
PHYSICAL REVIEW E 99, 053311 (2019)

Randomization algorithms for large sparse networks

Kai Puolamäki,1,2,* Andreas Henelius,1,2,3,† and Antti Ukkonen1,‡

1Department of Computer Science, University of Helsinki, Finland
2Aalto University, Helsinki, Finland

3Finnish Institute of Occupational Health, Helsinki, Finland

(Received 16 November 2018; revised manuscript received 8 March 2019; published 30 May 2019)

In many domains it is necessary to generate surrogate networks, e.g., for hypothesis testing of different
properties of a network. Generating surrogate networks typically requires that different properties of the network
are preserved, e.g., edges may not be added or deleted and edge weights may be restricted to certain intervals. In
this paper we present an efficient property-preserving Markov chain Monte Carlo method termed CycleSampler
for generating surrogate networks in which (1) edge weights are constrained to intervals and vertex strengths
are preserved exactly, and (2) edge and vertex strengths are both constrained to intervals. These two types of
constraints cover a wide variety of practical use cases. The method is applicable to both undirected and directed
graphs. We empirically demonstrate the efficiency of the CycleSampler method on real-world data sets. We
provide an implementation of CycleSampler in R, with parts implemented in C.
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I. INTRODUCTION

In many applications it is useful to represent relationships
between objects with a network in which vertices corre-
spond to objects of interest and associations between objects
are expressed with directed or undirected edges. The edges
can also be weighted. Given such a network, one might
be interested in questions such as community detection [1],
clustering coefficients [2,3], centrality measures [4], shortest
path distributions [5], or different measures of information
propagation [6]. However, it is often useful to study whether
a possibly interesting finding from a given network reflects
a real phenomenon, or if it is merely caused by, e.g., noise
or systematic errors. A simple approach to this is to compare
the original finding to findings from surrogate networks that
share some relevant properties with the original network but
are otherwise inherently “random.” For example, communities
found in the original network should probably exhibit greater
structure than communities in appropriately randomized net-
works. Usual solutions thus involve generating a number
of surrogate networks by fixing some network properties of
interest and drawing a uniform sample of surrogate networks
from the set of all networks satisfying the given properties.

Existing methods for generating surrogate networks can
be assigned into two categories: property-preserving and
structure-preserving methods. Property-preserving methods
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[2,7–9] do not preserve network topology, i.e., they can intro-
duce new edges and remove existing ones. These approaches
can be viewed as always considering a fully connected clique,
inside which the edge weights are rearranged. Their aim is
to preserve some network property of interest, such as vertex
degrees or vertex strengths. Property-preserving methods can
be further divided into those preserving the property exactly or
in expectation. For example, preserving vertex degrees exactly
is relatively straightforward using, e.g., edge swaps [2,10].
Preserving higher-order statistics is often possible only in
expectation [8]. That is, the expected value of the property
remains equal to some given constraint, but its observed value
in an individual surrogate network may deviate from this
constraint.

Structure-preserving methods [11], on the other hand, keep
the network topology fixed (new edges are not inserted and
existing ones are not removed) but usually maintain the de-
sired property, e.g., vertex strengths, only in expectation. Such
approaches are usually based on maximum-entropy models
[12–14] where surrogate networks are generated simply by
drawing edge weights from a parametrized i.i.d. distribution.
While these methods are often computationally quite efficient,
maintaining the desired property only in expectation may
not be enough. It is, e.g., conceivable that without additional
constraints the network property of interest may occasionally
take values that cannot be observed in real networks, and
in these cases the sampled vertex strengths may hence be
unsuitable for the task of comparing an original finding to
“random findings.”

As a toy example, consider the network shown in Fig. 1,
with six vertices and seven edges. This artificially generated
toy network describes telephone calls between six individuals
(the vertices) over an observation period of 24 h. An edge
between two vertices represents the total cumulative call
duration (in hours) between two individuals. Our goal is now
to generate surrogate networks having exactly the same edges
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FIG. 1. Network where persons are represented as vertices and phone calls between persons as edges, with the edge weight denoting the
total call duration in hours between two persons. The table on the right shows the vertex strengths (sum of adjacent edge weights) for each
vertex of the network.

as in the original network, i.e., we assume that people cannot
communicate outside their friendship network and hence no
new edges are created. We consider two different cases. First,
we consider the case where the call duration between two
individuals (the edge weights) can vary within an interval,
but the vertex strengths (sum of edge weights adjacent to a
vertex) must stay fixed at their original values, i.e., the total
duration spent on the phone by every individual must remain
the same. Second, we consider the case where both edge and
vertex strengths are allowed to vary within a given interval.
In both cases the interval width is constrained by the simple
fact that during a 24-h period a person cannot spend more than
24 h on the phone in total.

Table I shows the range (min and max) of the edge and ver-
tex strengths for 10 000 surrogate networks for the two cases
described above, obtained using (1) the method presented in
this paper, termed CycleSampler, and (2) a maximum-entropy
model (described in Appendix A). In Case 1, the CycleSam-
pler method preserves the vertex strengths exactly. (Notice
that the range of vertex strengths matches the vertex strengths
given in Fig. 1.) In Case 2 the CycleSampler method simul-
taneously preserves both edge and vertex strengths between
0 and 24 h, while the maximum-entropy method preserves
these only in expectation. It is clear that the maximum-entropy
model easily satisfies constraints on edge weights but violates
the 24-h vertex strength constraint. This is because the edge
weights are sampled i.i.d. and thus for vertices having a large
degree the sum of sampled weights on adjacent edges can
easily increase beyond the maximum value allowed.

This limitation of the maximum-entropy model is further
highlighted in the numerical example presented in Fig. 2. This
example shows that even in a very simple case the majority
of surrogate networks from a maximum-entropy model will
not satisfy hard constraints on vertex strengths, even if the
expected value of vertex strengths is preserved. Furthermore,
the resulting distribution of edge weights is not uniform. The

CycleSampler method proposed in this paper, on the other
hand, produces surrogate networks satisfying all constraints.
We here examine the uniformity of the distributions in the
given geometry. If some transformation was applied to the
distributions shown in Fig. 2 to make one of these distributions
uniform, then the other distribution would not be uniform
using the same transformation.

Summary of contributions

In this paper we present the CycleSampler method, which
is a structure-preserving sampling method for edge weights
that explicitly maintains vertex strengths within a given inter-
val. This interval can be set to have zero width, in which case
the vertex strengths are maintained exactly in the generated
surrogate networks. The approach can be viewed as a general-
ization of the property-preserving Markov chain Monte Carlo
(MCMC) algorithm described in Ref. [2] to the structure-
preserving case. However, the requirement to not introduce
new edges or remove existing ones presents some nontrivial
algorithmic challenges.

In short, our approach samples uniformly from the null
space of the given network’s incidence matrix (a binary
matrix where vertices are rows and edges are columns), which
requires constructing a basis for this null space. It is crucial
that the basis is sparse, since the null space may be very high-
dimensional (in the millions). Methods that require keeping
a dense basis in memory, as found by textbook methods, may
even be infeasible for larger networks. The problem of finding
a sparse basis for general matrices has been studied previously
[15,16], and some variants of it are NP-hard [17]. However,
a sparse basis for the null space of an incidence matrix can
be constructed very efficiently using a spanning tree of the
original network [18]. We leverage this idea to devise an
MCMC algorithm which is efficient and scalable and can
be used to generate surrogate networks having millions of

TABLE I. Range of edge and vertex strengths of 10 000 surrogate networks generated using the CycleSampler method presented in this
paper and the maximum-entropy method. In Case 1 vertex strengths are fixed, while in Case 2 edge and vertex strengths can vary. Note that edge
and vertex strengths stay within the physically feasible interval [0, 24] hours for the CycleSampler method, whereas the maximum-entropy
solution can lead to unfeasible vertex strengths.

Case 1 Case 2

Method Edge weights Vertex strengths Edge weights Vertex strengths

CycleSampler [0.00, 12.00] [5.50, 17.00] [0.00, 23.40] [0.00, 24.00]
Maximum entropy [0.00, 24.00] [0.00, 56.66]
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FIG. 2. An illustration of the difference between the CycleSampler method and the maximum-entropy model. Left: a graph with three
vertices {1, 2, 3} and two edges with the observed weights w({1, 2}) = 0.3 and w({2, 3}) = 0.6, respectively. The vertex strengths are W (1) =
w({1, 2}) = 0.3, W (2) = w({1, 2}) + w({2, 3}) = 0.9, and W (3) = w({2, 3}) = 0.6. We further assume that the edge weights are constrained
to w∗(e) ∈ [0, 1] and the vertex strengths to W ∗(v) ∈ [0.25, 1.5]. Middle: edge weights w∗ sampled using the CycleSampler method introduced
in this paper. The black polygon encloses the set of feasible edge weights subject to the vertex strength constraints. The distribution of sampled
edge weights is uniform, and both edge and vertex strengths satisfy the constraints. The black dot shows the observed (original) weights. Note
that although we use the observed weights as the initial point of our Markov chain, the resulting distribution is asymptotically identical for all
choices of the initial point as long as it satisfies the constraints. Right: the edge weights w∗ from the maximum-entropy distribution over edge
weights p(w({1, 2}),w({2, 3})) such that the expected vertex strengths match the observed ones: Ep[W ∗(1)] = 0.3, Ep[W ∗(2)] = 0.9, and
Ep[W ∗(3)] = 0.6. In the maximum-entropy model there is no obvious way to simultaneously restrict both edge weights and vertex strengths
to strict intervals, and most of the sampled edge weights are indeed outside the black polygon. Furthermore, the distribution of edge weights is
generally not uniform in this geometry.

edges, while preserving vertex strengths as described above.
We also present an empirical evaluation of the scalability of
our algorithm in a number of real-world cases. We provide
an open-source implementation of the CycleSampler method.
The CycleSampler is implemented in C, as an extension to
R [19], and is freely available for download [20].

II. THE CYCLESAMPLER ALGORITHM

In this section we describe the CycleSampler algorithm.
We first formalize the problem considered here, after which
we provide a high-level description of the algorithm. We then
consider how this procedure works for undirected graphs.
This discussion is followed by an example illustrating the
procedure, after which we give a detailed description of the
algorithms with proofs. We then describe how to the algorithm
can also be extended to directed graphs. Finally, we provide
a few notes concerning the practical implementation of the
algorithm.

A. Problem definition

Let G = (V, E ) be a graph, where the m vertices are
given by V = [m], where we denote [m] = {1, . . . , m}, and
the edges by E ⊆ ∪v∈V ∪v′∈V {{v, v′}}. The weight of an edge

e ∈ E is denoted w(e) ∈ R. We assume that there are no self-
loops in the observed graph, i.e., |e| = 2 for all e ∈ E .

In the following we assume that the graph G is connected.
If the graph is not connected, the CycleSampler algorithm can
be applied separately for each connected component, since
these essentially represent separate graphs.

We use the neighborhood function n(v), where v ∈ V , to
represent the set of edges connected to a vertex v:

n(v) = {e ∈ E | v ∈ e}. (1)

We define the strength of a vertex v ∈ V as the sum of the
weights of the edges connected to it:

W (v) =
∑

e∈n(v)

w(e). (2)

In colloquial terms, our task is to obtain a uniform sample of
edge weights w(e), such that the weight of every edge and the
strength of every vertex remain within given intervals. This
problem can be formally defined as follows.

Problem 1. Given a connected graph G = (V, E ) and a set
of intervals [a(e), b(e)] for each edge e ∈ E and [A(v), B(v)]
for each vertex v ∈ V , respectively, such that a(e) � w(e) �
b(e) and A(v) � W (v) � B(v), obtain a sample uniformly at
random from the set of allowed edge weights W∗, given by

W∗ =
{
w∗ : E �→ R | ∀e ∈ E it holds that w∗(e) ∈ [a(e), b(e)] and ∀v ∈ V it holds that

∑
e∈n(v)

w∗(e) ∈ [A(v), B(v)]

}
. (3)
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FIG. 3. In the graph on the left there are no self-loops and the ver-
tex v ∈ V has a range of allowed strengths [A(v), B(v)]. In the graph
on the right the strength of vertex v is fixed to W (v) and there is a
self-loop ev = {v} with a range of allowed weights given by [W (v) −
B(v),W (v) − A(v)], where W (v) = w(e1) + w(e2) + w(e3). These
two graphs are equivalent in the sense that the allowed ranges of
the weights of the edges e1, e2, and e3 as the vertex strength (without
the self-loop) w(e1) + w(e2) + w(e3) are the same for both graphs.
It follows that a set of allowed weights W∗ given by Eq. (3) defined
without self-loops and ranges for vertex strengths can be equivalently
defined by graphs with self-loops and fixed vertex strengths.

Existing algorithms for generating surrogate networks can-
not be directly applied to solve Problem 1 for two reasons.
First, we aim to preserve network structure, i.e., we can

only modify weights on existing edges, not introduce new
edges. Second, we allow vertex strengths to vary within given
intervals, while other approaches aim to maintain them either
exactly or only in expectation.

B. Interval constraints on vertices

In Problem 1 we allow the strength of each vertex v ∈ V
to vary on the interval [A(v), B(v)]. This sampling problem
becomes easier if these interval constraints are replaced with
equality constraints, i.e., a variant of the problem where the
vertex strengths are preserved exactly.

To do this, we define an equivalent graph containing self-
loops (edges of type ev = {v}) where the vertex strengths are
fixed, i.e., W (v) = A(v) = B(v). The variability in the vertex
strengths is absorbed in the self-loops. This graph with self-
loops can be constructed using the transformation shown in
Fig. 3. Using this scheme, any graph with interval constraints
on vertex strengths and no self-loops can be transformed to a
graph with equality constraints on vertex strengths and self-
loops and vice versa.

We can now rewrite Eq. (3) as follows:

W∗ =
⎧⎨
⎩w∗ : E �→ R | ∀e ∈ E it holds that w∗(e) ∈ [a(e), b(e)] and ∀v ∈ V it holds that

∑
e∈n(v)

w∗(e) = W (v)

⎫⎬
⎭. (4)

The problem hence becomes to obtain a uniform sample from
the set W∗ of Eq. (4). Note that in Eq. (4) the set of edges E
now contains self-loops on those vertices that originally had
interval constraints. In the following we therefore assume—
without loss of generality— that there are only equality con-
straints on vertex strengths, i.e., A(v) = B(v) for all v ∈ V .

C. High-level approach

We continue by outlining a sketch of our solution to
Problem 1. At a high level our algorithm is a Markov chain
Monte Carlo (MCMC) method similar to the algorithm pro-
posed in Ref. [2]. It starts from the observed set of edge
weights, introduces a small perturbation to a few of these
at every step and runs until convergence. Let C denote a
collection of subsets of E , i.e., every E ′ ∈ C is some (small)
set of edges. The algorithm in Ref. [2] as well as ours can be
sketched within a common framework as follows:

(1) Initially, let the current state be the observed set of
edge weights.

(2) Select some E ′ ∈ C uniformly at random.
(3) Perturb the weights of every edge in E ′ so that all

constraints remain satisfied. (Exactly how this is done is
described in detail below.)

(4) Repeat steps 2–3 until convergence.
The main difference between the method in Ref. [2] and

the method presented here concerns what the collection C
contains. It is crucial to make sure that C is constructed such
that the resulting Markov chain indeed converges to a uniform
distribution over W∗. This is shown below in Theorem 1 in
Sec. II F.

In the algorithm of Ref. [2], C contains all possible cycles
of length four. Since in Ref. [2] the underlying graph is
assumed to be a clique, there are plenty of such cycles, and
it can be shown that these are enough for the Markov chain to
reach a uniform distribution. Also, it is fairly easy to see that in
cycles of length four the edge weights can always be adjusted
in a simple manner so that all constraints remain satisfied.
However, in our case finding a suitable C is complicated by the
requirement of not introducing new edges. Simply choosing all
cycles of length four from G is not enough. In the remainder
of the paper we discuss our main technical contribution: an
approach for constructing C in general undirected graphs (not
only cliques) so that the resulting Markov chain converges to
the uniform distribution over W∗. In addition, we show how
a simple transformation of the input graph allows us to extend
the approach also to directed graphs.

D. Solution for undirected graphs

In this section we first describe the solution for general
undirected graphs. In Sec. II G below we describe the solution
for directed graphs. We assume for simplicity of discussion
and without loss of generality that the input graph G consists
of a single connected component. (In general, we can inde-
pendently sample each of the connected components of the
graph in the sampling process introduced later). The problem
of constructing a suitable collection C of edges becomes easier
if we view our sampling problem in terms of systems of linear
equations. In this way we can express our problem using
known concepts from linear algebra.
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As a first step, define the incidence matrix A ∈ {0, 1}|V |×|E | of the graph G in the usual manner as Ave = 2I (v ∈ e)/|e|. Here
v ∈ V and e ∈ E and I (�) is an indicator function which equals unity if � is true and is zero otherwise. Also, let W ∈ R|V |
denote the vector of observed vertex strengths defined by Wv = W (v) for all v ∈ V , and denote by w∗ ∈ R|E | the vector of edge
weights. Given these, sampling uniformly from W∗ of Eq. (4) is equivalent to the problem of sampling uniformly from the set

S = {w∗ ∈ R|E | | Aw∗ = W and ∀e ∈ E it holds that w∗
e ∈ [a(e), b(e)]}. (5)

By our assumption the original observed weight vector w is in
W∗. It follows that Aw = W and therefore w ∈ S .

For the moment, let us focus only on the underdetermined
linear system Aw∗ = W. A simple known property of such
systems is that their solution space can be expressed as a sum
of a single known solution such as w ∈ S and any vector x
from the null space of A. The null space of A, denoted by
Null(A), is defined by the set Null(A) = {x ∈ R|E | | Ax = 0}.
It is easy to see that Aw∗ = W, where w∗ = w + x, for any
x ∈ Null(A). Because of the constraints on edge weights, we
cannot simply use any x ∈ Null(A). Instead, x must come
from a convex subset of Null(A). Therefore, the problem of
sampling uniformly from S is equivalent to the problem of
sampling uniformly from said convex subset of Null(A).

This is a known problem and could be solved using text-
book methods, such as those described, e.g., in Ref. [21].
Those approaches, however, must usually compute a basis
for Null(A), which in general is a dense matrix of size
|E | × dim[Null(A)], where the cardinality of the null space
of A is in the same order of magnitude as |E |. While this
is not a problem as long as the incidence matrix A is fairly
small, methods that require storing such a matrix may become
infeasible for very large networks. However, since A is the
incidence matrix of a network, a sparse basis is easily con-
structed by combining cycles of G, as shown, e.g., in Ref. [18].

In short, this works as follows. We first find a spanning tree
T of G. Every edge that does not belong to T clearly induces
a cycle when combined with edges in T . Given T , every such
even-length cycle is directly an element of the basis, while
odd-length cycles are paired together to form elements of the
basis until it is complete. Details of the algorithm are given
in Sec. II F below. Note that such a sparse basis is easily
represented by a collection C of subsets of edges, together
with appropriate weights for every edge.

E. Illustrating example

In this section we provide an example illustrating the above
discussed concepts. Consider again the network introduced
above in Fig. 1, with six vertices V = {1, 2, 3, 4, 5, 6} and
seven edges. We now add two self-loops to vertices 1 and 6

1{1}

2

{1,2} 3
{1,3}

6{1,6}

{2,3}
4{3,4}

5
{4,5}

{4,6}
{6}

FIG. 4. Example graph with six vertices and nine edges. The five
edges in the spanning tree are shown with solid lines and the four
edges not in the spanning tree with dashed lines. Vertex 3 is the root
vertex of the spanning tree (marked with gray).

in this network, giving the nine edges

E = {{1}, {1, 2}, {1, 3}, {1, 6}, {2, 3}, {3, 4},
{4, 5}, {4, 6}, {6}}.

Further assume that the edges in the spanning tree of this
graph are given by

Es = {{1, 3}, {2, 3}, {3, 4}, {4, 5}, {4, 6}}
and the edges not in the spanning tree by

F = {{1}, {1, 2}, {1, 6}, {6}}.
The root vertex is given by vroot = 3. This graph is shown in
Fig. 4 (the root of the spanning tree is marked with gray),
and the corresponding matrix A is shown in Table II. The
cycle vectors are shown in Fig. 5 and the basis of the null
space in Fig. 6. A different root vertex could be used when
constructing the spanning tree, which would lead to a different
set of vectors that span the null space; however, any choice of
spanning tree or root vertex will span the same null space.

In Sec. II F we introduce the terms clean edge and dirty
edge when discussing cycles, and these are also used in

TABLE II. The six uppermost rows show the incidence matrix
matrix A for the graph in Fig. 4. The next four rows show the
graph cycles ci, which are also shown graphically in Fig. 5; see
Eq. (6) for the definition. The four lowermost rows show the basis
vectors yi, also shown graphically in Fig. 6; see Eqs. (9) and (10)
for the definition. The basis vectors have been constructed from the
cycles as follows: the basis vector ya by an even cycle induced by
the clean edge, ya = ca, and the remaining two basis vectors ybc

and ycd by linear combinations of two odd cycles induced by the
dirty edges, ybc = cb − cc, and ycd = cc + cd . All of the basis vectors
satisfy Ayi = 0, and span a three-dimensional null space Null(A), as
required by Theorem 2.

A {1} {1, 2} {1, 3} {1, 6} {2, 3} {3, 4} {4, 5} {4, 6} {6}
1 2 1 1 1 0 0 0 0 0
2 0 1 0 0 1 0 0 0 0
3 0 0 1 0 1 1 0 0 0
4 0 0 0 0 0 1 1 1 0
5 0 0 0 0 0 0 1 0 0
6 0 0 0 1 0 0 0 1 2

cT
a 0 0 −1 1 0 1 0 −1 0

cT
b 1 0 −2 0 0 0 0 0 0

cT
c 0 1 −1 0 −1 0 0 0 0

cT
d 0 0 0 0 0 2 0 −2 1

yT
a 0 0 −1 1 0 1 0 −1 0

yT
bc 1 −1 −1 0 1 0 0 0 0

yT
cd 0 1 −1 0 −1 2 0 −2 1
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FIG. 5. The cycles of the graph in Fig. 4 and the corresponding values of the respective vector c ∈ R|E |. There is one even cycle related to
a clean edge (c({1, 6}) in the top left graph, and three odd cycles related to dirty edges: c({1}) in the top right graph, c({1, 2}) in the bottom
left graph, and c({6}) in the bottom right graph.

Table II, Fig. 5, and Fig. 6. In brief, a clean edge in the graph
induces a cycle of even length (containing an even number
of edges), while a dirty edge induces a cycle of odd length.
Combining two odd cycles, each induced by a dirty edge,
yields a cycle of even length.

F. Details of the algorithm

In this section we give a detailed proof of the proposed
algorithm, an overview of which is given above.

The CycleSampler Algorithm
Assume we have vectors y1, . . . , yl that span the null

space Null(A), i.e., any null space vector x ∈ Null(A) can be
formed as a linear combination of these vectors. The vectors
y1, . . . , yl thus form a basis of Null(A). Given this basis, we
can obtain surrogate networks as follows:

(1) First, transform the graph to a form where the vertex
strengths are fixed and the variability in them is described by
self-loops, as in Fig. 3.

(2) Initially, let the current state be the observed set of
edge weights, w∗ ← w, with the weight of self-loops initially
set to zero.

(3) Pick a basis vector yi at random and let [a, b] be the
largest range of allowed values such that w∗ + αyi, where α ∈
[a, b], stays within W∗. Sample α uniformly at random from
[a, b].

(4) Update w∗ ← w∗ + αyi and repeat from step 3 above.
Note that because W∗ is a simple convex space—an |E |-

dimensional rectangle—we can find [a, b] for a given yi

efficiently by a simple loop over the nonzero dimensions of
yi. The updates at step 4 form a Markov chain of edge weight
vectors w∗.

Theorem 1. The CycleSampler algorithm asymptotically
provides (after a sufficient number of iterations) surrogate
networks uniformly from the set W∗.

Proof. This follows from the facts that (1) because yi span
the null space, then all points of the null space are reachable

10 

2

0 3
-1

61

0

41

5
0

     -1 
 0 11  

2

-1 3
-1

60

1

40

5
0

     0 
0

10 

2

1 3
1

60

    -1

42

5
0

     2 
 1

FIG. 6. The basis constructed from the cycles in Fig. 5 and the corresponding values of the respective vector yi ∈ R|E |. There is one
basis vector corresponding to the clean edge {1, 6} in the top left graph, and two basis vectors corresponding to pairs of dirty edges: {1}
and {1, 2} in the top right graph, and {1, 2} and {6} in the bottom graph. Each of these basis vectors multiplied by matrix A of Table II
yields zero, and therefore the basis vectors are in the null space Null(A). The basis vectors are also given by the bottom rows of Table II.
All of the introduced graph cycles defined by edges with nonzero weights are of even length: (top left) 1 − 3 − 4 − 6(−1 − · · · ), (top right)
1 − 1 − 2 − 3(−1 − · · · ), and (bottom) 1 − 2 − 3 − 4 − 6 − 6 − 4 − 3(−1 − · · · ); notice that edges with the weight of ±2 are traversed
twice in a graph cycle, once in each direction.
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with a nonvanishing probability and that (2) the transition
probability from state w∗ ∈ S to state w∗′ ∈ S is equal to
the transition probability from state w∗′ to state w∗. The last
statement follows from the fact that in step 2 of the Cycle-
Sampler algorithm the vectors yi are chosen with uniform
probability, after which in step 3 the number α ∈ [a, b] is
chosen uniformly; i.e., if we transitioned in one step from state
wk to state wl using yi and α = αk chosen from an interval
[ak, bk], we could in the next step with equal probability as
in the first step transition from state wl to state wk if yi was
chosen again and if α = −αl chosen from an interval [al , bl ].
Here it is important to note that for two consecutive steps k
and l it holds that the width of the intervals [ak, bk] and [al , bl ]
are equal, and since α is sampled uniformly at random from
these intervals, the probability of αl in the first step equals that
of −αl in the second step.

In other words, the probability of moving from state k to
state l equals that of moving from state l to state k and the
Markov chain is therefore reversible. �

It remains to find a complete basis y1, . . . , yl of the null
space Null(A). This can be done using a spanning tree of the
connected graph G.

We denote by vroot ∈ V the root vertex of the
spanning tree. Also, we denote by Es ⊆ E the
|V | − 1 edges that appear in the spanning tree and by
F = E \ Es the remaining |E | − |V | + 1 edges that do not
appear in the spanning tree.

We further denote by E (v) ⊆ Es the set of edges in the
spanning tree between vertex v ∈ V and the root vertex. For
the root vertex vroot we have E (vroot ) = ∅. We call the number
of edges between e ∈ Es and the root vertex in the spanning
tree the depth of e, denoted by depth(e). The edges adjacent
to the root vertex have a depth of zero. We further define the
depth of vertex v to be its distance from the root vertex, i.e.,
depth(v) = |E (v)|.

Recall that every edge in the set F induces a cycle of G.
Next, we represent these cycles as vectors in R|E |. Let n(e) ∈
{0, 1}|E | denote a 0-1 vector defined by n(e)e′ = I (e = e′) that
represents the edge e ∈ E . We define the cycle induced by the
edge {v, v′} ∈ F as the vector c(v, v′) ∈ R|E | given by

c(v, v′) = n({v, v′}) +
∑

e∈E (v)

(−1)depth(v)+depth(e)n(e)

+
∑

e′∈E (v′ )

(−1)depth(v′ )+depth(e′ )n(e′). (6)

The above sum essentially traverses the cycle induced by
{v, v′} ∈ F and assigns to each edge a weight the sign of
which depends on its distance from the root.

We further split the edges not in the spanning tree (the
set F ) into clean edges,

Fc = {{v, v′} ∈ F | depth(v) + depth(v′) is odd}, (7)

and dirty edges,

Fd = {{v, v′} ∈ F | v = v′ or (depth(v) + depth(v′) is even)}.
(8)

Notice that the set of clean edges Fc cannot contain self-loops,
but the set of dirty edges Fd may contain self-loops (i.e.,

v = v′). The nonzero elements of a cycle introduced by clean
edges contain graph loops with an even number of edges,
while a cycle introduced by a dirty edge contains a graph loop
with an odd number of edges. Indeed, by taking a spanning
tree of a graph and adding an edge not in the graph we always
get a unique graph cycle. Those graph cycles form the cycle
basis of the graph. In particular, it is well known that the cycle
basis of a graph contains only even-length cycles if and only
if the graph is bipartite. Therefore Fd = ∅ is equivalent to the
statement that the graph G is bipartite.

We construct a basis for the null space as follows.
(1) For each clean edge e ∈ Fc we define a basis vector by

the respective cycle,

yi = c(e). (9)

For an example, see Fig. 6(a). The nonzero elements of
the basis vector yi form a graph cycle of even length, with
alternating weights of ±1.

(2) Dirty edges in Fd are dealt with slightly differently. We
always take two edges from Fd and combine the respective
cycles to form a basis vector. In particular, assume the edges in
Fd are arranged in an arbitrary order, numbered by 1, . . . , |Fd |.
A basis vector is then formed by taking two adjacent edges
and combining their respective cycles as follows:

yi = c(ei ) − (−1)depth(ei )+depth(ei+1 )c(ei+1), (10)

where i ∈ [|Fd | − 1]. For an example, see Figs. 6(b) and 6(c).
Again, the nonzero elements of the basis vector yi form a
graph cycle of even length.

The number of distinct basis vectors that could be defined
by Eqs. (9) and (10), is therefore |Fc| + |Fd |(|Fd | − 1)/2.

We show that the basis vectors of Eqs. (9) and (10) form a
complete basis of the null space Null(A) by first proving the
following three lemmas.

Lemma 1. The basis vectors (cycles) defined by Eq. (9) are
in the null space Null(A), and they span an |Fc| dimensional
space.

Proof. A vector yi defined by Eq. (9) is in the null space
Null(A), because the equation Ayi = 0 is satisfied for all yi.

The vectors yi are clearly linearly independent, because
each of the vectors contains a unique nonzero dimension given
by an edge e ∈ Fc which is zero in all other vectors. Therefore,
the |Fc| vectors span an |Fc| dimensional space. �

Lemma 2. If there are at least two dirty edges, i.e., |Fd |� 2,
the basis vectors (cycles) defined by Eq. (10) are in the null
space Null(A), they span an |Fd | − 1 dimensional space, and
they cannot be expressed as linear combinations of the vectors
defined by Eq. (9).

Proof. First, assume that there are at least two dirty edges,
because otherwise there are no pairs and hence no vectors
defined by Eq. (10). If there is exactly one dirty edge, then
this edge cannot be used to form a vector in the null space. A
vector (cycle) defined by Eq. (10) is in the null space, because
Ayi = 0 is satisfied.

The vectors span an |Fd | − 1 dimensional subspace, be-
cause as described above, the vectors are formed by taking
all |Fd | − 1 adjacent pairs of edges ei and ei+1 from Fd

when they are arranged in an arbitrary order, and combin-
ing their respective cycles according to Eq. (10). Also, a
combination of such vectors is independent of the previous
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combinations, because it contains a nonzero value for the
edge ei+1 ∈ Fd that has a zero value for all of the previous
combinations.

A vector yi defined by Eq. (10) cannot be expressed
as a linear combination of the vectors defined by Eq. (9),
because the vector contains a nonzero element for two
edges in Fd that do not occur in any of the vectors defined
by Eq. (9). �

Lemma 3. The dimensionality of the null space of A,
Null(A), is |Fc| if there are no dirty edges and |Fc| + |Fd | − 1
if there are dirty edges.

Proof. Consider the rank of the incidence matrix A ∈
{0, 1}|V |×|E | of the graph G = (V, E ). The rank of this ma-
trix equals at most the number of rows in the matrix, i.e.,
rank(A) � |V |. If and only if there is a nonzero vector
v ∈ R|V | such that vT A = 0, then rank(A) < |V |, otherwise
rank(A) = |V |.

The vector v must satisfy the following two properties.
(1) The element in v corresponding to a vertex with a self-
loop must be zero, i.e., vi = 0, because the column (edge)
representing a self-loop has only one nonzero value. (2) The
elements in v corresponding to a pair of vertices connected by
an edge {i, j} ∈ E must have opposite signs, i.e., vi = −v j ,
otherwise the column (edge) in the matrix product vT A is
nonzero.

Because the graph is connected we can construct a vector
v simply by starting from one row (vertex), e.g., i = 1 and
setting v1 ← x, where x is some number. We can hence
iteratively follow any path in the graph and assign values
for the remaining rows in v in accordance with the above
described properties. The elements in v are hence either x
or −x.

Consider first the case when there are dirty edges, i.e.,
Fd �= ∅, and there is at least one cycle in the graph with
an odd number of edges. If we follow this cycle it leads
to the situation where x = −x, meaning that no nonzero
vector v exists and v = 0 is the only viable solution and
hence rank(A) = |V |. According to the rank-nullity theorem
the rank of the null space is |E | − rank(A) = |E | − |V | =
|F | − 1 = |Fc| + |Fd | − 1, which proves the lemma for the
case Fd �= ∅.

Consider now the case when there are no dirty edges, i.e.,
Fd = ∅ and all graph cycles are of even length. A graph with
only even cycles must be bipartite, i.e., the vertices form two
disjoint sets. We label all vertices in one set by +1 and all
vertices in the other set by −1.

We now construct the vector v according to this labeling
and property (2) above, i.e., the elements in v corresponding
to two vertices i and j must have opposite signs. We can
hence find a vector v such that vT A = 0 is satisfied and it
follows that rank(A) � |V | − 1. Next, we consider the rank

of a matrix A with the first row removed, denoted by A′.
This matrix contains (because there are no isolated vertices)
at least one column containing only one nonzero entry. The
rank of this matrix is therefore at least |V | − 1, from which
it follows that the rank(A) = |V | − 1. According to the rank-
nullity theorem the rank of the null space is |E | − rank(A) =
|E | − |V | + 1 = |F | = |Fc|, proving the lemma for the case
Fd = ∅. �

The following theorem follows directly from Lemmas 1, 2,
and 3 above.

Theorem 2. The basis vectors defined by Eqs. (9) and
(10) span the null space Null(A) for a connected graph
G = (V, E ). The dimensionality of the null space is
|E | − |V | + 1 if the graph G is bipartite and |E | − |V |
otherwise.

G. Solution for directed graphs

Next we show that the above discussed solution to the
sampling problem for undirected graphs (Problem 1) can
also be applied to directed graphs, by first transforming
the directed graph into an equivalent undirected graph. The
algorithm proposed in this paper can therefore directly be
used to sample edge weights for both directed and undirected
graphs.

Let GD = (VD, ED) be a directed graph, where the mD

vertices are given by VD = [mD] and the edges by ED ⊆
V × V . The weight of the directed edge e ∈ ED is denoted by
wD(e) ∈ R. We define the outgoing edges of vertex v ∈ VD as

no(v) = {(v′, v′′) ∈ ED | v′ = v}, (11)

and the incoming edges as

ni(v) = {(v′, v′′) ∈ ED | v′′ = v}. (12)

The outgoing strength of a vertex is given by

Wo(v) =
∑

e∈no(v)

wD(e), (13)

and the incoming strength by

Wi(v) =
∑

e∈ni (v)

wD(e). (14)

We are now ready to define the sampling problem for
directed graphs.

Problem 2. Given a connected directed graph GD =
(VD, ED) and a set of intervals [aD(e), bD(e)] for each edge
e ∈ ED and [Ao(v), Bo(v)] and [Ai(v), Bi(v)] for each ver-
tex v ∈ VD, respectively, such that aD(e) � wD(e) � bD(e),
Ao(v) � Wo(v) � Bo(v), and Ai(v) � Wi(v) � Bi(v), obtain a
sample uniformly at random from the set of allowed weights
W∗

D, given by

W∗
D = {w∗

D : ED �→ R | ∀e ∈ ED it holds that w∗
D(e) ∈ [aD(e), bD(e)] and

∀v ∈ VD it holds that
∑

e∈no(v)

w∗
D(e) ∈ [Ao(v), Bo(v)] and

∀v ∈ VD it holds that
∑

e∈ni (v)

w∗
D(e) ∈ [Ai(v), Bi(v)] (15)
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FIG. 7. Transformation of the directed graph on the left to the
undirected bipartite graph on the right. The weight of an edge from i
to j is denoted by wi, j . In the undirected bipartite graph, the vertices
on the right are labeled to indicate to which vertex in the original
directed graph they correspond.

We can solve Problem 2 by the algorithm used to solve
Problem 1 by noticing that a directed graph can be easily
transformed to an equivalent undirected graph, as stated by
the following theorem and as illustrated in Fig. 7.

Theorem 3. The set of allowed weights W∗
D of Eq. (15) for

a directed graph GD is equivalent to the set of allowed weights
W∗ of Eq. (3) for an undirected bipartite graph G when the
graph G is defined as follows. The graph G has m = 2mD

vertices, i.e., V = [m]. The set of undirected edges E of G
is given by E = {{v′, v′′ + mD} | (v′, v′′) ∈ ED}. We define a
mapping f :E �→ ED as follows, f ({v′, v′′ + mD}) = (v′, v′′)
for all (v′, v′′) ∈ ED. The weight of an edge e ∈ E is given
by w(e) = wD( f (e)) and the bounds by a(e) = aD( f (e)) and
b(w) = bD( f (e)). The vertices 1, . . . , mD correspond to out-
going strengths and the vertices mD + 1, . . . , 2mD to incom-
ing strengths as follows:

W (v) =
{

Wo(v), v � mD

Wi(v − mD), v > mD
, (16)

with the bounds given by

A(v) =
{

Ao(v), v � mD

Ai(v − mD), v > mD
, (17)

and

B(v) =
{

Bo(v), v � mD

Bi(v − mD), v > mD
. (18)

Now, if w∗ is a uniform sample from W∗ we can obtain
a uniform sample w∗

D from W∗
D in a straightforward way by

setting w∗
D( f (e)) ← w∗(e) for all e ∈ E .

Proof. The proof follows directly from the definitions. �

H. Implementation notes

We make some observations that are useful when im-
plementing the method described above. First, it is suffi-
cient to consider a generating set rather than a proper basis
(a minimal generating set). This means that instead of fixing
an arbitrary order for the edges in Fd and then applying
Eq. (10) as described above, we can always pick any two edges
from Fd , and take their linear combination. This has the upside
that we are not committed to some possibly poor choice of

the order for Fd but are free to consider a wider selection of
vectors that are all guaranteed to span the desired subspace.

Second, while it is in theory possible to use any spanning
tree of G, we have empirically made the following observation
for different data sets. The mixing of the Markov chains, in
terms of the l2 norm between the starting state of the sampler
and the jth surrogate, appears to be faster if the spanning tree
is constructed to emphasise high-strength vertices. We have
hence chosen to construct the spanning tree as follows. The
vertex with the highest vertex strength is chosen as the root
vertex vroot ∈ V . We then use a standard breadth-first search
over the vertices sorted in descending order of vertex strength
(i.e., going from vertices with high strength to low strength).

Note that the generation of surrogate data sets may be
performed using, e.g., the method outlined in Ref. [2], which
efficiently generates samples with small statistical dependen-
cies.

III. EXPERIMENTAL EVALUATION

To demonstrate the method described in this paper we
perform two analyses. First, we consider the scalability of the
CycleSampler method. Second, we apply the CycleSampler
algorithm to generate surrogates networks for investigating
clustering coefficients in a data set describing trade relations
between countries.

A. Analysis of scalability

To demonstrate the scalability of the method described in
this paper we perform two experiments on seven publicly
available sparse real-world networks. These networks are all
examples of recommendation data sets (note that this does
not limit the generality of the discussion). In recommendation
data, a user provides a rating for a given item, i.e., the data
items are triplets of the form (user, item, rating). We construct
networks from these data sets as follows. Each user and item
represents a vertex, and the rating given by a user to an item
represents an edge, with a weight equal to the rating. Since
users rate only items (and not other users), these networks are
all bipartite with the vertex partitions given by users and items.

The properties of the networks are presented in Table III.
The table shows the dimensions of the networks in terms of
the number of rows (users) and columns (items) in the data
matrix. The density of all networks is very low, meaning that
the networks are sparse. The table also shows the number of
edges and vertices in the network and the dimensionality of
the null space. The preprocessing of the data sets is described
in Appendix B.

When investigating varying properties of recommendation
data sets it makes sense to place certain restrictions on (1) the
sum of the ratings given by a user to all items and (2) the sum
of all ratings received by an item from all users.

In the first experiment we generate surrogate networks
where the vertex strengths are preserved exactly, while the
edge weights w(e) are allowed to vary on an interval cor-
responding to the range of the edge weights in the original
network. In the context of the recommender systems this
means that the total ratings given by a user and the total ratings
received by an item are both preserved exactly (i.e., the ratings
for a given user are just allocated differently).
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TABLE III. Properties of the networks. The networks are sorted in order of an increasing number of edges. The columns are as follows:
rows and columns give the full size of the data matrix, and density is the number of nonzero entries. The number of edges, vertices, and
the dimensionality of the null space (in experiment 1) are given by |E |, |V |, and |C| = |E | − |V | + 1, respectively. In experiment 2 the
dimensionality of the null space is |E | + 1 due to the addition of one self-loop per vertex. The initialization time for the sampler (e.g., finding
the spanning tree and enumerating cycles) and the time needed to take a cycle step (a number of steps equal to the dimensionality of the null
space of a given network) are shown in the columns tinit and tsample. The times are in seconds, and the subscript 1 refers to experiment 1 whereas
the subscript 2 refers to experiment 2.

Rows Columns Density |E | |V | |C| tinit,1 tsample,1 tinit,2 tsample,2

Last.fma 1.89×103 1.74×104 2.69×10−3 8.86×104 1.93×104 6.93×104 1.17 0.02 1.40 0.04
MovieLens 100kb 9.43×102 1.68×103 6.30×10−2 1.00×105 2.62×103 9.74×104 0.71 0.02 0.77 0.03
BookCrossingc 7.78×104 1.86×105 3.00×10−5 4.34×105 2.64×105 1.85×105 36.50 0.16 53.86 0.61
FineFoodsd 2.56×105 7.43×104 2.95×10−5 5.61×105 3.30×105 2.53×105 62.15 0.23 99.97 0.93
MovieLens 1Mb 6.04×103 3.71×103 4.47×10−2 1.00×106 9.75×103 9.90×105 6.88 0.50 7.22 0.50
MovieLens 20Mb 1.38×105 2.67×104 5.40×10−3 2.00×107 1.65×105 1.98×107 155.05 15.41 162.47 18.08
TasteProfilee 1.02×106 3.84×105 1.22×10−4 4.77×107 1.40×106 4.63×107 459.65 67.12 498.45 82.21

ahttp://files.grouplens.org/datasets/hetrec2011/hetrec2011-lastfm-readme.txt, http://www.lastfm.com and Ref. [23].
bhttp://grouplens.org/datasets/movielens/ and Ref. [24].
chttp://www2.informatik.uni-freiburg.de/∼cziegler/BX/ and Ref. [25].
dhttps://snap.stanford.edu/data/web-FineFoods.html and Ref. [26].
ehttp://labrosa.ee.columbia.edu/millionsong/tasteprofile and Ref. [27].

In the second experiment we generate surrogate networks
where both edge and vertex strengths are allowed to vary.
The edge weights are again constrained to an interval cor-
responding to the range of the edge weights in the original
network, while the vertex strengths W (v) are constrained to
the interval [0.9W (v), 1.1W (v)] for each vertex v ∈ V in the
original network. In the context of recommender systems this
means that the total ratings given by a user and the total ratings
received by an item cannot vary more than ±10% from the
value observed in the original data set.

In both experiments we consider the scalability of the
CycleSampler method presented in this paper. Essentially, we
want to determine typical running times when actually using
the CycleSampler on real-world data sets. When using an
MCMC sampler it is essential to ensure that the chain has
converged before samples are used. However, studying the
convergence of Markov chains is a nontrivial problem, and
we here consider convergence in terms of a simple graphical
technique. More exactly, we produce a trace plot showing the
difference between the edge weight vector of the observed
network (w) and the jth surrogate network from the sampler
(w∗

j ) evolves over time. We measure this difference using the
l2 norm

‖w − w∗
j ‖2

=
{

n∑
i=1

[w(i) − w∗
j (i)]

2

}1/2

. (19)

We use this difference as a heuristic and conclude that the
chain has converged when the difference no longer increases,
i.e., when the curve levels out. It should be noted that this does
not prove that the chain has converged, it indicates only if the
chain has not converged.

Results

In the experiments we set a target of obtaining 100 000
surrogate networks. We used a cutoff time of 48 h for the

experiments. The convergence experiments were run on a
high-performance computing cluster [22] (one core from an
Intel Xeon E5-2680 2.4 GHz with 30 Gb RAM) using R
version 3.5.3. The full number of surrogate networks were
obtained for Last.fm, MovieLens 100k, BookCrossing, Fine-
Foods, and MovieLens 1M. For MovieLens 20M we obtained
15 500 surrogates in the first experiment and 16 500 surrogates
in the second experiment. For TasteProfile we obtained 4750
surrogates in the first experiment and 4650 surrogates in the
second experiment.

The initialization and sampling times (both in seconds)
of the sampler are presented in Table III, recorded on a
standard laptop equipped with a dual-core 2.6 GHz Intel Core
i7-6600U processor and 20 Gb of RAM, running a 64-bit
version of R (v. 3.5.2) on Linux. The initialization time (tinit)
is the time required to set up the sampler, which consists of
determining the spanning tree and identifying the cycles.

We here refer to modifying the weights corresponding to
one of the cycles in a network as a step. We also denote taking
a number of steps corresponding to the dimensionality of the
null space of a network, |C|, as a cycle step. A cycle step hence
consists of |E | − |V | + 1 steps in experiment 1 and |E | + 1
steps in experiment 2 (all of our networks are bipartite).

The sampling time (tsample) for a particular network is
the time required to take a cycle step. It should be noted
that the sampling time does not include the time needed
to make the sampler converge (which, as shown below, is
on the order of 1000 cycle steps). The reported sampling
time is the average of 10 samples. The subscripts 1 and 2
are used to denote the initialization times for experiment
1 and 2, respectively. The initialization and sampling times
increase as the dimensionality of the null space of the net-
work increases. This is also reflected in the initialization and
sampling times for experiment 2, where the dimensionality of
the null space is higher due to the addition of one self-loop
per vertex required to preserve vertex strengths on an interval
(see Sec. II B).
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FIG. 8. Evolution of the l2 norm between the starting state and the current state of the sampler for experiment 1, where vertex strengths are
preserved exactly. For visualization purposes, the data points have been downsampled, taking points at logarithmically spaced intervals. Also,
the l2-norm is normalized to the interval [0, 1] so that 0 corresponds to the starting state and 1 to the maximum value of the norm. The x axis
shows the number of cycle steps (a number of steps equal to the dimensionality of the null space of a given network) to facilitate comparisons
between the different networks.

The initialization time is about a second for small networks
(Last.fm, MovieLens 100k) and less than 10 min even for the
TasteProfile network with tens of millions of edges. Similarly,
the time needed to produce a surrogate network ranges from
a fraction of a second for the small networks to about 1.5 min
for the largest network.

The results from experiment 1, where the vertex strengths
are preserved exactly, are shown in Fig. 8. We notice that
on the order of 1000 cycle steps are needed for the sampler
to converge for all data sets (i.e., for each data set we must

perform 1000 |C| modifications of weights using the cycles in
the network).

The results from experiment 2, where the vertex strengths
are preserved on an interval, are shown in Fig. 9. The sam-
pler clearly converges more slowly for all data sets than in
experiment 1; on the order of 10 000 cycle steps appears to
be required for convergence, which is approximately a tenfold
increase in number of cycle steps compared to experiment 1.
Here the sampler has not yet converged MovieLens 20M and
TasteProfile.
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FIG. 9. Evolution of the l2 norm between the starting state and the current state of the sampler for experiment 2, where vertex strengths
are allowed to vary on an interval. Visualization as in Fig. 8.

B. Analysis of international trade networks

To demonstrate the applicability of the proposed Cycle-
Sampler method in actual analysis scenarios we here apply
the CycleSampler to generate surrogate networks for investi-
gating clustering coefficients in networks describing the trade
between different countries.

We here aim to replicate the experiment in Ref. [2], who
compared the clustering coefficients of the original data with
surrogates where (1) edge weights were preserved exactly and
(2) where strengths were preserved. Given a network, weight-
preserving surrogates can easily be obtained by randomly
shuffling the weights in the network. Strength-preserving
surrogates, on the other hand, require more advanced methods
such as the CycleSampler method presented in this paper.

The authors of Ref. [2] consider the generation of strength-
preserving surrogates in the case of undirected and complete
networks; i.e., the direction of trade between countries is not
taken into account, and it is assumed that any country can
trade with any country. The assumption of complete networks
means that the structure of the generated surrogates does not
agree with the original networks, i.e., edges may be introduced
or removed. In contrast, the surrogates generated here keep the
network structure intact.

1. Data

The International Trade Network data set we consider
here is the Expanded Trade and GDP data set [28] obtained
from http://ksgleditsch.com/exptradegdp.html. The data set
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describes the trade relations between different countries from
1948–2000 (one network per year). The dimensions of the
trade networks vary between 1948 and 2000 in terms of the
number of edges and vertices. For each pair of countries i
and j, the data set describes the export Ei, j and import Ij,i

from i to j (and vice versa). The network is directed, i.e., the
amount and direction of trade between two countries is not
symmetric. Also, it should be noted that the export from i to j
does not exactly equal the import to j from i due to differences
in reporting [29].

We form two types of networks from the data set as
follows. We form directed trade networks Wd as

Wd
a,b = 1

2 (Ea,b + Ib,a), (20)

where Wd
a,b denotes the average of the export from a to b and

the import to b from a.
Also, following Ref. [2], we form an undirected trade

network Wu as

Wu
a,b = 1

2 (Ea,b + Eb,a + Ia,b + Ib,a), (21)

where Wu
a,b denotes the average of all trade relations between

a and b and consequently Wu
a,b = Wu

b,a, i.e., the network is
undirected and symmetric.

To be able to compare our results to Ref. [2] we follow their
procedure and omit zero-weight edges from all networks, and
we also normalize the networks by dividing the edge weights
in a network by the average edge weight of the network.

2. Clustering coefficient

Let W = (V, E ) be either a directed or undirected trade
network as defined above having m vertices. Let Wa,b denote
the weight of the edge between vertices (countries) i and j.
Also denote by max (W) the maximum edge weight in W.

We calculate both the weighted clustering coefficient C,
and the unweighted clustering coefficient K of vertex i [2,30]
for both directed and undirected networks.

The weighted clustering coefficient is defined as

Ci =
∑

j,k (Wi, jW j,kWk,i )
1/3

(m − 1)(m − 2) max(W)
, (22)

and the unweighted clustering coefficient is defined as

Ki = Ci max(W). (23)

For a given network W we determine the average clustering
coefficients C̄ and K̄ over all m vertices in the network.

3. Generating surrogates

We use the following experimental procedure to investigate
the clustering coefficients in the networks. For both undirected
and directed networks we generate three types of surrogates:

(1) Surrogates that do not preserve vertex strengths, but
which preserve the distribution of edge weights exactly, ob-
tained by randomly shuffling the edge weights in the network.

(2) Surrogates that preserve the vertex strengths exactly
but allow the edge weights to vary on a given interval.
The edge weights were allowed to vary from min w(e) to
max w(e), e ∈ E .

(3) Surrogates that preserve the vertex strengths on an
interval and allow the edge weights to vary on a given interval.

The edge weights were allowed to vary from min w(e) to
max w(e) for each edge e ∈ E . The vertex strengths W (v)
were allowed to vary from 0.75W (v) to 1.25W (v) for each
vertex v ∈ V , i.e., corresponding to a ±25% change in vertex
strength.

Following Ref. [2] we refer to the surrogates in (1) as
weight-preserving surrogates and to the surrogates in (2) and
(3) as strength-preserving surrogates.

The effect of the strength-preserving surrogates for a coun-
try i in a network is to redistribute the trade to and from
i to the other countries. For undirected networks the total
trade volume remains fixed (or restricted to an interval), but
it is not possible to distinguish the trade direction (import or
export). For directed networks the directed trade volume, i.e.,
volume of imports and exports, for a country i remains fixed
or restricted to an interval.

We generate 1000 weight-preserving networks by ran-
domly permuting the edge weights. Strength-preserving sur-
rogate networks are sampled using Besag and Clifford’s se-
rial method [31], which yields exact p values when used in
hypothesis testing. In this method the Markov chain is run
both forwards and backwards from the observed state, and
samples are taken at fixed intervals. Here we acquire 1000
surrogates taking the samples at intervals of 500 steps with
one step corresponding to the number of cycles in the network
(i.e., a cycle step).

4. Results

The experiments for the International Trade Networks
were run on the above described high-performance computing
cluster using R version 3.5.3. The experimental results are
presented in Fig. 10. The top row shows the average weighted
clustering coefficient C̄ for directed (top left) and undirected
(top right) networks. The bottom row shows the average
unweighted clustering coefficient K̄ for directed (bottom left)
and undirected (bottom right) networks.

The top-right figure showing C̄ for undirected networks,
and the bottom-right figure showing K̄ for undirected net-
works can be compared to the similar plots in Fig. 5 in Ref. [2]
showing C̄ and K̄ for undirected networks and strength-
preserving surrogates from 1948 until 2000.

The confidence bands for C̄ and K̄ that we calculate for
both types of surrogates generated using CycleSampler are
generally above the C̄ and K̄ from the original data. We
also notice that C̄ and K̄ from surrogates preserving vertex
strengths on an interval (shown with dotted lines in Fig. 10)
are generally higher than C̄ and K̄ from surrogates preserving
vertex strengths exactly (shown with dashed lines in Fig. 10).
Also, the confidence bands closely match the time evolution
of C̄ and K̄ from the original data. This applies to both surro-
gates preserving the vertex strengths exactly and to surrogates
preserving the vertex strengths on an interval.

These results can be contrasted with those in Ref. [2] (in
particular Fig. 5), who observe that the confidence band for
the average weighted clustering coefficient C̄ is both above
(in the 1950s and 1960s) and below (roughly from 1970
onward) the clustering coefficient calculated from the original
data. From this one might conclude that in recent decades
trade flows between countries have become more “uniform”
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FIG. 10. The average weighted (C̄) and unweighted (K̄) clustering coefficients for the International Trade Networks between the years
1948–2000. The clustering coefficient for the original data is shown in solid black. For each type of surrogate, the upper and lower one standard
deviation confidence bands for the mean are plotted. The confidence intervals for weight-preserving surrogates is shown using dot-dash lines,
for surrogates preserving vertex strengths exactly using dashed lines, and for surrogates preserving vertex strengths on an interval using dotted
lines.

than observed in random surrogate networks. (The weighted
clustering coefficient is small when most of the trade flow
takes place between only a few countries.) However, if the
structure of the ITNs is taken into account when generating
the surrogate networks, our observations suggest that no such
change has happened during 1948–2000; we consistently
observe that the average weighted clustering coefficient C̄ is
lower in real networks.

Finally we note that, similar to Fig. 5 in Ref. [2], C̄ and
K̄ from the weight-preserving surrogates (dot-dash lines) are
consistently much lower than C̄ and K̄ calculated from the
original data.

IV. CONCLUSIONS

Generating surrogate networks has important applications
in multiple domains where it is required to investigate and
understand the significance of different phenomena described
by the structure of the network. Many such networks are often
sparse and large, and consequently generating surrogate net-
works adhering to specific constraints is a difficult problem. In
this paper we presented CycleSampler; a Markov chain Monte
Carlo method for structure-preserving sampling of both di-
rected and undirected networks with interval constraints on
both edge and vertex strengths.

The presented method provides an efficient means for
generating surrogates for large networks, and we provided
an empirical evaluation demonstrating that the method scales
to large sparse real-life networks. We believe that the Cycle-
Sampler method has applications in many domains. We have
released an open-source implementation of the method as an
R package [20].
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APPENDIX A: A NOTE ON
MAXIMUM-ENTROPY MODELS

We here describe the maximum-entropy model used in the
examples in the introduction. The problem formulation in the
maximum-entropy model when modeling edge weights is as
follows:

Problem 3 (Maximum-entropy model). Find a probability
density p over the edge weights w∗ from the model such that
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the entropy

S = Ep(w∗ )[− log p(w∗)]

is maximized, subject to the constraint that the expected vertex
strengths match the observed vertex strengths:

for all v it holds that Ep(w∗ )[W
∗(v)] = W (v) =

∑
e∈n(v)

w(e).

The solution to Problem 3 is given by the following lemma;
for a proof refer to the proof of Theorem 12.1.1 in Ref. [32].

Lemma 4. The probability density p that maximises the
entropy in Problem 3 is of the form

p(w∗) ∝ exp

[∑
v

λvW
∗(v)

]
∝ exp

[ ∑
e∈n(v)

λew
∗(e)

]
.

Hence, in order to solve Problem 3 we must find the
edge-specific Lagrange multipliers λe, which is a convex
optimization problem that can be solved numerically.

APPENDIX B: PREPROCESSING OF DATA SETS

We performed the following preprocessing steps for the
networks: (1) duplicated edges were removed; (2) for Last.fm
and TasteProfile all ratings above 2500 and 20, respectively,
were discarded; (3) for BookCrossing we used only explicit
ratings (i.e., nonzero ratings), rows with book id:s containing
the symbol “?” were discarded, and the symbols “\,” “=” as
well as blank spaces were removed from the book id:s.
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