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Abstract: As cloud servers continue to receive more and more 

applications and data, it starts using ASIC and FPGAs as 

accelerators for processor intensive applications. Because of the 

reconfiguration nature of FPGAs, it become a good choice rather 

than ASIC on cloud. Encryption is an application which happens 

frequently on cloud and takes lot of processor cycles which can be 

shifted to hardware accelerator for execution. The security of 

hardware circuit which is transferred as bitstream to the FPGA 

board is of major concern for security critical applications. The 

article proposes a novel logic authentication module that can 

check the authentication or correctness of selected parts of logic 

circuit any time after the circuit is burned into FPGA. In the 

proposed work, Advanced Encryption Standard (AES) circuit 

parts are checked for correctness by using in-built Secure Hash 

Algorithm (SHA) and corrected by Dynamic Partial 

Reconfiguration (DPR). After the bitstream is burned into FPGA, 

a proposed software module can select a part or entire circuit for 

checking authentication with multiple sample inputs. Without the 

proposed method, any error after the circuit creation cannot be 

identified or corrected. Additionally, small faults in the circuit is 

corrected by DPR without loading the entire module. Totally 16 

Benchmarks were created to check the correctness of the proposed 

system. Usage of DPR for circuit correction saves about 97% of 

time compared to reconfiguring the entire module. 

Index Terms: AES, circuit correctness, dynamic partial 

reconfiguration, SHA, hash code.  

I. INTRODUCTION 

  AES algorithm is being used in every security critical 

applications. Security to user data in cloud computing is 

ensured by encryption using AES. Full user virtual machine 

(VM) encryption and decryption, traffic into and out of VMs 

while running, encryption as a service in cloud, and so on uses 

AES [1-4]. Several cloud providers such as Amazon, 

Microsoft Azure, Google Cloud, CloudSigma, CloudLink, 

and HP Atalla cloud use encryption for disk encryption, data 

traffic encryption, key protection, and so on [5–9]. With the 

increase in user data and application in cloud, dedicated 

hardware was introduced to reduce processor load. 

Introduction of Field Programmable Gate Array (FPGA) on 

cloud allows customization of hardware for different 

applications. Use of AES hardware as accelerator on FPGA 

reduces the encryption load on processor. Since FPGAs 

require lower frequency than processor and parallel 

execution, less power and high throughput can be obtained 

[10, 11]. Hardware design is represented in bitstream manner 

and are burned into FPGAs in cloud to form the hardware 
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whenever the need for an accelerator arise. Bistreams are 

stored outside the FPGA and are transferred to FPGA on time. 

Authentication and error detection of bitstream is confirmed 

by using CRC checking [12]. Fig. 1 shows the general 

scenario of the bitstream development, transfer and burning 

on FPGA inside a server in cloud. The bitstream can be 

directly burned into FPGA received from network or can use 

an already stored bitstream inside a local memory. 

 
Fig. 1. Overall view of hardware acceleration process 

There are many disadvantages on existing authentication 

checking mechanisms for bitstream. 

 It cannot identify the changes or errors caused by 

environmental changes or attacks on the circuit after the 

bitstream is burned 

 It cannot identify which portion of bitstream or hardware 

contains error  

 If an error in bitstream is found, then an entire copy of new 

bitstream has to be transferred and loaded which not only 

affects the working of entire system but also a time 

consuming process 

 An attacker can disable the CRC checking by simply 

deactivating a flag in bitstream [13] 

 There is a chance to change the function with 

corresponding change of CRC 

Checking the authentication of the AES accelerator in cloud is 

important since it is handling a large amount of user data. 

Encryption is being used in cloud for data in motion and at 

rest and encryption as a service. Any change in encryption 

circuit will affect the security of entire cloud.  

Several AES implementations has been done for FPGAs. 

Optimization for speed and area are done through pipelining, 

sub-pipelining, loop unrolling, reducing the logic depth etc. 

[14-20]. Balancing between pipelining stages were done 

through allocation of registers at proper locations in order to 

avoid stalling. Farashahi et al. [14] proposed a 2-slow 

retiming technique that 

extended the c-slow retiming 

technique for the throughput 

improvement of AES 
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algorithm. Another system was developed with fast AES 

design using Look Up Tables (LUTs) and it added additional 

protection for AES core [15]. In the study by Liu et al. [16], 

logic depth is analyzed and reduced in order to improve 

throughput. Another study [17] showed different methods for 

implementing s-box of AES in many proposed designs. The 

authors used loop unrolling for critical path modification and 

fully pipelined and sub-pipelined techniques, which allowed 

the increase in the clock frequency and reduction in critical 

path. To reduce the area, Lee et al. [18] employed a series of 

constant binary matrix multiplication instead of Galois field 

(GF) (28) computation. Good and Benaissa [19] presented 

two designs for AES feedback mode support. First design 

assigned LUTs between pipeline cuts to achieve maximum 

throughput. Second design focused on Key Expansion using 

which, the key could be changed every clock cycle by proper 

pipelining. The technique proposed by Hammad et al. [20] 

splits and rearranges the operation in AES to get optimum 

area and throughput. The Mix Column operation was split and 

rearranged with Add Round Key operation. It could achieve a 

throughput of 39,053 Mbps at 305.1 MHz in XC2V6000-6 

[20]. 

Error in bitstream is checked by implementing CRC in 

bitstream. Bitstream along with CRC code are send to the 

board through public/private network. Before burning the 

bitstream to the board, CRC code is checked for any change in 

bitstream. In [13], Rajat Subhra Chakraborty shows how CRC 

can be disabled by an attacker. After modifying the functional 

units of the AES with his own functional units, an attacker can 

disable the CRC checking so that it cannot be detected. In the 

work by Abdellatif et al. [21], bistream protection mechanism 

is embedded in the static part of FPGA. The security is 

checked before the bitstream is burned on the board. 

AES-GCM and RSA are used in Xilinx high end FPGA 

boards in order to provide protection and authentication of 

bitstream [22, 23]. In [24], Karam proposes an obfuscation 

based approach for protecting the bitstream. Swierczynski 

et.al [25] shows how an encrypted bitstream can be reverse 

engineered so that an attacker can insert Trojans on to 

bitstream and goes undetected. 

 The article proposes a dynamic self-checking 

authentication module for AES accelerator with hardware 

support.  As of our knowledge, there is no work that checks 

the authentication of AES circuit after the bitstream is burned. 

Our aim is to check the authentication of AES hardware after 

the bitstream is burned into the board for security critical 

applications. Even if the CRC checking fails or the hardware 

is altered by atmospheric conditions or by an attacker, the 

self-checking hardware that is proposing can find it out and 

correct it. The exact functional unit where the fault occur can 

be analyzed and can be reconfigured without affecting the 

execution of other units by partial reconfiguration. Validation 

of hardware can be done once when the bitstream is burned 

and can be repeated whenever needed. For any security 

critical applications, the authentication of hardware can be 

checked before encryption. Dynamic partial reconfiguration 

is used to correct any faulty module which saves time and 

does not affect rest of the circuit. 

II. PROPOSED METHOD 

A. AES Implementation 

AES is a block cipher symmetric encryption algorithm that 

has a fixed input length of 128 bits and key length of 

128/192/256 bits, which operates in 10/12/14 rounds 

depending on the key length. AES has been accepted since its 

introduction for its security strength, performance, flexibility, 

and efficient implementation [26]. AES has mainly four 

rounds of operation on plain text namely—Byte Substitution 

(Substitute Byte), Shift Rows, Mix Column, and Add Round 

Key as shown in Fig. 2. The proposed work uses AES-128 for 

implementation. 

 
Fig. 2. Original 128-bit Advanced Encryption Standard 

algorithm. 

AES algorithm is implemented and optimized with pipelining, 

sub-pipelining, loop unrolling and memory partitioning. 

Registers are inserted at corresponding places in order to 

make the pipelining balanced. Fig. 3 shows the overall 

pipelined implementation of AES algorithm. Registers are 

inserted between rounds in order to save the intermediate 

results. Fig. 4 shows the proposed sub-pipelined 

implementation of a single round of AES. Substitute Byte and 

Shift Rows are merged to balance the pipelining. 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 



International Journal of Recent Technology and Engineering (IJRTE) 

ISSN: 2277-3878, Volume-8 Issue-2, July 2019 

2026 

Published By: 

Blue Eyes Intelligence Engineering 

& Sciences Publication  

Retrieval Number: B2104078219/19©BEIESP 

DOI: 10.35940/ijrte.B2104.078219 

 

 

Fig. 3. AES pipelined implementation. 

 
Fig. 4. Proposed one round design of Advanced Encryption Standard. 

The latencies measured for different frequencies are shown in Table I. 

Table I: Latency values observed with different path delays and frequencies. 

Sl. No. Path 

delay (ns) 

Frequency 

(MHz) 

Latency 

 Substitute 

Byte 

Shift 

Rows 

Mix 

Column 

Add 

Round 

Key 

Key 

Expansion 

1 1.23 813  0 0 3 0 4 

2 2.6 357 0 0 1 0 2 

3 2.84 352 0 0 0 0 2 

4 4.91 203 0 0 0 0 0 

The proposed method uses 1.23ns path delay for 

implementation. The AES system takes 60 clock cycles at 

1.23ns path delay. We have implemented a four-stage and 

five-stage sub-pipelining for Mix Column and Key Expansion 

respectively. Since the aim of the article is not AES 

implementation, further details are avoiding. 

B. Proposed logic security core for AES 

The proposed logic testing module for AES checks the 

correctness of AES accelerator after the circuit is created on 

FPGA board. As desired by the user or application, the 

accelerator can be tested anytime and any portion of the 

circuit. Initial validation can be set by checking entire module 

as well as individual functional units (referring a portion of 

the circuit). Because of the frequent use of AES accelerator, it 

can remain on FPGA for quite a long time which can cause 

tampering of circuit. Since FPGAs are shared in cloud for 

different applications, frequent checking of circuits must be 

done for security critical applications. Validation of circuit 

correctness can be done dynamically and parallel when the 

accelerator is working using the proposed security core. 

Fig. 5 shows the architecture of the proposed hardware and 

software security checking module. The hardware security 

module contains connection to different parts of AES 

accelerator. The software security modules controls the 

hardware security module by selecting the parts needed for 

checking, giving input and validating the output. When the 

AES accelerator is initially loaded into FPGA, the software 

module will trigger the hardware module for checking the 

correctness of entire module. The hardware module contains 

Secure Hash Algorithm (SHA) hardware for validating the 

correctness of the circuit. If the test is successful after 

validating entire module, then there is no need to proceed to 

test individual units. If the initial test fails, the software 

module triggers checking of individual modules for error. 

After finding the fault module(s), it will be reconfigured by 

Dynamic Partial Reconfiguration (DRP). 

 
Fig. 5. Proposed in-built hardware authentication 

module. 

Fig. 6 shows the virtual interconnection view of security 

modules to the AES accelerator. The portions or parts of the 

circuits are identified as functional modules (Substitute Byte, 

Shift Rows, Mix Column and Add Round Key) for validation. 

In order to check each module, it will be connected to the 

security module. For testing the entire module, the cipher text 

storing memory is also connected to the security module. 
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The working of hardware and software functional units are 

shown in Figure 7. The software security module selects the 

functional unit than needs to be tested by setting the 

corresponding parameter. It gives sample input and key to the 

hardware security module. The hardware module executes the 

corresponding functional unit using the sample input and key. 

The result is given to the in-built SHA hardware where a hash 

code is calculated on it. The hash code obtained will be given 

back to the software security modules where it is being 

compared with pre-computed hash code. If the hash code 

matches, the test is successful and there is no error in that part 

of the circuit. If the two hash code does not match, then there 

is error in the particular portion of the circuit and will be 

reconfigured independently by DPR without affecting rest of 

the system. If the security core flags success in all functions 

units and the entire AES module shows error, then only entire 

module will be reconfigured. Using the proposed method, 

dynamic checking and correction of logic circuit can be 

performed without affecting the performance of the overall 

system. 

 
Fig. 6. Overall view of proposed security module on 

AES. 

 
Fig. 7. Internal working of hardware security module 

and software module. 

C. Hardware module 

The hardware module for checking the AES core is named 

as test module. It is internally connected to all functional units 

(Substitute Byte, Shift Rows, Mix Column and Add Round 

Key) as shown in Fig. 7. It can select the entire encryption 

block or any of the functional units for checking 

authentication. After the bitstream is loaded, initially the 

entire encryption block is checked for authentication with 

provided sample input text and key. If there is any error 

found, separate functional units are checked with additional 

inputs. 

Algorithm 1: Hardware Test Module 

Input: txt, key, choice, fn 

Output: digest (δ’) 

1. If choice =1 do steps 2 to 4 

2.     Set α=encrypt() 

3.     Set δ’=SHA(α) 

4.     Return δ’ 

5. Else if choice =2 do steps 6 to 14 

6.     Set α = Substitute_Byte() 

7.     Set δ1’=SHA(α) 

8.     Set α = Shift_Rows() 

9.     Set δ2’=SHA(α) 

10.     Set α = Mix_Column() 

11.     Set δ3’=SHA(α) 

12.     Set α = Add_Round_Key() 

13.     Set δ4’=SHA(α) 

14.     Return δ1’, δ2’, δ3’, δ4’ 

15. Else if choice = 3 

16.     If fn = “Substitute_Byte” do steps 17 and 18 

17.         do steps  6 and 7 

18.         Return δ1’ 

19.     Else if fn = “Shift_Rows” do steps 20 and 21 

20.         Do steps 8 and 9 

21.         Return δ2’ 

22.     Else if fn = “Mix_Column” do steps 23 and 24 

23.         Do steps 10 and 11 

24.         Return δ3’ 

25.     Else if fn = “Add_Round_Key” do steps 26 and 27 

26.         Do steps 12 and 13 

27.         Return δ4’ 

28. Else return -1 

Algorithm 2: Software Test module 

Input: txt, key, δ, δ1, δ2, δ3, δ4, δmod 

δ, δ1, δ2, δ3, δ4, δmod are pre computed message digest for 

sample input text and key. fn contains the name of the 

functional unit that needs to be checked. Declare δ’[4] to 

receive output from test module. 
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1.    If fn = null do steps 2 to 16 

2.       Set δ’’ = test(txt, key, 1, fn) 

3.       If δ’’ = δ  

4.           “No error in encrypt “ 

5.            Exit 

6.      Else do steps 7 to 16 

7.             Set δ’ [ ]= test(txt, key, 2, fn) 

8.           If δ’ [0] ≠ δ1  

9.               “Error in Substitute Byte “ 

10.           If δ’ [1]≠ δ2 

11.               “Error in Shift Rows“ 

12.           If δ’ [2] ≠ δ3 

13.               “Error in Mix Column “ 

14.           If δ’ [3] ≠ δ4 

15.             “Error in Add Round Key “ 

16.           Exit 

17.     Else do steps 18 to 23 

18.          δ’= test (txt, key, 3, fn) 

19.         If δ’ ≠ δmod 

20.             Error in module fn 

21.         Else 

22.             No error in module fn 

23. exit 

Algorithms 1 and 2 shows the stepwise procedure for 

hardware and software modules for the proposed security core 

respectively. The security core can be set to check the entire 

circuit or a part of circuit by setting the third parameter as 1, 2 

or 3 in test call of software module. For initial authentication 

of circuit after bitstream burning, the entire circuit is checked 

with multiple inputs. If there is no error found, the module can 

start functioning. If any error is found out, each module is 

verified separately with multiple inputs and correct the faulty 

module. During working of the circuit, at any point or for any 

security critical applications, modules can be tested 

independently without affecting the other modules. If due to 

some environmental changes or due to some attacks, when the 

circuit changes, it can be found out and corrected.  

SHA-256 (Secure Hash Algorithm -256) is used for 

checking the authentication of circuit. SHA is embedded in 

security core. Whenever the circuit needs to be checked, 

security core gives inputs to the particular hardware module 

and calculates the corresponding output. That output is given 

to SHA in the security core for checking the authenticity of 

the calculated outputs. The process can be repeated for 

multiple inputs as needed. 

Fig. 8. Proposed hardware architecture of AES core with security core. 

Fig. 8 shows the internal connection of security core to 

AES modules – Substitute Byte, Shift Rows, Mix Column and 

Add Round Key. Input text is stored inside RAM. Key is 

stored inside registers. From the interface, the input text and 

key will be given to RAM and registers for storage. Then the 

appropriate functions (Substitute Byte, Shift Rows, Mix 

Column and Add Round Key) are calculated on input text, key 

and results are send to test module. Sel signal will select the 

particular module or the entire module for testing. The test 

module calculates the hash of received text and send the hash 

value to the software module for checking the correctness. If 

the hash of values received from any AES functional unit does 

not match with the pre-computed hash values, the particular 

functional unit contains error and has to be reloaded. 
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Fig. 9. Proposed internal architecture of security core. 

Fig. 9 shows the internal modules and connections of 

security (test) module. The output received from AES 

functional units are stored inside RAM named SHA Message 

block. SHA 256 is implemented for hash computation. 

Padding of bits is done to the message block in order to 

convert it to 512 bits. Transformations on message block is 

done in Process Message Block to get the hash code. The hash 

code is temporarily stored inside RAM from where it is 

compared with the pre-computed hash value. Fig. 10 shows 

screen shot of the RAM module for storing message block and 

hash code (digest). 

 
Fig. 10.Message digest calculated by SHA saved inside FPGA RAM. 

D. Reconfiguring modules by Dynamic Partial 

Reconfiguration 

When a particular module fails to pass the test, it can be 

reconfigured at run time without affecting the execution of 

other modules by Dynamic Partial Reconfiguration (DPR). 

The modules must be made reconfigurable in order to change 

unit at run time using partial reconfiguration. Fig. 11 shows 

the partial reconfiguration architectural view of the proposed 

system. Four Reconfigurable Partitions (PRs) are created for 

each module. Blanking and partial bitstreams are stored in 

local DDR memory. Whenever a module fails to authenticate, 

it will give a trigger to Partial Reconfiguration Controller 

(PRC). The PRC then loads the corresponding partial 

bitstream from DDR3 or from external memory to the RP 

through ICAP [27]. 
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Fig. 11. Proposed model for partial reconfiguration. 

III. IMPLEMENTATION AND RESULTS 

The proposed scheme is verified, simulated, and 

implemented using XC7VX690T device. We used Vivado 

Design Suite—HLx Edition for the implementation [28–30].  

 
Fig. 12. Overall schematic of test module. 

The schematic of test module with input ports are shown in 

Fig. 12. State port corresponds to SHA digest and txt 

corresponds to message block. Write enable and chip enable 

are shown as _we0 and _ce0 respectively. ap_ready pin will 

be enabled when the block is ready to receive next input, 

ap_start pin has to be set to start the module and ap_done pin 

will be enabled when the module finishes the computation and 

ready to give the output. ap_rst can be used to reset the 

module. 

The SHA Test algorithm is implemented to consume less 

area as possible in hardware. Tradeoff is made between area 

and speed. Since the test module is executing only once when 

the bistream is loaded, the speed is compromised. Further 

execution of security module can be done in parallel with 

encryption process and hence it will not affect the 

performance. Our design takes 330 clock cycles with three 

samples of inputs for completing the testing of entire AES 

modules. The hardware utilization for the proposed Test 

module is shown in Table II and Table II. Table IV shows the 

comparison of AES hardware module without built-in 

security module and with built-in security module. 

Table II. Hardware utilization of test module. 

Modules Slices Slice 

LUTs 

Slice 

Register 

F7 

MUX 

LUT as 

Logic 

LUT FF 

pairs 

BRAM 

Tile 

SHA pad Message 111 266 222 0 266 98 0 

SHA process Message Block 319 896 882 32 896 400 1.5 

state_ram_U 11 20 0 0 20 0 1 

txt_ram_U 58 128 0 0 128 0 0.5 

bitlen_ram_U 26 54 0 0 54 0 1 

data_ram_U 0 0 0 0 0 0 0.5 

Table III: Hardware utilization of SHA process Message Block module. 

SHA process 

Message Block 

slices slice 

LUTs 

Slice 

Register 

F7 

MUX 

LUT as 

Logic 

LUT FF 

pairs 

BRAM 

Tile 

k_rom_U 2 3 3 0 3 0 0 

m_ram_u 71 210 0 0 210 0 1 

Table IV. Comparison of hardware utilization of AES encryption without security module and with security module. 

  Slices Slice 

LUTs 

Slice 

Register 

F7 

MUX 

LUT as 

Logic 

LUT FF 

pairs 

BRAM 

Tile 

without 

security 

2617 9896 2741 3235 9896 2561 0 
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with security 3142 11260 3845 3267 11260 3059 4.5 

 

With the addition of hardware security module to the AES 

core, there is an overall 20% increase in resource utilization. 

For analyzing the proposed systems, different benchmarks 

are created for each functional unit and for the entire system. 

Table V shows the details of the Benchmarks created for 

testing the proposed system. 

Table V. Benchmarks for AES proposed test module 

Hardware 

Functional unit 

Benchmarks Details 

Substitute Byte 

SBB1 Change of connection to s-box 

SBB2 Change of connection from input register 

SBB3 Change of connection to output register 

SBB4 Change of s-box value 

Shift Rows 
SRB1 Change of internal shifting connection 

SRB2 Change of connection to output register 

Mix Column 

MCB1 Missing connection to δ (affine transformation) 

MCB2 Change of connection from input register 

MCB3 Change of connection to output register 

MCB4 Change in function δ  

Add Round Key 

ARKB1 Missing connection to xor 

ARKB2 Change of connection from input register 

ARKB3 Change of connection to output register 

Encryption 

ENB1 Missing connection to module 

ENB2 Change of connection from input register 

ENB3 Change of connection to output register 

The proposed system is tested with all the benchmarks 

given in Table 5 for three different input texts and keys. The 

hamming distance is calculated for the hash code received 

from software module and that received from hardware test 

module. The hamming distance shows the number of 

difference in bits for the hash code computed by the hardware 

test module and the hash code given by software module 

during execution. If the hamming distance is greater than 

zero, it shows the existence of error in the AES accelerator. In 

short, the existence of error in AES module after the bitstream 

is burned into FPGA has impact on hamming distance 

between hash codes. Fig. 13 shows the result of executing the 

benchmarks for encryption alone to the entire AES module. 

Fig. 14 (a) to (d) shows the results obtained after applying 

benchmarks designed for each functional module. 

 
Fig. 13. Hamming distance obtained after the 

application of benchmark designed for entire encryption 

module. 

 

 
                                            (a)                                             (b) 
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(c)                                                                            (d) 

Fig. 14. Hamming distance obtained after application of benchmarks on (a) Substitute Byte functional unit (b) Shift 

Rows functional unit (c) Mix Column functional unit and (d) Add Round Key functional unit. 

All the result shows the impact of change in circuit of the 

AES module on hash codes. In the proposed benchmarks, 

only small changes are made to analyze the hamming 

distance. Fig. 15 shows the result of benchmarks for 

individual functional units applied to the entire functional 

module. If the hash code of all functional units are same as the 

pre-computed value, and if the hash code of entire encryption 

block does not match with the pre-computed value, then entire 

module will be replaced. 

 
Fig. 15. Effect of application of benchmark for each 

functional unit on entire encryption module. 

The AES accelerator is integrated through PCIe interface 

[31]. The overall system is designed to have static part and 

dynamic part. The static part does not change after the system 

is burned into the device. The dynamic part consists of 

reconfigurable modules that can be reconfigured dynamically 

without affecting other parts of the system. The four 

functional modules of AES comes under the dynamic part of 

the system. Since the proposed system used PCIe connection 

for high data transfer, the static part consumes more area. As 

soon as a change in a module is found out, the corresponding 

module will be reconfigured using DPR. Fig. 16 shows the 

screenshot of device after floor planning, routing and 

placement is done. The marked portion shows the 

reconfigurable partitions for modules - Substitute Byte, Shift 

Rows, Mix Column and Add Round Key. The rest of the 

portions are static part of the system. Table VI shows the 

bitstream size and reconfiguration time needed for entire 

module and DPR modules. The partial bitstreams are stored in 

storage media (SD card in our case). The time needed for 

reconfiguration is calculated as the sum of time needed for 

transferring the bitstream from SD card to local memory 

(DDR), and from there to ICAP configuration cache and 

finally to the respective configuration memory [32-34]. 
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Fig. 16. Chip layout of the proposed scheme on virtex 7(XC7VX690TFFG1761-2) device. 

Table VI. Bitstream size of entire AES and partial 

bitstream size of each module along with corresponding time 

required for reconfiguration. 

Module Bitstream 

Size (KB) 

Time 

(ms) 

aes 28062 2220.60

8 

Substitute Byte 762 60.311 

Shift Rows 818 64.742 

Mix Column 869 68.778 

Add Round Key 812 64.268 

Fig. 17 shows the comparison of bitstream size between the 

static part of the system and dynamic part of the system. If 

there is any change in circuit after the bitstream is loaded into 

FPGA, it is economical in terms of time to reconfigure only 

the faulty module than to replace the entire system. The 

bitstream size of entire AES module not only depends on the 

encryptor module, but also on the interfaces, DMAs and other 

reconfigurable modules. Fig. 17 clearly shows the amount of 

bitstream that has to be transferred in order to correct the 

faulty module which in turn has a great impact on saving 

reconfiguration time. Fig. 18 shows the percentage of 

reduction in reconfiguration time if the proposed system is 

used for partially reconfigure only the modules that has to be 

changed. If there is fault only in Substitute Byte, then 

reconfiguring only the specific module saves 97.28 % time 

compared to reconfiguring the entire module. Similarly, Shift 

Rows saves 97.08 %, Mix Column save 96.9% and Add 

Round Key saves 97.11% compared to reconfiguring entire 

system. 

 
Fig. 17. View of the bitstream size of static region and 

reconfigurable regions. 

 
Fig. 18. Percentage of reduction in reconfiguration 

time of each module compared to reconfiguring entire 

AES module. 

Using the proposed self-checking module and DPR feature, 

any error in the circuit can be analyzed dynamically without 

affecting the working of other parts of the design. As the 

tradeoff is made between speed and area, the proposed 

security core takes 330 clock cycles for running three inputs 

to complete the entire modules and takes 20% more area than 

the hardware without security core. Analysis shows that 

testing with different benchmarks can uncover even a simple 

fault in circuit and can correct a module by DPR with 97% 

less amount of time compared to configuring the entire 

system. 

IV. CONCLUSION 

AES is being used in almost all security critical 

applications. When cloud started to use FPGAs as hardware 

accelerators, security for hardware circuit became an issue. 

Checking the authentication of circuit is done only before the 

bitstream is burned. The article proposed a novel method to 

check the authentication of AES hardware circuit dynamically 

after the circuit is created on the board. Tradeoff is made 

between area and speed. Since the FPGA resources are shared 

on cloud, area is being reduced with less execution speed for 

authentication check. The security core can be run along with 

encryption parallel to check the authentication. Since the 

proposed method is using hardware-software based security 

core, it can ensure the security 

of the hardware even if the 

bitstream and CRC are 

tampered. The security core 
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took an additional 20% more resources than AES core 

without having security core. Benchmarks showed change of 

Hamming distance in hash code for faulty circuit which could 

be corrected by dynamic partial reconfiguration without 

affecting other parts of the circuit with less amount of 

reconfiguration time. 
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