
International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-8 Issue-2, July 2019

2024

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B2104078219/19©BEIESP

DOI: 10.35940/ijrte.B2104.078219

Abstract: As cloud servers continue to receive more and more

applications and data, it starts using ASIC and FPGAs as

accelerators for processor intensive applications. Because of the

reconfiguration nature of FPGAs, it become a good choice rather

than ASIC on cloud. Encryption is an application which happens

frequently on cloud and takes lot of processor cycles which can be

shifted to hardware accelerator for execution. The security of

hardware circuit which is transferred as bitstream to the FPGA

board is of major concern for security critical applications. The

article proposes a novel logic authentication module that can

check the authentication or correctness of selected parts of logic

circuit any time after the circuit is burned into FPGA. In the

proposed work, Advanced Encryption Standard (AES) circuit

parts are checked for correctness by using in-built Secure Hash

Algorithm (SHA) and corrected by Dynamic Partial

Reconfiguration (DPR). After the bitstream is burned into FPGA,

a proposed software module can select a part or entire circuit for

checking authentication with multiple sample inputs. Without the

proposed method, any error after the circuit creation cannot be

identified or corrected. Additionally, small faults in the circuit is

corrected by DPR without loading the entire module. Totally 16

Benchmarks were created to check the correctness of the proposed

system. Usage of DPR for circuit correction saves about 97% of

time compared to reconfiguring the entire module.

Index Terms: AES, circuit correctness, dynamic partial

reconfiguration, SHA, hash code.

I. INTRODUCTION

 AES algorithm is being used in every security critical

applications. Security to user data in cloud computing is

ensured by encryption using AES. Full user virtual machine

(VM) encryption and decryption, traffic into and out of VMs

while running, encryption as a service in cloud, and so on uses

AES [1-4]. Several cloud providers such as Amazon,

Microsoft Azure, Google Cloud, CloudSigma, CloudLink,

and HP Atalla cloud use encryption for disk encryption, data

traffic encryption, key protection, and so on [5–9]. With the

increase in user data and application in cloud, dedicated

hardware was introduced to reduce processor load.

Introduction of Field Programmable Gate Array (FPGA) on

cloud allows customization of hardware for different

applications. Use of AES hardware as accelerator on FPGA

reduces the encryption load on processor. Since FPGAs

require lower frequency than processor and parallel

execution, less power and high throughput can be obtained

[10, 11]. Hardware design is represented in bitstream manner

and are burned into FPGAs in cloud to form the hardware

Revised Manuscript Received on July 06, 2019.

 Dr. Manjith B.C., Department of Computer Science and Engineering,

National Institute of Technology Puducherry, Karaikal

whenever the need for an accelerator arise. Bistreams are

stored outside the FPGA and are transferred to FPGA on time.

Authentication and error detection of bitstream is confirmed

by using CRC checking [12]. Fig. 1 shows the general

scenario of the bitstream development, transfer and burning

on FPGA inside a server in cloud. The bitstream can be

directly burned into FPGA received from network or can use

an already stored bitstream inside a local memory.

Fig. 1. Overall view of hardware acceleration process

There are many disadvantages on existing authentication

checking mechanisms for bitstream.

 It cannot identify the changes or errors caused by

environmental changes or attacks on the circuit after the

bitstream is burned

 It cannot identify which portion of bitstream or hardware

contains error

 If an error in bitstream is found, then an entire copy of new

bitstream has to be transferred and loaded which not only

affects the working of entire system but also a time

consuming process

 An attacker can disable the CRC checking by simply

deactivating a flag in bitstream [13]

 There is a chance to change the function with

corresponding change of CRC

Checking the authentication of the AES accelerator in cloud is

important since it is handling a large amount of user data.

Encryption is being used in cloud for data in motion and at

rest and encryption as a service. Any change in encryption

circuit will affect the security of entire cloud.

Several AES implementations has been done for FPGAs.

Optimization for speed and area are done through pipelining,

sub-pipelining, loop unrolling, reducing the logic depth etc.

[14-20]. Balancing between pipelining stages were done

through allocation of registers at proper locations in order to

avoid stalling. Farashahi et al. [14] proposed a 2-slow

retiming technique that

extended the c-slow retiming

technique for the throughput

improvement of AES

Improving Correctness of Logic Circuit Using

Self-Healing Built-In Logic Test Module in

FPGA using Dynamic Partial Reconfiguration

Manjith B.C.

Improving correctness of logic circuit using self-healing built-in logic test module in FPGA using Dynamic Partial

Reconfiguration

2025

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B2104078219/19©BEIESP

DOI: 10.35940/ijrte.B2104.078219

algorithm. Another system was developed with fast AES

design using Look Up Tables (LUTs) and it added additional

protection for AES core [15]. In the study by Liu et al. [16],

logic depth is analyzed and reduced in order to improve

throughput. Another study [17] showed different methods for

implementing s-box of AES in many proposed designs. The

authors used loop unrolling for critical path modification and

fully pipelined and sub-pipelined techniques, which allowed

the increase in the clock frequency and reduction in critical

path. To reduce the area, Lee et al. [18] employed a series of

constant binary matrix multiplication instead of Galois field

(GF) (28) computation. Good and Benaissa [19] presented

two designs for AES feedback mode support. First design

assigned LUTs between pipeline cuts to achieve maximum

throughput. Second design focused on Key Expansion using

which, the key could be changed every clock cycle by proper

pipelining. The technique proposed by Hammad et al. [20]

splits and rearranges the operation in AES to get optimum

area and throughput. The Mix Column operation was split and

rearranged with Add Round Key operation. It could achieve a

throughput of 39,053 Mbps at 305.1 MHz in XC2V6000-6

[20].

Error in bitstream is checked by implementing CRC in

bitstream. Bitstream along with CRC code are send to the

board through public/private network. Before burning the

bitstream to the board, CRC code is checked for any change in

bitstream. In [13], Rajat Subhra Chakraborty shows how CRC

can be disabled by an attacker. After modifying the functional

units of the AES with his own functional units, an attacker can

disable the CRC checking so that it cannot be detected. In the

work by Abdellatif et al. [21], bistream protection mechanism

is embedded in the static part of FPGA. The security is

checked before the bitstream is burned on the board.

AES-GCM and RSA are used in Xilinx high end FPGA

boards in order to provide protection and authentication of

bitstream [22, 23]. In [24], Karam proposes an obfuscation

based approach for protecting the bitstream. Swierczynski

et.al [25] shows how an encrypted bitstream can be reverse

engineered so that an attacker can insert Trojans on to

bitstream and goes undetected.

 The article proposes a dynamic self-checking

authentication module for AES accelerator with hardware

support. As of our knowledge, there is no work that checks

the authentication of AES circuit after the bitstream is burned.

Our aim is to check the authentication of AES hardware after

the bitstream is burned into the board for security critical

applications. Even if the CRC checking fails or the hardware

is altered by atmospheric conditions or by an attacker, the

self-checking hardware that is proposing can find it out and

correct it. The exact functional unit where the fault occur can

be analyzed and can be reconfigured without affecting the

execution of other units by partial reconfiguration. Validation

of hardware can be done once when the bitstream is burned

and can be repeated whenever needed. For any security

critical applications, the authentication of hardware can be

checked before encryption. Dynamic partial reconfiguration

is used to correct any faulty module which saves time and

does not affect rest of the circuit.

II. PROPOSED METHOD

A. AES Implementation

AES is a block cipher symmetric encryption algorithm that

has a fixed input length of 128 bits and key length of

128/192/256 bits, which operates in 10/12/14 rounds

depending on the key length. AES has been accepted since its

introduction for its security strength, performance, flexibility,

and efficient implementation [26]. AES has mainly four

rounds of operation on plain text namely—Byte Substitution

(Substitute Byte), Shift Rows, Mix Column, and Add Round

Key as shown in Fig. 2. The proposed work uses AES-128 for

implementation.

Fig. 2. Original 128-bit Advanced Encryption Standard

algorithm.

AES algorithm is implemented and optimized with pipelining,

sub-pipelining, loop unrolling and memory partitioning.

Registers are inserted at corresponding places in order to

make the pipelining balanced. Fig. 3 shows the overall

pipelined implementation of AES algorithm. Registers are

inserted between rounds in order to save the intermediate

results. Fig. 4 shows the proposed sub-pipelined

implementation of a single round of AES. Substitute Byte and

Shift Rows are merged to balance the pipelining.

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-8 Issue-2, July 2019

2026

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B2104078219/19©BEIESP

DOI: 10.35940/ijrte.B2104.078219

Fig. 3. AES pipelined implementation.

Fig. 4. Proposed one round design of Advanced Encryption Standard.

The latencies measured for different frequencies are shown in Table I.

Table I: Latency values observed with different path delays and frequencies.

Sl. No. Path

delay (ns)

Frequency

(MHz)

Latency

 Substitute

Byte

Shift

Rows

Mix

Column

Add

Round

Key

Key

Expansion

1 1.23 813 0 0 3 0 4

2 2.6 357 0 0 1 0 2

3 2.84 352 0 0 0 0 2

4 4.91 203 0 0 0 0 0

The proposed method uses 1.23ns path delay for

implementation. The AES system takes 60 clock cycles at

1.23ns path delay. We have implemented a four-stage and

five-stage sub-pipelining for Mix Column and Key Expansion

respectively. Since the aim of the article is not AES

implementation, further details are avoiding.

B. Proposed logic security core for AES

The proposed logic testing module for AES checks the

correctness of AES accelerator after the circuit is created on

FPGA board. As desired by the user or application, the

accelerator can be tested anytime and any portion of the

circuit. Initial validation can be set by checking entire module

as well as individual functional units (referring a portion of

the circuit). Because of the frequent use of AES accelerator, it

can remain on FPGA for quite a long time which can cause

tampering of circuit. Since FPGAs are shared in cloud for

different applications, frequent checking of circuits must be

done for security critical applications. Validation of circuit

correctness can be done dynamically and parallel when the

accelerator is working using the proposed security core.

Fig. 5 shows the architecture of the proposed hardware and

software security checking module. The hardware security

module contains connection to different parts of AES

accelerator. The software security modules controls the

hardware security module by selecting the parts needed for

checking, giving input and validating the output. When the

AES accelerator is initially loaded into FPGA, the software

module will trigger the hardware module for checking the

correctness of entire module. The hardware module contains

Secure Hash Algorithm (SHA) hardware for validating the

correctness of the circuit. If the test is successful after

validating entire module, then there is no need to proceed to

test individual units. If the initial test fails, the software

module triggers checking of individual modules for error.

After finding the fault module(s), it will be reconfigured by

Dynamic Partial Reconfiguration (DRP).

Fig. 5. Proposed in-built hardware authentication

module.

Fig. 6 shows the virtual interconnection view of security

modules to the AES accelerator. The portions or parts of the

circuits are identified as functional modules (Substitute Byte,

Shift Rows, Mix Column and Add Round Key) for validation.

In order to check each module, it will be connected to the

security module. For testing the entire module, the cipher text

storing memory is also connected to the security module.

Improving correctness of logic circuit using self-healing built-in logic test module in FPGA using Dynamic Partial

Reconfiguration

2027

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B2104078219/19©BEIESP

DOI: 10.35940/ijrte.B2104.078219

The working of hardware and software functional units are

shown in Figure 7. The software security module selects the

functional unit than needs to be tested by setting the

corresponding parameter. It gives sample input and key to the

hardware security module. The hardware module executes the

corresponding functional unit using the sample input and key.

The result is given to the in-built SHA hardware where a hash

code is calculated on it. The hash code obtained will be given

back to the software security modules where it is being

compared with pre-computed hash code. If the hash code

matches, the test is successful and there is no error in that part

of the circuit. If the two hash code does not match, then there

is error in the particular portion of the circuit and will be

reconfigured independently by DPR without affecting rest of

the system. If the security core flags success in all functions

units and the entire AES module shows error, then only entire

module will be reconfigured. Using the proposed method,

dynamic checking and correction of logic circuit can be

performed without affecting the performance of the overall

system.

Fig. 6. Overall view of proposed security module on

AES.

Fig. 7. Internal working of hardware security module

and software module.

C. Hardware module

The hardware module for checking the AES core is named

as test module. It is internally connected to all functional units

(Substitute Byte, Shift Rows, Mix Column and Add Round

Key) as shown in Fig. 7. It can select the entire encryption

block or any of the functional units for checking

authentication. After the bitstream is loaded, initially the

entire encryption block is checked for authentication with

provided sample input text and key. If there is any error

found, separate functional units are checked with additional

inputs.

Algorithm 1: Hardware Test Module

Input: txt, key, choice, fn

Output: digest (δ’)

1. If choice =1 do steps 2 to 4

2. Set α=encrypt()

3. Set δ’=SHA(α)

4. Return δ’

5. Else if choice =2 do steps 6 to 14

6. Set α = Substitute_Byte()

7. Set δ1’=SHA(α)

8. Set α = Shift_Rows()

9. Set δ2’=SHA(α)

10. Set α = Mix_Column()

11. Set δ3’=SHA(α)

12. Set α = Add_Round_Key()

13. Set δ4’=SHA(α)

14. Return δ1’, δ2’, δ3’, δ4’

15. Else if choice = 3

16. If fn = “Substitute_Byte” do steps 17 and 18

17. do steps 6 and 7

18. Return δ1’

19. Else if fn = “Shift_Rows” do steps 20 and 21

20. Do steps 8 and 9

21. Return δ2’

22. Else if fn = “Mix_Column” do steps 23 and 24

23. Do steps 10 and 11

24. Return δ3’

25. Else if fn = “Add_Round_Key” do steps 26 and 27

26. Do steps 12 and 13

27. Return δ4’

28. Else return -1

Algorithm 2: Software Test module

Input: txt, key, δ, δ1, δ2, δ3, δ4, δmod

δ, δ1, δ2, δ3, δ4, δmod are pre computed message digest for

sample input text and key. fn contains the name of the

functional unit that needs to be checked. Declare δ’[4] to

receive output from test module.

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-8 Issue-2, July 2019

2028

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B2104078219/19©BEIESP

DOI: 10.35940/ijrte.B2104.078219

1. If fn = null do steps 2 to 16

2. Set δ’’ = test(txt, key, 1, fn)

3. If δ’’ = δ

4. “No error in encrypt “

5. Exit

6. Else do steps 7 to 16

7. Set δ’ []= test(txt, key, 2, fn)

8. If δ’ [0] ≠ δ1

9. “Error in Substitute Byte “

10. If δ’ [1]≠ δ2

11. “Error in Shift Rows“

12. If δ’ [2] ≠ δ3

13. “Error in Mix Column “

14. If δ’ [3] ≠ δ4

15. “Error in Add Round Key “

16. Exit

17. Else do steps 18 to 23

18. δ’= test (txt, key, 3, fn)

19. If δ’ ≠ δmod

20. Error in module fn

21. Else

22. No error in module fn

23. exit

Algorithms 1 and 2 shows the stepwise procedure for

hardware and software modules for the proposed security core

respectively. The security core can be set to check the entire

circuit or a part of circuit by setting the third parameter as 1, 2

or 3 in test call of software module. For initial authentication

of circuit after bitstream burning, the entire circuit is checked

with multiple inputs. If there is no error found, the module can

start functioning. If any error is found out, each module is

verified separately with multiple inputs and correct the faulty

module. During working of the circuit, at any point or for any

security critical applications, modules can be tested

independently without affecting the other modules. If due to

some environmental changes or due to some attacks, when the

circuit changes, it can be found out and corrected.

SHA-256 (Secure Hash Algorithm -256) is used for

checking the authentication of circuit. SHA is embedded in

security core. Whenever the circuit needs to be checked,

security core gives inputs to the particular hardware module

and calculates the corresponding output. That output is given

to SHA in the security core for checking the authenticity of

the calculated outputs. The process can be repeated for

multiple inputs as needed.

Fig. 8. Proposed hardware architecture of AES core with security core.

Fig. 8 shows the internal connection of security core to

AES modules – Substitute Byte, Shift Rows, Mix Column and

Add Round Key. Input text is stored inside RAM. Key is

stored inside registers. From the interface, the input text and

key will be given to RAM and registers for storage. Then the

appropriate functions (Substitute Byte, Shift Rows, Mix

Column and Add Round Key) are calculated on input text, key

and results are send to test module. Sel signal will select the

particular module or the entire module for testing. The test

module calculates the hash of received text and send the hash

value to the software module for checking the correctness. If

the hash of values received from any AES functional unit does

not match with the pre-computed hash values, the particular

functional unit contains error and has to be reloaded.

Improving correctness of logic circuit using self-healing built-in logic test module in FPGA using Dynamic Partial

Reconfiguration

2029

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B2104078219/19©BEIESP

DOI: 10.35940/ijrte.B2104.078219

Fig. 9. Proposed internal architecture of security core.

Fig. 9 shows the internal modules and connections of

security (test) module. The output received from AES

functional units are stored inside RAM named SHA Message

block. SHA 256 is implemented for hash computation.

Padding of bits is done to the message block in order to

convert it to 512 bits. Transformations on message block is

done in Process Message Block to get the hash code. The hash

code is temporarily stored inside RAM from where it is

compared with the pre-computed hash value. Fig. 10 shows

screen shot of the RAM module for storing message block and

hash code (digest).

Fig. 10.Message digest calculated by SHA saved inside FPGA RAM.

D. Reconfiguring modules by Dynamic Partial

Reconfiguration

When a particular module fails to pass the test, it can be

reconfigured at run time without affecting the execution of

other modules by Dynamic Partial Reconfiguration (DPR).

The modules must be made reconfigurable in order to change

unit at run time using partial reconfiguration. Fig. 11 shows

the partial reconfiguration architectural view of the proposed

system. Four Reconfigurable Partitions (PRs) are created for

each module. Blanking and partial bitstreams are stored in

local DDR memory. Whenever a module fails to authenticate,

it will give a trigger to Partial Reconfiguration Controller

(PRC). The PRC then loads the corresponding partial

bitstream from DDR3 or from external memory to the RP

through ICAP [27].

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-8 Issue-2, July 2019

2030

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B2104078219/19©BEIESP

DOI: 10.35940/ijrte.B2104.078219

Fig. 11. Proposed model for partial reconfiguration.

III. IMPLEMENTATION AND RESULTS

The proposed scheme is verified, simulated, and

implemented using XC7VX690T device. We used Vivado

Design Suite—HLx Edition for the implementation [28–30].

Fig. 12. Overall schematic of test module.

The schematic of test module with input ports are shown in

Fig. 12. State port corresponds to SHA digest and txt

corresponds to message block. Write enable and chip enable

are shown as _we0 and _ce0 respectively. ap_ready pin will

be enabled when the block is ready to receive next input,

ap_start pin has to be set to start the module and ap_done pin

will be enabled when the module finishes the computation and

ready to give the output. ap_rst can be used to reset the

module.

The SHA Test algorithm is implemented to consume less

area as possible in hardware. Tradeoff is made between area

and speed. Since the test module is executing only once when

the bistream is loaded, the speed is compromised. Further

execution of security module can be done in parallel with

encryption process and hence it will not affect the

performance. Our design takes 330 clock cycles with three

samples of inputs for completing the testing of entire AES

modules. The hardware utilization for the proposed Test

module is shown in Table II and Table II. Table IV shows the

comparison of AES hardware module without built-in

security module and with built-in security module.

Table II. Hardware utilization of test module.

Modules Slices Slice

LUTs

Slice

Register

F7

MUX

LUT as

Logic

LUT FF

pairs

BRAM

Tile

SHA pad Message 111 266 222 0 266 98 0

SHA process Message Block 319 896 882 32 896 400 1.5

state_ram_U 11 20 0 0 20 0 1

txt_ram_U 58 128 0 0 128 0 0.5

bitlen_ram_U 26 54 0 0 54 0 1

data_ram_U 0 0 0 0 0 0 0.5

Table III: Hardware utilization of SHA process Message Block module.

SHA process

Message Block

slices slice

LUTs

Slice

Register

F7

MUX

LUT as

Logic

LUT FF

pairs

BRAM

Tile

k_rom_U 2 3 3 0 3 0 0

m_ram_u 71 210 0 0 210 0 1

Table IV. Comparison of hardware utilization of AES encryption without security module and with security module.

 Slices Slice

LUTs

Slice

Register

F7

MUX

LUT as

Logic

LUT FF

pairs

BRAM

Tile

without

security

2617 9896 2741 3235 9896 2561 0

Improving correctness of logic circuit using self-healing built-in logic test module in FPGA using Dynamic Partial

Reconfiguration

2031

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B2104078219/19©BEIESP

DOI: 10.35940/ijrte.B2104.078219

with security 3142 11260 3845 3267 11260 3059 4.5

With the addition of hardware security module to the AES

core, there is an overall 20% increase in resource utilization.

For analyzing the proposed systems, different benchmarks

are created for each functional unit and for the entire system.

Table V shows the details of the Benchmarks created for

testing the proposed system.

Table V. Benchmarks for AES proposed test module

Hardware

Functional unit

Benchmarks Details

Substitute Byte

SBB1 Change of connection to s-box

SBB2 Change of connection from input register

SBB3 Change of connection to output register

SBB4 Change of s-box value

Shift Rows
SRB1 Change of internal shifting connection

SRB2 Change of connection to output register

Mix Column

MCB1 Missing connection to δ (affine transformation)

MCB2 Change of connection from input register

MCB3 Change of connection to output register

MCB4 Change in function δ

Add Round Key

ARKB1 Missing connection to xor

ARKB2 Change of connection from input register

ARKB3 Change of connection to output register

Encryption

ENB1 Missing connection to module

ENB2 Change of connection from input register

ENB3 Change of connection to output register

The proposed system is tested with all the benchmarks

given in Table 5 for three different input texts and keys. The

hamming distance is calculated for the hash code received

from software module and that received from hardware test

module. The hamming distance shows the number of

difference in bits for the hash code computed by the hardware

test module and the hash code given by software module

during execution. If the hamming distance is greater than

zero, it shows the existence of error in the AES accelerator. In

short, the existence of error in AES module after the bitstream

is burned into FPGA has impact on hamming distance

between hash codes. Fig. 13 shows the result of executing the

benchmarks for encryption alone to the entire AES module.

Fig. 14 (a) to (d) shows the results obtained after applying

benchmarks designed for each functional module.

Fig. 13. Hamming distance obtained after the

application of benchmark designed for entire encryption

module.

 (a) (b)

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-8 Issue-2, July 2019

2032

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B2104078219/19©BEIESP

DOI: 10.35940/ijrte.B2104.078219

(c) (d)

Fig. 14. Hamming distance obtained after application of benchmarks on (a) Substitute Byte functional unit (b) Shift

Rows functional unit (c) Mix Column functional unit and (d) Add Round Key functional unit.

All the result shows the impact of change in circuit of the

AES module on hash codes. In the proposed benchmarks,

only small changes are made to analyze the hamming

distance. Fig. 15 shows the result of benchmarks for

individual functional units applied to the entire functional

module. If the hash code of all functional units are same as the

pre-computed value, and if the hash code of entire encryption

block does not match with the pre-computed value, then entire

module will be replaced.

Fig. 15. Effect of application of benchmark for each

functional unit on entire encryption module.

The AES accelerator is integrated through PCIe interface

[31]. The overall system is designed to have static part and

dynamic part. The static part does not change after the system

is burned into the device. The dynamic part consists of

reconfigurable modules that can be reconfigured dynamically

without affecting other parts of the system. The four

functional modules of AES comes under the dynamic part of

the system. Since the proposed system used PCIe connection

for high data transfer, the static part consumes more area. As

soon as a change in a module is found out, the corresponding

module will be reconfigured using DPR. Fig. 16 shows the

screenshot of device after floor planning, routing and

placement is done. The marked portion shows the

reconfigurable partitions for modules - Substitute Byte, Shift

Rows, Mix Column and Add Round Key. The rest of the

portions are static part of the system. Table VI shows the

bitstream size and reconfiguration time needed for entire

module and DPR modules. The partial bitstreams are stored in

storage media (SD card in our case). The time needed for

reconfiguration is calculated as the sum of time needed for

transferring the bitstream from SD card to local memory

(DDR), and from there to ICAP configuration cache and

finally to the respective configuration memory [32-34].

Improving correctness of logic circuit using self-healing built-in logic test module in FPGA using Dynamic Partial

Reconfiguration

2033

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B2104078219/19©BEIESP

DOI: 10.35940/ijrte.B2104.078219

Fig. 16. Chip layout of the proposed scheme on virtex 7(XC7VX690TFFG1761-2) device.

Table VI. Bitstream size of entire AES and partial

bitstream size of each module along with corresponding time

required for reconfiguration.

Module Bitstream

Size (KB)

Time

(ms)

aes 28062 2220.60

8

Substitute Byte 762 60.311

Shift Rows 818 64.742

Mix Column 869 68.778

Add Round Key 812 64.268

Fig. 17 shows the comparison of bitstream size between the

static part of the system and dynamic part of the system. If

there is any change in circuit after the bitstream is loaded into

FPGA, it is economical in terms of time to reconfigure only

the faulty module than to replace the entire system. The

bitstream size of entire AES module not only depends on the

encryptor module, but also on the interfaces, DMAs and other

reconfigurable modules. Fig. 17 clearly shows the amount of

bitstream that has to be transferred in order to correct the

faulty module which in turn has a great impact on saving

reconfiguration time. Fig. 18 shows the percentage of

reduction in reconfiguration time if the proposed system is

used for partially reconfigure only the modules that has to be

changed. If there is fault only in Substitute Byte, then

reconfiguring only the specific module saves 97.28 % time

compared to reconfiguring the entire module. Similarly, Shift

Rows saves 97.08 %, Mix Column save 96.9% and Add

Round Key saves 97.11% compared to reconfiguring entire

system.

Fig. 17. View of the bitstream size of static region and

reconfigurable regions.

Fig. 18. Percentage of reduction in reconfiguration

time of each module compared to reconfiguring entire

AES module.

Using the proposed self-checking module and DPR feature,

any error in the circuit can be analyzed dynamically without

affecting the working of other parts of the design. As the

tradeoff is made between speed and area, the proposed

security core takes 330 clock cycles for running three inputs

to complete the entire modules and takes 20% more area than

the hardware without security core. Analysis shows that

testing with different benchmarks can uncover even a simple

fault in circuit and can correct a module by DPR with 97%

less amount of time compared to configuring the entire

system.

IV. CONCLUSION

AES is being used in almost all security critical

applications. When cloud started to use FPGAs as hardware

accelerators, security for hardware circuit became an issue.

Checking the authentication of circuit is done only before the

bitstream is burned. The article proposed a novel method to

check the authentication of AES hardware circuit dynamically

after the circuit is created on the board. Tradeoff is made

between area and speed. Since the FPGA resources are shared

on cloud, area is being reduced with less execution speed for

authentication check. The security core can be run along with

encryption parallel to check the authentication. Since the

proposed method is using hardware-software based security

core, it can ensure the security

of the hardware even if the

bitstream and CRC are

tampered. The security core

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-8 Issue-2, July 2019

2034

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B2104078219/19©BEIESP

DOI: 10.35940/ijrte.B2104.078219

took an additional 20% more resources than AES core

without having security core. Benchmarks showed change of

Hamming distance in hash code for faulty circuit which could

be corrected by dynamic partial reconfiguration without

affecting other parts of the circuit with less amount of

reconfiguration time.

REFERENCES

1. J. Teubner, L. Woods, Data Processing on FPGAs, Synthesis Lectures

on Data Management 5.2, Morgan & Claypool Publishers, 2013,

1–118.

2. J.D. Bokefode, A.S. Bhise, P.A. Satarkar, D.G. Modani, “Developing a

secure cloud storage system for storing IoT data by applying role-based

encryption,” Procedia Computer Science 89 (2016): 43–50.

3. R. Hossein, S. Elankovan, Z. Md. Ali, A.M. Zin. “Encryption as a

service (EaaS) as a solution for cryptography in cloud,” Procedia

Technology 11 (2013): 1202–1210.

4. R.I. Krutz, R.D. Vines, Cloud Security: A Comprehensive Guide to

Secure Cloud Computing, Wiley Publishing, 2010.

5. AWS Storage Services Overview a Look at Storage Services Offered

by AWS, Amazon Web Services, December 2016.

6. Protecting Data in Microsoft Azure, White Paper, Microsoft, August

2014

7. Encryption at Rest in Google Cloud Platform Google Cloud Platform

Encryption Whitepaper, August 2016.

8. Cloudsigma.

https://www.cloudsigma.com/securing-your-data-in-the-cloud-with-e

ncryption/

9. HP Atalla Cloud Encryption Securing Data in the Cloud, Technical

White Paper, November 2013.

10. S. Hauck, D. Andre, Reconfigurable Computing: The Theory and

Practice of FPGA-based Computation, Vol. 1, Morgan Kaufmann,

2010.

11. S. Kilts, Advanced FPGA Design: Architecture, Implementation, and

Optimization, Wiley-IEEE Press, 2007.

12. https://www.altera.com/products/general/devices/stratix-fpgas/about/

crc.html

13. Chakraborty, Rajat Subhra, et al. "Hardware Trojan insertion by direct

modification of FPGA configuration bitstream." IEEE Design &

Test 30.2 (2013): 45-54.

14. R.R. Farashahi, B. Rashidi, S.M. Sayedi, “FPGA based fast and

high-throughput 2-slow retiming 128-bit AES encryption algorithm,”

Microelectronics Journal 45 (8) (2014): 1014–1025.

15. M-H. Jing, Z-H. Chen, J-H. Chen, Y-H. Chen, “Reconfigurable system

for high-speed and diversified AES using FPGA,” Microprocessors

and Microsystems 31 (2) (2007): 94–102.

16. Q. Liu, Z. Xu, Y. Yuan, “High throughput and secure advanced

encryption standard on field programmable gate array with fine

pipelining and enhanced key expansion,” IET Computers & Digital

Techniques 9 (3) (2014): 175–184.

17. A. Soltani, S. Sharifian, “An ultra-high throughput and fully pipelined

implementation of AES algorithm on FPGA,” Microprocessors and

Microsystems 39 (7) (2015): 480–493.

18. H. Lee, Y. Paik, J. Jun, Y. Han, S.W. Kim, “High-throughput low-area

design of AES using constant binary matrix-vector multiplication,”

Microprocessors and Microsystems 47 (2016): 360–368.

19. T. Good, M. Benaissa, “Pipelined AES on FPGA with support for

feedback modes (in a multi-channel environment),” IET Information

Security 1 (1) (2007): 1–10.

20. I. Hammad, K. El-Sankary, E. El-Masry, “High-speed AES encryptor

with efficient merging techniques,” IEEE Embedded Systems Letters 2

(3) (2010): 67–71.

21. Abdellatif, Karim M., Roselyne Chotin-Avot, and Habib Mehrez.

"Authenticated encryption on FPGAs from the static part to the

reconfigurable part." Microprocessors and Microsystems 38.6 (2014):

526-538.

22. “Using Encryption to Secure a 7 Series FPGA Bitstream” by Kyle

Wilkinson, Xilinx XAPP1239 (v1.0) April 15, 2015.

(https://www.xilinx.com/support/documentation/application_notes/xapp12

39-fpga-bitstream-encryption.pdf)

23. Using Encryption and Authentication to Secure an

UltraScale/UltraScale+ FPGA Bitstream by Kyle Wilkinson, Xilinx

XAPP1267 (v1.1) April 13, 2017.

(https://www.xilinx.com/support/documentation/application_notes/xapp12

67-encryp-efuse-program.pdf)

24. Karam, Robert, et al. "Robust bitstream protection in FPGA-based

systems through low-overhead obfuscation." ReConFigurable

Computing and FPGAs (ReConFig), 2016 International Conference

on. IEEE, 2016.

25. Swierczynski, Pawel, et al. "FPGA Trojans through detecting and

weakening of cryptographic primitives." IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems 34.8

(2015): 1236-1249.

26. J. Daemen, V. Rijmen, The Design of Rijndael: AES—The Advanced

Encryption Standard, Springer Science and Business Media, 2013.

27. Vivado Design Suite User Guide Partial Reconfiguration, UG909

(v2016.1) April 6, 2016 (url:

https://www.xilinx.com/support/documentation/sw_manuals/xilinx20

15_4/ug909-vivado-partial-reconfiguration.pdf)

28. Vivado Design Suite Tutorial: High-Level Synthesis (UG871) – Xilinx

(url:

https://www.xilinx.com/support/documentation/sw_manuals/xilinx20

14_1/ug871-vivado-high-level-synthesis-tutorial.pdf).

29. Vivado Design Suite User Guide: Design Flows Overview – Xilinx

(url:

https://www.xilinx.com/support/documentation/sw_manuals/xilinx20

13_3/ug892-vivado-design-flows-overview.pdf).

30. Vivado Design Suite User Guide: Using Constraints (UG903) – Xilinx

(url:

https://www.xilinx.com/support/documentation/sw_manuals/xilinx20

13_1/ug903-vivado-using-constraints.pdf).

31. 7 Series FPGAs Integrated Block for PCI Express v3.0 LogiCORE IP

Product Guide Vivado Design Suite PG054 November 19, 2014-Xilinx

(url:

https://www.xilinx.com/support/documentation/ip_documentation/pc

ie_7x/v3_0/pg054-7series-pcie.pdf)

32. Papadimitriou, Kyprianos, Antonis Anyfantis, and Apostolos Dollas.

"Methodology and experimental setup for the determination of

system-level dynamic reconfiguration overhead." Field-Programmable

Custom Computing Machines, 2007. FCCM 2007. 15th Annual IEEE

Symposium on. IEEE, 2007.

33. Papadimitriou, Kyprianos, Apostolos Dollas, and Scott Hauck.

"Performance of partial reconfiguration in FPGA systems: A survey

and a cost model." ACM Transactions on Reconfigurable Technology

and Systems (TRETS) 4.4 (2011): 36.

34. Papadimitriou, Kyprianos, Antonis Anyfantis, and Apostolos Dollas.

"An effective framework to evaluate dynamic partial reconfiguration in

FPGA systems." IEEE Transactions on Instrumentation and

Measurement 59.6 (2010): 1642-1651.

AUTHOR PROFILE

Dr. Manjith B.C.,(manjithbc@gmail.com),

Department of Computer Science and Engineering,

National Institute of Technology Puducherry,

Karaikal-609609. She is currently working as a faculty

on contract at NIT Puducherry. She got her B.Tech

degree(Computer Science and Engineering) from Kerala

University, ME degree (Computer Science and Engineering) from Anna

University and Ph.D. from National Institute of Technology, Tiruchirappalli.

Her research interests include reconfigurable computing, FPGA, evolvable

hardware and hardware security.

.

https://www.altera.com/products/general/devices/stratix-fpgas/about/crc.html
https://www.altera.com/products/general/devices/stratix-fpgas/about/crc.html
https://www.xilinx.com/support/documentation/application_notes/xapp1239-fpga-bitstream-encryption.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp1239-fpga-bitstream-encryption.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp1267-encryp-efuse-program.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp1267-encryp-efuse-program.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2013_1/ug903-vivado-using-constraints.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2013_1/ug903-vivado-using-constraints.pdf
mailto:manjithbc@gmail.com

