
International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-8 Issue-3, September 2019

4617

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number C6834098319/2019©BEIESP

DOI: 10.35940/ijrte.C6834.098319

ABSTRACT--- Virtual screening using molecular docking

requires optimization, which can be solved by using

metaheuristics methods. Typically the interaction between two

compounds is calculated using computationally intensive Scoring

Functions (SF) which is computed in several spots which are

called as binding surfaces. In this paper we present a novel

approach for molecular docking which is based on parameterized

and parallel metaheuristics which is useful in leveraging

heterogeneous computing based on heterogeneous architectures.

The approach decides on the optimization technique at running

time by setting up a new configuration schema that allows

parallel offloading of the data intensive sections of the docking.

Hence the docking process is carried out in parallel efficiently

while performing the metaheuristics execution. The approach

carries out docking and computations of molecular interactions

required for SF in parallel so that the time efficiency is improved.

This opens a new path for further developments in virtual

screening methods in heterogeneous platform.

Keywords: Drug discovery, virtual screening, molecular

docking, high performance computing, metaheuristics,

heterogeneous computing

1. INTRODUCTION

Virtual Screening (VS) is very useful in the process of

drug discovery and it uses computationally intensive

techniques which can be used to analyze huge libraries of

tiny molecules to search for compounds which show affinity

towards binding with the target. Typically, these libraries

consist of millions of ligands which generate large number

of hits. The complexity of VS is decided by two parameters:

database size and the accuracy level. Hence, there is a need

for different computational techniques that enable docking

and calculation of binding affinity of different poses in

parallel. This, in turn, enables efficient docking using

heterogeneous platform [1-4].

There is a steady transition from normal computing to

heterogeneous computing in which CPU is combined with

GPU having many cores, which has the capability to speed

up the computationally demanding parts of the docking

process. Run time parameter is still under consideration

which helps in dynamic load balancing and offloading. In

particular, concepts like data organization and

programmability are still challenges that do exist in

heterogeneous platform [6].

The researchers are focusing on various other techniques

which can be applied to docking process like image

Revised Manuscript Received on December 22, 2018.

Abhishek.K, Research Scholar-Jain University, Dept. of Information
Science & Engineering., Jyothy Institute of Technology,

Tataguni,Bengaluru-560082, India, (E-mail

abhishek.mtech2012@gmail.com)
S. Balaji, Centre for Incubation, Innovation, Research and

Consultancy, Jyothy Institute of Technology, Tataguni, Off Kanakapura

Road, Bengaluru-560082, India, (E-mail drsbalaji@gmail.com)

processing, computational modeling, metaheuristics, etc.

This results in up scaling of efficiency in computer driven

scientific applications. Programmers play an important role

in improving the current application scenario and how the

parallelism is achieved. Programmers have to rethink or

redesign the sections which cause bottlenecks for the whole

process. We chose metaheuristics algorithms since they are

best suited for the current application though there are

various algorithms which suit well for this computing area.

Metaheuristics are usually applied to solve Non-Polynomial

(NP) hard problems. Many problems from bioinformatics

use this approach. For example, DNA analysis applies the

method to find out the sequence of chains. A tuning process

is necessary to select the metaheuristics to minimize the

computational cost [5-9].

We introduce a new technique for VS which generates the

metaheuristics schema needed for docking. This is designed

for leveraging the heterogeneous architectures. The

objective of this technique is to predict the binding

confirmations using SF. These functions can be used to

compute binding score throughout the protein surface.

Following are the highlights of this technique:

1. The methodology can generate a parameterized

schema based on metaheuristics based on different set

of input parameters.

2. This technique leverages the heterogeneous

computing based on CPUs and NVIDIA GPUs having

different capabilities. Load balancing strategy has

been introduced to distribute workloads among all

GPUs in the system

3. About the performance, the following observations

can be made:

a. Distribution of workload in a homogeneous manner is

not good for systems with GPUs with different

computational capabilities

b. Only technical specifications are not enough to

achieve peak performance, and there is a need for load

balancing at run time, with the workload depending on

the application reliability

All these strategies give the opportunity to improve the

solution quality in docking.

2. BACKGROUND

This section discusses about virtual screening methods,

metaheuristics and GPU computing which lays foundation

for the next sections.

Metaheuristics Based Optimization Technique

for Protein-Ligand Docking

Abhishek.K, S. Balaji 

Metaheuristics Based Optimization Technique for Protein-Ligand Docking

4618

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number C6834098319/2019©BEIESP

DOI: 10.35940/ijrte.C6834.098319

2.1 GPU Computing

The computer architects have been depending on the CPU

for all the computations for decades. Of late, heterogeneous

architecture has started gaining importance since the data

intensive operations have seen a spike recently. In a

heterogeneous architecture, both CPU and GPU are used for

computations wherein the GPU takes the data intensive part

of the problem. Compute Unified Device Architecture

(CUDA) programming model is important, since it is widely

used for GPU computing. The GPU consists of several

processors which are replicated in the silicon area. These

multiprocessors are connected to GPU device memory. The

CUDA capabilities are increasing in each version and also

the number of cores. The power efficiency is improved by a

factor of two in new generation.

The CUDA software paradigm is based on multiple levels

of abstractions. The thread is the basic execution unit which

takes up the basic functionality. Threads are grouped into a

number of blocks which are mapped to multiprocessors.

There are built-in procedures which can offload the blocks

to GPU. But, before this, the sections which can be

parallelized are ported to GPU kernels. A kernel is a part of

program which can be run in parallel without any data

dependency or with less dependency. Later grids can be

formed and deployed to GPU [10, 14, 18]. Hence, a kernel is

executed by many grids of blocks where threads will run

concurrently. Table 1 shows CUDA capabilities summary

by generation.

Table 1: CUDA Summary by Generation

Hardware generation and

starting year Fermi 2010 Kepler 2012

Multiprocessors per die

(up to) 16 15

Cores per multiprocessor 32 192

Total number of cores (up

to) 512 2880

Shared memory size

(maximum in KB) 48 48

Device memory size

(maximum in GB) 6 12

CUDA Compute

capabilities 2.x 3.x

Peak single-precision

performance (GFLOPS) 1178 4290

Performance per watt

(approx. and normalized) 2 6

2.2 Metaheuristics

It is observed that there are many problems which cannot

be optimized by evaluating the possible solutions. Problems

like NP-hard require alternative approaches rather than

traditional approach. Metaheuristics can be applied for

problems which involve heterogeneous platforms. The

optimum solution for NP-hard problem can be found out

only for small instances [23-27].

Metaheuristics consists of an abstraction layer which

provides good solution for optimization problem. The

technique reduces the search area so that only missing areas

can be concentrated. Hence, the technique does not

guarantee optimal solutions for all the poses.

Many metaheuristics algorithms have different

characteristics (Blum and Roli, 2003), which provides

several optimal solutions to the same problem. Among

them, we highlight the following.

1. Distributed metaheuristics, searches for solutions

within the entire solution space. These techniques

work with populations or sets of elements which get

combined to generate better solutions gradually. Some

examples are ant colony and particle swarm

optimization, genetic algorithms, scatter search, etc.

2. Neighborhood metaheuristics, searches for best

elements in its neighborhood using the given solution

space. Examples include guided local search,

simulated annealing, etc.

2.3 Virtual Screening

VS search libraries consist of small molecules that have

the potential to bind to a drug target. This creates a complex

which has disease curing abilities. Molecular docking

technique docks small molecules to the macromolecular

targets. The goal here is to find out the optimal binding sites

by ranking the chemical compounds according to the

estimated bonding affinity.

The impact of VS has not yet been up to the mark. Both

VS and SF are not still used efficiently to identify high

affinity ligands reliably. VS methods should be very fast and

reliable enough to identify numerous potential candidates.

Hence, these techniques require thousands of CPU hours to

complete the process. In VS techniques, we focus on

protein-ligand docking. This technique uses MPI along with

multithreading. Molecular docking for heterogeneous

platform uses OpenCL for portability. The surface is usually

derived from position of a ligand from complex. The

problem with the existing techniques is that of fixed position

of binding site. The binding site is fixed initially upon which

all the ligands start interactions. Hence the other portion of

the protein is completely discarded. In our new technique,

the entire protein structure is divided into many regions

[29]. These regions are given as input for docking among all

the available GPU cores. Finally, the results are computed

based on the best available optimal solution that exists

among all the regions. Resulting new spot are considered

and SF is applied all over the protein surface. Figure 1

shows the crystallographic structure of N-ethyl bound to

HSP90 protein (Green Color).

Figure 1: Docked Complex (N-ethyl-HSP90 Complex)

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-8 Issue-3, September 2019

4619

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number C6834098319/2019©BEIESP

DOI: 10.35940/ijrte.C6834.098319

3. METAHEURISTICS FOR VIRTUAL

SCREENING

Parallel executions are not that effective when they are

executed in heterogeneous platforms. Adaptable super

computers have shown this versatility since all the groups

have same processing capabilities [28]. This area

demonstrates our proposition, metaheuristic based virtual

screening applications that influence enormously parallel

and heterogeneous PCs. We acquaint user with the structure

of our VS approach before demonstrating the system for

heterogeneous circulation of the outstanding load on the

system. The algorithm shown works on improving the hits

based on the parameterized metaheuristic schema.

Initialize(S, ParamIni)

while no End condition(S) do

Select(S,Ssel, ParamSel)

Combine(Ssel, Scom,ParamCom)

Improve(Scom, ParamImp)

Include(Scom,S, ParamInc)

end while

Algorithm 1: Parameterized Metaheuristic Schema

3.1 Metaheuristics for VS Methods

The proposed VS system separates the entire protein

surface into subjective and free locales (or spots). Spots are

determined around carbons of the protein spine, with the

goal that we can guarantee a full checking of the protein

surface. Every one of these spots is autonomous of one

another and, in this manner, offer extraordinary open doors

for information based parallelization. As a matter of fact, the

calculation spots duplicate the similar ligand at every one of

those spots.

These duplicates (otherwise called people or adaptations)

are different from one another as they have an alternate

position and direction concerning each spot. Docking

reproductions look for an enhanced compliance for protein

and ligand and the relative direction between them, with the

end goal that the free vitality (given by the scoring capacity)

of the general framework is limited. In this way, our

technique utilizes an enhancement procedure where the

scoring capacity, that models the non-reinforced connections

among protein and ligand, is limited all through the

execution. In light of that, we initially present the

advancement technique utilized in our technique before

quickly depicting the GPU execution of the hidden scoring

function. The scoring capacity calculation speaks to over

95% of our work in general computation time and

consequently it is transferred to the GPU to build by and

large application execution.

3.1.1 Search Method based on a Parameterized

Metaheuristic Schema

Every one of the capacities in the calculation performs

with different set populaces For our situation, a competitor

arrangement is a con-development. Along these lines, a few

people are chosen (Ssel) to be consolidated, so, creating

another arrangement of components, Scom. Applicant

arrangements can likewise be improved by applying a

neighborhood search; for example, moving, deciphering as

well as turning concerning each spot.

Advancing in creating bound together metaheuristics

plans is the presentation of a few parameters, for example

metaheuristic parameters, in every one of these capacities to

give a more extensive scope of metaheuristics. Cutillas-

Lozano et al. (2012) demonstrated that the utilization of a

parameterized outline of meta-heuristics finds acceptable

metaheuristics and to tune them for a specific issue. A few

meta-heuristics could be assessed for the issue (each with its

comparing tuning procedure), and cross breed metaheuristic

plans can likewise be considered. As a result, the choice and

tuning for an attractive metaheuristic or hybridization for an

issue is a complex process, requires huge execution time.

This technique depends on that brought together

metaheuristic composition and is utilized for simulations. As

referenced in the 'metaheuristics' and as appeared in

Algorithm 1, the composition resembles a template that

characterizes a lot of capacities to be executed for a specific

issue. Those capacities utilize a few parameters to give

distinctive metaheuristic implementations. Table 2 shows

employed parameters.

Table2:The Parameters used in the Parameterized

Metaheuristic Schema

Metaheuristics parameters Description

INEIni

Number of initial ligand

conformations.

PEIIni

Best conformations that are

improved in the function

Initialize.

IIEIni

The intensification of the

improvement in the function

Initialize.

PBEIni

Best conformations to be included

in the initial set for the next

iterations.

PWEIni

Percentage of worst conformations

to be included in the initial set for

the next iterations.

PBESel

Best conformations to be

selected for combination.

PWESel

Worst conformations to be

selected for combination.

PBBCom

Best-best conformations to be

combined.

PWWCom

Worst-worst conformations to be

combined.

PBWCom

Best-worst conformations to be

combined between them.

The composition is connected at every spot, with the

equivalent metaheuristics parameters in Table 2 (the

equivalent meta-heuristic). Fundamental capacities dealing

with various subsets are also shown in Table 2. We

summarize the results for various proteins below:

1. Initialize returns an underlying arrangement of

arrangements. INEIni compliances are created

arbitrarily for every one of the m spots. When they

Metaheuristics Based Optimization Technique for Protein-Ligand Docking

4620

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number C6834098319/2019©BEIESP

DOI: 10.35940/ijrte.C6834.098319

have been produced, for each (PEIIni) of the

underlying adaptations of each spot is improved. The

increase of the improvement is shown by the

parameter IIEIni. At long last, (PBEIni + PWEIni)

INEIni conformations from each spot are chosen for

the execution of the accompanying capacities. PBEIni

and PWEIni speak to the level of best and most

exceedingly terrible conformations to be incorporated.

The best adaptations are those with the best estimation

of the scoring function, and the ''most exceedingly

terrible'' compliances are chosen from the staying

ones. To be sure, this approach does not choose

simply the best compliances, in order to broaden the

inquiry and abstain from falling into neighborhood

optima.

2. Termination condition decides the exit criteria. Either,

the greatest number of steps without progress of the

best arrangement from every one of the spots,

NIREnd, or the most extreme number of cycles,

MNIEnd can be used to observe the results.

3. Select picks a few compliances to work with for the

following stages. A level of the best and most

noticeably awful compliances with respect to each

spot is chosen, for example PBESel and PWESel.

4. Combine blends adaptations two by two, contingent

upon their scoring. Most parameters speak to the level

of best–best, most exceedingly terrible most

exceedingly awful and best–most noticeably terrible

compliances to be consolidated: PBBCom, PWWCom

and PBWCom blends are per-framed among

compliances at a similar spot.

5. Improvement is seen when nearby search is carried out

by the recent protein fold surface. Each spot can be

characterized by two parameters. These parameters

show the ligand approach and also the binding factor

involved

The parameter PBEInc sets up the level of best

compliances related to each spot to be incorporated into its

reference set. The remainder of the compliances to be

incorporated into this set is randomly chosen from the rest

of the adaptations at the spot. The incorporation of

conformations adds to expand the hunt, so abstaining from

slowing down in local area in minima.

3.1.2 GPU Implementation of the Scoring Function

SF depends on the pertinent non-fortified possibilities

regularly utilized in VS figures recently portrayed in the

'Foundation' segment. They are Coulomb, electrostatic, the

Lennard–Jones possibilities and the hydrogen-limits

connections kernel. A discourse about the fundamental

terms incorporated into the scoring capacity is past the

extent of this paper. Algorithm 2 is used to calculate scoring

using GPU.

pos = atom_position

individual = get_individual()

for i=1 to r do

Energy = 4*epsilon*(term12(i,pos) - term6(i,pos))

Scoring + = Energy

end for

synchronize_threads()

S_energy[individual] =

Reduction_atoms_individual()

Algorithm 2: Method to Calculate Scoring on GPU

SF is implemented in a kernel where all terms are

determined simultaneously. We distinguish every

competitor arrangement (for example adaptation) to a

CUDA twist, and twists are assembled into squares relying

upon the CUDA string square granularity. Some

performance methodologies that we have connected to our

codes to use NVIDIA GPU models are presented.

1. The utilization of shared memory encourages the re-

usability of information by strings of a similar square.

For our situation, the compound is stacked into the

common memory so strings inside a similar square

can share this data, so sparing expensive memory gets

to. Along these lines, each string figures the scoring

capacity comparing to the components that are related

to every one of them, in this way expanding the

general application data transmission [31-33].

2. The possibility of using shuffle instructions is available

in devices with 3.X or higher compute capability, and

their use can improve application performance

substantially. These instructions enable information

sharing within threads that belong to the same warp

without using either shared or device memory.

The execution time of each autonomous execution can

differ, since it depends on:

(a) The metaheuristics when executed takes a determined

time and also it is unknown during the run time.

(b) The number of solutions is affected by the GPU

heterogeneity and also the level of kernel detail.

3.2 Scaling to a Heterogeneous Node

The CPU threads can be managed by using OpenMP.

Each thread controls a GPU instance. Each GPU is assigned

with calculation of scoring function for a given set of

candidates. These candidates are assigned in a homogenous

way, where they are equally distributed GPUs in the CUDA

thread model.

4. EXPERIMENTAL RESULTS

We now present the results from our work on multicore

and multi-GPU frameworks. The primary target of these

trials is two-overlay. In the first place, we investigate our

heap dispersion systems to improve execution on

heterogeneous hubs dependent on CPU and multi-GPU.

Second, we study the nature of the outcomes with a few

synthetic mixes to discuss the viability of our methodology.

4.1 Performance Results

Our method sets up the test set-up progressively, the

outcomes appeared underneath are platform structures

dependent. Thus, we give a comprehensive investigation on

the two heterogeneous frameworks recently portrayed. Table

3 demonstrates the time efficiency (single-point accuracy

execution) and relative accelerate factor among various

usage and metaheuristics setups for target dataset in

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-8 Issue-3, September 2019

4621

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number C6834098319/2019©BEIESP

DOI: 10.35940/ijrte.C6834.098319

systems. They demonstrate the execution times for OpenMP

execution on CPUs as a kind of perspective for the

enhancements.

Table 3: Execution time (s) and speed-up for the metaheuristics in Jupiter

Metaheuristics
multicore

CPU (s)

Speed-up GPU

Tesla C2075 vs.

multicore CPU

Speed-up homogeneous

distribution vs.

multicore CPU

Speed-up heterogeneous

distribution vs. multicore CPU

M1 140.48 10.42 38.72 39.35

M2 193.67 13.81 39.88 43.55

M3 1911.52 9.62 53.25 54.16

M4 209.56 9.59 33.86 34.43

M5 262.65 8.55 34.81 35.51

M6 1379.93 10.39 53.61 53.89

DUD:SRC target

M1 639.32 7.45 36.43 39.35

M2 678.41 7.86 37.89 40.97

M3 10,670.57 8.55 49.34 49.41

M4 1150.81 8.49 40.21 43.75

M5 1574.79 8.27 43.08 44.62

M6 7422.66 8.93 50.08 50.27

DUD:GPB target

M1 910.42 9.24 45.19 46.21

M2 964.82 9.44 49.01 53.01

M3 15,050.81 10.75 60.98 62.28

M4 1654.85 10.94 52.88 57.58

M5 2449.27 11.47 58.71 62.47

M6 10,186.09 10.94 61.57 62.41

It is trivial to notice that the metaheuristics parameters

are crucial for performance. This is clearly visible in

metaheuristics M3 for compounds that are considerably

small or perhaps range up to medium sizes. And also a

considerable improvement can be seen in M6.

Table 3 shows performance numbers in Jupiter. The

GPUs available in the aforementioned ecosystem is more

or less homogeneous and hence the heterogeneous

strategy doesn’t put up a good performance in this

ecosystem. It can also be noticed from Table 3 that the

speed-up is directly proportional to problem size thus

concluding that the multi-GPU versions facilitate more

scalability. Figure 2 shows scoring function evolution.

Figure 2: Scoring Function Evolution

Figure 2 shows the scoring function evaluation for

about 30 seconds of docking. It is trivial to state here that

the performance is directly proportional to the quality of

results which only means the higher number of

computation per time interval.

5. CONCLUSIONS AND FUTURE WORK

VS strategies are computational systems that guide or

supplement the test tranquilize disclosure process yet they

are all around computationally requesting applications.

This paper presents a VS strategy, in light of a combined

parameterized metaheuristics outline that can produce a

wide assortment of metaheuristics, thus gives a

completely adaptable edge work for medication

revelation, and in this way encourages upgraded

execution and expectation exactness. This is custom-

made for heterogeneous PCs dependent on CPU and

various GPUs. Even though the heterogeneity confines

acceleration, using metaheuristics one can leverage the

platform in a better way. It can be achieved in two ways:

1. CPU-GPU heterogeneity - Here some sections of

computation are assigned to CPU and remaining

assigned to GPU.

2. GPU-GPU heterogeneity - GPUs with different

characteristics, the kernels part are again split

among the available GPUs which are run

concurrently and controlled in master slave

architecture.

The results obtained by applying our technique

indicates that using metaheuristics one can leverage the

GPUs for optimal docking of protein-ligand. Also, it is

Metaheuristics Based Optimization Technique for Protein-Ligand Docking

4622

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number C6834098319/2019©BEIESP

DOI: 10.35940/ijrte.C6834.098319

evident that it is suitable where real time constraints need

to be fulfilled along with the quality requirements. This

technique serves as a primary aid in early stages of drug

discovery.

This strategy is useful for such applications with

stochastic behavior where real time constrains are to be

met with accuracy. AUC results indicate that this

technique s useful in drug discovery and also VS. Also

from the results it is clear that metaheuristics technique

improves overall efficiency in docking.

Our strategy is particularly useful for non-deterministic

algorithms and stochastic behaviors, where real-time

constraints must be fulfilled. Performance gains are

translated into quality improvements that are a decisive

factor in virtual screening. AUC results obtained with this

technique support that its parallel, metaheuristics-based

schema makes it a useful tool in the early stages of drug

discovery.

REFERENCES

1. Almeida F, Gime´nez D, Lo´pez-Espı´n JJ, et al. (2013) Parame-

terised schemes of metaheuristics: Basic ideas and applica-tions

with genetic algorithms, scatter search and GRASP. IEEE
Transactions on Systems, Man and Cybernetics, Part A: Systems

and Humans 43(3): 570–586.

2. Asanovic K, Bodik R, Catanzaro BC, et al. (2006) The land-scape
of parallel computing research: A view from Berke-ley. Report,

Report no. UCB/EECS-2006-183, University of California at

Berkeley, USA, Electrical Engineering and Computer Sciences.
3. Austin T (2015) Bridging the Moore’s law performance gap with

innovation scaling. In: Proceedings of the 6th ACM/ SPEC

international conference on performance engineering, Austin,
Texas, 31 January–4 February, pp.1. ACM.

4. Bianchi L, Dorigo M, Gambardella LM, et al. (2009) A survey on
metaheuristics for stochastic combinatorial optimization. Natural

Computing: An International Journal 8(2): 239–287.

5. Blum C, Puchinger J, Raidl GR, et al. (2011) Hybrid meta-
heuristics in combinatorial optimization: A survey. Applied Soft

Computing 11(6): 4135–4151.

6. Blum C and Roli A (2003) Metaheuristics in combinatorial
optimization: Overview and conceptual comparison. ACM

Computing Surveys (CSUR) 35(3): 268–308.

7. Cecilia JM, Garcı´a JM, Nisbet A, et al.(2013) Enhancing data
parallelism for ant colony optimization on GPUs. Journal of

Parallel and Distributed Computing 73(1): 42–51.

8. Chapman B, Jost G and Van Der Pas R (2008) Using OpenMP:
Portable Shared Memory Parallel Programming, vol. 10.

Massachusetts, United States: MIT press.

9. Cutillas-Lozano JM and Gime´nez D (2013) Determination of the
kinetic constants of a chemical reaction in hetero-geneous phase

using parameterized metaheuristics. In: 7th Workshop on

Computational Chemistry and Its Appli-cations on International
Conference on Computational Sci-ence (ICCS 2013), Barcelona,

Spain, 5–7 June.

10. Cutillas-Lozano LG, Cutillas-Lozano JM and Gime´nez D (2012)
Modeling shared-memory metaheuristic schemes for electricity

consumption. In: Distributed computing and artificial intelligence

– 9th international conference, Salamanca, Spain, 28–30 March,
pp.33–40.

11. De Michell G and Gupta RK (1997) Hardware-software co-design.

Proceedings of the IEEE 85(3): 349–365.
12. Dolezal R, Ramalho TC, Francxa TC, et al. (2015) Parallel flexible

molecular docking in computational chemistry on high

performance computing clusters. In: Computational Collective

Intelligence, vol 9330. Berlin, Heidelberg: Springer, pp.418–427.

13. Dre´o J, Pe´trowski A, Siarry P, et al. (2005) Metaheuristics for

Hard Optimization. New York, United States: Springer Science &
Business Media.

14. Drews J (2000) Drug discovery: A historical perspective. Science

287(5460): 1960–1964.
15. DUD (2006) Directory of Useful Decoys. Available at: http://

dud.docking.org/ (accessed 4 October 2016).

16. Ewing TJA, Makino S, Skillman AG, et al. (2001) DOCK 4.0:

Search strategies for automated molecular docking of flexible
molecule databases. Journal of Computer-Aided Molecular Design

15(5): 411–428.

17. Franco AA (2013) Multiscale modelling and numerical simula-
tion of rechargeable lithium ion batteries: Concepts, methods and

challenges. RSC Advances 3(32): 13027–13058.

18. Friesner RA, Banks JL, Murphy RB, et al. (2004) Glide: A new
approach for rapid, accurate docking and scoring: Method and

assessment of docking accuracy. Journal of Medicinal Chemistry

47(7): 1739–1749.
19. Glover F and Kochenberger GA (2003) Handbook of Meta-

heuristics. New York, United States: Kluwer Academic Publishers.

20. Guerrero GD, Cebria´n JM, Pe´rez-Sa´nchez H, et al. (2014)
Toward energy efficiency in heterogeneous processors: Findings

on virtual screening methods. Concurrency and Computation:

Practice and Experience 26(10): 1832–1846.
21. HromkovicˇJ (2003) Algorithmics for Hard Problems. 2nd

ed.Berlin: Springer.

22. Huang SY and Zou X (2010) Advances and challenges in protein-

ligand docking. International Journal of Molecular Sciences 11(8):

3016–3034.

23. Irwin JJ and Shoichet BK (2005) ZINC–a free database of
commercially available compounds for virtual screening. Journal

of Chemical Information and Modeling 45(1): 177–182.

24. Jain AN (2006) Scoring functions for protein-ligand docking.
25. Current Protein and Peptide Science 7(5): 407–420.

26. Jorgensen WL (2004) The many roles of computation in drug
discovery. Science 303: 1813–1818.

27. Kirk DB and Wen-Mei WH (2013) Programming Massively

Parallel Processors: A Hands-On Approach. Boston, MA, USA:
Morgan Kaufmann Publishers Inc.

28. Kitchen DB, Decornez H, Furr JR, et al. (2004) Docking and

scoring in virtual screening for drug discovery: Methods and
applications. Nature Reviews Drug Discovery 3(11): 935–949.

29. Kuntz SK, Murphy RC, Niemier MT, et al. (2001) Petaflop

computing for protein folding. In: Proceedings of the tenth SIAM

conference on parallel processing for scientific computing,

Porstmouths, Virginia, USA, 12–14 March, pp. 12–14.

30. Li Y, Han L, Liu Z, et al. (2014a) Comparative assessment of
scoring functions on an updated benchmark: 2. evaluation methods

and general results. Journal of chemical informa-tion and

modeling 54(6): 1717–1736.
31. Li Y, Liu Z, Li J, et al. (2014b) Comparative assessment of scoring

functions on an updated benchmark: 1. Compilation of the test set.

Journal of Chemical Information and Modeling 54(6): 1700–1716.
32. Lionta E, Spyrou G K, Vassilatis D, et al. (2014) Structure-based

virtual screening for drug discovery: Principles, applications and

recent advances. Current Topics in Medic-inal Chemistry 14(16):
1923–1938.

33. Lo´pez-Camacho E, Garcı´a-Godoy MJ, Garcı´a-Nieto J, et al.

(2015) Solving molecular flexible docking problems with
metaheuristics: A comparative study. Applied Soft Com-puting 28:

379–393.

34. McIntosh-Smith S, Price J, Sessions RB, et al. (2014) High
performance in silico virtual drug screening on many-core

processors. International Journal of High Performance Computing

Applications 29(2): 119–134.
35. Michalewicz Z and Fogel DB (2002) How to Solve It: Modern

Heuristics. Berlin: Springer.

