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1 Introduction

Soft theorems are equations that describe how scattering amplitudes in Minkowski space-

time involving one or many low energy, or soft, massless particles factorizes into a term

involving the soft gauge particles (known as the soft factor) and one involving the amplitude

without the soft particles, i.e.

An
m soft particles−−−−−−−−−→ SmAn−m, (1.1)

where Sm is the soft factor involving m soft particles. Such theorems were established over

half a century ago in the works of Bloch, Nordseick, Low, Yennie, Frautschi, Suura [1–6]

and in a more modern language by Weinberg [7, 8]. A particularly interesting feature
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of all the soft theorems is that the soft factor is universal, i.e. it does not depend on the

details of the theory under consideration. Rather, it depends only on the quantum numbers

(linear momenta, angular momenta and charges) of the external particles involved in the

scattering amplitude. Such universality naturally suggests that perhaps the soft theorems

arise from some underlying symmetry, and indeed, it was relatively recently discovered that

these theorems are precisely the Ward identities associated to the asymptotic symmetries

of scattering amplitudes (see [9] for a review and a comprehensive list of references).

Largely in part due to this discovery, in the last several years, there has been a resur-

gence of activity in the study of soft theorems, and many interesting directions have been

explored. The equivalence was originally conceived for four-dimensional theories where it

has been established to hold for gauge theories [10–16], gravity [17–19], as well as their

supersymmetric counterparts [20]. The equivalence has proved useful in the exploration

of not just the original soft theorems, but also new subleading and sub-subleading soft

theorems [21–28]. Some of these were discovered by studying known asymptotic sym-

metries [29–31] while others led to the discovery of new asymptotic symmetries [32–38].

Finally, this equivalence has also been extended to theories living in higher even dimen-

sions [39–41], which is certainly relevant in the context of string theory.1

The plethora of successes in these endeavors has given confidence that perhaps every

soft theorem in Minkowski spacetime can be interpreted as the Ward identity for some

asymptotic symmetry. However, there is a noticeable class of theories in which the bridge

between soft theorems and asymptotic symmetries is missing — these are theories in odd

spacetime dimensions. Soft theorems are true and have the same universal form in both

even and odd dimensions.2 Yet, to our knowledge, there has been no successful attempt in

showing the equivalence of soft theorems and asymptotic symmetries in odd dimensional

theories. The fundamental issue lies in the qualitatively different properties of massless

waves in even and odd dimensions. For instance, the massless Green’s function is supported

entirely on the light cone in even dimensions, whereas in odd dimensions it is supported

everywhere inside the lightcone [52, 53]. This implies that for a complete understanding of

waves in odd dimensions, one needs to study timelike infinity i± as well as null infinity I ±.

Another symptom of the same feature is that the near I ± expansions of massless fields

is analytic in even dimensions (i.e. admits a Taylor series expansion in r−1 where r is the

radius of the transverse sphere) and non-analytic in odd dimensions. These issues make

the discussion of asymptotic symmetries particularly difficult in odd dimensions. Despite

this, it would be very strange if no such relationship exists, implying that soft theorems in

odd dimensions have a wholly different origin than those in even dimensions.

In this paper, we resolve the issues discussed in the previous paragraph and show that,

at least in the simple example of a U(1) gauge theory with massless charged matter, the

leading soft photon theorem is the Ward identity associated to large gauge symmetry in

all dimensions, thereby unifying and generalizing the previous discussions from four and

1More generally, soft theorems and asymptotic symmetries are also equivalent to memory effects which

have been explored in [42–51], but this will be beyond the scope of this paper (see [9] for a review).
2The standard derivation of these theorems in perturbation theory relies largely on the fact that the free

field propagator has the form p−2, which is true in any dimension.
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higher even dimensions to all dimensions. We organize the paper so that in section 2, we

study U(1) gauge theories in d+ 2 dimensions and discuss asymptotic fall-offs of both free

and interacting gauge fields. In section 3, we impose a matching condition across spatial

infinity i0 and demonstrate that the resulting Ward identity implies the leading soft photon

theorem. Finally, in section 4, we show that the matching condition implies conservation

of a charge which generates large gauge transformations on the fields at I ±.

2 U(1) gauge theories in d + 2 dimensions

In this section, we introduce the conventions used in this paper and discuss the necessary

background information regarding the equations of motion and the asymptotics of the U(1)

gauge field.

2.1 Classical equations

We work in flat null coordinates xµ = (u, r, xa), a = 1, . . . , d which are related to Cartesian

coordinates XA by3

XA =
r

2

(
1 + x2 +

u

r
, 2xa, 1− x2 − u

r

)
, x2 = δabx

axb. (2.1)

Lowercase Latin indices are raised and lowered by the Kronecker delta δab and δab, respec-

tively. Using these coordinates, the metric of Minkowski spacetime becomes

ds2 = ηABdX
AdXB = −dudr + r2δabdx

adxb, (2.2)

where ηAB = (−1, 1, . . . , 1) is the standard Minkowski metric in Cartesian coordinates.

The null boundaries I ± are located at r → ±∞ while keeping (u, xa) fixed. On this

hypersurface, xa is the stereographic coordinate on the celestial sphere. The point labeled

by xa on I + is antipodal to the point with the same label on I −. The boundaries of I +

(I −) are at u → ±∞ and are denoted by I +
± (I −± ). In appendix A.1, we provide more

details about this coordinate system.

A U(1) gauge theory is described by a field strength Fµν and matter fields Ψi. The

matter fields couple to the field strength via a conserved U(1) current Jµ. Dynamics

of the field strength is described by Maxwell’s equations and the Bianchi identity, given

respectively by

e2Jν = ∇µFµν (2.3)

0 = ∂αFµν + ∂νFαµ + ∂µFνα. (2.4)

In flat null coordinates, (2.3) takes the form

e2Ju = 2∂uFur −
1

r2
∂aFua

e2Jr = −2∂rFur −
1

r2
∂aFra −

2d

r
Fur

e2Ja = −2∂rFua − 2∂uFra −
2(d− 2)

r
Fua −

1

r2
∂bFab.

(2.5)

3These coordinates were utilized in the case of four dimensions in [20] and in [54] in higher dimensions.
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Furthermore, the Bianchi identity (2.4) is solved by

Fµν = ∂µAν − ∂νAµ, Aµ ∼ Aµ + ∂µε, ε ∼ ε+ 2π. (2.6)

Note that the theory is invariant under gauge transformations

Aµ → Aµ + ∂µε, Ψi → eiQiεΨi, (2.7)

where Qi ∈ Z is the U(1) charge of the field Ψi. Gauge transformations that vanish

at infinity correspond to redundant descriptions of the same physical state and can be

eliminated by a choice of gauge.

2.2 Asymptotics

In this section, we study the structure of the field strength near I ±. The general solution

to (2.3) and (2.4) has the form

Fµν = F (R)
µν + F (C)

µν . (2.8)

The radiative field F
(R)
µν satisfies the homogeneous Maxwell’s equations (Jν = 0) and F

(C)
µν

satisfies (2.3). The separation of the field strength into a radiative part and a Coulombic

part is fixed by either choosing a Green’s function or by imposing boundary conditions on

the fields. We will be interested in incoming (−) and outgoing (+) solutions to Maxwell’s

equations, whose radiative and Coulombic parts are denoted respectively by F
(R±)
µν and

F
(C±)
µν . These fields have the following large r fall-offs near I ±:4

F (R±)
ur = O

(
|r|−

d
2
−1
)

+O
(
|r|−d

)
, F (C±)

ur = O
(
|r|−d

)
F (R±)
ra = O

(
|r|−

d
2

)
+O

(
|r|−d

)
, F (C±)

ra = O
(
|r|−d

)
F (R±)
ua = O

(
|r|−

d
2

+1
)

+O
(
|r|−d+1

)
, F (C±)

ua = O
(
|r|−d+1

)
F

(R±)
ab = O

(
|r|−

d
2

+1
)

+O
(
|r|−d+1

)
, F

(C±)
ab = O

(
|r|−d+1

)
.

(2.9)

The leading fall-offs for the radiative part are determined by noting that the electromagnetic

stress tensor components Tuu and Tua must fall off as |r|−d in order to have finite energy-

momentum and angular-momentum flux through I ±. Then, using the fact that Tuu ∼
r−2FuaFu

a and Tua ∼ r−2FabFu
b, we can determine the fall-offs for Fua and Fab. The

remaining ones are then determined by Lorentz invariance. Similarly, the fall-offs for the

Coulombic part are determined by Gauss’s law, which also determines the fall-offs for the

matter current

Ju = O
(
|r|−d

)
, Ja = O

(
|r|−d

)
, Jr = O

(
|r|−d−2

)
. (2.10)

We would now like to determine the precise large r expansion for both the radiative and

the Coulombic fields.
4As we shall see in (2.23), in odd dimensions, the radiative field has an expansion in both integer and

half-integer powers of |r|, as indicated in the first column of (2.9). In even dimensions, we obtain later

in (2.27) that the radiative field has an expansion in integer powers of |r|, though non-analytic terms of the

form log r are also present (not shown in (2.9)).
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2.2.1 Radiative field

The radiative gauge field can be decomposed into creation and annihilation operators O(±)†
a

and O(±)
a as follows:

F
(R±)
AB (X) = e

∫
dd+1q

(2π)d+1

1

2q0

[
εaAB(~q )O(±)

a (~q )eiq·X + εaAB(~q )∗O(±)†
a (~q )e−iq·X

]
, (2.11)

where q0 = |~q | and εaAB(~q ) are the d polarization tensors labeled by a and defined via

εaAB(~q ) = i [qAε
a
B(~q )− qBεaA(~q )] , qAεaA(~q ) = 0, ηABεaA(~q )εbB(~q )∗ = δab. (2.12)

In a quantum theory, the creation and annihilation modes satisfy the canonical commuta-

tion relation [
O(±)
a (~q ) , O(±)†

b (~q ′)
]

=
(
2q0
)
δab(2π)d+1δ(d+1)(~q − ~q ′). (2.13)

The equations in (2.12) remain invariant under εaA(~q )→ εaA(~q )+fa(~q )qA for any arbitrary

functions fa. We use this to parameterize the on-shell photon momentum and polariza-

tion as5

qA = ωq̂A, q̂A =

(
1 + y2

2
, ya ,

1− y2

2

)
, εaA(~q ) = ∂aq̂A = (−ya, δab ,−ya) . (2.14)

Substituting (2.14) into (2.11) and writing the integral over flat null coordinates, we obtain6

F (R±)
ur (u, r, x) =

e

4(2π)d+1r

∫ ∞
0

dω

∫
ddy ωd−1

[
∂aO(±)

a (ω, x+ y)e−
i
2
ωu− i

2
ωry2 + c.c.

]
.

(2.15)

To determine the asymptotic expansion of (2.15) at large |u| and |r|, we assume that

the creation and annihilation modes admit a soft expansion of the form

∂aO(±)
a (ω, x+ y) =

∞∑
n=0

ωn−1∂aO(±,n)
a (x+ y) as ω → 0+. (2.16)

This soft expansion allows for a simple pole in ω which is consistent with Weinberg’s soft

photon theorem. The corresponding “soft photon operator” is O(±,0)
a (x).7 It will play a

central role in the following section.

We further assume that the coefficients admit a Fourier transform

∂aO(±,n)
a (x+ y) =

∫
ddk

(2π)d
eik·(x+y)O(±)

n (k)

O(±)
n (k) =

∫
ddy e−ik·y∂aO(±,n)

a (y).

(2.17)

5We discuss a more general parameterization of off-shell momenta in appendix A.2.
6Similar mode expansions exist for the other components of the field strength, but we won’t need

them here.
7This operator was denoted by Sa(x) in [54].
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Substituting (2.16) and (2.17) into (2.15), we find

F (R±)
ur (u, r, x) =

e

2(2π)
d
2

+1

∞∑
n=0

∫
ddk

(2π)d
k2νn

[
ieik·x

(ir)d+n
O(±)
n (k)(kz)−νnKνn (kz) + c.c.

]
.

(2.18)

where

z =

√
iu√
ir
, νn =

d

2
− 1 + n, (2.19)

and Kν is the modified Bessel function of the second kind. We now consider the large

|r| expansion of the field strength, or equivalently the small z limit. This takes a qual-

itatively different form depending on whether d is odd or even, so we consider the two

cases separately.

Odd dimensions. When d ∈ 2Z+1, the order of the Bessel function is νn = d
2−1+n 6∈ Z.

For non-integer order, the asymptotic expansion near z = 0 of the Bessel function is

Kν(z) =
π

2
csc(πν)

∞∑
s=0

1

Γ(s+ 1)

[
(z/2)2s−ν

Γ(1 + s− ν)
− (z/2)2s+ν

Γ(1 + s+ ν)

]
, as z → 0. (2.20)

Substituting (2.20) into (2.18), we find

F (R±)
ur (u, r, x) =

e

8(2π)
d
2

∞∑
n=0

∞∑
s=0

csc(πνn)

22s−νnΓ(s+ 1)Γ(1 + s− νn)

×

[
i(iu)s−νn

(ir)
d
2

+1+s

∫
ddk

(2π)d
k2sO(±)

n (k)eik·x + c.c.

]

− e

8(2π)
d
2

∞∑
n=0

∞∑
s=0

csc(πνn)

22s+νnΓ(s+ 1)Γ(1 + s+ νn)

×
[

i(iu)s

(ir)d+n+s

∫
ddk

(2π)d
k2(s+νn)O(±)

n (k)eik·x + c.c.

]
.

(2.21)

We can now use the inverse Fourier transform (2.17) to go back to the momentum space

variables. Evaluating

∫
ddk

(2π)d
k2κO(±)

n (k)eik·x =


(−∂2)κ∂aO(±,n)

a (x) κ ∈ Z

4κΓ
(
d
2 + κ

)
π
d
2 Γ(−κ)

∫
ddy

∂aO(±,n)
a (y)

[(x− y)2]
d
2

+κ
κ 6∈ Z

(2.22)
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where ∂2 = ∂a∂a, and substituting into (2.21), we obtain

F (R±)
ur (u, r, x) =

e

8(2π)
d
2

∞∑
n=0

∞∑
s=0

2νn−2s csc(πνn)

Γ(s+ 1)Γ(1 + s− νn)

×

[
i(iu)s−νn

(ir)
d
2

+1+s
(−∂2)s∂aO(±,n)

a (x) + c.c.

]

+
e

2
d
2

+3πd+1

∞∑
n=0

∞∑
s=0

(−1)s
Γ
(
d
2 + νn + s

)
2−νnΓ(s+ 1)

×

[
i(iu)s

(ir)d+n+s

∫
ddy

∂aO(±,n)
a (y)

[(x− y)2]
d
2

+νn+s
+ c.c.

]
.

(2.23)

Even dimensions. When d ∈ 2Z, the order of the Bessel function is νn = d
2 −1 +n ∈ Z.

For integer order, the asymptotic expansion near z = 0 of the Bessel function is given by

Kν(z) =

ν−1∑
s=0

(−1)sΓ(ν − s)
(
z
2

)2s−ν
2Γ(s+ 1)

+
∞∑
s=0

(−1)ν−1
[
log
(
z
2e
γE
)
− 1

2 (Hs +Hs+ν)
] (

z
2

)2s+ν
Γ(s+ 1)Γ(s+ ν + 1)

,

(2.24)

where γE is the Euler-Mascheroni constant and Hn is the n-th harmonic number (we define

H0 = 0). Substituting (2.24) into (2.18), we find

F (R±)
ur (u, r, x)

=
e

2(2π)
d
2

+1

∞∑
n=0

νn−1∑
s=0

(−1)sΓ(νn − s)
22s−νn+1Γ(s+ 1)

[
i(iu)s−νn

(ir)
d
2

+1+s

∫
ddk

(2π)d
k2sO(±)

n (k)eik·x + c.c.

]

+
e

2(2π)
d
2

+1

∞∑
n=0

∞∑
s=0

2−2s−νn(−1)νn−1

Γ(s+ 1)Γ(s+ νn + 1)

∫
ddk

(2π)d
k2(s+νn)

×

 i(iu)s
[
log
(
k
2

√
iu√
ir
eγE
)
− 1

2 (Hs +Hs+νn)
]

(ir)d+n+s
O(±)
n (k)eik·x + c.c.

 .
(2.25)

Again, we want to use the inverse Fourier transform (2.17) to go back to the momentum

space variables. Evaluating for κ ∈ Z

∫
ddk

(2π)d
k2κ log kO(±)

n (k)eik·x =
(4π)

d
2 Γ(κ+ 1)Γ

(
d
2 + κ

)
(−1)κ+121−2κ

∫
ddy

∂aO(±,n)
a (y)

[(x− y)2]
d
2

+κ
, (2.26)
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we get upon substituting (2.22) and (2.26) into (2.25)

F (R±)
ur (u, r, x)

=
e

2(2π)
d
2

+1

∞∑
n=0

νn−1∑
s=0

(−1)sΓ(νn − s)
22s−νn+1Γ(s+ 1)

[
i(iu)s−νn

(ir)
d
2

+1+s
(−∂2)s∂aO(±,n)

a (x) + c.c.

]

+
e

8π

∞∑
n=0

∞∑
s=0

(−1)s2
d
2

+νnΓ
(
d
2 + s+ νn

)
Γ(s+ 1)

[
i(iu)s

(ir)d+n+s

∫
ddy

∂aO(±,n)
a (y)

[(x− y)2]
d
2

+νn+s
+ c.c.

]

+
e

2(2π)
d
2

+1

∞∑
n=0

∞∑
s=0

2−2s−νn(−1)νn−1

Γ(s+ 1)Γ(s+ νn + 1)

×

 i(iu)s
[
log
(

1
2

√
iu√
ir
eγE
)
− 1

2 (Hs +Hs+νn)
]

(ir)d+n+s
(−∂2)s+νn∂aO(±,n)

a (x) + c.c.

 .
(2.27)

2.2.2 Coulombic field

Having performed the asymptotic expansion for the radiative field, we now turn to the

Coulombic field. The large r expansion for this can be performed in two ways. First, we

could follow strategy used in the previous section and start by writing the explicit solution

for the Coulombic field using the massless scalar Green’s function as

F
(C±)
AB (X) = e2

∫
dd+2YG(±)(X − Y ) [∂AJB(Y )− ∂BJA(Y )] , (2.28)

where G(±)(X) is the retarded (−) or advanced (+) massless scalar Green’s function sat-

isfying ∂2G(±)(X) = δ(d+2)(X). Explicitly,

G(±)(X) = 2θ(∓X0)Re [fd(X)], fd(X) =
(−i)d+1Γ

(
d
2

)
4π

d+2
2

[
(X0)2 − | ~X |2 − iε

] d
2

. (2.29)

Then, assuming an appropriate asymptotic expansion (near I ±) for the conserved current

(along with some other assumptions regarding the behaviour of the current near i±), we

can use (2.28) and (2.29) to determine the large r expansion of the Coulombic field.

While possible, this is a tedious exercise and it is more convenient to determine the large

r expansion of the Coulombic field as follows. We start by assuming that the Coulombic

field admits a Taylor expansion of the following form near I ± (consistent with (2.9)):

F (C±)
ur (u, r, x) =

∞∑
n=0

F
(C±,d+n)
ur (u, x)

|r|d+n
, F (C±)

ua (u, r, x) =
∞∑
n=0

F
(C±,d−1+n)
ua (u, x)

|r|d−1+n

F (C±)
ra (u, r, x) =

∞∑
n=0

F
(C±,d+n)
ra (u, x)

|r|d+n
, F

(C±)
ab (u, r, x) =

∞∑
n=0

F
(C±,d−1+n)
ab (u, x)

|r|d−1+n
.

(2.30)
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Similarly, consistent with (2.10), we also assume the expansion

Ju(u, r, x) =

∞∑
n=0

J
(±,d+n)
u (u, x)

|r|d+n

Ja(u, r, x) =
∞∑
n=0

J
(±,d+n)
a (u, x)

|r|d+n

Jr(u, r, x) =
∞∑
n=0

J
(±,d+2+n)
r (u, x)

|r|d+2+n
.

(2.31)

Substituting (2.30) and (2.31) into (2.5), we can obtain equations order by order in the

large r expansion. Solving these yields the full asymptotic expansion for the Coulombic

field strength, though for our purposes, it suffices to obtain just the following leading order

constraint equation (obtained from the u component of Maxwell’s equations):

2∂uF
(C±,d)
ur = e2J (±,d)

u . (2.32)

3 Weinberg’s soft photon theorem

3.1 Matching condition

As in four dimensions, we impose a matching condition on the radial electric field8

F (+,d)
ur

∣∣∣
I +
−

= − F (−,d)
ur

∣∣∣
I−+

. (3.1)

Recall that coordinate x labels antipodal points on the celestial spheres on I + and I −,

so the above condition is an antipodal matching condition. To massage this matching

condition into a more useful form, we define the “charge”

Q±ε = ± 2

e2

∫
I±∓

ddx εF (±,d)
ur , (3.2)

where ε ≡ ε(x) is a function defined on the d-dimensional celestial sphere at I ±. As we

will show in section 4 using the covariant phase space formalism, Q±ε is the charge that

generates large gauge transformations on I ±. We can therefore think of Q±ε as measuring

the local U(1) charge of the in and out state respectively. For ε = 1, this measures the

total global U(1) charge. These charges can be determined in experiment by measuring

the electromagnetic memory [44, 46, 57].

8The unusual sign is due to the coordinate choice. To see that this is correct, one can verify it for the

Liénard-Wiechert potential for a static charge, given by A0( ~X) = c| ~X|1−d and ~A( ~X) = 0. Moving to flat

null coordinates, we find

Fur =
c

2

[(
1 + x2)∂u − ∂r

] ∣∣ ~X∣∣1−d =
2d−1c(d− 1)(r + rx2 − u)

[u2 − 2ur(1− x2) + r2(1 + x2)2]
d+1
2

.

This implies lim
r→±∞

(
|r|dFur

)
= ±2d−1c(d− 1)(1 + x2)−d. For more extensive discussions on the antipodal

matching condition, we refer the reader to [55, 56].
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The antipodal matching condition (3.1) immediately implies

Q+
ε = Q−ε . (3.3)

Breaking up the field strength into radiative and Coulombic pieces, we can write the

charges as

Q±ε = Q±Sε +Q±Hε , (3.4)

where

Q±Sε = ± 2

e2

∫
I±∓

ddx εF (R±,d)
ur , Q±Hε = ± 2

e2

∫
I±∓

ddx εF (C±,d)
ur . (3.5)

Q±Sε are the incoming and outgoing soft charges and Q±Hε are the incoming and outgoing

hard charges. Using (2.32), the hard charges can be written as

Q±Hε = −
∫

I±
duddx εJ (±,d)

u ± 2

e2

∫
I±±

ddx εF (C±,d)
ur . (3.6)

The second term above is the Coulombic field in the far past or far future and only re-

ceives contributions from stable massive particles. In this paper, we assume that our

theory contains only stable massless states so this contribution vanishes. Thus, the hard

charges become

Q±Hε = −
∫

I±
duddx εJ (±,d)

u . (3.7)

To determine the soft charge in odd and even dimensions, we extract the coefficient of

|r|−d in (2.23) and (2.27), respectively. In odd dimensions, we get

F (R±,d)
ur = ±e(−1)

d−1
2 Γ (d− 1)

16πd+1

∫
ddy

∂aO(±,0)
a (y) + ∂aO(±,0)†

a (y)

[(x− y)2]d−1
, (3.8)

and for even dimensions, we get

F (R±,d)
ur = − e

(4π)
d
2

+1Γ
(
d
2

) ∞∑
n=1

2nΓ(n)
[
i(iu)−n(−∂2)

d
2
−1∂aO(±,n)

a (x) + c.c.
]

+
ie(−1)

d
2 Γ (d− 1)

24−dπ

∫
ddy

∂aO(±,0)
a (y)− ∂aO(±,0)†

a (y)

[(x− y)2]d−1

+
ie
[
log
(
|u|e2γE

4|r|

)
−H d

2
−1

]
(4π)

d
2

+1Γ
(
d
2

) (−∂2)
d
2
−1
[
∂aO(±,0)

a (x)− ∂aO(±,0)†
a (x)

]
− e [Θ(u)−Θ(r)]

8(4π)
d
2 Γ
(
d
2

) (−∂2)
d
2
−1
[
∂aO(±,0)

a (x) + ∂aO(±,0)†
a (x)

]
.

(3.9)
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Notice that in even dimensions this coefficient has a logarithmic divergence, which means

the soft charge is potentially ill-defined in even dimensions. To cancel this divergence,

we impose9

∂aO(±,0)
a (x) = ∂aO(±,0)†

a (x). (3.10)

We remark that this constraint implies that in even dimensions F
(R±,d)
ur

∣∣
I±±

= 0, an as-

sumption that was made previously in [10]. The soft charge now takes the form

Q±Sε =


1

(4π)
d
2 Γ
(
d
2

)
e

∫
ddx ε(x)(−∂2)

d
2
−1∂aO(±,0)

a (x) d ∈ 2Z

(−1)
d−1
2 Γ (d− 1)

4πd+1e

∫
ddx ε(x)

∫
ddy

∂aO(±,0)
a (y)

[(x− y)2]d−1
d ∈ 2Z + 1.

(3.11)

We conclude this section by bringing the soft charge into the same form for both odd

and even dimensions by judiciously choosing ε for the remainder of the paper to be

ε(z) = fx(z) = (−∂2) log
[
(x− z)2

]
. (3.12)

Then, using the fact that in even dimensions

(−∂2)
d
2
−1fx(z) = (−∂2)

d
2 log

[
(x− z)2

]
= −(4π)

d
2 Γ

(
d

2

)
δ(d)(x− z), (3.13)

and in odd dimensions∫
ddz

fx(z)

[(z − y)2]d−1
= −2(d− 2)

∫
ddz

1

[(z − y)2]d−1 (x− z)2

= −4(−1)
d−1
2 πd+1

Γ(d− 1)
δ(d)(x− y),

(3.14)

the soft charge becomes for all spacetime dimensions10

Q±Sfx = − 1

2e

(
∂aO(±,0)

a (x) + ∂aO(±,0)†
a (x)

)
= −1

e
∂aO(±,0)

a (x). (3.15)

3.2 Ward identity

Thus far, our discussion of fields, matching conditions, and charges has been entirely clas-

sical. We now extend the discussion to a semi-classical theory and derive a Ward identity.

9Note that (3.10) also implies that we can no longer think of O(±,0)†
a as a creation operator. Rather, it is

an operator that shifts the vacuum. From the perspective of the path integral, this condition is equivalent

to continuity of the S-matrix at ω = 0, i.e. the zero energy limit of the operators does not depend on

whether we approach zero from the positive or negative real axis (see [12]).
10Although we picked ε = fx in (3.12), we can recover the soft charge Q±Sε for general ε from (3.15) by

using (3.11) to write Q±Sε as an appropriate linear combination of Q±Sfx ∼ ∂aO(±,0)
a . This means we didn’t

lose any generality by choosing ε = fx, and the Ward identity we derive below is also completely general.
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In such a theory, the quantity of interest is the scattering amplitude, which is the overlap

between the in state (living on i− ∪I −) and the out state (living on i+ ∪I +), i.e.

An = 〈 out | in 〉, (3.16)

where n is the total number of particles in the in and out state. The classical matching

condition (3.3) then translates to

〈 out |
(
Q+
ε −Q−ε

)
| in 〉 = 0. (3.17)

Using (3.4), we can rewrite this as

〈 out |
(
Q+S
ε −Q−Sε

)
| in 〉 = −〈 out |

(
Q+H
ε −Q−Hε

)
| in 〉. (3.18)

To simplify this, we evaluate the action of the hard charge on one-particle states, i.e.

the right-hand-side of (3.18). Let |Ψi, ~pi, si 〉 be a massless one-particle state with charge

Qi, momentum ~pi, and spin si. We may parameterize the momentum as

pAi = ωi

(
1 + x2

i

2
, xai ,

1− x2
i

2

)
. (3.19)

The action of the conserved current on the bra and ket states is (see appendix B for an

explicit calculation for scalar fields)∫
I−

duJ (−,d)
u (u, x)|Ψi, ~pi, si 〉 = |Ψi, ~pi, si 〉Qiδ(d) (x− xi)

〈Ψi, ~pi, si |
∫

I +

duJ (+,d)
u (u, x) = Qiδ

(d) (x− xi) |Ψi, ~pi, si 〉.
(3.20)

It follows using (3.7) that

Q−Hε |Ψi, ~pi, si 〉 = −Qiε(xi)|Ψi, ~pi, si 〉, 〈Ψi, ~pi |Q+H
ε = −Qiε(xi)〈Ψi, ~pi, si |. (3.21)

Note that this is simply an infinitesimal large gauge transformation of the state. Setting

ε = fx in (3.18) and using (3.15) and (3.21), we derive the Ward identity

〈 out |
[
∂aO(+,0)

a (x)− ∂aO(−,0)
a (x)

]
| in 〉 = e

n∑
i=1

ηiQi∂
2 log

[
(x− xi)2

]
〈 out | in 〉. (3.22)

Here, ηi = +1 for outgoing particles and ηi = −1 for incoming particles.

3.3 Soft theorem

Finally, in this section we will show that the Ward identity (3.22) is implied by Weinberg’s

leading soft photon theorem, which in standard momentum space variables reads

Aout
n+1(~pγ , εa; p1, · · · , pn) = e

n∑
i=1

ηiQi
pi · εa(pγ)

pi · pγ
An(p1, · · · , pn) +O

(
(pγ)0

)
, (3.23)
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where εa is the polarization vector (not to be confused with the function ε(z) in (3.12)).

Note that the leading order term in the soft expansion is a simple pole in photon momentum

pγ , and this is known as the Weinberg pole.11 We want to parametrize (3.23) using the

momentum space parameterization employed in the previous sections (see section A.2 for

details), i.e.

pAγ = ω

(
1 + x2

2
, xa,

1− x2

2

)
pAi = ωi

(
1 + x2

i

2
, xai ,

1− x2
i

2

)
εAa (pγ) =

(
xa, δ

b
a,−xa

)
.

(3.24)

In this parametrization, the soft factor corresponding to polarization a is

e
n∑
i=1

ηiQi
pi · εa(pγ)

pi · pγ
=
e

ω

n∑
i=1

ηiQi∂a log
[
(x− xi)2

]
. (3.25)

The last step is to recast the scattering amplitudes in (3.23) in terms of the in and

out states. The n-point amplitude on the right-hand-side is simply 〈 out | in 〉. On the

other hand, an outgoing photon corresponds to the insertion of the operator O(+)
a (ω, x)−

O(−)
a (ω, x) (see appendix C for details). The coefficient of ω−1 in (3.25) is extracted by first

multiplying by ω and then taking a ω → 0 limit. Using (2.16), we find that this operator is

lim
ω→0

[
ωO(+)

a (ω, x)− ωO(−)
a (ω, x)

]
= O(+,0)

a (x)−O(−,0)
a (x). (3.26)

Substituting this into an S-matrix element gives precisely the left-hand-side of (3.23), and

using (3.25), we see that the soft theorem can be written as

〈 out |
(
O(+,0)
a (x)−O(−,0)

a (x)
)
| in 〉 = e

n∑
i=1

ηiQi∂a log
[
(x− xi)2

]
〈 out | in 〉. (3.27)

Acting on both sides with ∂a and using (3.10), we immediately reproduce the Ward iden-

tity (3.22), completing our demonstration that Weinberg’s leading soft photon theorem

implies the Ward identity.

We conclude this section with a few comments.

• We have shown above that Weinberg’s leading soft photon theorem for an outgoing

soft photon implies the Ward identity. However, we could have just as well chosen to

work with an incoming soft photon, in which case the soft theorem reads

Ain
n+1(~pγ , εa; p1, · · · , pn) = −e

n∑
i=1

ηiQi
pi · εa(pγ)

pi · pγ
An(p1, · · · , pn) +O

(
(pγ)0

)
, (3.28)

and differs from (3.23) by only a relative sign. The left-hand-side of the above equa-

tion corresponds to the insertion of O(−)†
a (ω, x) − O(+)†

a (ω, x). Multiplying by ω,

taking the ω → 0 limit, and using (3.10), we immediately find that the outgoing soft

photon theorem (3.23) implies the incoming soft photon theorem, and vice versa.

11The first subleading term in the soft expansion is also universal and is related to an asymptotic sym-

metry, but this is beyond the scope of this paper.
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• We have not yet demonstrated the equivalence between the Ward identity and Wein-

berg’s leading soft photon theorem. Instead, we have only established the fact that

the soft theorem implies the Ward identity. To prove the converse, we need to use

the additional constraint that

∂aO(±,0)
b (x)− ∂bO(±,0)

a (x) = 0. (3.29)

This constraint is obviously true from the standpoint of the soft theorem (3.27),12

and is solved by

O(±,0)
a (x) = ∂aS(±)(x). (3.30)

We can then derive the Ward identity for the insertion of S(±)(x), which is given by13

〈 out |
[
S(+)(x)− S(−)(x)

]
| in 〉 = e

n∑
i=1

ηiQi log
[
(x− xi)2

]
〈 out | in 〉. (3.31)

Acting on both sides with ∂a and using (3.30), we immediately reproduce the soft

theorem (3.27).

4 Large gauge symmetry

In the previous section, we have shown that the Ward identity corresponding to the charge

Q±ε is equivalent Weinberg’s soft photon theorem. We now show that this charge generates

large gauge transformations on I ± using the covariant phase space formalism [58].14 We

have already done this for the hard charge, so it remains to show that the soft charge (i.e.

the radiative field) acts on the gauge field to generate large gauge transformations. For this

purpose, we can focus simply on pure U(1) gauge theory. This is described by the action

S[A] = − 1

2e2

∫
M
F ∧ ∗F, F = dA, A ∼ A+ dε. (4.1)

Varying this, we find

δS = − 1

e2

∫
M
δA ∧ (d ∗ F )− 1

e2

∫
∂M

δA ∧ ∗F. (4.2)

The bulk term gives us the equations of motion d ∗ F = 0. From the boundary term we

can read off the canonical one-form on a Cauchy surface Σ as

ΘΣ(δ) =
1

e2

∫
Σ
δA ∧ ∗F. (4.3)

12This can be derived from a careful study of the symplectic form, which will be done in detail in

forthcoming work. This constraint was also discussed in [9].
13To do this, we choose ε(z) = log

[
(x− z)2

]
in the Ward identity (3.18).

14A recent analysis of the charge generating large gauge transformations at spatial infinity in all dimen-

sions d ≥ 4 is given in [59].
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If we restrict A to satisfy the equations of motion and δA to satisfy the linearized equations

of motion, then ΘΣ can be understood as a one-form at the point A in the phase space Γ.

The presymplectic form on Σ is

ΩΣ(δ, δ′) = δΘΣ(δ′)− δ′ΘΣ(δ) =
1

e2

∫
Σ

[
δ′A ∧ ∗δF − δA ∧ ∗δ′F

]
. (4.4)

At this point, we recall that the gauge field A is determined only up to a gauge

choice (4.1). To keep track of this, we separate the gauge field into two pieces

A = Ã+ dψ, (4.5)

where Ã satisfies a chosen gauge-fixing condition,15

f [Ã] = 0, (4.6)

and gauge transformations simply involve

ψ → ψ + ε. (4.7)

It follows that the symplectic form is

ΩΣ(δ, δ′) =
1

e2

∫
Σ

[
δ′Ã ∧ ∗δF̃ − δÃ ∧ ∗δ′F̃

]
+

1

e2

∫
∂Σ

[
δ′ψ ∗ δF − δψ ∗ δ′F

]
. (4.8)

We note that modes for which ψ|∂Σ = 0 cannot appear in the symplectic form and need to

be fixed in order to have a non-degenerate symplectic form. We assume that this has been

done, and so the remaining boundary value of ψ symplectically couples to the boundary

field strength.

The charge that generates a particular transformation ∆ on the phase space satisfies

δQΣ
∆ = ΩΣ(δ,∆). (4.9)

In particular, for gauge transformations δεÃ = δεF = 0 and δεψ = ε, we get

QΣ
ε =

1

e2

∫
∂Σ
ε ∗ F. (4.10)

Note that the charge is non-zero only if ε|∂Σ 6= 0, so this means QΣ
ε is the generator of

large gauge transformations. To determine its form on I ±, we note that the directed area

element on I ±∓ is

dS±µν = ±ddx|r|dδr[µδ
u
ν]. (4.11)

The ± sign arises from the outward-pointing null vector, which on I ± is ∓∂µr. Thus,

we have

Q±ε = ± 2

e2

∫
I±∓

ddx εF (±,d)
ur , (4.12)

which is precisely the charge (3.2).

15In our work, it is often convenient to choose f [Ã] = Ãu.
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A Coordinate conventions

A.1 Position space

In this subsection, we will gain some intuition regarding the flat null coordinates utilized

throughout this paper by collecting miscellaneous facts about them. Flat null coordinates

xµ = (u, xa, r) are related to Cartesian coordinates XA via

X0 =
r

2

(
1 + x2

)
+
u

2
, Xa = rxa, Xd+1 =

r

2

(
1− x2

)
− u

2
. (A.1)

The inverse relation is

u =

(
X0
)2 −XaXa −

(
Xd+1

)2
X0 +Xd+1

, xa =
Xa

X0 +Xd+1
, r = X0 +Xd+1. (A.2)

Though the coordinates are ill-defined on the hypersurface X0 + Xd+1 = 0 where r = 0,

away from this point, the metric is well defined and takes the form

ds2 = ηABdX
AdXb = −

(
dX0

)2
+ dXadXa +

(
dXd+1

)2
= −dudr + r2dxadxa,

(A.3)

where ηAB = (−1, 1, . . . , 1) is the usual Minkowski metric in Cartesian coordinates. The

range of the coordinates is

u ∈ R, xa ∈ Rd, r ∈ R \ {0}. (A.4)

We note

∂u =
1

2
[∂X0 − ∂Xd+1 ]

∂a = rxa [∂X0 − ∂Xd+1 ] + r∂Xa

∂r =
1

2

(
1 + x2

)
∂X0 + xa∂Xa +

1

2

(
1− x2

)
∂Xd+1 ,

(A.5)

and

dX0 =
1

2

(
1 + x2

)
dr +

1

2
du+ rxadx

a

dXa = xadr + rdxa

dXd+1 =
1

2

(
1− x2

)
dr − 1

2
du− rxadxa.

(A.6)
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The volume form is

ε = dX0 ∧ dX1 ∧ · · · ∧ dXd ∧ dXd+1 =
1

2
rddu ∧ dx1 ∧ · · · ∧ dxd ∧ dr. (A.7)

The nonvanishing metric components and its inverse are

gur = −1

2
, gab = r2δab, gur = −2, gab =

1

r2
δab. (A.8)

The nonvanishing Christoffel symbols are

Γuab[g] = 2rδab, Γarb[g] =
1

r
δab . (A.9)

A.1.1 Boundaries of Minkowski spacetime

To determine the location of the boundaries of Minkowski spacetime in flat null coordinates,

we relate them to Eddington-Finkelstein coordinates (U, V, λ,Θ), which are

X0 =
V + U

2
, Xa =

V − U
2

√
1− λ2n̂a(Θ), Xd+1 =

V − U
2

λ. (A.10)

Note that the radial distance is simply expressed as R ≡
√
XaXa +

(
Xd+1

)2
= V−U

2 . The

coordinate ranges are

V ≥ U, λ ∈ (−1, 1), Θ ∈ Sd−1. (A.11)

Together, the coordinates (λ,Θ) parametrize Sd. λ ∈ (0, 1) is the northern hemisphere and

λ ∈ (−1, 0) is the southern hemisphere. λ = 0 is the equator, λ = +1 is the north pole and

λ = −1 is the south pole. Let
(
λap,Θap

)
be the antipodal point to (λ,Θ). Then

n̂
(
Θap

)
= −n̂(Θ), λap = −λ. (A.12)

Furthermore, in terms of the flat null coordinates, we have

u =
2UV

V (1 + λ) + U(1− λ)
=

(
X0
)2 −R2

X0 + λR

xa =
(V − U)

√
1− λ2n̂a(Θ)

V (1 + λ) + U(1− λ)
=
R
√

1− λ2n̂a(Θ)

X0 + λR

r =
V

2
(1 + λ) +

U

2
(1− λ) = X0 + λR.

(A.13)

We can now determine the boundaries of Minkowski spacetime in flat null coordinates.

1. Future null infinity I +: this is located at V → +∞ while keeping (U, λ,Θ) fixed. In

this limit,

u→ 2U

1 + λ
, xa →

√
1− λ
1 + λ

n̂a(Θ), r → V

2
(1 + λ). (A.14)

Thus, we find that I + is located at r →∞. At this point, xa are the stereographic

coordinates on Sd. The north pole (λ = 1) is at |xa| = 0, the south pole (λ = −1)

is at |xa| = ∞, and the equator (λ = 0) is on the unit circle xaxa = 1. u is the null

generator of this surface.
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2. Past null infinity I −: this is located at U → −∞ while keeping (V, λ,Θ) fixed. In

this limit,

u→ 2V

1 + λap
, xa →

√
1− λap

1 + λap
n̂a
(
Θap

)
, r → −|U |

2
(1 + λap) . (A.15)

Thus, we find that I − is located at r → −∞. Again, xa are the stereographic

coordinates on Sd, but now with an antipodal identification. The north pole (λ = 1)

is at |xa| =∞, the south pole (λ = −1) is at |xa| = 0, and the equator (λ = 0) is on

the unit circle xaxa = 1. u is the null generator of this surface.

3. Future timelike infinity i+: this is located at X0 → +∞ while keeping (R, λ,Θ) fixed.

In this limit,

u→ X0 − λR, xa → R
√

1− λ2

X0
n̂a(Θ), r → X0 + λR. (A.16)

Thus, we find that i+ located at u, r → ∞ and xa → 0 while keeping u − r and

rxa fixed.

4. Past timelike infinity i−: this is located at X0 → −∞ while keeping (R, λ,Θ) fixed.

In this limit,

u→ −
(∣∣X0

∣∣− λapR
)
, xa →

R
√

1− λ2
ap∣∣X0

∣∣ n̂a (Θap) , r → −
∣∣X0

∣∣− λapR. (A.17)

Thus, we find that i− located at u, r → −∞ and xa → 0 while keeping u − r and

rxa fixed.

5. Spatial infinity i0: this is located at R → +∞ while keeping (X0, λ,Θ) fixed. In

this limit,

u→ −R
λ

+
X0

λ2
, xa → 1

λ

√
1− λ2n̂a(Θ), r = λR+X0. (A.18)

This limit corresponds to ur → −∞ while keeping u
r and xa fixed. In particular, on

the northern hemisphere, we take u → −∞ and r → +∞, whereas on the southern

hemisphere, we take u→ +∞ and r → −∞.

A.1.2 Isometries

The isometries of R1,d+1 are the d + 2 translations and the O(1, d + 1) rotations. The

corresponding Killing vectors in flat null coordinates are

ξf = f(x)∂u −
1

2r
∂af(x)∂a +

1

2d
∂2f(x)∂r

ζY = ψ(x) (u∂u − r∂r) +
[
Y a(x)− u

2r
∂aψ(x)

]
∂a,

(A.19)
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where ψ(x) = 1
d∂aY

a(x), and f(x) and Y a(x) satisfy the equations

∂a∂bf(x) =
1

d
δab∂

2f(x), ∂aYb(x) + ∂bYa(x) =
2

d
δab∂

cYc(x). (A.20)

This implies that Y a(x) is the conformal Killing vector of Rd (which manifests the isomor-

phism O(1, d+ 1) ∼= conf(Rd)). The explicit solutions to this are

f(x) = f0 + fax
a + fd+1x

2, Y a(x) = χa + ωabx
b + λxa + ζax2 − 2xaζ · x. (A.21)

Thus, ψ(x) = λ − 2ζ · x. The O(d) rotations have ψ(x) = 0 (generated by χa and ωab),

whereas the boosts in O(1, d + 1) have ψ(x) 6= 0 (generated by λ and ζa). Finally, we

remark that the Lie algebra of the Killing vectors (the Poincaré algebra) takes the form[
ξf , ξf ′

]
= 0, [ζY , ξf ] = ξY a∂af−fψ, [ζY , ζY ′ ] = ζ[Y,Y ′]. (A.22)

A.2 Momentum space

In this subsection, we observe a general parameterization of off-shell momenta and list

some useful formulae.

A.2.1 Off-shell momentum

Following closely the relationship between flat null coordinates and Cartesian coordinates,

we parameterize an off-shell momentum as

q0 =
ω

2

(
1 + y2

)
+

µ

2ω
, qa = ωya, qd+1 =

ω

2

(
1− y2

)
− µ

2ω
. (A.23)

Inversely, µ = −qAqA, ya = qa(q0 + qd+1)−1, and ω = q0 + qd+1. This parameterization is

valid everywhere except when ω = q0 + qd+1 = 0. The range of these coordinates is µ ∈ R,

ya ∈ Rd and ω ∈ R \ {0}. The momentum space volume form is

ε = dq0 ∧ dq1 ∧ · · · ∧ dqd ∧ dqd+1 =
1

2
ωd−1dµ ∧ dy1 ∧ · · · ∧ dyd ∧ dω. (A.24)

This implies that the off-shell integration measure and Dirac delta function are∫
dd+2q

(2π)d+2
=

1

2(2π)d+2

∫ ∞
−∞

dµ

∫ ∞
−∞

dω

∫
Rd
ddy |ω|d

δ(d+2)
(
q − q′

)
= 2|ω|1−dδ

(
µ− µ′

)
δ
(
ω − ω′

)
δ(d)

(
y − y′

)
.

(A.25)

A.2.2 On-shell momentum and polarization vectors

The on-shell condition on a momentum implies

qAqA = −m2, q0 > 0 =⇒ µ = m2 ≥ 0, ω > 0. (A.26)

The on-shell integration measure and Dirac delta function are∫
dd+2q

(2π)d+2
(2π)δ

(
q2 +m2

)
θ(q0) =

∫
dd+1q

(2π)d+1

1

2q0
=

1

2(2π)d+1

∫ ∞
0

dω

∫
Rd
ddy ωd−1

(2q0)δ(d+1)
(
~q − ~q ′

)
= 2ω1−dδ

(
ω − ω′

)
δ(d)

(
y − y′

)
.

(A.27)

– 19 –



J
H
E
P
1
0
(
2
0
1
9
)
2
1
3

The d+ 1 polarizations of a massive particle are taken to be

εAa (y) =
(
ya, δ

b
a,−ya

)
, εAω (ω, y) =

1

2

(
1 + y2 − m2

ω2
, 2ya, 1− y2 +

m2

ω2

)
. (A.28)

In the massless limit εAω → ω−1qA. Thus, in this limit, this is the pure gauge mode and

does not contribute to physical amplitudes. For future reference, we collect the formulae

q(ω, y) · q(ω′, y′) = −1

2
ωω′

[
(y − y′)2 +

m2

ω2
+
m′2

ω′2

]
q(ω, y) · εa(y′) = ω(y − y′)a

q(ω, y) · εω′(ω′, y′) = −ω
2

[
(y − y′)2 +

m2

ω2
− m′2

ω′2

]
εa(y) · εb(y′) = δab

εa(y) · εω′(ω′, y′) = −(y − y′)a

εω(ω, y) · εω′(ω′, y′) = −1

2

[
(y − y′)2 − m2

ω2
− m′2

ω′2

]
X(u, r, x) · q(ω, y) = −ωu

2
− ωr

2

[
(x− y)2 +

m2

ω2

]
X(u, r, x) · εa(ω, y) = r(x− y)a

X(u, r, x) · εω(ω, y) = −u
2
− r

2

[
(x− y)2 − m2

ω2

]
.

(A.29)

We also require the components of the momentum and polarization vectors in flat null

coordinates

qu(ω, y) = −ω
2

qr(ω, y) = −ω
2

[
(x− y)2 +

m2

ω2

]
qa(ω, y) = −rω(x− y)a

(εa)u(ω, y) = 0

(εa)r(ω, y) = (x− y)a

(εa)b(ω, y) = rδab

(εω)u(ω, y) = −1

2

(εω)r(ω, y) = −1

2

[
(x− y)2 − m2

ω2

]
(εω)a(ω, y) = −r(x− y)a.

(A.30)
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For massless vectors, we note from the formulae above that our polarization choice is

equivalent to the gauge choice Au = 0. The polarization tensors for the massless field

strength then has the following components in flat null coordinates

(εa)ur(ω, y) = − i
2
ω(x− y)a

(εa)rb(ω, y) = − i
2
ωr(x− y)2Iab(x− y)

(εa)ub(ω, y) = − i
2
ωrδab

(εc)ab(ω, y) = −iωr2 [(x− y)aδbc − (x− y)bδac] ,

(A.31)

where Iab(x− y) is the conformally invariant tensor

Iab(x− y) = δab −
2(x− y)a(x− y)b

(x− y)2
. (A.32)

B Action of the hard charge

In this section, we show that the hard charge generates large gauge transformations on the

matter states by an explicit computation for a minimally coupled scalar field Φ with U(1)

charge Q ∈ Z. The corresponding conserved current is

Jµ = iQ (Φ∗DµΦ− (DµΦ)∗Φ) , DµΦ = ∂µΦ− iQAµΦ. (B.1)

The product of fields is defined via normal ordering.

The mode expansion for the outgoing/incoming scalar field is

Φ(±)(X) =

∫
dd+1q

(2π)d+1

1

2q0

[
O(±)

Φ (~q )eiq·X +O(±)†
Φ

(~q )e−iq·X
]
, (B.2)

where[
O(±)

Φ (~q ),O(±)†
Φ (~q ′)

]
=
[
O(±)

Φ
(~q ),O(±)†

Φ
(~q ′)

]
= (2q0)(2π)d+1δ(d+1)

(
~q − ~q ′

)
. (B.3)

Moving to flat null coordinates and using (2.14), we find

Φ(±)(u, r, x) =
1

2(2π)d+1

∫
Rd
ddy

∫ ∞
0

dω ωd−1
[
O(±)

Φ (ω, x+ y)e−
i
2
ωu− i

2
ωry2

+O(±)†
Φ

(ω, x+ y)e
i
2
ωu+ i

2
ωry2

]
,

(B.4)

where [
O(±)

Φ (ω, x),O(±)†
Φ (ω′, x′)

]
=
[
O(±)

Φ
(ω, x),O(±)†

Φ
(ω′, x′)

]
= 2ω1−d(2π)d+1δ(ω − ω′)δ(d)

(
x− x′

)
.

(B.5)
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The leading order term in the large r expansion of the scalar field is (this is determined

following precisely the method of section 2.2.1)

Φ(±) → 1

2(2π)
d
2

+1

∫ ∞
0

dω ω
d
2
−1

[
e−

i
2
ωu

(ir)
d
2

O(±)
Φ (ω, x) +

e
i
2
ωu

(−ir)
d
2

O(±)†
Φ

(ω, x)

]
+ · · · . (B.6)

We then determine that∫
du J (±,d)

u =
πQ

(2π)d+2

∫ ∞
0

dω ωd−1
[
O(±)†

Φ (ω, x)O(±)
Φ (ω, x)−O(±)†

Φ
(ω, x)O(±)

Φ
(ω, x)

]
.

(B.7)

An outgoing or incoming scalar state of charge Q is

〈Φ, ω, x | = 〈 0 |O(+)
Φ (ω, x), |Φ, ω, x 〉 = O(−)†

Φ (ω, x)| 0 〉. (B.8)

Using these definitions, we find

〈Φ, ω, x′ |
∫
du J (+,d)

u (u, x) = Qδ(d)(x− x′)〈Φ, ω, x′ |∫
du J (−,d)

u (u, x)|Φ, ω, x′ 〉 = Qδ(d)(x− x′)|Φ, ω, x′ 〉.
(B.9)

The action of the hard charge (3.7) is then

〈Φ, ω, x |Q+H
ε = −Qε(x)〈Φ, ω, x |, Q−Hε |Φ, ω, x 〉 = −Qε(x)|Φ, ω, x 〉. (B.10)

C Soft photon operator

We describe how to obtain the soft photon insertion operator in an S-matrix using the

path integral approach. First, the n-point amplitude is

An(p1, · · · , pn) = 〈 out | in 〉. (C.1)

This is computed in the path integral formalism by computing off-shell momentum space

correlators and taking an appropriate on-shell limit. For instance, for an outgoing scalar

particle with momentum ~p, we insert

iZΦ lim
p0→
√
|~p |+m2−iε

(
p2 − iε

) ∫
dd+2X e−ip·XΦ(X). (C.2)

Here, Φ(X) is an operator that creates (among other things) a scalar one-particle state,

and ZΦ is the corresponding wave-function renormalization factor.

The amplitude involving an extra outgoing photon, i.e. Aout
n+1 from (3.23), similarly

corresponds to the insertion of the operator

iZ

e
lim

p0γ→|~pγ |−iε

(
p2
γ − iε

)
εAa (~pγ)∗

∫
dd+2X e−ipγ ·XAA(X). (C.3)
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To understand what this operator is in terms of the in and out creation/annihilation

operators, we expand the gauge field AA(x) in terms of time-dependent mode coefficients:

AA(X) = e

∫
dd+1q

(2π)d+1

1

2q0

[
εaA(~q )Oa(X0, ~q )eiq·X + εaA(~q )∗O†a(X0, ~q )e−iq·X

]
. (C.4)

Using this, we find

iZ

e
lim

p0γ→|~pγ |−iε

(
p2
γ − iε

)
εAa (~pγ)∗

∫
dd+2X e−ipγ ·XAA(X) = O(+)

a (~pγ)−O(−)
a (~pγ). (C.5)

where limX0→±∞Oa(X0, ~pγ) = Z−1O(±)
a (~pγ).16 For photons with non-zero energy, the op-

erator O(−)
a (~pγ) annihilates the in vacuum (assuming there are no other incoming photons

with the same momentum, i.e. assuming no forward scattering) so that S-matrices with

energetic outgoing photons correspond to insertions of O(+)
a (~pγ). On the other hand, owing

to (3.10), O(−,0)
a (x) no longer annihilates the vacuum; rather, it creates an incoming soft

photon (to be more precise, it produces a new vacuum state). Therefore, it follows that

the operator generating the soft limit must include both terms from (C.5) and is given by

lim
ω→0

[
ωO(+)

a (ω, x)− ωO(−)
a (ω, x)

]
= O(+,0)

a (x)−O(−,0)
a (x). (C.6)
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