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A B S T R A C T

New Earth observation missions and technologies are delivering large amounts of data. Processing this data
requires developing and evaluating novel dimensionality reduction approaches to identify the most informative
features for classification and regression tasks. Here we present an exhaustive evaluation of Guided Regularized
Random Forest (GRRF), a feature selection method based on Random Forest. GRRF does not require fixing a
priori the number of features to be selected or setting a threshold of the feature importance. Moreover, the use of
regularization ensures that features selected by GRRF are non-redundant and representative. Our experiments
based on various kinds of remote sensing images, show that GRRF selected features provides similar results to
those obtained when using all the available features. However, the comparison between GRRF and standard
random forest features shows substantial differences: in classification, the mean overall accuracy increases by
almost 6% and, in regression, the decrease in RMSE almost reaches 2%. These results demonstrate the potential
of GRRF for remote sensing image classification and regression. Especially in the context of increasingly large
geodatabases that challenge the application of traditional methods.

1. Introduction

New Earth observation missions and technologies are delivering
data with better spatial, spectral and temporal resolutions. At the same
time, several agencies and satellite data providers have adopted open
data standards and are delivering large amounts of data for free. For
instance, the European Space Agency (ESA), in partnership with the
European Commission, delivers data from the Copernicus program1 and
the National Aeronautics and Space Administration (NASA) delivers
data from its Afternoon Constellation.2 In addition, new multisource
constellations (e.g. optiSAR, UrtheCast3) are been actively developed.
The large amounts of Earth observation data delivered by current and
upcoming missions take the remote sensing field to the big data era.
Hence, remote sensing practitioners are bringing cloud computing and
other big data technologies to this multidisciplinary field (Aguilar et al.,
2018; Izquierdo-Verdiguier et al., 2018; Zurita-Milla et al., 2019). De-
spite the obvious benefits of using big data technologies, remote sensing
data still requires efficient methods to deal with typical issues (Liu
et al., 2018) such as noise (Gómez-Chova et al., 2008) and/or

redundant information (Dominik, 2017). In this regard, methods that
allow us to reduce the noise and the redundancy of the data while
keeping the relevant content information, are still vital for the remote
sensing community.

Dimensionality reduction is a basic and common preprocessing step
to many data-driven modelling problems like image classification and
biophysical parameter retrieval. Dimensionality reduction condenses
the size of typical remote sensing data problems as well as dealing with
the curse of the dimensionality (Bellman, 1961) (also called Hughes
phenomenon). In the domain of remote sensing, dimensionality re-
duction methods are typically classified into feature extraction and
feature selection. Both types of methods are essential to build classifi-
cation or regression models because high dimensional problems often
lead to poor results and hamper the process of creating good and reli-
able prediction maps (Camps-Valls and Bruzzone, 2005; Izquierdo
Verdiguier, 2014). And both methods are used to reduce the high col-
linearity between spectral bands in hyperspectral images (Guyon et al.,
2008) and between spatial or spectral feature generated from the image
bands (Zurita-Milla et al., 2017). Despite the good results obtained by
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feature extraction methods in classification and regression tasks
(Izquierdo-Verdiguier et al., 2014), specially using non-linear methods
(Izquierdo-Verdiguier et al., 2017a), results are hard to interpret be-
cause the physical meaning of the features is lost. In contrast to this,
feature selection methods allow an easy interpretation of the most
important features for a given model or task (Haury et al., 2011).

Several feature selection methods can be found in literature (Jović
et al., 2015). For instance, there are methods based on ranking vari-
ables or selecting features that minimize a given criterion (filters
methods). Other methods check the performance of the features for a
given classifier or regressor (wrapper methods) or select features during
the execution of the classification or regression tasks (embedded
methods). Considering that wrapper and embedded approaches gen-
erally lead to better results than filter-based methods, here we focus on
a random forest (RF) method (Breiman, 2001) that is a well-known
embedded approach. RF is a simple and a fast way to select “inter-
pretable” features. This, coupled with the fact that remote sensing often
provides top results in both classification and regression tasks, explains
its pervasive use by the remote sensing community. Moreover, RF se-
lected features are in agreement with existing domain knowledge (e.g.
physiological knowledge (Guan et al., 2012)).

RF is an ensemble learning method widely used in both, image
classification (Pal, 2005) and biophysical parameter retrieval (Mutanga
et al., 2012) tasks. Non-linear and dimensional problems are often ad-
dressed by this ensemble method. Furthermore, RF is also a powerful
feature selection method because it provides the importance of each
feature for the task at hand. As a feature selection method, RF shows an
accuracy improvement regarding to filter and wrapper methods (Pal
and Foody, 2010). For that reason, RF has become one of the most used
methods in remote sensing image classification (Gislason et al., 2004;
Rodriguez-Galiano et al., 2012; Xia et al., 2018). For instance, RF was
used as a feature selection method and as a classifier to compare the
performance of different sensors to map mangrove extent and species
(Wang et al., 2018). A recursive and a non-recursive feature elimination
processes were used to select the features, which were also used in
(Gregorutti et al., 2017) in presence of correlated features. Another
application of RF as feature selection method was presented in (Genuer
et al., 2010) where the feature importance sensitivity was analyzed
versus the characteristics of the data and the RF was used in their
proposal feature method. However, the use of RF as a feature selection
method either requires fixing a threshold of feature importance or
specifying a priori the number of features that will be selected. In ad-
dition, the selection of features with high importance does not warranty
that this is the best set of features for a given problem. For instance,
high dimensional data usually have high correlated features and that
has a negative effect on the feature selection (Gregorutti et al., 2017).
Different solutions have been proposed to select a relevant subset of
features like the Boruta algorithm (Beckschäfer et al., 2014) or an al-
ternative RF implementation, which provides an unbiased variable se-
lection using subsampling without replacement (Strobl et al., 2007).

Methods that regularize RF (Deng and Runger, 2013) have de-
monstrated their efficiency in reducing model complexity while pro-
viding a compact set of features. Regularized RF models, originally
proposed and tested for applications in genetic research (Deng, 2013;
Deng and Runger, 2013), disregard the features that share information,
i.e. features with high collinearity. Thus, regularized feature selection
methods do not lead to loss information.

In this paper we present an exhaustive and detailed evaluation of a
special kind of regularized random forest for feature selection, namely
Guided Regularized RF (GRRF) (Deng and Runger, 2013), in typical
remote sensing data analysis tasks. GRRF has previously been applied in
remote sensing image classification using hyperspectral data to identify
invasive plant species (Mureriwa et al., 2016) and to classify four stages
of Maize infection (Dhau et al., 2018). Additionally, GRRF was used to
detect infestation in Maize crops (Adam et al., 2017) and to identify
smallholder farms (Izquierdo-Verdiguier et al., 2017b). However, none

of these studies exhaustively analyzed the best parametrization of
GRRF, and neither evaluated nor optimized the number of features. The
novel contributions of this paper consist in (1) providing an in-depth
analysis of the behavior of GRRF taking into account the different al-
gorithm parameters, (2) optimizing the number of features in an ob-
jective fashion and, (3) evaluating the GRRF algorithm by comparing its
results with those obtained by a traditional RF trained with as many
features as identified by GRRF. All these contributions were done for
different images and classification and regression tasks.

2. Review of Random Forest

RF was proposed by Breiman (Breiman, 2001) as a combination of
decision trees. This combination reduces the error in classification and
regression tasks thanks to the use of bootstrap aggregation or bagging.
RF is a supervised and simple (ensemble of decision trees) method,
which is fast and robust to the noise of the target data (Kontschieder
et al., 2011). The main idea of RF is to reduce the error of the prediction
taking into account the decision trees included within the forest and the
correlation among their predictions (Chan and Paelinckx, 2008).

Focusing on one tree of the forest, let ∈ ×P ℝi
M Ni i where the i defines

the ith partition of samples (Mi) and features (Ni). Pi is randomly se-
lected from the original data ( ∈ ×X ℝM N ) by generating random sam-
ples with replacement (i.e. by bootstrap (Efron and Tibshirani, 1994)).
At each node, the feature belonging to the subset Ni are considered
candidates to split the available samples (Mi). The Gini Index (GI, see
2.1 for more details) is used to find the best splitting feature and cutoff
point. Samples that have higher values than the cutoff point for the
selected feature are directed to the right node (νR) otherwise, they go to
the left node (νL). After several splittings, samples have moved from the
root node (νn) to the terminal nodes, also known as a terminal leaves
which supply the predictions of the samples (Fig. 1). The ensemble
prediction ( ∈ ×Ŷ ℝM 1) given by a forest is obtained as a combination of
the results of the individuals trees; typically using the majority vote rule
for classification or the average for regression problems (Criminisi
et al., 2012):

= = ⋯Y YClassification: ˆ mode ˆi n N n1 trees

∑=
=

Y
N

YRegression: ˆ 1 ˆ ,i
trees n

N

n
1

trees

where N stree is the total number of trees used in the RF.
Two parameters deserve attention when optimizing a RF: the

number of features that will be considered as split candidates (i.e. the
size of the Ni subset), and the number of trees in the ensemble (i.e.
N stree ). The former is often fixed by Nsqrt( ) for classification or N/3 for
regression (Liaw and Wiener, 2002), where N is the number of features
in X, and the latter is typically set equal to a few hundred of trees
because more trees do not necessarily lead to a better performance and

Fig. 1. Schematic representation a RF classifier with Ntrees trees. At each root
node νn and internal nodes (νL and νR), a statistical measure is applied to create
homogenous groups from the data partitions ( ⋯P Pi j) assigned to each tree.
These partitions are recurrent split until reaching the terminal nodes (in blue),
which get assigned a label (classes 1 or 2 in this case). The fraction of samples
that falls in each node are represented by ωL and ωR.
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just slow down the processing time. Several criteria are used to opti-
mize these parameters, such as k-fold cross-validation (Stone, 1974).

2.1. Random Forest as feature selection method

RF provides the importance of each feature (Breiman, 2001). This
importance is used to identify the most relevant features for a given
problem as well as to generate a feature selector method (Saeys et al.,
2008). The importance of feature xj is determined by:

∑=
∈N

G νxImportance 1 ( , ),j
ν S

j
trees (1)

where S is the set of nodes where xj is used to split the samples, and
G νx( , )j is so-called the RF gain of xj. Thus gain is based on impurity
measures calculated when the samples are split at each node. Several
impurity criteria have been used to split the data and, therefore, to
determine the feature importance. Measures like permutation im-
portance (Gregorutti et al., 2017), or alternative implementations of RF
like Boruta (Kursa et al., 2010) or subsample without replacement
(Strobl et al., 2007), were developed to improve the selection of fea-
tures when they are correlated. However, GRRF is based on regular-
ization and therefore, it uses the most common criteria, which for
classification problems is the GI function (Breiman et al., 1984). The GI,
which is simple and fast to compute (Nembrini et al., 2018), minimizes
the probability of misclassification by = − ∑ = pGI 1 ( )i

n
i1

2c , where nc is
the number of classes and pi is the probability of class i. So, the function
G in Eq. (1) is calculated by means of the following equation:

= − −G ν ν ω ν ω νx x x x( , ) GI( , ) GI( , ) GI( , ),j j R j R L j L (2)

where ωR and ωL are the fractions of the samples that fall in each node.
The split criteria in regression is often the measured by Residual

Sum Squares (RSS): = ∑ −= y yRSS ( ˆ )i
N

i i1
2i , which is equivalent to look

for the split that maximizes the sum squares between-groups in an
analysis of variance (Therneau and Atkinson, 1997). In this case, G is
obtained as follows:

= +G νx( , ) RSS(RSS RSS ),j L R (3)

where RSSR and RSSL are the RSS in right and left nodes, respectively.

2.2. Regularized Random Forest

Regularized RF (RRF) provides high quality feature subsets as it was
demonstrated in (Deng and Runger, 2012), and it leads to a reduction in
the number of features selected for classification and regression pro-
blems.

Let be F the selected subset of features (initially empty) and xj each
feature, the gain of the RRF is calculated by:

= ⎧
⎨⎩

∈
∉

G ν
G ν if j F
λG ν if j F

x
x

x
( , )

( , )
( , ) ,j
j

j
RRF

(4)

where G is the gain (Eqs. (2) and (3)), F is the subset of features se-
lected to split the samples in previous nodes and ∈λ [0, 1] is a penalty
factor for the features not selected in previous nodes. It is worth noting
that a feature should have high importance value to be selected since its
gain is penalized. However, if a feature is already selected, then its gain
is equal to that of the standard RF. Taking into account that the irre-
levant features have very low important value (Louppe et al., 2013), the
features selected by RRF are non-redundant features because the fea-
tures whose GRRF is equal to zero are not included in the selected group.
The penalty factor (λ) is equal for all features and when equal to one,
RRF behaves like a standard RF.

RRF uses a sequential approach (i.e. it goes through all the nodes of
a tree and through the features selected in previous trees). See
Algorithm 1 for further details. Notice that some of the RRF selected
features can have a representativeness problem. This problem happens

because the number of distinct values of the G function is limited and
several features can have the same gain when the number of samples in
the node is small (Deng and Runger, 2013). The GRRF (c.f. Section 3)
can be used to avoid this problem because it uses a second regular-
ization of the gain of the features.

Algorithm 1. RRF feature selection process.

Require: N stree : num. of trees, λ: penalty factor, F1: set of features indices and F :
subset of selected feature indices.

Ensure: RF: random forest model
Train the RF prediction model to obtain the feature importance.
Initialize =F {} and a threshold gain ( =G* 0).
Select samples and features.
for =t 1 to Ntrees do

⟵ν numberofthenodesinthetree
for =n 1 to ν do

while ≠ ∅F1 do
⟵j Findexofselectedfeaturefrom 1

Calculate the G νx( , )jRRF (Eq. (4))

if >G ν Gx( , ) *jRRF then

⟵F j F{ , }
⟵G G νx* ( , )jRRF

end if
Delete j from F1

end while
end for

end for
⟵N Flengthoff

Algorithm 2. GRRF feature selection process.

Require: N stree : num. of trees, λ: penalty factor, γ : weight of normalize feature
importance, F1: set of feature indices and F : subset of selected feature indices.

Ensure: RF: random forest model
Train the RF prediction model to obtain the feature importance.
Initialize =F {} and a threshold gain ( =G* 0).
Select samples and features.
for =t 1 to Ntrees do

⟵ν numberofthenodesinthetree
for =n 1 to ν do

while ≠ ∅F1 do
⟵j Findexofselectedfeaturefrom 1
Calculate the regularization parameter (αj) using eq. (6).

Calculate the G νx( , )jGRRF (eq. (5))

if >G ν Gx( , ) *jGRRF then

⟵F j F{ , }
⟵G G νx* ( , )jGRRF

end if
Delete j from F1

end while
end for

end for
⟵N Flengthoff

3. Guided Regularized Random Forest

The Guided Regularized Random Forest (GRRF) consists of a RRF
where the regularization is steered by the feature importance of the
standard RF. In GRRF, the calculation of the gain (and therefore the
feature importance) considers information from all the nodes instead of
only relying on information from a single node (Eq. (1)). Because of this
design, GRRF uses a specific regularization parameter for each feature.

The regularization parameter preserves the RF gain (Eq. (2) for
classification or Eq. (3) for regression) of the features selected in pre-
vious nodes and punishes the gain of new features. The GRRF gain is
defined as:

= ⎧
⎨⎩

∈
∉

G ν
G ν if j F
α G ν if j F

x
x

x
( , )

( , )
( , ) ,j
j

j j
GRRF

(5)

where αj is the regularization parameter of each feature, which depends
of the normalized RF feature importance provided by the standard RF:
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= − +
= ⋯

α γ λ γ(1 )·
importance

max (importance )
.j

j

j N j1, , i (6)

Note that, ∈λ [0, 1] is a penalty factor, ∈γ [0, 1] is the weight of the
normalized feature importance and that pairwise combination

=λ γ( , ) (0, 0) does not make sense. The GRRF gain is equal to the RRF
one when γ is equal to zero and it is equal to the gain of a standard RF
when λ is equal to one and γ is equal to zero. Note also that both RRF
and GRRF are just feature selection methods that should not be used in
prediction tasks because their trees are grown in a sequential manner
oriented towards the identification of the most important features (and
not to improve the prediction, like boosted trees do). This training
approach leads to a high variance of the predictions (Deng and Runger,
2013). Thus, features selected must be used as input in standard clas-
sification and regression methods (to test and evaluate their value).

The GRRF feature selection process is summarized in the pseudo-
code shown in Algorithm 2. The processing has implemented in Python
3.6 and used the GRRF toolbox (Deng, 2013).

Summarizing, RF identifies important features based on their gain in
all nodes of the trees. However, its use as a feature selection method
requires either fixing the number of features to select or applying a
threshold of feature importance. RRF selects non-redundant features
that, in some cases, suffer from a lack of representativeness.
Furthermore, the penalization linked to the regularization is constant
for all the features. GRRF uses a double regularization based on the RF
feature importance and on penalizing each feature individually. This is
so called guided regularization generates a subset of non-redundant and
representative features.

4. Data

This section describes the data used in the classification and re-
gression experiments designed to evaluate the proposed feature selec-
tion technique. We tackle the classification task using two types of data:
first, a temporal series of very high spatial resolution multi-spectral
images. Second, various hyperspectral images with different spatial
resolution, number of bands (features) and classes. The regression task
deals with the retrieval of biophysical parameters. The task consists on
predicting chlorophyll (Chl), leaf area index (LAI) and fraction cover
(fCover) from a hyperspectral image. The classification and regression
experiments are designed to evaluate how GRRF copes with different
number of classes (in classification), number of features and spatial
resolution.

4.1. Classification databases

4.1.1. Multispectral temporal image series (WorldView-2)
The multispectral images used in this work were acquired by

WorldView-2.4 Seven acquisition were used in this case study from May
to November of 2014 (Fig. 2). These acquisitions cover the main crop
season in the study area (Vrieling et al., 2011). Each multispectral
image consists of eight spectral bands and with a spatial resolution of
2m covering 10 km by 10 km near Sukumba, Koutiala district, Mali. All
of them were preprocessed using the satellite image workflow
(Stratoulias et al., 2017) developed in the STARS project.5 With this
workflow the images were mosaicked, orthorectified, co-registered, and
trees and clouds were automatically masked out.

In addition to the ×56(7 8) bands, the database was extended by
spectral and spatial features. Vegetation indices such as Normalized
Difference Vegetation Index (NDVI) (Tucker, 1979), Soil Adjusted Ve-
getation Index (SAVI) (Huete, 1988), Transformed Chlorophyll Ab-
sorption Reflectance Index (TCARI) (Haboudane et al., 2002), Modified

Soil-Adjusted Vegetation Index (MSAVI2) (Qi et al., 1994), Enhanced
vegetation index (EVI) (Huete et al., 2002) and Green Vegetation Index
(GLI) (Yamamoto et al., 2005) were obtained. Furthermore, all pairwise
band combinations between bands 2 and 8 were used to calculate dif-
ferences, ratios and normalized differences. The spatial features were
based on the Local Binary Pattern (LBP) (Pietikäinen, 2010) of the 56
spectral bands and on textural metrics derived from the Gray Level Co-
occurrence Matrix (GLCM) (Haralick et al., 1973; Conners et al., 1984).
A total of 17 textures were calculated from the bands, vegetation index
and LBP features. After all these calculations, the dimensionality in-
creased from 56 to 10572 features.

The ground truth is composed of 45 farm field polygons, which were
delineated during field work. The fields were divided in four sub-
polygons of approximately the same size. Two polygons were used to
choose the training samples and the other two, the test samples to en-
sure independent both subsets. A total of 1500 pixels were extracted for
the training and validation sets and 990 samples were used to create the
test set. Five crop classes of interest were identified in the farm fields:
Maize, Millet, Peanut, Sorghum and Cotton.

4.1.2. Hyperspectral images (Indian Pines, Pavia and Salinas)
Three classical hyperspectral images in remote sensing image clas-

sification were used to evaluate the potential of GRRF to reduce di-
mensionality without losing valuable information.

The first image is a scene over Indian Pines site in North-western
Indiana. This image was acquired by the AVIRIS sensor and consists of
224 spectral bands in a range of [400, 2500] nm and of ×145 145 pixels.
Note that, the water absorption bands were removed (24 bands). The
image covers an agricultural area and its ground truth contains 16
classes.

The second image was acquired by the DAIS7915 sensor over Pavia
(Italy). The image reveals a dense residential area at 5m spatial re-
solution with nine classes: Water, Trees, Asphalt, Parking, Bitumen,
Brick roofs, Meadows, Bare soil and Shadows. The image consists of

×400 400 pixels and has a spectral range from 500 to 1760 nm splitting
into 40 bands (skipping the thermal and middle infrared range (Graña
and Duro, 2008)).

The last hyperspectral image used in the classification experiments
covers an agricultural area of California (USA) and was acquired by
AVIRIS over the Salinas Valley. The size of the image is ×217 512 with
204 spectral bands which cover a spectral range [400, 2450] nm. As
with Indian Pines, the water absorption bands were removed (in this
case, 20 bands). The ground truth contains 16 classes: two kinds of
Brocoli, three types of Fallow, Stubble, Celery, Grapes, Soil vineyard,
Corn, two vineyard and four Lettuce classes.

The three images are available in http://www.ehu.eus/ccwintco/
index.php/Hyperspectral_Remote_Sensing_Scenes.

4.2. Biophysical parameter retrieval data

We handle the prediction of three biophysical parameters by mean
of the multi-spectral image to show the efficiency of GRRF in regression
tasks. The database consists of image data and in situ measurements.
Note that, the difficulty of the scenario since the target data is lacking
and/or their relations, between satellite derived data and the site visit
data is believed nonlinear.

This database was obtained in the SPectra bARrax Campaign
(SPARC) in Barrax, Spain.6 A hyperspectral image was collected in 2003
by the CHRIS/PROBA spaceborne sensor. The data provided have 62
bands, although 7 bands were removed to avoid noise problems. The
band range covers the visible and near-infrared (NIR) region
(400–1000 nm) at a spatial resolution of 34m. The image selected for
this experiment was those acquired from the nadir view sharing similar

4 http://www.satimagingcorp.com/satellite-sensors/worldview-2/.
5 http://www.stars-project.org/en/. 6 https://www.uv.es/leo/sparc/.
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observation configuration in order to minimize angular and atmo-
spheric effects. The image was geometrically and atmospherically

corrected using the official CHRIS/PROBA Toolbox for BEAM (Alonso
et al., 2009). Simultaneously to the acquisition, ground data was col-
lected in the test area. Barrax is an agricultural research facility char-
acterized by a flat landscape and large uniform land-use units of irri-
gated and dry lands and has an extension of ×5 10 km. The vegetation
biophysical parameters were measured among different crops. The Chl
was measured with a calibrated Minolta CCM-200, the LAI was derived
from canopy measurements made with a LiCor LAI-2000 and the fCover
was derived from hemispherical photographs. All parameters present

standard errors between 3% and 10%. The field-measured values of Chl
between 2 and 55μg/cm2, LAI vary between 0.4 and 6.3, and fCover

Fig. 2. Farm field polygons (red) overlapping the time series of RGB composites and the available ground truth (class 0: no data, 1: Maize, 2: Millet, 3: Peanut, 4:
Sorghum and 5: Cotton).

Table 1
Summary of classification databases (N : number of features, nc: number of
classes, Ntrain: number of training samples, Nval: number of validation samples,
and Ntest : Number of test samples.) used in classification.

Image N nc Ntrain Nval Ntest

WorldView-2 10572 5 500 250 990
Indian Pines 200 16 1323 640 8286
Pavia 40 9 900 450 13224
Salinas 204 16 1600 800 50230

Fig. 3. Overall accuracy (%) (Top) and number of features selected by GRRF (Middle) for different γ and λ values. Overall accuracy versus the number of selected
features for all classification databases (Bottom). The red points indicate the optimal number of features and provide γ* and λ*.
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between 0 and 1. A total of 135 measurements of Chl, LAI, and fCover
were extracted from the Barrax database and their associated 55 CHRIS
reflectance channels form the database.

5. Experiments and results

This section presents the classification and regression experiments
and their results. All the experiments require completing the following
three steps:

1. Parameter optimization: The training set was used to obtain the fea-
ture importance from a RF model. Then a range of λ and γ values
was used within GRRF to obtain various sets of selected features.
After that, a RF model was trained, and the parameters that optimize
the model were selected as the optimum ones (λ* and γ*). Note that,
after this step the subset of features is still unknown due to the
randomness of the RF.

2. GRRF vs. standard RF features: Once λ* and γ* were fixed, GRRF was
applied to different partitions of the training data. The subset that
optimizes the model was selected to evaluate the added value of the
Nf selected features by GRRF, their performance was compared
against that obtained by the top Nf features provided by standard
RF.

3. Model assessment: The GRRF selection was evaluated using two well-
known methods in remote sensing field: RF and SVM. Both methods

were used to compare the results obtained with the features selected
by GRRF and RF, and when using all available features. To measure
the quality of the selected features, we report the Overall Accuracy
(OA) and Cohen's kappa (κ) (Cohen, 1960) for classification pro-
blems. For regression, we report the root mean square error (RMSE)
and the mean absolute error (MAE) to evaluated the precision of the

Fig. 4. Comparison of OĀ using n GRRF features and the n top features of RF
sorted by their importance for all classification databases. n is fixed to Pareto
optimization.

Fig. 5. Top 10 features selected by GRRF and RF together with their normalized
feature importance. Notation WorldView-2: date f eature t exture_ _ : date of the
acquisition, spatial or spectral feature and type of texture. Spectral or spatial
feature: bx: spectral band of the image, NDI: normalize difference index, DVI:
difference vegetation index, RVI: ratio vegetation index. Texture feature: svag:
sum average.
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models, the mean error (ME) to determine the bias and the Pearson's
correlation (R) to measure the goodness of the model fit.

5.1. Feature selection for classification

5.1.1. Training, validation and test data
The available databases were split into three subsets: training, va-

lidation and test. Training and validation sets were used to optimize
and train the classifiers, and the test set was used to check the quality of
the models. For WorldView-2, 100 and 50 samples per class were re-
spectively used to train and validate the hyperparameters. Both sets
were randomly selected from the available training samples (see
Section 4.1.1). For the hyperspectral images, 100 samples per class
were selected for training, 50 samples per class for validating and the
rest of pixels of the database were used for testing the classifiers (see
Table 1). Note that there are 4 classes in Indian Pines with few samples
per class. In these cases two-thirds of the samples were randomly

selected for training and the rest were split into validation (two-thirds
of the remaining pixels) and test (one-thirds of the remaining pixels).

5.1.2. Parameter optimization
As mentioned in Section 3, GRRF requires training a standard RF to

get the importance of all the features. Here we use a standard RF with
500 trees. The square root of the number of features is used to fix the
number of features for each tree. A range of ∈λ [0, 1] and ∈γ [0, 1]
both in steps of 0.1 was used to parametrize the GRRF and select the
most important features. These features were evaluated using ten runs
of a standard RF classifier, which provided ten OA values for each
pairwise combination of (λ γ, ). However, different (λ, γ) combinations
provide different OĀ with the same number of features selected. A
Pareto optimality (Box and Meyer, 1986) is used to find the best values
GRRF parameters (λ* and γ*). For this, we use all combinations whose
OĀ is higher than 98% of the maximum OĀ. If more than one Pareto
point is obtained, we select the λ* and γ* that minimize the number of

Table 2
Mean overall accuracy, κ index and, percentage reduction in overall accuracy with respect to the best OĀ.

WorldView-2 # Feat. RF SVM Pavia # Feat. RF SVM
Feat. selection OĀ κ̄ % OĀ κ̄ % Feat. selection OĀ κ̄ % OĀ κ̄ %

None 10572 87.15 0.84 1.36 90.09 0.88 – None 40 96.28 0.95 1.31 97.70 0.97 0.07
GRRF 35 88.35 0.85 – 87.75 0.85 2.59 GRRF 7 97.56 0.97 – 97.56 0.96 –
RF 35 83.94 0.80 4.99 88.98 0.86 1.23 RF 7 96.09 0.95 1.51 97.17 0.97 0.68

Indian Pines # Feat. RF SVM Salinas #. Feat. RF SVM
Feat. selection OĀ κ̄ % OĀ κ̄ % feat. selection OĀ κ̄ % OĀ κ̄ %

None 200 70.28 0.66 0.21 70.16 0.66 6.89 none 204 87.56 0.86 – 89.09 0.88 –
GRRF 27 70.43 0.66 – 75.35 0.72 – GRRF 16 86.08 0.84 1.69 87.79 0.86 1.45
RF 27 68.62 0.64 2.57 72.62 0.69 3.62 RF 16 83.86 0.82 4.22 85.06 0.83 4.52

Fig. 6. (Left to right) RGB composite of a subset of the study area and the corresponding classification maps for a combination of classifier and feature selection
method [Notation: classifier(feature selection method): OA (κ)]. In all the cases, the top 35 features were used (c.f. Table 2) and all pixels in the image are classified
but the trees and clouds are masked (No class).

Table 3
Confusion matrix of the best classifiers for WorldView-2. [Notation: GT: Ground Truth, Pred.: Predictions, Ma: Maize, Mi: Millet, P: Peanut, S: Sorghum, C: Cotton,
UA: User's Accuracy, F sc: F score and, PA: Producer Accuracy].

Classifier RF SVM

Pred.
Sel. GT Ma Mi P S C UA Fsc Ma Mi P S C UA Fsc

GRRF Ma 167 6 3 4 3 0.92 0.91 159 8 1 9 6 0.88 0.86
Mi 3 206 10 12 6 0.87 0.86 10 207 13 5 2 0.87 0.87
P 0 0 108 10 2 0.86 0.90 0 0 113 6 1 0.86 0.94
S 1 8 0 226 1 0.90 0.95 2 17 2 213 2 0.89 0.90
C 6 14 8 12 174 0.87 0.81 4 2 13 7 188 0.91 0.87

PA 0.94 0.88 0.83 0.85 0.93 0.90 0.88 0.79 0.88 0.94

RF Ma 158 14 2 7 2 0.85 0.86 162 11 2 7 1 0.89 0.88
Mi 7 189 11 21 9 0.79 0.79 12 199 14 10 2 0.86 0.83
P 7 5 103 7 1 0.81 0.83 2 7 104 6 1 0.80 0.86
S 4 11 4 208 9 0.86 0.88 2 4 7 212 11 0.87 0.89
C 9 17 9 1 178 0.86 0.83 0 4 11 12 187 0.89 0.87

PA 0.85 0.80 0.79 0.85 0.89 0.91 0.88 0.75 0.85 0.92
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selected features.
The OĀ surfaces obtained for the different values of λ and γ are

represented in Fig. 3 [Top] for the four classification databases. All
surfaces show two patterns: low OĀ values for small λ and γ values and
high OĀ values for large λ and small γ values. These patterns can be
explained by the reduction in data dimensionality after applying GRRF
(Fig. 3 [Middle]). This feature selection method extremely reduces the
dimensionality of the data when both parameters are small whereas
there is not reduction when =λ 1 and =γ 0.

For the WorldView-2 database, which has 10572 features (Table 1),
the number of features is reduced to almost 600 when =λ 1 and =γ 0.
This is because this database has features with a RF gain of to zero and
that they do not fulfil the condition >G Gx v( , ) *jGRRF (see Algorithm
2). For the same reason, the case =λ 0 and =γ 0 is not calculated.

In general, both GRRF parameters yield high values of OĀ in all
databases. However, the WorldView-2 database has a concentration of
OĀ values smaller than 40% for λ and γ values below 0.6. Those values
correspond to the lowest number of selected features (Fig. 3 [middle]).
At this point, it is worth mentioning that small λ and γ values are al-
ways associated to a very number of features (typically less 5).

The bottom row of Fig. 3 shows the changes of OĀs versus the
number of features selected. As expected the OĀ saturates when the
number of selected features is larger than the optimal one. This sa-
turation point corresponds with the Pareto optimum.

5.1.3. GRRF vs. standard RF features
As outlined in Section 5.1.2, once the GRRF parameters are fixed,

the best subset of features is selected by training ten RF classification
models with different partitions of the training data. In this context, the
best set of features is the one that leads to the model with the highest
OĀ. These optimal features are compared with the same number of
features extracted from a standard RF, and sorted by their RF im-
portance.

Fig. 4 shows the optimal GRRF parameters (λ* and γ*) for each
database as well as the relationship between the OĀ obtained with both
subset of features and the values of γ (and λ) when fixing =λ λ* (and

=γ γ*). In all cases, the λ* values are close to one and the γ* are close to
zero (except Pavia image). This confirms previous results where λ is
typically fixed to one so that only γ needs to be optimized (Deng and
Runger, 2013). Fig. 4 also shows that differences in OĀ between both

Fig. 7. (Left to right) RGB composite, ground truth, and six classification maps for the (top) Indian Pines image, (middle) Pavia image, and (bottom) Salinas image
using 22, 8 and 18 features, respectively.

Fig. 8. Computational time per classifier and database using all features and
selected features by GRRF and RF.
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subsets of features are small when =λ 1 for γ* and =γ 0 for λ* because
almost all features are selected. However, when the number of features
is smaller, the GRRF selected features often lead to much better OĀ.
Differences in OĀ are very small for all λ values when =γ* 0.1 in the
WorldView-2 database whereas they are particularly visible in the
Pavia database. The OĀ is a non-monotonic function because the
number of selected features are different for different sets of GRRF
parameters. However, OĀ tends to increase as λ increases and decrease
when γ increases.

GRRF, as RF-based method, allows visualizing the importance of the
selected features. This helps to hypothesize over possible physical
meaning and allows the creation of more transparent and interpretable
models. The top 10 features selected by both GRRF and RF are shown in
Fig. 5, together with their normalized importance. Notice that GRRF
only found six important features in the Pavia database. In all the cases,
the decrease in feature importance from RF is smoother than the one
shown for GRRF. This may be caused by GRRF is more strict in selecting
uncorrelated features, i.e. not selected the redundant and non-re-
presentative features.

For WorldView-2, the GRRF selected features come from five out of
the seven acquisitions included in this database whereas the RF selected
features focus on a single acquisition. We observe a prevalence for
textures, specifically for vegetation index textures in both subsets of
selected features. The sum average is the most important GLCM feature
in both subsets of features. For the hyperspectral databases, GRRF se-
lected high wavelength bands (higher than 1.5 μm) in all the cases,
unlike the RF selected features, which only contain a few high wave-
length bands for Pavia and Indian Pines cases. Regarding agricultural

classifications (Indian Pines and Salinas), GRRF focuses on the red and
NIR range contrarily to RF whose selection spreads over the visible
range and includes bands in the green and blue range of the electro-
magnetic spectrum.

5.1.4. Classification assessment
Standard RF and SVM classification models were created using all

the features and the GRRF and RF subsets to thoroughly evaluate the
proposed GRRF features selection method. We used a 5 k-fold cross-
validation to optimize the SVM model's complexity (C) and the Radial
Basis Function (RBF) kernel length-scale (σ) parameters with the
standardized data. C is optimized in a logarithmic range from 0.1 to
1000 in 10 steps and, ∈ ×σ [0.5, 30] the mean Euclidean distance
among labeled training data. In both cases, we sampled ten equally
spaced values from the given ranges. Finally, the best models are used
to create classification maps.

Table 2 shows theOĀ and κ̄ as well as the percentage of reduction in
OĀ with respect to the classification model with maximum OĀ. GRRF
selected features provide good results. In all the cases and for all the
classifiers, the reduction inOĀ is less than 3%. This indicates that GRRF
features can be used with various kinds of classifiers. Additionally,
GRRF is not affected by the dimensionality of the databases, unlike RF
selection. The features selected by RF are less informative as shown by
the reduction in OĀ, which ranges from 1 to almost 5%.

Considering the type of classifier, SVM always gets better results
than RF. This indicates that the SVM classifier is less dependent on the
number of features than RF.

Fig. 6 shows the RGB composite and the classifications maps of a

Fig. 9. RMSE comparison for a range of γ and λ values for different databases [Top]. Number of features selected by GRRF with different γ and λ values [Middle].
RMSE versus the number of features selected by GRRF [Bottom]. The red points indicate the optimal number of features and provide γ* and λ*.
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subset of the study area of the WorldView-2 database using the two
feature selection methods and the two classifiers. The creation of the
classification maps with all features is not computationally possible due
to the very high dimensionality of the database (see Table 2). This
subset was selected to visualize the results because it is large enough to
contain all the classes of interest and small enough to be displayed with
good resolution. The four classification maps show the smallholder
farms in a clear way, and they can be recognized in the RGB composite.
However, differences among the classification results are clearly visible.
The GRRF-based maps are less noisy than the maps based on RF se-
lected features. This confirmed by the higher OA and κ index. Re-
garding the classifiers, RF mixes less crops within the fields although
the confusion matrices (Table 3) obtained from the test samples show
that both classifiers have a similar performance (SVM being slightly
better) as confirmed by the different statistics (Producer accuracy,
User's accuracy and F -score).

The classification maps of the hyperspectal images are shown in
Fig. 7 together with their OA and the κ values. In this case, maps were
made using all features and the best subsets of GRRF and RF selected
features. Results confirm Table 2 and the predominance of GRRF-based
features over the standard feature selection offered by the RF classifier.
An advantage of feature selection is the reduction in computational
time of prediction the models. Fig. 8 show the processing time for both
classifiers using different number of features (all, GRRF and RF sets). As
expected, the computational time with all features is the highest for all
databases and the times using GRRF and RF features are equal. We
highlight the short time required to classify the WorldView-2 database
using GRRF features. The proposed feature selection method coupled
with the RF classifier outperforms the accuracy of non-feature selection
(see Table 2) and its classification time is around 250 times faster.

5.2. Feature selection for regression

5.2.1. Training, validation and test data
Unlike classification, the database has a limited number of samples

that can be used for training, validating and testing the models. For that
reason, we used 75 samples to train the model, 25 to validate it and the
rest of the labeled samples were used to independently test the re-
gression models.

5.2.2. Parameter optimization
Like for classification, we first trained a standard RF model to get

the importance of all the features. In this case, we fixed the number of
trees to 500 and the number of features available to each tree to one-
third of the total number of features (N ). The general process to opti-
mize the GRRF parameters is identical to the one used in the classifi-
cation problems (Section 5.1.2). The only difference is that here we use
all pairwise combinations of λ and γ that yield a RMSE¯ that is up to 1%
worse than the minimum RMSE¯ .

Fig. 9 shows the RMSE¯ (top) and the number of features selected
(middle) for all the evaluated combinations of λ and γ for the three
biophysical parameters. As in the case of classification, the best values
of RMSE¯ are for high λs and small γs. Nevertheless, the regression

Fig. 10. Comparison of RMSE¯ using n GRRF features and the n top features of
RF sorted by their importance for Chl, LAI and fCover variables. n is fixed to
Pareto optimization.

Fig. 11. Top 10 feature selected by GRRF [left] and RF [right] for Chl, LAI and
fCover variables.
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results show some notable differences with respect to the classification
ones:

1. The errors are less concentrated than the misclassifications. Both
high and low RMSE are found across a wide range of λ and γ values.

2. A smaller range of λ and γ values are associated with a significant
reduction in the number of features.

3. Several combinations of (λ, γ) yield the same number of selected
features (Fig. 9 [bottom]).

These differences show that regression problems are more sensitive
to the values of the GRRF parameters.

5.2.3. GRRF vs. standartd RF features
Following the same process chain used in the classification pro-

blems, ten partitions of the training data were used to train ten GRRF
models with the optimal set of parameters found in the previous step
(λ*, γ*). The corresponding sets of selected features are evaluated

through the RMSE¯ obtained from standard RF models. The set that
yields the minimum RMSE¯ is selected as the best one. The results of this
best set of features are compared against the results obtained with the
same number of features selected according to their standard feature
importance.

Fig. 10 shows the optimum parameters and the relationship be-
tween RMSE¯ and λ and γ . In general, GRRF features improve the results
compared to RF features. We highlight two key points: (1) unlike
classification, where optimum values were typically high λ and low γ ,
the optimum values for regression correspond to low λ and γ values.
And (2) the differences between the feature selection methods are
smaller in regression than in classification.

These two points show the importance of properly optimizing the

Table 4
Regression results for all the databases using all the dimensions and the selected
features by GRRF and RF. [The number of selected feature is 17 for Chl, 32 for
LAI and 21 for fCover].

Chl RF SVR

All GRRF RF All GRRF RF

RMSE 6.568 6.402 6.649 4.568 4.271 6.032
MAE 3.794 3.910 3.867 2.615 2.557 3.551
ME 0.418 0.238 0.338 0.768 0.446 0.501
R 0.895 0.900 0.892 0.901 0.914 0.817

LAI RF SVR

All GRRF RF All GRRF RF

RMSE 0.622 0.624 0.605 0.559 0.573 0.546
MAE 0.479 0.479 0.460 0.430 0.441 0.403
ME −0.098 −0.105 −0.090 −0.156 −0.180 −0.098
R 0.892 0.891 0.896 0.824 0.816 0.832

fCover RF SVR
All GRRF RF All GRRF RF

RMSE 0.138 0.137 0.136 0.133 0.141 0.142
MAE 0.094 0.095 0.096 0.104 0.111 0.107
ME 0.007 0.004 0.005 0.006 0.004 −0.011
R 0.900 0.902 0.902 0.812 0.786 0.785

Fig. 12. Predictions maps and their RMSE values for (top) chlorophyll, (middle) LAI, and (bottom) fCover for CHRIS/PROBA using all features (55), and 17, 32 and 21
features, respectively for each biophysical parameter.

Fig. 13. Computational time per predition model and variable using all features
and selected features by GRRF and RF.
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GRRF parameters for regression problems. Moreover, our regression
results indicate that it is important to optimize both parameters (con-
trarily to what was shown in classification).

The selected features (Fig. 11) mainly focus on the NIR and red
range for both selection feature methods. Yet, both methods also se-
lected a few features in the blue range to predict Chl (see variable de-
finition Section 4.2). Compared with the classification case (Fig. 5), the
importance of the selected features decreases in a similar fashion for
both GRRF and RF.

5.2.4. Biophysical parameter retrieval assessment
Regression results were obtained using standard RF and a Support

Vector Regression (SVR) models. These models were trained using 10
partitions of the training samples and tested with the remained samples.
The parameters of the SVR were fixed by a 5-fold cross-validation of the
model's complexity (C was defined in logarithmic range from 0.1 to
1000 in 10 steps), RBF kernel length-scale ( ∈ ×σ [0.5, 30] the mean
Euclidean distance of the training data) and the deviation of the pre-
dictions from the targets ( ∈ε [0.1, 0.5]) with the data standardized.

Table 4 shows the statistical metrics derived from the models when
using all the features as well as the features selected by GRRF and RF.
These latter features sets yielded low errors for both the RF and SVR
models. Focusing on the type of prediction, RF results excel in the
prediction of Chl, where the use of GRRF features results in up to 2%
less error than using all the available features. However, the SVR
models are much better with a reduction in the error about 6.5%. De-
spite these percentages, the statistical metrics are good to very good for
all the three variables. Note that, both regression models tend to
overestimate the results for the three cases (RF and GRRF selection and
all features) for predicting LAI whereas underestimate for the threes
cases for predicting Chl. Fig. 12 presents the prediction maps for the
three variables included in the CHRIS/PROBA database together with
their RMSE. For comparison purposes these maps were prepared using
the three cases: all features and the sets of selected features (GRRF and
RF). In all the cases, the RF and SVR models lead to low RMSEs. Yet, the
SVR models always outperform the RF ones.

Last but not least, Fig. 13 shows the computational time of the 6
prediction models for each variable. The models trained with the se-
lected features are much faster than the models based on all the fea-
tures. This is particularly important considering the small differences in
the prediction results (see Table 4). Like in the classification case, the
GRRF and RF models are equally fast but it is important to remember
that GRRF does not require a priori knowledge to fix the number of
important features.

6. Discussion and conclusions

Efficient data dimensionality reduction methods are of great im-
portance in this new Earth observation era characterized by an ever-
increasing access to big geodatabases. In this work, we evaluate a novel
feature selection method based on random forests, namely guided
regularized random forest or GRRF. Considering that the literature on
the feature selection methods is vast, that random forest based methods
are the most popular ones amongst the remote sensing literature (Belgiu
and Dragut, 2016; Hariharan et al., 2018) and, that embedded methods
outperform other feature selection approaches (Pal and Foody, 2010),
here we only compare GRRF against the standard use of random forest
as feature selector. Our experimental results show that GRRF efficiently
identifies the most important features for various classification and
regression tasks after optimizing its two parameters. Our experiments
also show that this optimization is more critical for regression than for
classification tasks, and that the features selected by GRRF are in a
different spectral range than the ones selected by the standard RF.
Moreover, the use of GRRF leads to a reduction of the data di-
mensionality of about 80% for the selected classification problems
(with only 2.5% decrease in overall accuracies) and of about 60% for

the selected regression problem (with virtually no difference in the
regression errors). Last but not least, our experimental results show that
the GRRF can be successfully in conjunction with the two most popular
and robust machine learning methods (i.e. RF and SVM/SVR). Despite
the fact that these methods can deal with high dimensional problems,
the use of GRRF selected features lead to better results in some of our
experiments. Therefore, GRRF offers new possibilities to simplify the
analysis of large amounts of Earth Observation data while allowing a
deeper analysis of the selected features for classification and regression
tasks.
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