the solution proposed to solve 
the inverse dynamics problem of the upper arm in an adaptive, 
subject-specifi c and real-time way. The training of the ANN is per-
formed by exploiting an advanced biomechanical 3D model (whose 
anthropometric properties can be tuned according to patient’s data) 
able to provide kinematics and/or inertial characteristics related to 
the motor task. The data sets for the learning phase are obtained 
by associating these values to the muscular activation patterns that 
generate them. The successful concept study already carried on in 
the TREMOR project opens new interesting perspectives.

CONCLUSIONS
Computational models for motor control, which are generally 
developed within theoretical frameworks, could be transferred 
into applications such as those dealing with rehabilitative devices. 
Even if the literature has not yet offered computational models 
for motor control that can be considered as biologically inspired 
as a whole (that is in terms of architecture, learning, functioning 
and adaptivity), some partial attempts have been proposed in the 
motor rehabilitation framework.

The TREMOR project has been chosen as a paradigm for the 
transfer of theoretical studies to applications in the framework of 
assistive devices and rehabilitation.

This example opens an interesting scenario on the advantages 
the biologically inspired models can provide to the implementation 
of technologies for motor planning assistance.

Assessing the feasibility of this approach under real life condi-
tions is thus a necessary yet fundamental step towards the diffu-
sion of biologically inspired models as effective artifi cial means to 
control or help control upper limb movements.
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