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Abstract:
We describe an experimental study, based on several
million video scenes, of seven keypoint detec on algo-
rithms: BRISK, FAST, GFTT, HARRIS, MSER, ORB and STAR.
It was observed that the probability distribu ons of se-
lected keypoints are dras cally different between indoor
and outdoor environments for all algorithms analyzed.
This paper presents a simple method for dis nguishing
between indoor and outdoor environments in a video se-
quence. The proposed method is based on the central lo-
ca on of keypoints in video frames. This has lead to a
universally effec ve indoor/outdoor environment recog-
ni on method, and may prove to be a crucial step in the
design of robo c control algorithms based on computer
vision, especially for autonomous mobile robots.

Keywords: machine vision, keypoint, UAVs, scene recog-
ni on

1. Introduc on
Correct determination of the sensed environment

by a multitasking robot is crucial to the success of its
control algorithms. For various kinds of environments,
different sets of sensors and devices can be used (e.g.,
IR scanner for indoor and GPS for outdoor) to sup-
port autonomous control and other methods of de-
termining the trajectory of the mobile robot. Most of
the models and algorithms that work well in outdoor
environments work poorly inside buildings [8]. The
simplest method for distinguishing a robot environ-
ment is to divide it into interior and outdoor areas.
It is clear that the weather conditions and the nature
of the obstacles encountered by the robot on its path
can be very different between indoor and outdoor en-
vironments [19]. Striving to create autonomous mo-
bile robots forces us to supply them with control al-
gorithms broad enough to be able to cope with a va-
riety of different environments. The division of envi-
ronments into indoor [3], [4] and outdoor [1] does
not exhaust all the possibilities. However, this may
be used as an initial recognition step, allowing the
robot to switch between two dedicated control algo-
rithms, better-adapted to open and closed spaces, re-
spectively.

This paper focuses on demonstrating the differ-
ences between probabilities of keypoint locations for
indoor and outdoor areas on the basis of characteris-
tic points identi ied by the algorithms: BRISK, FAST,
GFTT, HARRIS, MSER, ORB and STAR for video se-
quences. The difference in the central position of char-

acteristic points (on video frames) between the inte-
rior and the exterior environment provides a strong
basis for the development of a simple and effective
method for distinguishing the environment surround-
ing the robot (based on video footage).

For land-based robots, many methods have been
proposed for the detection and avoidance of obstacles.
However, for aerial robots (such as unmanned aerial
vehicles(UAVs)) there are still many challenges left to
be solved. For UAVs, avoiding obstacles is more dif-
icult, because they operate in 3D space, whereas for
land-based robots,whosemovement can be simpli ied
to the 2D plane, obstacle detection is made simpler.
Since UAVs have a limited carrying capacity, they are
not able to be equipped with as many sensors as land-
based robots in order to detect obstacles, for example,
laser scanners [2]. Computer vision systems provide a
good solution to this problem, because the video cam-
eras are lightweight and energy ef icient. In contrast to
scanning sensors such as Lidar and sonar, cameras of-
fer higher resolution and noise immunity. Land-based
robots can also disengage the drive and stop for a long
analysis of the environment. However, UAVs can not
stay in ixed position for a long time, because it ad-
versely affects their light time.

In contrast to land-based robots, aerial robots op-
erate in several different environments. In urban ar-
eas, the following types of neighborhoods, shown in
Figs.1–4, may be encountered:

Indoors, inside buildings – Characterized by en-
closed, often rectangular spaces containing obstacles,
including mobile ones can appear from all directions.
Theremay also bemirrors, andwindows adding to the
complexity object recognition systems

Fig. 1. Indoors

Streets – Streets are characterized by having many
moving obstacles. However, the street plane can serve
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as a reference to identify moving objects in the image,
and thanks to such an assumption, many automotive
obstacle detection algorithms can be used.

Fig. 2. Street

Urban canyons – Obstacles are usually located on the
sides, e.g. buildings, trees, and the occasional obstacle
in front. A robot must also avoid colliding with power
lines and streetlights.

Fig. 3. Urban canyon

The space above the city – Compared to other envi-
ronments, there are relatively few obstacles and they
are usually static, e.g. radio antennas, tall buildings,
chimneys.

Fig. 4. The space above the city

There are many specialized obstacle-detection al-
gorithms used to ind barriers in certain environ-
ments. The effectiveness of the algorithms strongly de-
pends on the area where the mobile robot works. In
each of the environments, other types of obstacles oc-
cur, so it is necessary to distinguish between the dif-
ferent environments and use dedicated control algo-
rithms adapted to that speci ic environment.

2. Mo va on
Proper scene recognition, whether it involves dis-

tinguishing if the robot is located inside or outside
a building [19] to a more sophisticated environment
analysis, is necessary if the robot loss could prove
costly. Correct characterization of the environment al-
lows for the use of dedicated control algorithms. The
main objective is thus to avoid collidingwith obstacles
and damaging the robot or obstacle. It is not neces-
sarily just about avoiding the destruction of the robot
(e.g., UAV), but also to eliminate collisionswith people,
which is important because of the possibility of severe
injury by such a lying robot.

In some papers, a completely different approach is
presented, allowing the destruction of the robot. One
example is training robots to cross ahighway collision-
free [18]. In this process, a certain number of robots
must be discarded (damaged, or run over by vehicles),
in order that the otherrobots can acquire the knowl-
edge needed to learn.

3. Data
The analyzed data is a collection of more than

3,000,000 scenes shot from various movies. The
videos have a resolution ranging from VGA (640x480)
to Full HD (1920x1080). The video frame sequences
were shot using various different cameras, with pho-
todetector matrices based on either CCD or CMOS
technologies. The videos were recorded at speeds of
between 20 and 30 frames per second. They can be
divided into two categories: recordings captured on
premises (indoor) and those captured in open spaces
(outdoor). The scenes are characterized by different
lighting and camera movement dynamics.

Video sequences, shot in closed areas depict inte-
rior spaces such as museums or apartments. It should
be noted that most of the movies ilmed in a closed
area are characterized by cameramovements through
areas such as corridors, where the orientation of the
camera is close to that of the typical orientation of
the human eye whenwalking through a room. Movies,
shot in open areas, come from cameras mounted
on drones (UAVs). The movies were recorded dur-
ing drone lights over ields, roads, and mountains.
We made sure that parts of the drone do not enter
the frame All videos were recorded by cameras with
lenses pointed in the direction of the drone light. Of
the 3,000,000 video frames, 1,200,000 video frames
depict indoor areas, whilst 1,800,000 depict outdoor
areas.

The diversity of the video material serves as a ba-
sis for constructing a simple and rapid method for de-
termining anddistinguishing between indoor and out-
door environments captured by cameras.

4. Keypoints Selec on Algorithms
The following seven keypoint selection methods

were tested: BRISK, FAST, GFTT, HARRIS, MSER, ORB
and STAR. The keypoint pixels, detected by each of the
listed algorithms, are shown on exemplary frames in

8



Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 11, N∘ 4 2017

(a) ORIGINAL (b) BRISK (c) FAST (d) GFTT

(e) HARRIS (f) MSER (g) ORB (h) STAR

Fig. 5. Keypoints on exemplary frame for indoor environment

(a) ORIGINAL (b) BRISK (c) FAST (d) GFTT

(e) HARRIS (f) MSER (g) ORB (h) STAR

Fig. 6. Keypoints on exemplary frame for outdoor environment

Figures 5 and 6. The original pictures are presented
in Figure 5a (indoor scene–a covered sports hall for
basketball) and in Figure 6a (outdoor scene–a land-
scape with ields in the foreground and mountains in
the background).

All algorithms compared in this paper were im-
plemented using the Open CV [6] library. The soft-
ware [17] contains all if the previously mentioned
methods for keypoint selection in video sequences.
The program associated with this paper is freely
available via github [17]. A short description of each
method is given below,
1) BRISK

The Binary Robust Invariant Scalable Keypoints
method was proposed by Leutenegger et al. [9].
The algorithm is a modi ication of the BRIEF [5]
(BinaryRobust IndependentElementaryFeatures)
method, which uses binary strings for corner de-
tection and can be computed by performing sim-
ple intensity difference tests. The output of every
test is either zero or one, and the result is ap-

pended to the end of the string. In contrast to the
BRIEFmethod, BRISK relies on a circular sampling
pattern from which it computes brightness com-
parisons to form a binary descriptor string. The
BRIEFmethod is not invariant to large, in-plane ro-
tations. However the BRISK method handles sim-
ple in-plane rotations very well.

2) FAST
Features fromAccelerated Segment Test is another
corner detectionmethod, published by Rosten and
Drummond [11]. The method is the most compu-
tationally ef icient algorithm among corner detec-
tors, leading to extremely fast execution times.

3) GFTT
The Good Features To Track detector was pre-
sented by Shi and Tomasi [10]. This method is
based on the calculation of the eigenvalues and
eigenvectors of the deformation matrix. If both
eigenvalues are small, then the feature does not
vary much in any direction and is designated
a lat region (bad feature). If one eigenvalue is
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much larger than the other, then the feature varies
mainly in one direction, i.e., an edge (bad fea-
ture). If both eigenvalues are large, then the feature
varies signi icantly in both directionsi.e., a corner
(good feature).

4) HARRIS
The HARRIS feature detector took its name from
the surname of one of its originators, Harris and
Stephens [12]. This algorithm is the oldest of those
analyzed in this paper, having irst been published
in 1988. The HARRIS identi ies similar regions
among images by selecting and thresholding auto-
correlated patches. A high positive response func-
tion value determines that it is a corner region,
negative an edge region, and a small value deter-
mines a lat region. The detection method is simi-
lar to GFTT, instead of eigenvalues, the value of the
response function is used.

5) MSER
The Maximally Stable Extremal Regions is a
method that inds blobs in images, and was intro-
duced by Matas et al [13,14]. This algorithm is in-
variant to af ine transformations of the image in-
tensities.

6) ORB
The Oriented FAST and Rotated BRIEF is a fast
feature detector, proposed by Rublee et al. [15]. It
is based on both the visual descriptor BRIEF [5]

(BinaryRobust Independent ElementaryFeatures)
and the FAST [11] (Features from Accelerated Seg-
ment Test) keypoint detectors. The ORB algorithm
is robust to in-plane rotations and it uses a nearest
neighbor search instead of random sampling.

7) STAR
The CenSurE (Center Surround Extrema) feature
detector, published by Agrawal, Konolige and Blas
[16], has been implemented in the Open CV library
[6], where it got designated a new name—the
STAR—and someminor changeswere applied, e.g.,
circular shapes were replaced with approxima-
tions. It is designed as a multiscale detector with
masks of different sizes.

5. Keypoint Distribu on
5.1. Loca on

The location of central keypoints is measuredwith
the median. For every set of keypoints

𝑘𝑝 = {(𝑥 , 𝑦 ), (𝑥 , 𝑦 ), … , (𝑥 , 𝑦 )}, (1)
detected on a ixed frame, medians for the vertical and
the horizontal coordinates are calculatedas

𝑀 (𝑘𝑝) = median (𝑥 ), (2)
𝑀 (𝑘𝑝) = median (𝑦 ). (3)

The median is used instead of the mean value, be-
cause the distributions for all analyzed algorithms are

Tab. 1. Average characteris cs per frame for indoor scenes

INDOOR
Algorithm Keypoint Center Keypoint St Dev Execution No. of

𝑀 𝑀 𝑆 𝑆 Time [s] Keypoints
BRISK 0.410 0.691 0.299 0.153 0.466 435.2
FAST 0.445 0.666 0.331 0.189 0.003 5824.8
GFTT 0.446 0.692 0.308 0.164 0.019 904.0
HARRIS 0.405 0.695 0.292 0.139 0.018 507.9
MSER 0.407 0.691 0.330 0.186 0.104 285.5
ORB 0.424 0.670 0.256 0.122 0.009 498.8
STAR 0.411 0.691 0.270 0.132 0.026 256.6

Tab. 2. Average characteris cs per frame for outdoor scenes

OUTDOOR
Algorithm Keypoint Center Keypoint St Dev Execution No. of

𝑀 𝑀 𝑆 𝑆 Time [s] Keypoints
BRISK 0.464 0.776 0.415 0.102 0.526 4053.2
FAST 0.474 0.771 0.437 0.105 0.022 51705.7
GFTT 0.448 0.769 0.398 0.095 0.079 1000.0
HARRIS 0.451 0.770 0.396 0.095 0.072 932.2
MSER 0.494 0.786 0.443 0.110 0.352 1497.1
ORB 0.399 0.770 0.353 0.081 0.045 499.3
STAR 0.449 0.783 0.379 0.093 0.137 1517.1
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(a) BRISK (b) FAST (c) GFTT (d) HARRIS

(e) MSER (f) ORB (g) STAR

Fig. 7. Marginal histograms of keypoint posi on (x,y) for indoor scenes. Average keypoint occurrence by frame for
every rela ve pixel posi on (x,y): x – blue line, y – red line

(a) BRISK (b) FAST (c) GFTT (d) HARRIS

(e) MSER (f) ORB (g) STAR

Fig. 8. Marginal histograms of keypoint posi on (x,y) for outdoor scenes. Average keypoint occurrence by frame for
every rela ve pixel posi on (x,y): x - blue line, y - red line.

skewed, or have more than one mode (see Figures 7-
8). In such situations, themean value does not point to
a central location and so the median is more accurate.

For one type of environment, the vertical coordi-
nates𝑀 of central keypoints take values on the same
level for all algorithms. However, the vertical median
𝑀 values are signi icantly different for indoor and
outdoor video sequences: higher relative pixel posi-
tion for outdoor and lower for indoor. High relative
pixel positions are obtained for pixels placed in the
lower section of frame. For every frame, the pixel in
theupper left corner is theorigin, (0,0). A relative scale
is used, because videos of a wide range of resolutions
were analyzed.
5.2. Dispersion

The dispersion of keypoints 𝑘𝑝 = {(𝑥 , 𝑦 )}
on a frame is measured by the standard deviation of
the median:

𝑆 (𝑘𝑝) = 1
𝑛 (𝑥 −𝑀 ) , (4)

𝑆 (𝑘𝑝) = 1
𝑛 (𝑦 −𝑀 ) . (5)

The standard deviations (horizontal, 𝑆 , and verti-
cal, 𝑆 ) show the dispersion from central points, ob-
tained by the median (𝑀 , 𝑀 ). The lowest deviation
is observed for the 𝑦-coordinate for outdoor video se-
quences. This means that the 𝑦-coordinates of key-
points for outdoor scenes are highly concentrated on
themedian indicated by𝑀 . The concentration of key-
points in the lower part of the video frame is charac-
teristic of outdoor lanscapes. This attribute is shown
in Figures 6b-6h and also in Figure 8.

6. Algorithm Performance
6.1. Number of Keypoints per Frame

The average numbers of keypoints for all executed
algorithms are presented in Table 1 (for indoor) and
Table 2 (for outdoor). The largest number of keypoints
was detected by the FAST algorithm, for both environ-
ment types. This can also be observed in Figures 5c
and 6c. The large number of selected points by the
FAST algorithm coincides with the shortest average
computation time.

6.2. Execu on Time per Frame

As mentioned earlier, the FAST algorithm needed
the shortest average time to calculate keypoints. The
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second fastest algorithm is the ORB (Oriented FAST
and Rotated BRIEF) algorithm. HARRIS and GFTT per-
form calculations in a comparably short time. The
BRISK algorithm proved to be the slowest procedure.
All execution times are shown in Tables 1 and 2.

7. Classifica on Problem for Scene Recogni-
on
Scene recognition can be de ined as a two-class

classi ication problem, with class 1 (indoor) and class
2 (outdoor). The signi icant differences for keypoints
distributions, shown in this paper, should enable the
discrimination of both of these classes. The central
keypoint locations are placed in lower sections on
frames for videos taken outside, and in central sec-
tions for videos taken inside. Most of the selected key-
points for outdoor landscapes occur in the bottomhalf
of frame. For indoor scenes, keypoints can be found on
upper part of frame aswell. This property brings hope
that the classes (indoor and outdoor) are distinguish-
able.

We performed the classi ication based on the fol-
lowing decision rule:

Ψ(𝑘𝑝) =
⎧⎪
⎨⎪⎩

𝐼 (indoor), if
|𝑀 (𝑘𝑝) − 𝑀 | ≤ |𝑀 (𝑘𝑝) − 𝑀 |,
𝑂 (outdoor), if
|𝑀 (𝑘𝑝) − 𝑀 | > |𝑀 (𝑘𝑝) − 𝑀 |.

(6)

A frame represented by a set of keypoints 𝑘𝑝 is classi-
ied to class 𝐼−𝑖𝑛𝑑𝑜𝑜𝑟, when themedian vertical pixel
position𝑀 (𝑘𝑝) of keypoints detected in the frame is
closer to the median vertical pixel position𝑀 of key-
points for indoor frames (see Table 1). It is classi ied to
class 𝑂− 𝑜𝑢𝑡𝑑𝑜𝑜𝑟, when the median𝑀 (𝑘𝑝) is closer
to the median𝑀 , calculated for outdoor frames (see
Table 2). Without loss of generality, we present the
rule for the ixed case𝑀 < 𝑀 as follows:

Ψ(𝑘𝑝) =
𝐼 (indoor), if𝑀 (𝑘𝑝) ≤ 𝜆 ,
𝑂 (outdoor), if𝑀 (𝑘𝑝) > 𝜆 ,

(7)

where the threshold distinguishing between the two
classes is given by

𝜆 = (𝑀 +𝑀 )/2. (8)

The proposed classi ication method, based on cen-
tral keypoint position, was compared to the Naive
Bayes classi ier [20,21], since the distributions in both
classes are known (estimated by histograms to be pre-
cise). Table 3 contains the results for the two fastest
keypoint selection methods: FAST and ORB, and one
with medium computation time: STAR.

The proposed classi ier has surprisingly good per-
formance, attributed to both the simplicity of the rule
and the reduction of a high dimensional problem to
one dimension (i.e., only vertical components). For the
algorithms FAST and ORB, the results are compara-
ble to the Naive Bayes classi ier. The decision areas
for both classi iers in those cases were similar, as in-
dicated by thresholds 𝜆 and 𝜆 (see Figure 9). For

Fig. 9. Example of threshold 𝜆 for ver cal
components 𝑦 of keypoints (𝑥, 𝑦) detected with the
ORB algorithm.

Fig. 10. Example of threshold 𝜆 for ver cal
components 𝑦 of keypoints (𝑥, 𝑦) detected with the
STAR algorithm.

the STAR algorithm, the results differ between the two
classi ication methods, because for the Naive Bayes
classi ier, four decision areas were created, whereas
for the central keypoint method, only two are created
(see the border points 𝜆 in Figure 10).

8. Conclusions
The results presented in Figures 7 and 8 cover the

full collection of 3 million scenes, divided into two
groups: indoor and outdoor. For closed areas, all in-
vestigated algorithms: BRISK, FAST, GFTT, HARRIS,
MSER, ORB and STAR produced quite similar distribu-
tions of keypoints location in an average video frame
(see Figure 7). The same was observed for open ar-
eas (see Figure 8). This means that the distribution of
keypoints for each environment (indoor and outdoor)
is practically independent from the algorithm that has
been used. Themethod for distinguishing between in-
door and outdoor environments, on the basis of char-
acteristic points obtained from video sequences, may
be considered as objective and reliable, regardless of
the algorithmused for determining the keypoints. Sta-
tistical analysis showed that the probability density
function (as estimated by histograms–see Figures 7-
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Tab. 3. Classifica on performance of proposed central keypoint method in comparison to Naive Bayes classifier.

Algorithm Central Keypoint Method Naive Bayes
precision recall F-score precision recall F-score

FAST 0.8954 0.7837 0.8358 0.9086 0.7715 0.8345
ORB 0.7918 0.8588 0.8240 0.7647 0.8916 0.8233
STAR 0.6765 0.7367 0.7053 0.8327 0.6243 0.7136

8) of keypoints for an average video frame captured
inside buildings has a maximum in the middle of the
image. Characteristic points appear in random places
on the whole picture, but most often they occur in the
middle of the image. This is connected to the fact that
the person ilming usually directs the optical center of
the camera in the direction of a large number of char-
acteristic points, eg., at the end of the corridor or at ob-
jects such as sculptures, paintings, faces, etc. Theprob-
ability density function of the location of the average
characteristic points in open areas has a maximum at
the bottom of the image. This is connected to the fact
that for open spaces, most of the upper part of frame
is the sky. The upper part of video frames usually has
a small number of characteristic points, in contrast to
the lower part. The bottom part of the image contains
the land and buildings and the number of character-
istic points for all algorithms is signi icantly higher–
assuming a horizontal orientation of the camera.

For all of the algorithms analyzed, the median
vertical 𝑀 calculated for outdoor environments is
higher, with respect to the 𝑀 for indoor environ-
ments, as would be expected. In contrast, there is
no signi icant difference in the median position cal-
culated horizontally 𝑀 by the different algorithms
for determining the characteristic points. Therefore,
the distinction between indoor and outdoor environ-
ments should be based on the vertical position of the
characteristic points centers (𝑀 ,𝑀 ): in the middle
of the video frame for indoor, at the bottom of the
video frame for outdoor–this can be explained by the
camera positioning on the horizon line.

In addition to the distinction between scenes, an
important aspect is also the calculation speed. In real-
life applications, such distinction has to be done in
real time, and therefore, the comparisonof the average
computation time needed to determine the keypoints
for different algorithms was performed. The FAST al-
gorithm was shown to be the fastest, and gives the
highest number of keypoints (see Tables 1-2). The sec-
ond fastest algorithm was the ORB, which is a modi-
ication of the FAST method. In contrast, the slowest
methods include the MSER and BRISK algorithms.

9. Future Work
Probability distributions for indoor and outdoor

environments describing keypoints location–such as
medians𝑀 ,𝑀 (central pixel position), and standard
deviations 𝑆 , 𝑆 were calculated for every frame.
This leads to outlying central keypoints positions if the
number of keypoints is noticeably smaller than for the

average frame. To avoid this problem, one can analyze
not only one frame in every step, but a subsequence
of frames. This approach is often applied for moving
object analyses (see, e.g., Foresti and Micheloni [7]).

The results of this paper are reduced only to the
application of the average occurrence distinguishing
between indoor and outdoor scenes. It would be very
interesting to continue the this line of research, and
investigatemore kinds of scenes, e.g., thosementioned
in the introduction.

So ware
Open source software [17], togetherwith a graphi-

cal user interface, written in python, is attached to this
paper. The software was created and used by authors
for keypoint selection in video sequences.
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