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Abstract

Motivation: Recent advances in single cell sequencing (SCS) offer an unprecedented insight into
tumor emergence and evolution. Principled approaches to tumor phylogeny reconstruction via SCS data
are typically based on general computational methods for solving an integer linear program (ILP), or
a constraint satisfaction program (CSP), which, although guaranteeing convergence to the most likely
solution, are very slow. Others based on Monte Carlo Markov Chain (MCMC) or alternative heuristics
not only offer no such guarantee, but also are not faster in practice. As a result, novel methods that can
scale up to handle the size and noise characteristics of emerging SCS data are highly desirable to fully
utilize this technology.

Results: We introduce PhISCS-BnB, a Branch and Bound algorithm to compute the most likely
perfect phylogeny (PP) on an input genotype matrix extracted from a SCS data set. PhISCS-BnB not
only offers an optimality guarantee, but is also 10 to 100 times faster than the best available methods
on simulated tumor SCS data. We also applied PhISCS-BnB on a large melanoma data set derived from
the sub-lineages of a cell line involving 24 clones with 3574 mutations, which returned the optimal tumor
phylogeny in less than 2 hours. The resulting phylogeny also agrees with bulk exome sequencing data
obtained from in vivo tumors growing out from the same cell line.

Availability: https://github.com/algo-cancer/PhISCS-BnB

1 Introduction1 1

Cancer is a highly dynamic, evolutionary disease. Constantly shaped by mutation and selection, cancer2 2

progression often results in the emergence of distinct tumor cell populations with varying sets of somatic mu-3 3

tations, commonly known as (sub)clones. The diverse pool of subclones may harbor treatment-resistant mu-4 4

tations. When favorably selected for in the tumor environment by treatment exposure, treatment-resistant5 5

subclones may gain dominance over others and eventually contribute to treatment failure (Alizadeh et al.,6 6

2015). The challenges in developing effective cancer therapies under the heterogeneous tumor landscape thus7 7

motivate the following question: can we reconstruct the tumor phylogeny and unravel spatial and temporal8 8

intra-tumor heterogeneity (ITH) to enlighten cancer treatment strategies?9 9
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In recent years, several computational tools for analyzing intra-tumor heterogeneity and evolution from10 10

bulk sequencing data of tumor samples have been developed (Strino et al., 2013; Jiao et al., 2014; Hajira-11 11

souliha et al., 2014; Deshwar et al., 2015; Popic et al., 2015; El-Kebir et al., 2015; Malikic et al., 2015; Marass12 12

et al., 2016; El-Kebir et al., 2016; Donmez et al., 2017; Satas and Raphael, 2017). However, bulk sequencing13 13

data provides only an aggregate signal over large number of cells and, due to its limited resolution, all of14 14

these methods have several limitations in unambiguously inferring trees of tumor evolution. Most notably,15 15

they typically rely on clustering of mutations of similar cellular prevalence. Consequently, if two sets of mu-16 16

tations evolving on different branches of phylogenetic tree have similar cellular prevalence values, they get17 17

clustered together. Furthermore, even in cases where the cellular prevalence values of clusters are different,18 18

methods based on bulk sequencing data are frequently unable to distinguish between multiple trees that19 19

describe the observed data equally well (Malikic et al., 2019a; Kuipers et al., 2017).20 20

The rise of single-cell sequencing (SCS) has enabled exploration of ITH at a higher, cellular resolution.21 21

Unfortunately even SCS can not trivially provide a comprehensive understanding of ITH. Among the lin-22 22

gering caveats with SCS, the most prominent is the prevailing presence of sequencing noise (Zafar et al.,23 23

2018). We are particularly interested in three types of noise in SCS datasets. (1) False positive mutation24 24

calls, potentially from sources like read errors, (2) false negative mutation calls, potentially from sources like25 25

variance in sequence coverage or allele dropout, (3) missing values for mutations from sites affected by DNA26 26

amplification failure.1 The multi-faceted and high levels of sequencing noise have prompted the development27 27

of novel computational approaches that need to infer a tumor evolutionary model while compensating for28 28

all three sources of noise.29 29

The first principled approaches for studying ITH by the use of SCS data were all based on probabilistic30 30

formulations that aim to infer the most-likely perfect-phylogeny (PP) of a tumor. SCITE (Jahn et al.,31 31

2016), OncoNEM (Ross and Markowetz, 2016) and SiFit (Zafar et al., 2017) are among these methods that32 32

primarily aim to build a PP (i.e. an evolutionary tree where no mutation can appear more than once and is33 33

never lost).2 Following up on this, SPhyR (El-Kebir, 2018) formulates the tumor phylogeny reconstruction34 34

problem as an integer linear program (ILP) under the constraints imposed by the k-Dollo parsimony model35 35

- where a gained mutation can only be lost k times. SCIΦ (Singer et al., 2018). SPhyR simultaneously36 36

performs mutation calling and the tumor phylogeny inference taking read counts data as the input, rather37 37

than the more commonly used genotype matrix with inferred mutations, represented by columns, in distinct38 38

cells, represented in by rows.39 39

As datasets with matching SCS and bulk sequencing data become publicly available, methods to infer40 40

tumor phylogeny through joint use of these two data types are becoming available. B-SCITE (Malikic et al.,41 41

2019a) for example combines CITUP, which is designed for bulk sequencing data, with SCITE through an42 42

MCMC strategy. More recently PhISCS (Malikic et al., 2019b), offers the option of formulating integra-43 43

tive reconstruction of the most likely tumor phylogeny either as an ILP or as a CSP (boolean constraint44 44

satisfaction program), while allowing for a fixed number of PP violating mutations. The CSP version of45 45

PhISCS, when employing state of the art CSP (more specifically weighted max-SAT) solvers such as RC246 46

(Ignatiev et al., 2019) and Open-WBO (Martins et al., 2014) turn out to be the fastest among all available47 47

techniques even when only SCS data is available. Nevertheless, none of the available techniques can scale48 48

up to handle emerging data sets that involve thousands of cells (Laks et al., 2019); even moderate size SCS49 49

data involving a few hundred mutations and cells turn out to be problematic especially with the current50 50

“standard” false negative rate of 15−20%. Other recent techniques such as scVILP (Edrisi et al., 2019) and51 51

SiCloneFit (Zafar et al., 2019) focus on adding new features to (or relax constraints for) the tumor phylogeny52 52

reconstruction problem and are (typically) not faster.3 Finally, even though new sequencing techniques such53 53

as single “clone” sequencing (SClS, i.e. bulk sequencing of homogeneous cell populations, each derived from54 54

a single cell) offer much lower false negative rates, the scale of the data they produce - involving thousands55 55

of mutations, require much faster solutions to the tumor phylogeny reconstruction problem.56 56

1A final noise source is the doublets, the technical artifacts of two (or rarely more) cells with heterogeneous mutation profiles
treated and sequenced as a single cell. Since there are a number of preprocessing techniques such as (Roth et al., 2016) to detect
and eliminate doublets fairly well we will not focus on doublets as a source of noise in this paper.

2SiFit also allows for deletion events and loss of heterozygosity.
3One exception is ScisTree (Wu, 2019) which is reported to be faster but is a heuristic approach with no optimality guarantees.
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In this paper, we present a Branch and Bound (BnB) algorithm and its implementation (called PhISCS-57 57

BnB, Phylogeny Inference using Single Cell Sequencing via Branch and Bound) to optimally reconstruct58 58

a tumor phylogeny very efficiently. Generally speaking, our BnB approach clusters entries of the input59 59

genotype matrix and processes them together, enabling faster execution. (See Section 3.1 and lemma 3.1).60 60

We introduce a number of bounding algorithms, some faster but offering limited pruning and others slower61 61

but with better pruning efficiency. Among them, a novel bounding algorithm with a 2-SAT formulation is62 62

a key technical contribution of our paper: through its use, PhISCS-BnB improves the running time of the63 63

fastest available methods for tumor phylogeny reconstruction by a factor of up to 100. (See Section 4).64 64

2 Perfect Phylogeny Reconstruction Problem65 65

Given a binary genotype matrix I, we would like to reconstruct the most likely phylogeny by discovering66 66

how to flip the smallest number of entries of I so it can provide a Perfect Phylogeny.67 67

Preliminaries. Our input is a binary (genotype) matrix I ∈ {0, 1}n,m. The n rows represent genotypes of68 68

single cells observed in a single-cell sequencing experiment and the m columns represent a set of considered69 69

mutations. I(i, j) = 1 indicates that mutation j is present in cell i; I(i, j) = 0 indicates that it is not.70 70

The three-gametes rule stipulates that a binary matrix X ∈ {0, 1}n,m should not have three rows and71 71

two columns (in any order) with the corresponding six entries displaying the configuration (1, 0), (0, 1) and72 72

(1, 1). If the forbidden configuration is present, we say that there is a violation, referenced by the three rows73 73

and the two columns containing it. It was shown in (Gusfield, 1991) that satisfaction of the three-gametes74 74

rule by I is necessary and sufficient for the existence of a Perfect Phylogeny (PP) corresponding to I.75 75

Given input matrix I, we call a binary matrix X a descendant of I if all entries of X are identical to76 76

those of I except some that have been flipped from 0 to 1. For a matrix X, F0→1(I,X) is defined as the77 77

number of entries that are 0 in I and 1 in X. We sometimes refer to this value as the number of flips to get78 78

to X from I.79 79

Our Problem. Given a genotype matrix I, we would like to obtain a minimum-cardinality set of bit flips80 80

(from 0 to 1) 4 that removes all three-gametes rule violations in I and thus transforms I into a matrix Y81 81

that provides a PP.82 82

3 Branch and Bound Method83 83

In order to discover the smallest number of 0 to 1 flips that will remove all violations in input matrix I, we84 84

use a branch and bound (BnB) technique. In what follows, we give an overview of the building blocks of85 85

our branch and bound approach. Then we put all of them together in Algorithm PhISCS-BnB.86 86

Our Branch and Bound algorithm forms a search tree where each node contains a matrix, with input87 87

matrix I at the root – for simplicity we might refer to a node with its label as well as its matrix. In this88 88

tree, a matrix X at node v is a descendant (as described in the preliminaries) of the matrix Y at v’s parent89 89

node; all matrices in the tree are thus descendants of I. The tree terminates in leaf nodes that are PP;90 90

non-PP nodes will have two child nodes as the tree grows unless they have been pruned due to detected91 91

nonoptimality.92 92

When a node v with matrix X is formed, v is assigned a priority score equal to the number of bit flips93 93

needed to get from I to X plus a lower bound on the number of flips necessary to remove all the violations94 94

in X. All nodes are kept in a priority queue and are explored in ascending order of their priority scores,95 95

unless they have been removed from consideration (pruned) by the bounding mechanism. When the whole96 96

4In general both false negative and false positives (respectively, 1 read as 0 and 0 read as 1) happen with distinct probabilities.
The qualitative difference in these probabilities is due to the sequencing technology in use and thresholding rules employed in
establishing I. As is well known, the false positive rate is typically much lower than the false negative rate. In fact, in emerging
data, e.g. from SClS experiments, the false positive rate approaches zero and thus can be ignored. As a result we focus only on
false negatives and our proposed algorithm and its sub-routines make use of this assumption.
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tree has been explored or pruned, one of the PP nodes with the smallest number of flips away from I yields97 97

the answer.98 98

For matrix X, we let RX
a,b(p, q) denote the set of rows with a in column p and b in column q, i.e.,99 99

RX
a,b(p, q) = {i | Xi,p = a∧Xi,q = b}. We drop the superscript, when the matrix X is clear from the context,100 100

and only write Ra,b(p, q).101 101

Algorithm 1 PhISCS-BnB
Input: I ∈ {0, 1}n,m: Original input to the algorithm
Output: Y ∈ {0, 1}n,m such that Y = argminPP(y)F0→1(I, Y ).

1: Best Node ← A simple PP solution (See Section 3.3)
2: Q← An empty priority queue
3: Push I in Q
4: while Q is not empty do
5: C ← pop next node from Q with the lowest priority score
6: New node1 ← C
7: for r ∈ R0,1(p, q) do . See Lemma 3.1
8: New node1(r, p)← 1 . F0→1(I,New node1) is also updated here
9: New node2 ← C

10: for r ∈ R1,0(p, q) do
11: New node2(r, q)← 1
12: for i ∈ {1, 2} do
13: if New nodei is a PP then . i.e., New nodei is a leaf
14: if F0→1(I,New nodei) < F0→1(I,Best Node) then
15: Best Node← New nodei

16: else . Use any bounding algorithm proposed in Section 3.2
17: lb← A lower bound for the number of flips to get to a PP matrix from New nodei

18: if lb + F0→1(I,New nodei) < F0→1(I,Best Node) then
19: Push New nodei in Q with priority score set to lb + F0→1(I,New nodei)
20: Return Best Node

3.1 Branching102 102

Let X be the matrix at the node being explored. If X has no violation, it is considered a leaf. Otherwise,103 103

let (p, q) be the pair of columns for one particular violation that was found,5 i.e., |Ra,b(p, q)| > 0 for all104 104

(a, b) ∈ {(0, 1), (1, 0), (1, 1)}. We have two options for fixing the violation. As a violation involving columns105 105

p, q contains both a (1, 0) and a (0, 1) in different rows, we have the option of converting either one to a106 106

(1, 1) to remove the violation. To reflect this, we construct two child nodes from the current node, one for107 107

each option. As an added optimization, once we decide to fix a (0, 1) (resp. (1, 0)) on columns p, q, we fix108 108

all (0, 1) (resp. (1, 0)) on these two columns, by changing them to (1, 1). In particular, in the left child, all109 109

entries whose row is in R0,1(p, q) and whose column is p are flipped from 0 to 1. Similarly, in the right child110 110

entries whose row is in R1,0(p, q) and whose column is q are flipped.111 111

In some cases, the above branching rule, which can flip multiple 0s at a time, shrinks the height of the112 112

search tree compared to the algorithm in (Chen et al., 2006; Cai, 1996), which flips a single 0 in a child113 113

node. The following lemma formally expresses why we flip several entries in a column together at Lines 8114 114

and 11 of the pseudocode: if a (0, 1) in a violation involving columns p, q of matrix X is a (1, 1) in a PP115 115

descendant X ′ of X, all other (0, 1) on (p, q) are (1, 1) as well. An analogous statement holds for (1, 0).116 116

Lemma 3.1. For any X ∈ {0, 1}n,m with a violation involving columns p, q, let X ′ be any PP descendant117 117

of X. Then, at least one of the following hold:118 118

5If there are multiple pairs of columns involved in violations we impose an ordering on them and pick a pair according to
this order; thus, we are always considering a single column pair.
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• ∀r1 ∈ R0,1(p, q), X ′(r1, p) = 1, or119 119

• ∀r2 ∈ R1,0(p, q), X ′(r2, q) = 1.120 120

Proof. Assume that the lemma is false; i.e., there is an X ′ such that ∃r1 ∈ R0,1(p, q), X ′(r1, p) = 0 ∧ ∃r2 ∈121 121

R1,0(p, q), X ′(r2, q) = 0.122 122

Since (p, q) corresponds to a violation and all the 1 entries in X have to remain 1 in X ′, there should be123 123

a row r3 such that X ′(r3, p) = X ′(r3, q) = 1. This implies that the pair of columns (p, q) and the triplet of124 124

rows (r1, r2, r3) corresponds to a violation. This contradicts the assumption that X ′ is PP.125 125

3.2 Bounding Mechanisms126 126

A bounding algorithm is a method that computes a lower bound for the number of flips needed to transform127 127

matrix X at a node v to a PP matrix. It thus helps the branch and bound algorithm to prune the nodes128 128

that are provably worse than the currently maintained best node, i.e., the variable Best Node in Algorithm129 129

PhISCS-BnB.130 130

We reuse the calculated lower bound as the estimate of how many flips a matrix X will require to131 131

transform into a PP matrix, and then add the number of flips needed to transfer I to X, in order to set the132 132

priority score of the node containing X. Recall that all the introduced nodes are pushed to a priority queue,133 133

and in each iteration the node with the lowest priority score is chosen to be explored. So the node X we134 134

pick will represent the lowest number of total flips from I to a PP node going through X.135 135

One observation that leads to a lower bound is as follows. Consider a pair of columns that have136 136

at least one row with pattern (1, 1), then the number of flips, involving columns p and q, is at least137 137

min(|R0,1(p, q)|, |R1,0(p, q)|). Therefore, for an arbitrary partitioning of the set of columns to pairs, we138 138

can aggregate these bounds to achieve a lower bound for the whole matrix.139 139

In the above, one would expect the choice of the partition to have an impact on the quality of the lower140 140

bound estimate. To explore this, in what follows, we present three bounding algorithms that progressively141 141

add more sophistication to the above idea. These three bounding algorithms offer a tradeoff between the142 142

per-node running time and the accuracy of the bound. For some inputs the fast (and possibly not-so143 143

accurate) bounding results in a faster execution, but for other inputs a different tradeoff is better. It is144 144

worth mentioning that for biologically plausible inputs, our experiments show that the higher accuracy of145 145

bounding is much more important to total time than the per-node running time. We present first two146 146

bounding algorithms in Section 3.2.1. The third and the most sophisticated one is presented in Section 3.2.2147 147

and is used in our experiments to compare with previous tools in the literature.148 148

3.2.1 Random Partition vs Maximum Weighted Matching149 149

As our first bounding method, we partition the columns of the matrix into pairs uniformly at random. The150 150

technique is simple, but more sophisticated techniques might give tighter bounds.151 151

As our second method, we describe a method based on Maximum Weighted Matching (MWM). Construct152 152

a weighted undirected graph G = (V,E,w) where the vertices are the columns of I, each column representing153 153

a mutation: V = {c1, . . . cm} (ci corresponds to ith mutation) and the edges are column pairs that display154 154

a (1, 1): E = {{ci, cj} | |R1,1(ci, cj)| > 0}. In the following we calculate a weight corresponding to an edge155 155

e = {ci, cj} ∈ E, to be a lower bound on the number of entries in columns ci and cj that have to be flipped156 156

to make I a PP matrix. Formally, for each edge e = {ci, cj} ∈ E, w(e) = min(|R0,1(ci, cj)|, |R1,0(ci, cj)|).157 157

The process of constructing G takes Θ(nm2) time. In this graph theoretic formulation, each partitioning158 158

corresponds to a matching G. Thus, we take advantage of the algorithm described in (Galil, 1986) to find159 159

maximum weighted matching with O(m3) running time.160 160

In both bounding algorithms, one can maintain the bounds dynamically by processing only small changes161 161

from one node to another node near it, (in some cases, to its sibling). The details of such dynamic mainte-162 162

nance are out of the scope of this work.163 163
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3.2.2 2-SAT164 164

For this approach we present a novel constraint satisfaction formulation that describes a set, containing165 165

but not necessarily equal to, all the valid flips-set corresponding to I. Let zi,j denote a binary variable166 166

corresponding to the (i, j)th entry. We define variables for only zero entries. Consider a pair of columns167 167

(p, q) with |R1,1(p, q)| > 0. For any row r1 ∈ R0,1(p, q) and any row r2 ∈ R1,0(p, q) add zr1,p ∨ zr2,q. The168 168

intuition is that for any violation sextuplet, either one of zeros should be flipped. Satisfying these constraints169 169

is necessary to achieve a PP matrix, but not sufficient.170 170

Let MWS (short for Minimum Weighted SAT) denote an arbitrary off-the-shelf tool that, given a satis-171 171

fiable Boolean formula, outputs a satisfying assignment with the minimum number of variables assigned to172 172

true. Then the number of variables with true value in an optimal assignment, satisfying all these constraints,173 173

is a lower bound for the optimal number of flips resulting in a PP matrix. Formally, the lower bound is174 174

equal to175 175

MWS
( ∧

p,q∈[m]: p<q
r1,r2: r1∈R0,1(p,q) ∧ r2∈R1,0(p,q)

zr1,p ∨ zr2,q

)
(1)176 176

After achieving a minimum weight satisfying assignment, we flip those zero entries that correspond to z177 177

variables with value 1.178 178

Compact Formulation. The formulation in Equation 1 can be expressed in fewer constraints by intro-179 179

ducing a new set of variables and following the case distinction in Lemma 3.1: for each pair of columns180 180

p, q define a corresponding binary variable Bp,q. The weight of this new set of variables is set to zero in181 181

MWS formulation. If this variable is set to zero (by a minimum weighted SAT routine) then all variables182 182

zr1,p, r1 ∈ R0,1(p, q), take value 1. Similarly, if the variable is set to one, then all zr2,q, r2 ∈ R1,0(p, q) take183 183

value 1. Formally, the formulation changes to MWS(H1 ∧H2), where,184 184

H1 =
∧

p,q∈[m]: p<q
r1: r1∈R0,1(p,q)

(Bp,q ∨ zr1,p)

H2 =
∧

p,q∈[m]: p<q
r2: r2∈R1,0(p,q)

(Bp,q ∨ zr2,q).
(2)185 185

The number of constraints corresponding to the column pair (p, q) will decrease from |R0,1(p, q)| ·186 186

|R1,0(p, q)| in Equation 1 to |R0,1(p, q)| + |R1,0(p, q)| in Equation 2. There are two advantages to the187 187

compact formulation: (I) the time spent on forming the set of constraints is shorter, (II) for some set of188 188

inputs, heuristic sat-solvers run more efficiently on the formulation given in Equation 2 than on Equation189 189

1, even though they are logically equivalent. In each experiment, we use only one of these formulations and190 190

it is specified in the corresponding description of the experiment.191 191

Extra constraints. As another version of our lower bound, we add a set of new constraints. These192 192

constraints improve the lower bound to be a closer estimate of the optimal number of flips for some inputs.193 193

The tighter bound helps the branch and bound framework explore fewer nodes, even though the time to194 194

compute the bound per node increases. This advantage comes with a dip in the running time of the bounding195 195

calculation within each node.196 196

The idea for the new set of constraints is to preclude some solutions that satisfy all constraints in Equation197 197

1 but still do not remove all violations. In particular, when, for a specific pair of columns (p, q), R1,1(p, q)198 198

is empty, there is no constraint involving pair (p, q) in Equation 1. As an example, assume Columns 1, 2199 199

contain both (1, 0) and (0, 1) rows, but no (1, 1). Columns 2, 3 contain a violation, which MWS removes by200 200

flipping 0s in column 2. This might create a (1, 1) in Columns 1, 2, and create a violation that was not there201 201

in the beginning. Since, Equation 1 does not contain any constraints for Columns 1, 2, this new violation is202 202

not removed.203 203

6

.CC-BY-NC-ND 4.0 International licenseauthor/funder. It is made available under a
The copyright holder for this preprint (which was not peer-reviewed) is the. https://doi.org/10.1101/2020.02.06.938043doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.06.938043
http://creativecommons.org/licenses/by-nc-nd/4.0/


In order to avoid such an outcome, we add new constraints to our formulation. Now, if some flip204 204

introduces a new violation, the extra constraints will enforce at least one additional flip to remove the newly205 205

created violation(s). Formally, the proposed set of constraints to add to Equation 1 is E1 ∧ E2, where,206 206

E1 =
( ∧

p,q∈[m]: p<q
r1,r2,r3:

r1,r3∈R0,1(p,q) ∧ r1 6=r3
∧ r2∈R1,0(p,q)

zr1,p ∨ zr2,q ∨ zr3,p

)

E2 =
( ∧

p,q∈[m]: p<q
r1,r2,r3: r1∈R0,1(p,q)

∧ r2,r3∈R1,0(p,q) ∧ r2 6=r3

zr1,p ∨ zr2,q ∨ zr3,q

)
.

(3)207 207

The number of constraints corresponding to columns (p, q) is |R0,1(p, q)| · |R1,0(p, q)| · (|R0,1(p, q)| +208 208

|R1,0(p, q)|). This is higher than the number of constraints in both Equations 1 and 2. However, for some209 209

matrices (e.g., the one processed in Section 4.1) the resulting tighter bound improves the running time of210 210

overall branch and bound algorithm tremendously.211 211

3.3 Initial Solution212 212

For the above bounding mechanism to start pruning, a feasible solution is required to initialize the variable213 213

Best Node at pseudocode Line 1. When using Random Partition or Maximum Weighted Matching as a214 214

bounding algorithm, find an initial value as follows. We first find a pair of columns corresponding to a215 215

violation and flip one of the zero entries involved in the violation. We repeat this until no violation is left.216 216

On the other hand, when 2-SAT bounding is used, we solve the corresponding formulation from Equations217 217

1, 2, or 3. We then apply the chosen entries to flip and repeat this process until we obtain a PP matrix. In218 218

each iteration, at least one flip will be performed and there are finitely many zero entries to flip. Therefore,219 219

this process always terminates and results in a PP matrix.220 220

3.4 Analysis221 221

Correctness. In the search tree explored by the branch and bound algorithm, we are guaranteed to find222 222

the optimum path from I to a PP matrix. This is because throughout the execution (a lower bound on)223 223

the projected number of flips that a node needs to reach PP is compared against the currently best known224 224

way of reaching PP. If the node has no chance of beating the current best, it and all of its descendants are225 225

pruned. Consequently, PhISCS-BnB does not prune any nodes on the path to an optimum solution before226 226

reaching an optimum solution for the first time. Therefore, as long as our lower bounding techniques work227 227

correctly, our algorithm will discover an optimum PP.228 228

In both the Random Partition and Maximum Weighted Matching techniques for obtaining a lower bound,229 229

we consider a partitioning of columns to pairs and calculate the minimum number of flips within each pair.230 230

Since the absence of violations within these pairs is necessary (but possibly not sufficient) for the removal231 231

of all violations, this estimate is a lower bound for the whole matrix.232 232

In the 2-SAT approach, we form a set of constraints that must be satisfied in order to reach any PP de-233 233

scendant of a given node. That means the set of potential solutions obtained by satisfying all the constraints234 234

in the 2-SAT formulation is a superset of all PP matrices. That is why the optimum solution satisfying235 235

these conditions requires the same number of or fewer flips than any PP matrix.236 236

Running Time. The worst-case running time of Algorithm PhISCS-BnB is O(2copt · T ) where copt is the237 237

minimum number of flips needed to turn I to a PP matrix, and T is the running time of the bounding238 238

algorithm. A naive bounding algorithm, as in (Chen et al., 2006; Cai, 1996), incurs a running time of239 239

T = O(mn). This is asymptotically the same as the running time for our random partition technique.240 240

Similarly, maximum weighted matching runs in time T = O(nm2 + m3): the first term is for forming241 241
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the weighted graph, and the second term is for solving maximum weighted matching. Solving the 2-SAT242 242

formulation takes super-polynomial time in the worst case as the weighted 2-SAT problem is NP-hard. While243 243

one might expect infeasibly long running times due to the hardness of 2-SAT, our experiments generally244 244

seemed to avoid worst-case behavior as the running times stayed mostly reasonable even for large matrices.245 245

4 Experimental Results246 246

In this section we discuss our experimental results on real data and simulations.247 247

4.1 Single Clone Sequencing Data from Mouse Melanoma Models248 248

We first demonstrate the utility of PhISCS-BnB in studying evolutionary history on a large SClS data249 249

which contains a large number of mutations. The data set features the B2905 cell line and its sub-lineages250 250

derived from the “M4” mouse model of melanoma (Pérez-Guijarro et al., 2019). In brief, the Hgf-transgenic251 251

C57BL/6 pups received UV irradiation at postnatal day 3 (Zaidi et al., 2011). In 6-8 months, melanoma252 252

occurred in a fraction of UV-irradiated mice, and one of the harvested tumors was plated in culture to derive253 253

B2905 cell line (Pérez-Guijarro et al., 2019; Patel et al., 2017). To generate single-cell derived sub-lines,254 254

B2905 cells were harvested from in vitro culture, and subjected to fluorescence-assisted cell sorting (FACS)255 255

for isolating single cells in individual wells of 96-well plate. After expansion in culture, twenty four B2905256 256

sub-lines derived from single cells were obtained. They are labeled C1 to C24.257 257

After read alignment, calling and filtering the variants of all twenty four sub-lineages, 3574 distinct258 258

SNVs were detected in this dataset (details of these data analysis steps can be found in Supplementary259 259

File Section B). The clonal phylogeny depicted in Figure 1 was obtained by PhISCS-BnB in about 2 hours260 260

(we used the set of additional constraints mentioned in Section 3.2.2). The optimal solution obtained by261 261

PhISCS-BnB included 886 false negatives that were detected and corrected for establishing the mentioned262 262

phylogeny; this implies that the allele drop-out rate of the SClS protocol was around 1% as can be expected263 263

from bulk sequencing technology. For performance comparison purposes, we also ran the fastest available264 264

algorithmic tool (to the best of our knowledge), the CSP implementation of PhISCS (Malikic et al., 2019b)265 265

(namely PhISCS-B) on this data set, which required about 20 hours to obtain the same tree using the same266 266

computational platform (details of the computational platform can be found in Supplementary File Section267 267

C.2). On the other hand, the well known tool SCITE (Jahn et al., 2016), which is based on MCMC, could268 268

not report a result within approximately 24 hours of running.269 269

We note that in an earlier study, the parental B2905 cell line was implanted to syngeneic mice to270 270

grow tumors. The mutations of these in vivo tumors were then identified via whole exome sequencing.271 271

Interestingly, only mutations associated with nodes 45, 44, 43, 42, and 41 in the Figure 1 were expanded in272 272

vivo when the parental line was implanted into syngeneic immunocompetent mice, suggesting that subclones273 273

associated with node 41 (C1, C14, C22, C16, C8, C7 and C20) survived better while others declined.274 274

Although the interpretation is limited by the small number (24) of subclones sampled from the parental cell275 275

line, it is consistent with the concept of immunoediting (Mittal et al., 2014) and implies the node-associated276 276

mutations may serve as markers to track dynamics and evolution of subclones in tumors. Moreover, the277 277

hierarchy of the mutations may help to delineate driver and passenger mutations (Schwartz and Schäffer,278 278

2017).279 279

4.2 Comparison of PhISCS-BnB against PhISCS-B and PhISCS-I on simulated data280 280

Next, we compared the running time of PhISCS-BnB on simulated data against the fastest available algo-281 281

rithmic tool, PhISCS (Malikic et al., 2019b), which has two versions: PhISCS-B is based on CSP whereas282 282

PhISCS-I is based on ILP. Both were compared to our tool on simulated SCS data with 100 to 300 cells283 283

and 100 to 300 mutations, with false negative error rates ranging from 5% to 20%. In each case, 10 distinct284 284

trees of tumor evolution were simulated, each with 10 subclones. We allowed all three programs to run285 285

up to 8 hours on each simulated dataset (details of the computational platform we used can be found in286 286
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Figure 1: The clonal tree obtained by PhISCS-BnB from 24 clonal sub-lineages of B2905 cell line that are
derived from the “M4” mouse model for melanoma. For each node, the number inside the brackets denotes
its node id and the number inside the parentheses shows the total number of mutations occurring on the
path from the germline (root) to the node (i.e., the total number of mutations harbored by the node). The
edge labels represent the number of mutations occurring between a parent and its child node. The complete
list of mutations occurring at each edge can be found at https://github.com/algo-cancer/PhISCS-BnB/
blob/master/real/real.mutsAtEdges. The leaf nodes (colored blue) also include their sub-lineage labels.

Supplementary File Section C.1). Figure 2 clearly shows that PhISCS-BnB is faster than the best available287 287

alternative (i.e. PhISCS-B) by a factor of 10 to 100.6288 288

4.3 Comparison of PhISCS-BnB against SCITE on simulated data289 289

In a final experiment, we compared PhISCS-BnB against one of the best-known tools for tumor phylogeny290 290

reconstruction, SCITE (Jahn et al., 2016), this time with respect to accuracy. As mentioned earlier, SCITE291 291

is based on MCMC and as such requires the user to specify the number of iterations, thus indirectly its292 292

running time.7 As input data, we simulated tumor phylogenies, each with 100 to 300 cells and 100 to 300293 293

mutations, with false negative error rates ranging from 5% to 20%. In each case, 10 distinct trees of tumor294 294

evolution were generated, each with 10 subclones. We allowed SCITE to run with 3 restarts, each with a295 295

running time (the number of iterations allowed was calculated by dividing this time with the average time per296 296

iteration we calculate) 10 times that of PhISCS-BnB on the same input (again, details of the computational297 297

platform we used can be found in Supplementary File Section C.1) giving a significant advantage to SCITE298 298

over PhISCS-BnB.299 299

For computing the accuracy of the inferred tumor phylogenies in comparison to the ground truth, we first300 300

used the multi-labeled tree similarity measure (MLTSM) (Karpov et al., 2019) introduced recently. Since301 301

MLTSM is a normalized similarity measure, the closer its value to 1.0 implies a higher level of similarity302 302

between the inferred tree and the ground truth. The MTLSM between the ground truth trees and the303 303

inferred trees is presented in Figure 3. As can be expected, since PhISCS-BnB constructs the optimal tree,304 304

the similarity of its output to the ground truth is ∼ 1.0 for all data sets. On the other hand, even though305 305

SCITE was given significantly more running time than required by PhISCS-BnB, its output has a relatively306 306

6Note that we used the compact formulation that is mentioned in Section 3.2.2 to run PhISCS-BnB on the simulated data
but not on real data.

7The approximation of the time that SCITE takes per iteration for a given input matrix was calculated by running it 10
times, each with 20000 iterations with 1 restart and then taking the average running time per iteration in this set of runs.

9

.CC-BY-NC-ND 4.0 International licenseauthor/funder. It is made available under a
The copyright holder for this preprint (which was not peer-reviewed) is the. https://doi.org/10.1101/2020.02.06.938043doi: bioRxiv preprint 

https://github.com/algo-cancer/PhISCS-BnB/blob/master/real/real.mutsAtEdges
https://github.com/algo-cancer/PhISCS-BnB/blob/master/real/real.mutsAtEdges
https://doi.org/10.1101/2020.02.06.938043
http://creativecommons.org/licenses/by-nc-nd/4.0/


0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

n=300, m=300n=200, m=300n=100, m=300n=300, m=200n=200, m=200n=200, m=100

Ti
m

e 
(s

ec
on

ds
) i

n 
lo

g 
ba

se
 1

0 fn
=0

.0
5

fn
=0

.1
fn

=0
.2

n=100, m=100 n=300, m=100 n=100, m=200

PhISCS-BnB

PhISCS-B

PhISCS-I
0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

Figure 2: Comparison of PhISCS-BnB with PhISCS-B and PhISCS-I in terms of running time (seconds) in
log base 10. In each case, 10 distinct trees of tumor evolution were generated, each with 10 subclones. A time-
limit of 8 hours was used for running each tool (those cases that exceed the time-limit are not represented
here). In the plot, n, m and fn, respectively, denote the number of cells, the number of mutations and the
false negative error rate.

low similarity to the ground truth (in the range of [0.2, 0.6]).307 307

We have additionally compared the trees obtained by both SCITE and PhISCS-BnB with respect to308 308

other measures as can be seen in Supplementary File Section C.4. With respect to almost every measure,309 309

SCITE offers inferior performance in the given time-limit. As a final experiment, we have let SCITE to run310 310

on the same datasets for approximately 24 hours. As can be seen in Supplementary File Section C.5, SCITE311 311

can then produce trees almost as similar to the ground truth as those obtained by PhISCS-BnB.312 312

5 Conclusions313 313

We presented new algorithms and based on them a software package, PhISCS-BnB, to solve the perfect314 314

phylogeny problem on noisy single cell (mutation) sequencing data from tumors. On both simulated data315 315

and real data from mouse melanoma cell lines, we showed that PhISCS-BnB is one to two orders of magnitude316 316

faster than the best available methods, and can solve large instances of practical importance to optimality.317 317

PhISCS-BnB is a branch and bound method, employing a variety of bounding techniques that use either318 318

state-of-the-art solvers for classical NP-hard problems such as max-SAT or polynomial time algorithms for319 319

2-SAT and MWM, to prune efficiently and effectively the search tree of solutions. In theoretical computer320 320

science, different NP-complete problems are presented as equivalent and reducible to one another (in polyno-321 321

mial time) (Cormen et al., 2009). However, the disproportionate practical importance of a few NP-complete322 322

problems, such as max-SAT and the Traveling Salesperson Problem (TSP) (Applegate et al., 2006), has323 323

led to high-quality software that can solve instances of these NP-complete problems efficiently and to op-324 324

timality. Therefore efficient reduction of an NP-complete problem (such as PP) to max-SAT or TSP can325 325

leverage existing software to solve the problem much more efficiently. Even if the reduction does not preserve326 326

solutions (as per our reductions to 2-SAT or MWM problems), but only gives a bound on solution costs,327 327

the reduction can be used within a branch-and-bound framework, as we have done in PhISCS-BnB. This328 328

paradigm is widely applicable in bioinformatics in which domain-specific NP-complete problems abound329 329

(Gusfield, 2019).330 330

Better understanding of SCS data may lead to better treatments or better strategies for drug develop-331 331

ment. In current treatment strategies, mutation sequencing data are presented to tumor boards to decide332 332

the course of treatment (Mueller et al., 2019). In that clinical context, the rapid availability of phylogenetic333 333

trees to identify the tumor subclones could inform treatment. Hence, improving the efficiency of phylogenetic334 334
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Figure 3: Comparison of PhISCS-BnB with SCITE with respect to the multi-labled tree similarity measure
(MLTSM). For each panel, 10 distinct trees of tumor evolution were generated, each with 10 subclones. In
the plot, n, m and fn, respectively, denote the number of cells, the number of mutations and the false negative
error rate.

analysis of tumor data, as we have done in PhISCS-BnB, could have a direct impact on clinical treatment335 335

decisions.336 336
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A Implementation

We have implemented the algorithm proposed in this paper with pybnb (Hackebeil, 2018) framework. This
is a parallel branch-and-bound engine written in Python. It is designed to run on distributed computing
architectures, using mpi4py (Dalcin et al., 2011) for fast inter-process communication.

B Real data analysis

The parental line (P10) and 24 clonal sub-lines (C1-C24) were submitted for exome sequencing to reach
100x coverage. Fastq sequence reads were mapped to the mouse reference genome mm10 with BWA (Li and
Durbin, 2009) or Bowtie (Langmead and Salzberg, 2012). Single nucleotide variants (SNV) were identified
using samtools mpileup (Li et al., 2009) or GATK HaplotypeCaller (DePristo et al., 2011). Mouse germline
single nucleotide polymorphisms (SNPs) were filtered out the Sanger database for variants identified from
whole genome sequencing of 36 mouse strains8. Variants with a Phred-scaled quality score of <30 were
removed. Variants that are present in normal spleen samples (in-house collection) were also removed.
Variants were annotated with Annovar (Wang et al., 2010) software to identify non-synonymous mutations.

C Benchmarking SCITE, PhISCS-I, PhISCS-B and PhISCS-BnB

C.1 First platform

Some of the experiments in this work were performed using the Carbonate9 system, a computer cluster at
Indiana University. We used compute nodes from this cluster that are a Lenovo NeXtScale nx360 M5 server
equipped with two 12-core Intel Xeon E5-2680 v3 CPUs and four 480 GB solid-state drives. All nodes run
Red Hat Enterprise 7.x. We allowed our experiments to use up to 40GB of RAM.

C.2 Second platform

Some of the experiments in this work were performed using the Biowulf 10 system, a computer cluster at
National Institutes of Health (NIH). We used compute nodes from this cluster that have Intel E5-2650v2
CPUs.

C.3 Running SCITE other options

For SCITE, setting -fd parameter to 0 lead to the segmentation fault. Therefore we set the value of this
parameter to 0.0000001. Parameter -e related to the probability of learning noise rates in a given MCMC
step was set to 0.2. The full command used to run SCITE is given below:

scite \
-i $PATH_TO_INPUT_FILE \
-names $PATH_TO_GENE_NAME_FILE \
-n $n \
-m $m \
-ad $fn \
-fd 0.0000001 \
-e 0.20 \
-r 3 \
-l $iterations \
-o $PATH_TO_OUTPUT > $PATH_TO_OUTPUT.log

8ftp://ftp-mouse.sanger.ac.uk/current_snps/mgp.v5.merged.snps_all.dbSNP142.vcf.gz
9https://kb.iu.edu/d/aolp#overview

10https://hpc.nih.gov/systems/
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C.4 Comparison of PhISCS-BnB against SCITE by other measure
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Figure 1: Comparison of PhISCS-BnB with SCITE with respect to the co-clustering accuracy measure.
For each panel, 10 distinct trees of tumor evolution were generated, each with 10 subclones. In the plot,
n, m and fn, respectively, denote the number of cells, the number of mutations and the false negative error
rate. SCITE was allowed to run with 3 restarts, each with a running time, 10 times that of PhISCS-BnB
on the same input.
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Figure 2: Comparison of PhISCS-BnB with SCITE with respect to the different-lineage accuracy measure.
For each panel, 10 distinct trees of tumor evolution were generated, each with 10 subclones. In the plot,
n, m and fn, respectively, denote the number of cells, the number of mutations and the false negative error
rate. SCITE was allowed to run with 3 restarts, each with a running time, 10 times that of PhISCS-BnB
on the same input.
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Figure 3: Comparison of PhISCS-BnB with SCITE with respect to the ancestor-descendant accuracy
measure. For each panel, 10 distinct trees of tumor evolution were generated, each with 10 subclones. In
the plot, n, m and fn, respectively, denote the number of cells, the number of mutations and the false
negative error rate. SCITE was allowed to run with 3 restarts, each with a running time, 10 times that of
PhISCS-BnB on the same input.

C.5 Comparison of PhISCS-BnB against SCITE allowing to run approximately for 24
hours
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Figure 4: Comparison of PhISCS-BnB with SCITE with respect to the multi-labled tree similarity measure
(MLTSM). For each panel, 10 distinct trees of tumor evolution were generated, each with 10 subclones. In
the plot, n, m and fn, respectively, denote the number of cells, the number of mutations and the false negative
error rate. SCITE was allowed to run approximately for 24 hours.
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Figure 5: Comparison of PhISCS-BnB with SCITE with respect to the co-clustering accuracy measure.
For each panel, 10 distinct trees of tumor evolution were generated, each with 10 subclones. In the plot,
n, m and fn, respectively, denote the number of cells, the number of mutations and the false negative error
rate. SCITE was allowed to run approximately for 24 hours.
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Figure 6: Comparison of PhISCS-BnB with SCITE with respect to the different-lineage accuracy measure.
For each panel, 10 distinct trees of tumor evolution were generated, each with 10 subclones. In the plot,
n, m and fn, respectively, denote the number of cells, the number of mutations and the false negative error
rate. SCITE was allowed to run approximately for 24 hours.

4

.CC-BY-NC-ND 4.0 International licenseauthor/funder. It is made available under a
The copyright holder for this preprint (which was not peer-reviewed) is the. https://doi.org/10.1101/2020.02.06.938043doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.06.938043
http://creativecommons.org/licenses/by-nc-nd/4.0/


n=300, m=300n=200, m=300n=100, m=300n=300, m=200n=200, m=200n=200, m=100

An
ce

st
or

-D
es

ce
nd

an
t A

cc
ur

ac
y fn

=0
.0

5
fn

=0
.1

fn
=0

.2

n=100, m=100 n=300, m=100 n=100, m=200

PhISCS-BnB

SCITE

0.90

0.92

0.94

0.96

0.98

1.00

0.90

0.92

0.94

0.96

0.98

1.00

0.90

0.92

0.94

0.96

0.98

1.00

0.90

0.92

0.94

0.96

0.98

1.00

0.90

0.92

0.94

0.96

0.98

1.00

0.90

0.92

0.94

0.96

0.98

1.00

0.90

0.92

0.94

0.96

0.98

1.00

0.90

0.92

0.94

0.96

0.98

1.00

0.90

0.92

0.94

0.96

0.98

1.00

0.90

0.92

0.94

0.96

0.98

1.00

0.90

0.92

0.94

0.96

0.98

1.00

0.90

0.92

0.94

0.96

0.98

1.00

0.90

0.92

0.94

0.96

0.98

1.00

0.90

0.92

0.94

0.96

0.98

1.00

0.90

0.92

0.94

0.96

0.98

1.00

0.90

0.92

0.94

0.96

0.98

1.00

0.90

0.92

0.94

0.96

0.98

1.00

0.90

0.92

0.94

0.96

0.98

1.00

0.90

0.92

0.94

0.96

0.98

1.00

0.90

0.92

0.94

0.96

0.98

1.00

0.90

0.92

0.94

0.96

0.98

1.00

0.90

0.92

0.94

0.96

0.98

1.00

0.90

0.92

0.94

0.96

0.98

1.00

0.90

0.92

0.94

0.96

0.98

1.00

0.90

0.92

0.94

0.96

0.98

1.00

0.90

0.92

0.94

0.96

0.98

1.00

0.90

0.92

0.94

0.96

0.98

1.00

Figure 7: Comparison of PhISCS-BnB with SCITE with respect to the ancestor-descendant accuracy
measure. For each panel, 10 distinct trees of tumor evolution were generated, each with 10 subclones. In the
plot, n, m and fn, respectively, denote the number of cells, the number of mutations and the false negative
error rate. SCITE was allowed to run approximately for 24 hours.

D Packages used in this work

• SciPy (Virtanen et al., 2019)
• NumPy (Oliphant, 2006)
• pandas (McKinney, 2010)
• Matplotlib (Hunter, 2007)
• OR-Tools (Perron and Furnon, 2019)
• tqdm (da Costa-Luis, 2019)
• NetworkX (Hagberg et al., 2008)
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