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ABSTRACT--- Virtual screening using molecular docking 

requires optimization, which can be solved by using 

metaheuristics methods. Typically the interaction between two 

compounds is calculated using computationally intensive Scoring 

Functions (SF) which is computed in several spots which are 

called as binding surfaces. In this paper we present a novel 

approach for molecular docking which is based on parameterized 

and parallel metaheuristics which is useful in leveraging 

heterogeneous computing based on heterogeneous architectures. 

The approach decides on the optimization technique at running 

time by setting up a new configuration schema that allows 

parallel offloading of the data intensive sections of the docking. 

Hence the docking process is carried out in parallel efficiently 

while performing the metaheuristics execution. The approach 

carries out docking and computations of molecular interactions 

required for SF in parallel so that the time efficiency is improved. 

This opens a new path for further developments in virtual 

screening methods in heterogeneous platform.  

Keywords: Drug discovery, virtual screening, molecular 

docking, high performance computing, metaheuristics, 

heterogeneous computing 

1. INTRODUCTION 

Virtual Screening (VS) is very useful in the process of 

drug discovery and it uses computationally intensive 

techniques which can be used to analyze huge libraries of 

tiny molecules to search for compounds which show affinity 

towards binding with the target. Typically, these libraries 

consist of millions of ligands which generate large number 

of hits. The complexity of VS is decided by two parameters:  

database size and the accuracy level. Hence, there is a need 

for different computational techniques that enable docking 

and calculation of binding affinity of different poses in 

parallel. This, in turn, enables efficient docking using 

heterogeneous platform [1-4]. 

There is a steady transition from normal computing to 

heterogeneous computing in which CPU is combined with 

GPU having many cores, which has the capability to speed 

up the computationally demanding parts of the docking 

process. Run time parameter is still under consideration 

which helps in dynamic load balancing and offloading. In 

particular, concepts like data organization and 

programmability are still challenges that do exist in 

heterogeneous platform [6]. 

The researchers are focusing on various other techniques 

which can be applied to docking process like image 
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processing, computational modeling, metaheuristics, etc. 

This results in up scaling of efficiency in computer driven 

scientific applications. Programmers play an important role 

in improving the current application scenario and how the 

parallelism is achieved. Programmers have to rethink or 

redesign the sections which cause bottlenecks for the whole 

process. We chose metaheuristics algorithms since they are 

best suited for the current application though there are 

various algorithms which suit well for this computing area. 

Metaheuristics are usually applied to solve Non-Polynomial 

(NP) hard problems. Many problems from bioinformatics 

use this approach. For example, DNA analysis applies the 

method to find out the sequence of chains. A tuning process 

is necessary to select the metaheuristics to minimize the 

computational cost [5-9].  

We introduce a new technique for VS which generates the 

metaheuristics schema needed for docking. This is designed 

for leveraging the heterogeneous architectures. The 

objective of this technique is to predict the binding 

confirmations using SF. These functions can be used to 

compute binding score throughout the protein surface. 

Following are the highlights of this technique: 

1. The methodology can generate a parameterized 

schema based on metaheuristics based on different set 

of input parameters. 

2. This technique leverages the heterogeneous 

computing based on CPUs and NVIDIA GPUs having 

different capabilities. Load balancing strategy has 

been introduced to distribute workloads among all 

GPUs in the system 

3. About the performance, the following observations 

can be made: 

a. Distribution of workload in a homogeneous manner is 

not good for systems with GPUs with different 

computational capabilities 

b. Only technical specifications are not enough to 

achieve peak performance, and there is a need for load 

balancing at run time, with the workload depending on 

the application reliability 

All these strategies give the opportunity to improve the 

solution quality in docking. 

2. BACKGROUND 

This section discusses about virtual screening methods, 

metaheuristics and GPU computing which lays foundation 

for the next sections. 
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2.1 GPU Computing 

The computer architects have been depending on the CPU 

for all the computations for decades. Of late, heterogeneous 

architecture has started gaining importance since the data 

intensive operations have seen a spike recently. In a 

heterogeneous architecture, both CPU and GPU are used for 

computations wherein the GPU takes the data intensive part 

of the problem. Compute Unified Device Architecture 

(CUDA) programming model is important, since it is widely 

used for GPU computing. The GPU consists of several 

processors which are replicated in the silicon area. These 

multiprocessors are connected to GPU device memory. The 

CUDA capabilities are increasing in each version and also 

the number of cores. The power efficiency is improved by a 

factor of two in new generation. 

The CUDA software paradigm is based on multiple levels 

of abstractions. The thread is the basic execution unit which 

takes up the basic functionality. Threads are grouped into a 

number of blocks which are mapped to multiprocessors. 

There are built-in procedures which can offload the blocks 

to GPU. But, before this, the sections which can be 

parallelized are ported to GPU kernels. A kernel is a part of 

program which can be run in parallel without any data 

dependency or with less dependency. Later grids can be 

formed and deployed to GPU [10, 14, 18]. Hence, a kernel is 

executed by many grids of blocks where threads will run 

concurrently. Table 1 shows CUDA capabilities summary 

by generation. 

Table 1: CUDA Summary by Generation 

Hardware generation and 

starting year Fermi 2010 Kepler 2012 

Multiprocessors per die 

(up to) 16 15 

Cores per multiprocessor 32 192 

Total number of cores (up 

to) 512 2880 

Shared memory size 

(maximum in KB) 48 48 

Device memory size 

(maximum in GB) 6 12 

CUDA Compute 

capabilities 2.x 3.x 

Peak single-precision 

performance (GFLOPS) 1178 4290 

Performance per watt 

(approx. and normalized) 2 6 

 

2.2 Metaheuristics 

It is observed that there are many problems which cannot 

be optimized by evaluating the possible solutions. Problems 

like NP-hard require alternative approaches rather than 

traditional approach. Metaheuristics can be applied for 

problems which involve heterogeneous platforms. The 

optimum solution for NP-hard problem can be found out 

only for small instances [23-27]. 

Metaheuristics consists of an abstraction layer which 

provides good solution for optimization problem. The 

technique reduces the search area so that only missing areas 

can be concentrated. Hence, the technique does not 

guarantee optimal solutions for all the poses. 

Many metaheuristics algorithms have different 

characteristics (Blum and Roli, 2003), which provides 

several optimal solutions to the same problem. Among 

them, we highlight the following. 

1. Distributed metaheuristics, searches for solutions 

within the entire solution space. These techniques 

work with populations or sets of elements which get 

combined to generate better solutions gradually. Some 

examples are ant colony and particle swarm 

optimization, genetic algorithms, scatter search, etc. 

2. Neighborhood metaheuristics, searches for best 

elements in its neighborhood using the given solution 

space. Examples include guided local search, 

simulated annealing, etc. 

2.3 Virtual Screening 

VS search libraries consist of small molecules that have 

the potential to bind to a drug target. This creates a complex 

which has disease curing abilities. Molecular docking 

technique docks small molecules to the macromolecular 

targets. The goal here is to find out the optimal binding sites 

by ranking the chemical compounds according to the 

estimated bonding affinity.  

The impact of VS has not yet been up to the mark. Both 

VS and SF are not still used efficiently to identify high 

affinity ligands reliably. VS methods should be very fast and 

reliable enough to identify numerous potential candidates. 

Hence, these techniques require thousands of CPU hours to 

complete the process. In VS techniques, we focus on 

protein-ligand docking. This technique uses MPI along with 

multithreading. Molecular docking for heterogeneous 

platform uses OpenCL for portability. The surface is usually 

derived from position of a ligand from complex. The 

problem with the existing techniques is that of fixed position 

of binding site. The binding site is fixed initially upon which 

all the ligands start interactions. Hence the other portion of 

the protein is completely discarded. In our new technique, 

the entire protein structure is divided into many regions 

[29]. These regions are given as input for docking among all 

the available GPU cores. Finally, the results are computed 

based on the best available optimal solution that exists 

among all the regions. Resulting new spot are considered 

and SF is applied all over the protein surface. Figure 1 

shows the crystallographic structure of N-ethyl bound to 

HSP90 protein (Green Color). 

 

 
Figure 1: Docked Complex (N-ethyl-HSP90 Complex) 
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3. METAHEURISTICS FOR VIRTUAL 

SCREENING  

Parallel executions are not that effective when they are 

executed in heterogeneous platforms. Adaptable super 

computers have shown this versatility since all the groups 

have same processing capabilities [28]. This area 

demonstrates our proposition, metaheuristic based virtual 

screening applications that influence enormously parallel 

and heterogeneous PCs. We acquaint user with the structure 

of our VS approach before demonstrating the system for 

heterogeneous circulation of the outstanding load on the 

system. The algorithm shown works on improving the hits 

based on the parameterized metaheuristic schema. 

Initialize(S, ParamIni) 

while no End condition(S) do 

Select(S,Ssel, ParamSel) 

Combine(Ssel, Scom,ParamCom) 

Improve(Scom, ParamImp) 

Include(Scom,S, ParamInc) 

end while 

Algorithm 1: Parameterized Metaheuristic Schema 

3.1 Metaheuristics for VS Methods 

The proposed VS system separates the entire protein 

surface into subjective and free locales (or spots). Spots are 

determined around carbons of the protein spine, with the 

goal that we can guarantee a full checking of the protein 

surface. Every one of these spots is autonomous of one 

another and, in this manner, offer extraordinary open doors 

for information based parallelization. As a matter of fact, the 

calculation spots duplicate the similar ligand at every one of 

those spots.  

These duplicates (otherwise called people or adaptations) 

are different from one another as they have an alternate 

position and direction concerning each spot. Docking 

reproductions look for an enhanced compliance for protein 

and ligand and the relative direction between them, with the 

end goal that the free vitality (given by the scoring capacity) 

of the general framework is limited. In this way, our 

technique utilizes an enhancement procedure where the 

scoring capacity, that models the non-reinforced connections 

among protein and ligand, is limited all through the 

execution. In light of that, we initially present the 

advancement technique utilized in our technique before 

quickly depicting the GPU execution of the hidden scoring 

function. The scoring capacity calculation speaks to over 

95% of our work in general computation time and 

consequently it is transferred to the GPU to build by and 

large application execution. 

3.1.1 Search Method based on a Parameterized 

Metaheuristic Schema 

Every one of the capacities in the calculation performs 

with different set populaces For our situation, a competitor 

arrangement is a con-development. Along these lines, a few 

people are chosen (Ssel) to be consolidated, so, creating 

another arrangement of components, Scom. Applicant 

arrangements can likewise be improved by applying a 

neighborhood search; for example, moving, deciphering as 

well as turning concerning each spot. 

Advancing in creating bound together metaheuristics 

plans is the presentation of a few parameters, for example 

metaheuristic parameters, in every one of these capacities to 

give a more extensive scope of metaheuristics. Cutillas-

Lozano et al. (2012) demonstrated that the utilization of a 

parameterized outline of meta-heuristics finds acceptable 

metaheuristics and to tune them for a specific issue. A few 

meta-heuristics could be assessed for the issue (each with its 

comparing tuning procedure), and cross breed metaheuristic 

plans can likewise be considered. As a result, the choice and 

tuning for an attractive metaheuristic or hybridization for an 

issue is a complex process, requires huge execution time. 

This technique depends on that brought together 

metaheuristic composition and is utilized for simulations. As 

referenced in the 'metaheuristics' and as appeared in 

Algorithm 1, the composition resembles a template that 

characterizes a lot of capacities to be executed for a specific 

issue. Those capacities utilize a few parameters to give 

distinctive metaheuristic implementations. Table 2 shows 

employed parameters. 

Table2:The Parameters used in the Parameterized 

Metaheuristic Schema 

Metaheuristics parameters Description 

INEIni 

Number of initial ligand 

conformations. 

PEIIni 

Best conformations that are 

improved in the function 

Initialize. 

IIEIni 

The intensification of the 

improvement in the function 

Initialize. 

PBEIni 

Best conformations to be included 

in the initial set for the next 

iterations. 

PWEIni 

Percentage of worst conformations 

to be included in the initial set for 

the next iterations. 

PBESel 

Best conformations to be 

selected for combination. 

PWESel 

Worst conformations to be 

selected for combination. 

PBBCom 

Best-best conformations to be 

combined. 

PWWCom 

Worst-worst conformations to be 

combined. 

PBWCom 

Best-worst conformations to be 

combined between them. 

 

The composition is connected at every spot, with the 

equivalent metaheuristics parameters in Table 2 (the 

equivalent meta-heuristic). Fundamental capacities dealing 

with various subsets are also shown in Table 2. We 

summarize the results for various proteins below: 

1. Initialize returns an underlying arrangement of 

arrangements. INEIni compliances are created 

arbitrarily for every one of the m spots. When they  
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have been produced, for each (PEIIni) of the 

underlying adaptations of each spot is improved. The 

increase of the improvement is shown by the 

parameter IIEIni. At long last, (PBEIni + PWEIni) 

INEIni conformations from each spot are chosen for 

the execution of the accompanying capacities. PBEIni 

and PWEIni speak to the level of best and most 

exceedingly terrible conformations to be incorporated. 

The best adaptations are those with the best estimation 

of the scoring function, and the ''most exceedingly 

terrible'' compliances are chosen from the staying 

ones. To be sure, this approach does not choose 

simply the best compliances, in order to broaden the 

inquiry and abstain from falling into neighborhood 

optima. 

2. Termination condition decides the exit criteria. Either, 

the greatest number of steps without progress of the 

best arrangement from every one of the spots, 

NIREnd, or the most extreme number of cycles, 

MNIEnd can be used to observe the results. 

3. Select picks a few compliances to work with for the 

following stages. A level of the best and most 

noticeably awful compliances with respect to each 

spot is chosen, for example PBESel and PWESel.  

4. Combine blends adaptations two by two, contingent 

upon their scoring. Most parameters speak to the level 

of best–best, most exceedingly terrible most 

exceedingly awful and best–most noticeably terrible 

compliances to be consolidated: PBBCom, PWWCom 

and PBWCom blends are per-framed among 

compliances at a similar spot. 

5. Improvement is seen when nearby search is carried out 

by the recent protein fold surface. Each spot can be 

characterized by two parameters. These parameters 

show the ligand approach and also the binding factor 

involved 

The parameter PBEInc sets up the level of best 

compliances related to each spot to be incorporated into its 

reference set. The remainder of the compliances to be 

incorporated into this set is randomly chosen from the rest 

of the adaptations at the spot. The incorporation of 

conformations adds to expand the hunt, so abstaining from 

slowing down in local area in minima. 

3.1.2 GPU Implementation of the Scoring Function 

SF depends on the pertinent non-fortified possibilities 

regularly utilized in VS figures recently portrayed in the 

'Foundation' segment. They are Coulomb, electrostatic, the 

Lennard–Jones possibilities and the hydrogen-limits 

connections kernel. A discourse about the fundamental 

terms incorporated into the scoring capacity is past the 

extent of this paper. Algorithm 2 is used to calculate scoring 

using GPU. 

 

pos = atom_position 

individual = get_individual() 

for i=1 to r do 

Energy = 4*epsilon*(term12(i,pos) - term6(i,pos)) 

Scoring + = Energy 

end for 

synchronize_threads() 

S_energy[individual] = 

Reduction_atoms_individual() 

Algorithm 2: Method to Calculate Scoring on GPU 

SF is implemented in a kernel where all terms are 

determined simultaneously. We distinguish every 

competitor arrangement (for example adaptation) to a 

CUDA twist, and twists are assembled into squares relying 

upon the CUDA string square granularity. Some 

performance methodologies that we have connected to our 

codes to use NVIDIA GPU models are presented. 

1. The utilization of shared memory encourages the re-

usability of information by strings of a similar square. 

For our situation, the compound is stacked into the 

common memory so strings inside a similar square 

can share this data, so sparing expensive memory gets 

to. Along these lines, each string figures the scoring 

capacity comparing to the components that are related 

to every one of them, in this way expanding the 

general application data transmission [31-33]. 

2. The possibility of using shuffle instructions is available 

in devices with 3.X or higher compute capability, and 

their use can improve application performance 

substantially. These instructions enable information 

sharing within threads that belong to the same warp 

without using either shared or device memory. 

The execution time of each autonomous execution can 

differ, since it depends on: 

(a)  The metaheuristics when executed takes a determined 

time and also it is unknown during the run time. 

(b) The number of  solutions is affected by the GPU 

heterogeneity and also the level of kernel detail. 

3.2 Scaling to a Heterogeneous Node 

The CPU threads can be managed by using OpenMP. 

Each thread controls a GPU instance. Each GPU is assigned 

with calculation of scoring function for a given set of 

candidates. These candidates are assigned in a homogenous 

way, where they are equally distributed GPUs in the CUDA 

thread model.  

4. EXPERIMENTAL RESULTS 

We now present the results from our work on multicore 

and multi-GPU frameworks. The primary target of these 

trials is two-overlay. In the first place, we investigate our 

heap dispersion systems to improve execution on 

heterogeneous hubs dependent on CPU and multi-GPU. 

Second, we study the nature of the outcomes with a few 

synthetic mixes to discuss the viability of our methodology. 

4.1 Performance Results 

Our method sets up the test set-up progressively, the 

outcomes appeared underneath are platform structures 

dependent. Thus, we give a comprehensive investigation on 

the two heterogeneous frameworks recently portrayed. Table 

3 demonstrates the time efficiency (single-point accuracy 

execution) and relative accelerate factor among various 

usage and metaheuristics setups for target dataset in  
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systems. They demonstrate the execution times for OpenMP 

execution on CPUs as a kind of perspective for the 

enhancements. 

 

 

Table 3: Execution time (s) and speed-up for the metaheuristics in Jupiter 

Metaheuristics 
multicore 

CPU (s) 

Speed-up GPU 

Tesla C2075 vs. 

multicore CPU 

Speed-up homogeneous 

distribution vs. 

multicore CPU 

Speed-up heterogeneous 

distribution vs. multicore CPU 

M1 140.48 10.42 38.72 39.35 

M2 193.67 13.81 39.88 43.55 

M3 1911.52 9.62 53.25 54.16 

M4 209.56 9.59 33.86 34.43 

M5 262.65 8.55 34.81 35.51 

M6 1379.93 10.39 53.61 53.89 

DUD:SRC target     

M1 639.32 7.45 36.43 39.35 

M2 678.41 7.86 37.89 40.97 

M3 10,670.57 8.55 49.34 49.41 

M4 1150.81 8.49 40.21 43.75 

M5 1574.79 8.27 43.08 44.62 

M6 7422.66 8.93 50.08 50.27 

DUD:GPB target     

M1 910.42 9.24 45.19 46.21 

M2 964.82 9.44 49.01 53.01 

M3 15,050.81 10.75 60.98 62.28 

M4 1654.85 10.94 52.88 57.58 

M5 2449.27 11.47 58.71 62.47 

M6 10,186.09 10.94 61.57 62.41 

 

It is trivial to notice that the metaheuristics parameters 

are crucial for performance. This is clearly visible in 

metaheuristics M3 for compounds that are considerably 

small or perhaps range up to medium sizes. And also a 

considerable improvement can be seen in M6.  

Table 3 shows performance numbers in Jupiter.   The 

GPUs available in the aforementioned ecosystem is more 

or less homogeneous and hence the heterogeneous 

strategy doesn’t put up a good performance in this 

ecosystem. It can also be noticed from Table 3 that the 

speed-up is directly proportional to problem size thus 

concluding that the multi-GPU versions facilitate more 

scalability. Figure 2 shows scoring function evolution. 

 

 

 
Figure 2: Scoring Function Evolution 

 

Figure 2 shows the scoring function evaluation for 

about 30 seconds of docking. It is trivial to state here that 

the performance is directly proportional to the quality of 

results which only means the higher number of 

computation per time interval. 

5. CONCLUSIONS AND FUTURE WORK 

VS strategies are computational systems that guide or 

supplement the test tranquilize disclosure process yet they 

are all around computationally requesting applications. 

This paper presents a VS strategy, in light of a combined 

parameterized metaheuristics outline that can produce a 

wide assortment of metaheuristics, thus gives a 

completely adaptable edge work for medication 

revelation, and in this way encourages upgraded 

execution and expectation exactness. This is custom-

made for heterogeneous PCs dependent on CPU and 

various GPUs. Even though the heterogeneity confines 

acceleration, using metaheuristics one can leverage the 

platform in a better way. It can be achieved in two ways: 

1. CPU-GPU heterogeneity - Here some sections of 

computation are assigned to CPU and remaining 

assigned to GPU. 

2. GPU-GPU heterogeneity - GPUs with different 

characteristics, the kernels part are again split 

among the available GPUs which are run 

concurrently and controlled in master slave 

architecture. 

The results obtained by applying our technique 

indicates that using metaheuristics one can leverage the 

GPUs for optimal docking of protein-ligand. Also, it is  
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evident that it is suitable where real time constraints need 

to be fulfilled along with the quality requirements. This 

technique serves as a primary aid in early stages of drug 

discovery. 

This strategy is useful for such applications with 

stochastic behavior where real time constrains are to be 

met with accuracy. AUC results indicate that this 

technique s useful in drug discovery and also VS. Also 

from the results it is clear that metaheuristics technique 

improves overall efficiency in docking. 

Our strategy is particularly useful for non-deterministic 

algorithms and stochastic behaviors, where real-time 

constraints must be fulfilled. Performance gains are 

translated into quality improvements that are a decisive 

factor in virtual screening. AUC results obtained with this 

technique support that its parallel, metaheuristics-based 

schema makes it a useful tool in the early stages of drug 

discovery. 
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