
International Scholarly Research Network
ISRN Software Engineering
Volume 2012, Article ID 561502, 9 pages
doi:10.5402/2012/561502

Research Article

State-Model-Based Regression Test Reduction for
Component-Based Software

Tamal Sen and Rajib Mall

Department of Computer Science and Engineering, Indian Institute of Technology, Kharagpur 721302, India

Correspondence should be addressed to Rajib Mall, rajib@cse.iitkgp.ernet.in

Received 25 July 2012; Accepted 16 August 2012

Academic Editors: D. Tang and R. J. Walker

Copyright © 2012 T. Sen and R. Mall. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We present a novel regression test selection approach based on analysis of state and dependence models of components.
Our technique targets to select a smaller regression test suite compared to the pure dependence-based RTS approaches while
maintaining the fault revealing effectiveness. In our approach, after a modification, control and data dependencies are analyzed
to identify the potentially affected statements. Subsequently, the state model of the component is analyzed to compute a precise
publishable change information to support efficient regression test selection by the application developers.

1. Introduction

A component is an implementation of a cohesive group
of reusable services in a single executable unit. Compo-
nents are developed independently, available off the shelf
and integrated into a component-based application by the
developers. Component-based development has found rapid
acceptance among software developers due to its promise of
helping lower the overall development costs and at the same
time speeding up the development process.

Components can be written using a variety of program-
ming languages and may be distributed across different
platforms [1]. To protect the IPR (Intellectual Property
Rights) of the developers, usually source code is not
included in the component licence. Component services are
accessed through supported interfaces. Components usually
support two different types of interfaces: provided and
required. Provided interfaces specify the services offered
by the component. A service offered by a component is
also variously referred to as provided operation, published
operation or published method. On the other hand, con-
crete implementation of the required interfaces is left to
the users of the component. The interfaces are generally
defined using an interface definition language (IDL). The
application developers make use of interface definitions
of the components to develop an application. Though

component-based development offers many advantages,
unavailability of source code makes testing activities such
as coverage analysis and regression test selection difficult to
carry out.

Regression test selection (RTS) is the process of selecting
a subset of initial system test cases for regression testing.
Regression testing is particularly important in a component-
based environment, since the components evolve indepen-
dently and are upgraded frequently. In this context, analyzing
change impact as well as selecting a safe subset of the system
test cases for regression testing in an efficient and precise
manner is important.

For component-based software, traditional RTS tech-
niques are difficult to use because the application developers
do not have the source code for analyzing the change impact,
neither can they obtain coverage data of the test suite through
code instrumentation. It may be unrealistic to expect com-
ponent vendors to provide those information due to obvious
reasons. To facilitate regression testing, it becomes necessary
for component vendors to provide built-in-test interfaces
[2–4] or to publish abstracted change information such
as affected method signature, pre/postconditions, among
others after each modification.

The simplest form of change information can be a
collection of affected methods which could be published
after every modification to a component. Techniques for
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identifying affected methods can be as simple as choosing
those methods which have been modified or those that
directly or indirectly call a modified method [5]. But errors
can also show up in the unmodified parts that are control
or data dependent on the actually modified parts. Analysis
of control and data dependence relationships therefore is
necessary for detecting faults that get induced due to code
changes elsewhere [6]. Hence, all affected published methods
need to be published in the change information in order to
make regression testing safe.

In contrary to what is implicitly assumed by many
existing techniques [5, 7], invoking an affected method does
not ensure that the affected statements inside that method
will be executed. A pure dependence-based technique such
as [7] selects test cases which invoke one or more component
methods that have been found affected by dependence
analysis. As a result, redundant test cases might get selected
which invoke affected methods but do not actually execute
affected statements. In this context, we propose an RTS
technique in which, after identifying the affected statements
by dependence analysis, the state model of the component is
analyzed to identify the transitions that may cause execution
of the affected statements. The set of affected transitions is
published and only affected-transition-traversing test cases
are chosen for regression testing, instead of choosing all
of them which invoke affected methods. Since a transition
may not cause execution of every statement of a published
method, it is possible that some test cases invoke an affected
published method but do not trigger an affected transition.
Consequently, we end up in selecting a smaller regression test
suite. We have named our technique as State model analysis
based Regression Test Selector for component-based system
(S-RTS).

This paper is organized as follows: Section 2 describes
some background concepts such as the dependence and
state models of a program. Section 3 discusses model-
code translation using an example. Section 4 presents the
methodology of our approach. In Section 5, we report exper-
imental results. Related literature is reviewed in Section 6.
In Section 7, we conclude the paper.

2. Background Concepts

We discuss a few background concepts that have been used
to develop our regression test selection approach.

2.1. Java System Dependence Graph. As defined by Podgurski
et al. [6],

Program dependences are relationships, holding
between program statements, that can be deter-
mined from a program’s text and used to predict
aspects of the program’s execution behavior.

A dependence model of a program is an abstract rep-
resentation of various dependencies existing in a program.
Dependence models have widely been used in software
engineering activities such as program testing, debugging,
and test optimization. A dependence model for monolithic

single procedure program, called Program Dependence Graph
(PDG), was proposed by K. J. Ottenstein and L. O. Ottenstein
[8]. Later, a notion called System Dependence Graph (SDG)
was introduced by Horwitz [9] to capture interprocedural
dependence for procedural programs. Later, SDG has been
extended by many researchers to incorporate object-oriented
features considering languages like C++ and Java [10–12].

The Java System Dependence Graph (JSDG) proposed by
Walkinshaw et al. [12] is briefly discussed to enhance the
readability of the paper.

(i) A statement vertex represents a single statement in the
source code. If the statement includes a method call, a
call-site node is created with formal-in and formal-out
vertices.

(ii) For each method in a class, a Method Dependence
Graph (MDG) is created. MDG captures intramethod
control and data dependencies similar to a PDG [8].
MDG includes a method entry vertex to represent the
entry point to the method and also includes actual-
in/actual-out vertices to model parameter passing. To
represent a method call with parameters, the call-
site vertex is connected to the method entry vertex
with call dependence edge, actual and formal vertices
are also connected accordingly. Parameter vertices
are also created for instance variables which are
referenced, or modified inside the method.

(iii) Each class is represented by a Class Dependence Graph
(ClDG). For every class, the ClDG consists of a
class entry vertex representing the entry point to the
class. The method entry vertex of the MDG of a
method in a class is connected to the class entry
vertex via class member edge. Class member edges
are tagged according to the visibility of the method
(public, private, protected or default). The class entry
vertex is also connected to vertices representing its
instance variables via data member edges. To represent
inheritance, the class entry vertex of the derived class
is connected to the class entry vertex of its parent via
a class dependence edge.

(iv) In JSDG, different instances of a class are represented
separately. A statement vertex which references an
object is expanded into a tree depending on how the
object is referenced.

(a) If an object is passed as a parameter to a
method, the parameter is connected to the
nodes representing possible subtypes of the
parameter object. The node representing each
object type is further connected to the nodes
representing the objects data members via a
control dependence edge. If a data member is
again an object, it is further expanded into a
subtree.

(b) For a polymorphic method call on an object,
the corresponding call site vertex is connected
to a vertex representing the object defining
the method and further connected to vertices
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representing possible polymorphic bindings of
the method.

(v) To represent an interface, Interface Dependence Graph
(InDG) is created. InDG consists of an interface entry
vertex which is connected to its abstract methods
via abstract member edges. Abstract methods are
represented by a method entry node with parameter-
in/parameter-out vertices. The method entry vertex of
an abstract method is connected to the method entry
vertex of its implementing method via implement
abstract method edge. Interface entry vertex of an inter-
face and the class entry vertices of its implementing
classes are connected via implements edge.

(vi) Representation of an abstract class includes a class
entry vertex which connects entry vertices of concrete
methods via normal class member edge and connects
entry vertices of abstract methods via abstract mem-
ber edge.

(vii) A package is represented by a Package Dependence
Graph (PaDG). PaDG consists of a package entry
vertex connecting representations of its classes and
interfaces via package member edge.

2.2. State Model. The state model of a system shows the
possible states that the system can assume and the transitions
among the states. Usually state models are constructed
by designers during design phase. However, researchers
have proposed several automated techniques for reverse
engineering the state model from source code [13–15]. The
state model of a program is defined as follows.

Definition 1 (state model). A state model is quadruple:
〈Q, S,V ,T〉.

(i) Q: finite set of states. Each state q ∈ Q is labelled with
an unique identifier denoted as q · id.

(ii) S: finite set of events.

(iii) V : finite set of variables.

(iv) T : finite set of transitions. A transition t is a
quintuple: 〈qpre, st, guard, action, qpost〉.

(a) qpre, qpost ∈ Q: source and target state of t.

(b) st ∈ S: event that triggers t.

(c) guard: predicate on parameters of st.

(d) action: finite set of manipulations on V .

Consider the state model of PrintHello component
depicted in Figure 1(a). The PrintHello component has
two states called Small and Capital, and it has a published
method called print. On invocation of print in different states,
the word “Hello” is printed in different cases. When print is
invoked in state q1, “Hello” is printed in small case on the
other hand, “Hello” is printed in upper case when print is
invoked in state q2. If print is invoked in state q1 and the
value of parameter p is zero, a transition occurs to state q2

but the state is not changed if print is invoked with a nonzero

parameter. A transition occurs from q2 to q1 only if print
is invoked exactly twice with nonzero parameter. In q2, a
variable named a keeps track of the number of invocations
of print with nonzero parameter and it is made to zero when
a transition occurs to state q2.

3. Code Generation from State Model

In this work, we assume that components are developed
using model-driven development (MDD) paradigm in which
the state model is designed first and later, and the model
is translated into Java code. We further assume that during
various maintenance activities the state model is altered
and then the code is regenerated from the updated model,
and/or the source code is changed without affecting the
state model. Several tools at present support model-to-code
translation. For example, Simulink State Flow [16] supports
state chart to C/C++ code generation, and Rhapsody [17]
supports C++/Java code generation from UML state charts.
Techniques for UML state chart to Java translation also
have been reported by Mehlitz [18] and Niaz and Tanaka
[19]. These tools carry out model-to-code translation by
using a set of rules and therefore a strong correspondence is
maintained between model elements (e.g., state, transition)
and the generated code.

In this section, we consider a specific model-code transla-
tion scheme based on state design pattern [20] and we discuss
how code is generated from a state model. Subsequently, we
define a special case of model-code correspondence called
Transition Statement Correspondence (TSC).

At first, the main component class is created with the name
same as the component. Later, during translating transitions
into code, published methods are created inside it.

States in the model are translated into concrete classes by
implementing the State interface. The State interface includes
an abstract handler method for each published method in the
main component class. These abstract handler methods are
implemented in the concrete state classes. A published method
inside main component class internally invokes its handler
method implemented in the concrete state class of the present
state.

As mentioned in Definition 1, a transition has five
attributes: source state, target state, an event, a guard condi-
tion, and an action. While generating code from a transition,
various attributes are translated using the following rules.

(i) To represent the event, a published method is created
in the main component class, an abstract handler
method is created inside the State interface, and
the handler method is implemented in concrete state
classes.

(ii) To represent the guard, an if-then block is intro-
duced inside the handler of the published method
implemented in the concrete state class of source state.

(iii) The action is translated into statements inside the
if-then block that represents the guards.

(iv) The target state of a transition is specified by calling
setState() method of the main component class.
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Small Capital

t2: print (p)

[p==0]

t1: print (p)

[p!=0]

t5: print (p)
[a==2 && p!=0]

a = 0

t3: print (p)

t4: print (p)
[p!=0]

[a!=2 && p! = 0] /a=a+1

(a) State model of PrintHello component

1 interface State {
2 abstract void printHandler (PrintHello ph, int p);

3 }
4 class Small implements State {
5 public String id="small";

6 public void printHandler (PrintHello ph, int p) {
7 System. out. print ("hello");

8 if(p !=0){ }
9 if(p ==0) // change state only if p is 0

10 ph. setState (new Capital ());

11 } }
12 class Capital implements State {
13 public String id="capital";

14 private int a=0;

15 public void printHandler (PrintHello ph, int p) {
16 System. out. print ("HELLO");

17 if(p !=0){
18 a=a+1;

19 if(a ==2){
20 a =0;

21 ph. setState (new Small ());

22 }}}}
23 public class PrintHello {
24 private State myState ;

25 public PrintHello () {
26 setState (new StateA ());

27 }
28 void setState (State newState) {
29 this. myState = newState ;

30 }
31 public void print (int p) {
32 this. myState. printHandler (this, p);

33 }
34 // state reporting method

35 public String getCurrentState (){
36 if(myState instanceof Small)

37 return ((Small ) myState). id;

38 if(myState instanceof Capital)

39 return ((Capital ) myState). id;

40 }}

(b) Java code generated from the state model

Figure 1: State model of PrintHello component and the generated code.
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The main component class keeps a reference of the current
state. We assume that a state reporting method named
getCurrentState() is created inside the main component
class, which returns the symbolic identifier of the current
component state.

Figure 1(b) shows the Java code generated from the state
model shown in Figure 1(a). As can be seen there, the class
PrintHello is created as main component class. The states in
the model (Small and Capital) are represented by the classes
called Small and Capital. Transitions are translated by
translating their attributes one by one. For t1, the published
method print() is created inside the main component class
PrintHello. Inside the State interface, an abstract handler
called printHandler() is created for the published method
print. Since the source state of the transition is Small, the
code is generated inside the printHandler implementation
of Small class. An if-then block is created in line 8 to
represent the guard, and since there is no action specified
in the transition, no statement is created inside the if-then
block. In the same way, for the transition t2, statements in
lines 9 and 10 are generated. The state change caused by t2 is
represented by a call to the setState() method of the main
component class. Other transitions are also translated in the
same way based on the above-mentioned rules.

When a transition t occurs in a component under exe-
cution, the set of statements generated from t is executed. In
this context, we define Transition Statement Correspondence
or TSC assuming that S is the set of statements in the
generated code.

Definition 2 (TSC). For a given state model and the gener-
ated code from it, TSC is defined as a mapping from the set of
transitions T to set of all subsets of S, that is, TSC : T → 2S ,
such that, for all t ∈ T , the statements in TSC(t) are executed
when the transition t takes place.

For instance, when the transition t2 occurs, statements
{9, 10} are executed. Therefore, TSC(t2) = {9, 10}.

4. S-RTS: Our Proposed Approach

In this section, we present the methodology of our S-RTS
approach. We first present a brief overview and subse-
quently provide a more detailed discussion of the different
steps.

Overview of S-RTS. A component undergoes a number of
corrective, perfective, or adaptive changes throughout its life
cycle. After the planned changes are made, a Component
Dependence Graph (CDG) is constructed from the new
version of the component. The dependence graphs as well
as the state model of the component are analyzed by
the developers of the component in order to compute a
precise change information. Finally, the change information
is published during release of the modified version of the
component.

On the application developers’ end, transition coverage is
recorded for each test case during initial testing. When a new

version of a component is integrated, regression test cases are
selected based on:

(i) change information published by the vendor of the
upgraded component,

(ii) transition coverage of the initial test cases.

Figure 2 shows various activities carried out at two
different ends. A rectangular box represents an activity, and
an ellipse represents input/output artifact of an activity. In
the following subsections we elaborate the activities carried
out in different stages of S-RTS.

4.1. Dependence Model Construction. A component in isola-
tion is an incomplete system. Assuming the component is
developed in Java, a driver class is introduced in order to
make it a working software. The driver class consists of a
method called frame [10] which simulates invocations of
published methods of the component in all possible ways.
Inside a frame, each published method is invoked within an
infinite loop. In this setup, component developers construct
a Component Dependence Graph (CDG) by using JSDG
construction technique [12] discussed in Section 2.1. The
node representing the entry point to frame is denoted as
component entry node. Figure 3 shows the driver class created
for the PrintHello component that is shown in Figure 1.

4.2. Change Impact Analysis. After modifications are made,
component developers identify the statements which are
either directly changed or affected indirectly due to the
modifications. At first, using a similar comparator algorithm
as in [21], the CDG for the modified component (CDGn)
is compared with the CDG of the previous version (CDGo).
The algorithm recursively finds matching nodes between
CDGo and CDGn starting from their component entry nodes.
Whenever an unmatched node is found in CDGn, the
algorithm reports all nodes as modified which belongs
to the subgraph rooted at the unmatched node. Later, a
forward slice is performed to determine the set of indirectly
affected model elements. Each modified nodes reported
by the model comparator, and the variables defined in
those modified nodes are used as the slicing criteria. Each
statement that corresponds to directly/indirectly affected
nodes in CDGn is reported as affected statement. The set of
all affected statements in the modified program is denoted by
Sa.

Subsequently, component developers identify the
affected transitions based on the Transition Statement
Correspondence (TSC). A transition which may cause
execution of affected statements (i.e., statements in Sa) may
lead to unexpected results. So, for a transition t, if TSC(t)
includes any of the statements in Sa, it is marked as an
affected transition.

4.3. Publishing Change Information. The set of affected
transitions is made available to the application developer as
change information (denoted by Mrts) during release of the
upgraded component. A transition t ∈Mrts is represented as
a vector 〈t · qpre · id, s, g, t · qpost · id〉 where s is the event, g
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Figure 2: A schematic of our S-RTS methodology.

1 public class PHDriver {
2 public void frame (){
3 // initialize PrintHello
4 PrintHello hc = new PrintHello ();
5 while (true){
6 // call published methods
7 hc. print ();
8 }
9 }
10 }

Figure 3: Driver class for PrintHello component shown in Figure
1.

is the guard condition, and t · qpre · id and t · qpost · id are the
identifiers of source and target states of transition t.

4.4. Application Developer Activities. In our approach change
information is provided to the application developer
with each modified version of the component. Regression
test cases are selected based on the change information
along with the transition coverage of the initial test
cases.

4.4.1. Obtaining Transition Coverage. Transition coverage is
obtained during execution of the initial test suite. For each
method invoked by a test case, the following information
is recorded in order to determine the transition that might
occur by the method call.

(i) State identifiers of the component states before
(preId) and after (postId) the method invocation. The
getCurrentState() method of the component is
called before and after the method invocation to
record preId and postId.

(ii) Signature of the method (s).

(iii) Vector of parameter values of the method (sv).

A 〈preId, s, sv, postId〉 vector stands for a transition
having source state id preId, target state id postId, event s,
and having a guard condition that is satisfiable by sv. The set
of 〈preId, s, sv, postId〉 vectors obtained during execution of
a test case t, therefore, corresponds to the transition coverage
for t. Transition coverage of a test case t is denoted by the
term coveragem(t).

4.4.2. Regression Test Selection. In this section, we present
an algorithm to select regression test cases based on the
transition coverage and the change information.

The RTS algorithm (Algorithm 1) scans the transition
coverage (coveragem) for every test case t in the initial test
suite (Tinit) and identifies the test cases which may cause
affected transitions to occur. A test case t may cause an
affected transition to occur iff:

(i) ∃(preId1, s1, sv, postId1) ∈ coveragem(t),

(ii) ∃(preId2, s2, g, postId2) ∈Mrts,

(iii) (preId1, s1, sv, postId1) and (preId2, s2, g, postId2)
are equivalent.

(preId1, s1, sv, postId1) and (preId2, s2, g, postId2) are
said to be equivalent if preId1 = preId2, postId1 = postId2,
s1 = s2, and g2 is satisfiable by sv. Satisfiability is checked
using a subroutine called satisfy which takes two arguments:
a condition over a set of variables and a vector of values of
those variables. satisfy returns true only if its first argument
is satisfiable by the variable values specified in the second
argument.

The RTS algorithm is presented in Algorithm 1. Inputs
to the algorithm are the initial test suite (Tinit), transition
coverage of each test case in initial test suite (coveragem(ti))
for each ti ∈ Tinit and the set of affected transitions (Mrts)
which is obtained as change information. The output of the
algorithm is the set of regression test cases, denoted by Trts.

In line 1 of Algorithm 1, Trts is initialized as an empty
set. The statements in lines 2–18 are iterated for each test
case ti in Tinit and ti is included into Trts if required. Inside
the loop, at first, a flag called selected is initialized to false.
After that, each element of coveragem(ti) is checked whether
it is equivalent with an element in Mrts. If an equivalent
pair is found, the flag selected is made true in line 7 to
indicate that ti covers an affected transition in that case,
control jumps out from the two nested loops and in line 16
the test case ti is included into Trts. If no equivalent pair is
found among coveragem(ti) and Mrts, the statement in line
7 is never reached; consequently, selected is never made true
and ti is never included into Trts in line 16.

At termination Trts contains the set of regression test
cases.

5. Experimental Studies

We have developed a prototype tool in Java to implement our
S-RTS methodology. The prototype tool was used to carry
out RTS on several component-based systems developed
in Java. We considered five applications: Television Remote
Simulator (TRS), Robocop Simulator (RS), Elevator Control
System (ECS), Vehicle Controller (VC), and ATM system
simulator (ATM). The study subjects had been characterized
based on the number of classes (nCLS) in the program and
number of test cases in the initial suit (nITS).

TRS is a small program consisting of a television remote
controller component and a main component which uses
services provided by the remote controller component.
The remote controller component provides services like
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Input: Tinit: Initial test suite,
coveragem(t) for all t ∈ Tinit,
Mrts: set of affected transitions

Output: Trts

1: Trts ← φ
2: for each t ∈ Tinit do
3: selected ← false
4: for each (preId1, s1, sv, postId1) ∈ coveragem(t) do
5: for each (preId2, s2, g, postId2) ∈ Mrts do
6: if preId1 = preId2 and s1 = s2 and satisfy(g, sv) and postId1 = postId2 then
7: selected ← true
8: break
9: end if
10: end for
11: if selected = true then
12: break
13: end if
14: end for
15: if selected = true then
16: Trts ← Trts ∪ t
17: end if
18: end for
19: return Trts

Algorithm 1: Select regression test cases.

Table 1: Summary of experimental results.

Study subject nTCS Percent of reduction Percent of detected faults

Name nCLS nITS D-RTS S-RTS D-RTS S-RTS D-RTS S-RTS

TRS 2 13 10 7 23.1 46.2 100 100

RS 4 11 10 8 9.1 27.3 100 100

EC 6 12 6 5 50 58.3 100 100

VC 8 14 6 4 46.4 71.4 100 100

ATM 12 20 20 18 0 10 100 100

Average percent of reduction: S-RTS: 42.64, D-RTS: 25.72

power on/off, volume control, and channel change. Robocop
Simulator is a computer game that simulates a scenario
where a thief can move in a given map and a robotic police
is responsible to catch the thief. RS consists of controller
components for simulating a thief and a robotic police.
There is another component which simulates a scenario
map. ECS implements the basic functionalities of an elevator
system. It includes components for door controller, car
controller, door sensor, floor sensor, and a central elevator
controller which integrate other components and provide
user level functionalities such as calling the elevator car
and moving to a specified floor. Vehicle Controller system
consists of several controller components such as wiper
controller, ac controller, and headlight controller. It also
includes sensor components like daylight sensor, rain sensor,
and temperature sensor. A main component integrates the
other component to simulate a vehicle controller system.
ATM simulator is made out of several cohesive components
such as banking component, physical ATM component, a
transaction component, and a GUI component. The GUI

component integrates other components and also provides
an interface to interact with the ATM system.

At first we injected faults into the study programs. The
types of injected faults include changing arithmetic operators
and changing the definition and use of variables. After
that, we performed RTS to find the number of test cases
selected (nTCS) as well as the number of faults detected. The
metrics based on which we compared our approach (S-RTS)
with a pure dependence-based approach (D-RTS) [7] are
percentage reduction in size of regression test suite and the
percentage of detected faults over the faults injected earlier.
The results obtained from the experiments are summarized
in Table 1.

From the experimental results, it can be observed that
in all cases both approaches detected 100% faults which
indicate that both approaches revealed every fault that we
had injected earlier. In contrast, S-RTS achieves higher
regression suite reduction in all the cases as compared to
D-RTS. It can also be observed that test case reduction
effectiveness of the approaches does not depend on the
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size of the input program, rather the degree of dependence
inside a component can affect the effectiveness of a test
case selection approach. The more the program elements
are interdependent on each other, the more number of
statements get affected by a given change. Therefore, when
there is a strong dependency among program elements,
injected faults affect a large number of statements, causing
larger size of change information and causing increased
size of the regression test suite. This aspect is probably
reflected in the ATM case study. It is found that, for ATM
case study, D-RTS does not reduce the size of regression
test suite and even for S-RTS, percent of reduction is only
10.

Our empirical studies show that on the average D-RTS
results in 25.72% reduction in initial test suite, whereas S-
RTS achieves about 42.64% reduction without affecting the
fault revealing effectiveness.

6. Comparison with Related Work

Several research results have been reported in the area of
regression testing for a component-based system [1, 3, 5, 7,
22–24]. We compare these with our work.

Orso et al. [24] proposed an RTS approach that makes
use of metadata and metamethods provided by the com-
ponent vendor. As described by them, metadata consists
of various forms of static data about the source code, and
metamethods compute or retrieve such information as well
as collect dynamic information such as execution traces dur-
ing test case execution. In their approach, both instrumented
and noninstrumented versions of each published method are
supported by the component and the application developers
can decide which one to use. During test case execution,
application developers execute the instrumented versions of
the component methods. By invoking metamethods, they
obtain the coverage data in terms of edges of the control
flow graph (CFG) of the component. For every new release
of the component, change information is published in
terms of CFG edges affected by the modification. Finally,
application developers choose regression test cases based on
the change information and the collected coverage data. In
their method, however, component vendors have to provide
too detailed change information, and they also need to
incorporate built-in coverage facilities so that application
developer can obtain execution traces during test case
execution. Moreover, their approach does not seem to
consider data and control dependencies among statements
while computing the change information.

Sajeev and Wibowo [5] proposed an RTS approach which
selects all test cases that directly or indirectly call a changed
component method. But all test cases that invoke a changed
method may not execute the modified region of the code. As
a consequence, the approach may select redundant test cases
for regression testing.

Beydeda and Gruhn [22] proposed an abstract graphi-
cal representation called Component-Based Software Flow
Graph (CBSFG) to represent a component. It combines the
features of Class Control Flow Graph [25] and Finite State

Machine [26] representation of the component. They gener-
ated black box test cases based on the CBSFG constructed
from the component-based system. They also proposed a
test selection technique based on the technique proposed
by Rothermel et al. [25]. However, it is not clear how
application developers can obtain the necessary information
for constructing the CBSFG when source code is unavailable.
It is also not clear that how coverage data of the test cases can
be obtained in terms of the elements of the CBSFG to select
regression test cases.

Pan et al. [7] proposed a technique for selecting regres-
sion test cases by slicing the system dependence graph con-
structed from a component-based system. Their proposed
SDG model captures interstatement/interoperation/inter-
interface control and data dependence relationships as well
as dependence between components and their execution
contexts. At first, a method dependence graph is constructed
for each method, and then its summary information is
used to compose an operation dependence graph for
each operation defined in an interface. Similarly, interface
dependence graphs, component dependence graphs, and
the system dependence graph are recursively constructed.
They presented a slicing algorithm with which the affected
operations, calling contexts, and dependence relationships
can be identified. However, when source code of a com-
ponent is not made available to the application developer,
interstatement dependencies cannot be determined by them.
Consequently, affected elements can be identified no better
than affected operations. As a result, the selected regression
test suite may contain redundant test cases which invoke
the affected operations but do not execute any affected
statements.

In our approach, we analyze a dependence model of
a component to identify the affected elements. We further
analyze the state model of the component to identify the
affected transitions due to a modification. A test case is cho-
sen for regression testing only when it exercises an affected
transition. Consequently, our approach yields a smaller
regression test suite as compared to the approaches which
select test cases only based on affected published methods.
At the same time, our approach does not compromise the
quality of regression testing.

7. Conclusion

We have proposed an RTS technique that uses dependence
analysis to identify the affected elements. It involves an
analysis of the component state model to reduce the number
of test cases for regression testing. Our experimental studies
indicate that S-RTS selects lower number of test cases for
regression testing as compared to related approaches. The
approach is based on the assumption that there is a strong
correspondence between the design level state model and
the executable code. Our technique can be easily used when
the code is autogenerated from the state model. However,
the technique can also be used in case the code is not
autogenerated from the state model, if the state model can
be reverse engineered from the source code.
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