
Carnegie Mellon

Lecture 6
Register Allocation

I. Introduction
II. Abstraction and the Problem
III. Algorithm

Reading: Chapter 8.8.4
Before next class: Chapter 10.1 - 10.2

M. Lam CS243: Register Allocation 1

Carnegie Mellon

I. Motivation

• Problem
– Allocation of variables (pseudo-registers) to hardware registers in a

procedure

• Perhaps the most important optimization
– Directly reduces running time

• (memory access è register access)
– Useful for other optimizations

• e.g. cse assumes old values are kept in registers.

M. LamCS243: Register Allocation 2

Carnegie Mellon

Goal

• Find an assignment for all pseudo-registers, if possible.

• If there are not enough registers in the machine, choose registers
to spill to memory

M. LamCS243: Register Allocation 3

Carnegie Mellon

Example

M. LamCS243: Register Allocation 4

B = …
= A

D =
= B + D

L1: C = …
= A

D =
= C + D

A = …
IF A goto L1

Carnegie Mellon

II. An Abstraction for Allocation & Assignment

• Intuitively
– Two pseudo-registers interfere if at some point in the program

they cannot both occupy the same register.

• Interference graph: an undirected graph, where
– nodes = pseudo-registers
– there is an edge between two nodes if their corresponding

pseudo-registers interfere

• What is not represented
– Extent of the interference between uses of different variables
– Where in the program is the interference

M. LamCS243: Register Allocation 5

Carnegie Mellon

Register Allocation and Coloring

• A graph is n-colorable if:
– every node in the graph can be colored with one of the n colors such

that two adjacent nodes do not have the same color.

• Assigning n register (without spilling) = Coloring with n colors
– assign a node to a register (color) such that no two adjacent nodes

are assigned same registers(colors)

• Is spilling necessary? = Is the graph n-colorable?

• To determine if a graph is n-colorable is NP-complete, for n>2
• Too expensive
• Heuristics

M. LamCS243: Register Allocation 6

Carnegie Mellon

III. Algorithm

Step 1. Build an interference graph
a. refining notion of a node
b. finding the edges

Step 2. Coloring
– use heuristics to try to find an n-coloring

• Success:
– colorable and we have an assignment

• Failure:
– graph not colorable, or
– graph is colorable, but it is too expensive to color

M. LamCS243: Register Allocation 7

Carnegie Mellon

Step 1a. Nodes in an Interference Graph

M. LamCS243: Register Allocation 8

B = …
= A

D =
= B + D

L1: C = …
= A

D =
= D + C

A = …
IF A goto L1

A = 2

= A

Carnegie Mellon

Live Ranges and Merged Live Ranges

• Motivation: to create an interference graph that is easier to color
– Eliminate interference in a variable’s “dead” zones.
– Increase flexibility in allocation:

• can allocate same variable to different registers

• A live range consists of a definition and all the points in a program (e.g.
end of an instruction) in which that definition is live.
– How to compute a live range?

• Two overlapping live ranges for the same variable must be merged

M. LamCS243: Register Allocation 9

a = … a = …

… = a

Carnegie Mellon

Example (Revisited)

M. LamCS243: Register Allocation 10

B = …
= A

D = (D2)
= B + D

L1: C = …
= A

D = (D1)
= D + C

A = … (A1)
IF A goto L1

A = (A2)
= D

= A

{A} {A1}
{A,C} {A1,C}
{C} {A1,C}
{C,D} {A1,C,D1}
{D} {A1,C,D1}

{} {}
{A} {A1}
{A} {A1}

{A} {A1}
{A,B} {A1,B}
{B} {A1,B}
{B,D} {A1,B,D2}
{D} {A1,B,D2}

{D} {A1,B,C,D1,D2}
{A,D} {A2,B,C,D1,D2}
{A} {A2,B,C,D1,D2}

{A} {A2,B,C,D1,D2}
{} {A2,B,C,D1,D2}

(Does not use A, B, C, or D.)

liveness reaching-def

Carnegie Mellon

Merging Live Ranges

• Merging definitions into equivalence classes
– Start by putting each definition in a different equivalence class
– For each point in a program:

• if (i) variable is live, and (ii) there are multiple reaching definitions for
the variable, then:
– merge the equivalence classes of all such definitions into one

equivalence class

• From now on, refer to merged live ranges simply as live ranges

M. LamCS243: Register Allocation 11

Carnegie Mellon

Step 1b. Edges of Interference Graph

• Intuitively:
– Two live ranges (necessarily of different variables) may interfere

if they overlap at some point in the program.
– Algorithm:

• At each point in the program:
– enter an edge for every pair of live ranges at that point.

• An optimized definition & algorithm for edges:
– Algorithm:

• check for interference only at the starts of each merged live range
– Faster
– Better quality

M. LamCS243: Register Allocation 12

Carnegie Mellon

Example 2

M. LamCS243: Register Allocation 13

A = … L1: B = …

IF .. goto L1

IF .. goto L2

L2: … = B… = A

Carnegie Mellon

Step 2. Coloring

• Reminder: coloring for n > 2 is NP-complete

• Observations:
– a node with degree < n Þ

• can always color it successfully, given its neighbors’ colors

– a node with degree = n Þ

– a node with degree > n Þ

M. LamCS243: Register Allocation 14

Carnegie Mellon

Coloring Algorithm

• Algorithm:
– Iterate until stuck or done

• Pick any node with degree < n
• Remove the node and its edges from the graph

– If done (no nodes left)
• reverse process and add colors

• Example (n = 3):

• Note: degree of a node may drop in iteration
• Avoids making arbitrary decisions that make coloring fail

M. LamCS243: Register Allocation 15

B

CE A

D

Carnegie Mellon

What Does Coloring Accomplish?

• Done:
– colorable, also obtained an assignment

• Stuck:
– colorable or not?

M. LamCS243: Register Allocation 16

B

CE A

D

Carnegie Mellon

What if Coloring Fails?

• Use heuristics to improve its chance of success and to spill code

Build interference graph

Iterative until there are no nodes left
If there exists a node v with less than n neighbor

place v on stack to register allocate
else

v = node chosen by heuristics
(least frequently executed, has many neighbors)

place v on stack to register allocate (mark as spilled)
remove v and its edges from graph

While stack is not empty
Remove v from stack
Reinsert v and its edges into the graph
Assign v a color that differs from all its neighbors
(guaranteed to be possible for nodes not marked as spilled)

M. LamCS243: Register Allocation 17

Carnegie Mellon

Summary

• Problems:
– Given n registers in a machine, is spilling avoided?
– Find an assignment for all pseudo-registers, whenever possible.

• Solution:
– Abstraction: an interference graph

• nodes: live ranges
• edges: presence of live range at time of definition

– Register Allocation and Assignment problems
• equivalent to n-colorability of interference graph

è NP-complete
– Heuristics to find an assignment for n colors

• successful: colorable, and finds assignment
• not successful: colorability unknown & no assignment

M. LamCS243: Register Allocation 18

