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Swarm intelligent algorithms are embedded into sensor networks to achieve perfect coverage with minimal cost. However, these
methods are often highly complex and easily fall into the local optimum when balancing coverage and resource consumption. We
introduce adaptive improved fish swarm optimization (AIFS) that extricates each node from the local optimum and reduces overlap
and overflow coverage. Drawing on the habits of fish, AFIS ensures nodemobility with respect to the food concentration at a certain
point. Node dispersion shows good compromise under coordination by two presented parameters, namely, food concentration
and crowd density. In addition to inheriting properties from traditional fish swarm, the initial random nodes become dispersed
without overflow in assisting the proposed jumping and dodging behavior.The resulting network avoids potential local optima and
improves the network boundary coverage efficiency.The convergence speed and efficiency ofAIFS are verified. Extensive simulation
experiments reveal that an improved coverage gain is obtained, and computation cost and overflow waste are reduced.

1. Introduction

In wireless sensor networks (WSNs), numerous sensor nodes
are randomly scattered in a monitoring region. Low coverage
efficiency is likely to arise. Several overlapping portions are
caused by redundant nodes with high density. Meanwhile,
nodes are eager to cover blank areas. We can start from two
ways, such as adding and moving nodes to improve coverage
performance.The former methodmoves nodes to these weak
coverage areas. The latter is able to improve coverage quality
by adding more nodes. These additional nodes are directly
deployed into the weak area (i.e., decisive coverage com-
pensation) or dispersed with the given random distribution
probability (i.e., random coverage compensation), which is
referred to as the complex system [1], especially the small-
world theory [2]. Considering investment in network equip-
ment, our study focuses on selecting and moving redundant
nodes to blank spaces that are not covered by nodes. This
scenario is the key reason network coverage has been an
enduring topic for researchers.

Instead of adding nodes, WSNs can move several nodes
to maximize coverage, and this method is effective. Such
mobile coverage uses inordinate amounts of energy, and

many scholars [3–5] have presented important constructive
achievements in this area. Andrea [6] examined node mobil-
ity and posited that dynamic mobile coverage is valuable in
improving efficiency in event-triggered WSNs, especially in
extending node lifetime and reducing the number of nodes
that sense the same area. Similar to [6], [7] regarded cov-
erage quality and lifetime as two key parameters for mobile
WSNs. Reasonable coverage density was discussed with the
presented threshold expressions as nodes moved. The results
showed that coverage quality and lifetime improved by more
than 10%.

Moving nodes expand the coverage area. Thus, the next
issue to address is the optimal coverage that provides moving
positions for nodes. In [8], horizontal and vertical sampling
lines were set in a monitoring area, and a coverage optimiza-
tion algorithm based on sampling for homogeneous WSNs
(COSH) was established based on the relationship between
the node-sensed circular boundary and sampling line. The
algorithm simulates the optimal coverage of the entire net-
work with the optimal coverage effect of multiple sampling
lines and effectively improves coverage performance. How-
ever, the frequency of sampling lines is manually config-
ured without the introduction of any intelligent method.
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Consequently, the universality of the algorithm is unsatisfac-
tory. Another study [9] designed Virtual Force Diminishing
Particle Swarm Optimization (VFDPSO) to address the
limitations of nonintelligent configuration through network-
wide optimization. VFDPSO achieves automatic coverage
optimization, but its stability is imperfect because Particle
Swarm Optimization (PSO) easily falls into local optimiza-
tion [10]. Huang [11] introduced the Artificial Fish Swarm
Algorithm (AFSA) into mobile coverage. AFSA can jump out
of local optimization. The objective function is promoted to
jump out of local optimization by following the behavior of
some fish [12], thus preventing rear-end collision. Although
AFSA solves local optimization, its time consumption is high.
Therefore, AFSA was combined with virtual force in [13] to
increase its working efficiency. The speed in jumping out of
local optimization is improved by introducing this type of
fusion with virtual force. However, the algorithm still has
drawbacks, such as late response to serious local optimization
and inconspicuous improvement in coverage performance.

The energy consumption in the mobile process has also
been fully considered in many studies [14, 15]. By adopting
an intelligent algorithm, [14] was able to schedule partial
nodes to participate in coverage to save energy.The algorithm
presented in [15] disposed a small number of beacon nodes
to improve coverage accuracy and reduce the overall energy
consumption.

Our study fully utilizes mobile features to optimize cover-
age performance. An Adaptive Improved Fish Swarm (AIFS)
algorithm is developed to explore the practical application of
intelligent algorithms in jumping out of local optimization
in random sensor networks. AIFS designs a type of jumping
behavior on the basis of the K-level mean [16], which not
only allows rapid jumping out of local optimization but also
reduces the probability of falling into local optimization in
advance. The calculation and implementation of behavior
are executed separately, such that the generated best moving
means reduce energy wastage caused by invalid movement.
Additional wall-dodging behavior is used to optimize the
boundary problem and inhibit overlap and overflow cover-
age. Convergence speed is accelerated by recording the speed
variation trend of convergence and adaptively adjusting the
field of view and step length of movement.

The remainder of the paper is organized as follows. In
Section 2, we review AFSA, essential models, and notions.
We investigate the details of AIFS in Section 3. The results
of simulations are introduced in Section 4. In Section 5, we
present the conclusion and several directions for future work.

2. Mathematical Model

2.1. Network Model. 𝑁 homogeneous sensor nodes, 𝑆 =
{𝑆1(𝑥1, 𝑦1), . . . , 𝑆𝑘(𝑥𝑘, 𝑦𝑘), . . . , 𝑆𝑁(𝑥𝑁, 𝑦𝑁)}, are randomly
scattered within a given monitoring area 𝐼 = 𝑙 × 𝑙, and all
nodes adopt a Boolean sensing model with radius 𝑟, where
𝑘 = 1, 2, 3, . . . , 𝑁. For illustration, area 𝐼 is discretized into
𝑙 × 𝑙 pixels [17]𝑀 = {𝑀(1,1),𝑀(1,2), . . . ,𝑀(𝑥,𝑦), . . . ,𝑀(𝑙,𝑙)},
where 𝑥, 𝑦 = 1, 2, . . . , 𝑙, and randomly deployed nodes are
assumed to be located on a certain pixel.

2.2. Basic Definition. Network coverage is an important
index for measuring the coverage performance of sensor
networks. The expressions of several concepts related to
network coverage are as follows.

Definition 1 (pixel-sensing ratio). When the distance between
pixel𝑀(𝑥,𝑦) and sensor node 𝑆𝑘 is less than 𝑟, the sensing ratio
of 𝑆𝑘 at 𝑀(𝑥,𝑦) is considered to be 1; otherwise, it is 0. That is,

𝑃 (𝑀(𝑥,𝑦), 𝑆𝑘) = {
{
{

1, (𝑥 − 𝑥𝑘)2 + (𝑦 − 𝑦𝑘)2 ≤ 𝑟2

0, others.
(1)

Definition 2 (pixel coverage). Pixel coverage shows the cover-
age performance of network 𝑆 at a certain pixel𝑀(𝑥,𝑦). When
the distance between pixel 𝑀(𝑥,𝑦) and any 𝑆𝑘 ∈ 𝑆 is less than
𝑟, 𝑀(𝑥,𝑦)can be covered by 𝑆, i.e.,

𝑃 (𝑀(𝑥,𝑦), 𝑆) =
{{
{{
{

0,
𝑁

∑
𝑘=1

𝑃 (𝑀(𝑥,𝑦), 𝑆𝑘) = 0
1, others.

(2)

Definition 3 (network coverage). The ratio sum of the cov-
erage of all pixels to the total number of pixels is defined as
network coverage 𝑌, i.e.,

𝑌 = ∑𝑙𝑥=1∑𝑙𝑦=1 𝑃 (𝑀(𝑥,𝑦), 𝑆)
𝑙2 × 100%. (3)

Equations (2) and (3) show that the greater the number
of pixels that satisfy 𝑃(𝑀(𝑥,𝑦), 𝑆) = 1 is, the more effectively
the network coverage 𝑌 of area 𝐼 can be improved.Therefore,
the goal of coverage optimization is to move nodes with
overlapped coverage to the blank place to increase the
number of pixels that meet 𝑃(𝑀(𝑥,𝑦), 𝑆) = 1 as much as
possible.

2.3. Basic Fish Swarm Algorithm: AFSA. AFSA is an intelli-
gent algorithm that can jump out of local optimization. This
algorithm exhibits good robustness and global convergence
and does not have high requirements for initial values. AFSA
is applied to the coverage of sensor networks, where a sensor
node 𝑆𝑘 is thought of as a fish 𝑆𝑘. The food concentration
at each pixel is positively correlated with its attraction to a
sensor node (or a fish).

In accordance with the behavior habits of a fish swarm
[18], AFSA includes four behavioral patterns, namely, for-
aging, clustering, repulsing, and random walking, to solve
the movement problem for every fish. Before presenting
these types of behavior, the basic parameters are described
as follows.

Field of view (V𝑖𝑠𝑢𝑎𝑙): each fish has a circular range of
observation called field of view, and its radius is represented
as V𝑖𝑠𝑢𝑎𝑙.

Fish spacing threshold: key distances that stimulate the
fish swarm to perform some given behavior are provided. 𝛼
and 𝛽 are presented as clustering and repulsing thresholds,
respectively.
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Reference andmoving steps: reference step 𝑠𝑡𝑒𝑝0 is used
to indicate the unit moving step. Moving step indicates the
moving length of a movement performed by a fish. It satisfies
𝑠𝑡𝑒𝑝 = 𝑠𝑡𝑒𝑝0 × 𝑟𝑎𝑛𝑑, where 𝑟𝑎𝑛𝑑 ∈ (0, 1) is a random value.

Foraging: given a pixel 𝑀(𝑥,𝑦)within the V𝑖𝑠𝑢𝑎𝑙 region
of fish 𝑆𝑘, the food concentration at point 𝑀(𝑥,𝑦) may be
higher than that at point 𝑆𝑘 if min(D(𝑀(𝑥,𝑦), 𝑆𝑘 | 𝑆)) <
min(D(𝑆𝑘, 𝑆𝑘 | 𝑆) exists. Then, fish 𝑆𝑘 should move 𝑠𝑡𝑒𝑝
toward 𝑀(𝑥,𝑦). If point 𝑀(𝑥,𝑦) is not found within the V𝑖𝑠𝑢𝑎𝑙
region of fish 𝑆𝑘, then fish 𝑆𝑘 begins random walking. D(∙)
represents the Euclidean distance between two points.

Clustering: if the given fish 𝑆𝑘 satisfies min(D(𝑆𝑘, 𝑆𝑘 |
𝑆) > 𝛼, then 𝑆𝑘 moves 𝑠𝑡𝑒𝑝 toward the current nearest fish.

Repulsing: if the givenfish 𝑆𝑘 satisfiesmin(D(𝑆𝑘, 𝑆𝑘 | 𝑆) <
𝛽, then 𝑆𝑘 moves 𝑠𝑡𝑒𝑝 toward the direction opposite to the
current nearest fish.

Random walking: the given fish 𝑆𝑘 moves 𝑠𝑡𝑒𝑝 toward a
random direction.

The mentioned foraging behavior motivates a node (also
called fish) to expand the covered region. With the help of
clustering behavior, an isolated node can effectively move
close to the center. Repulsing behavior can avoid crowded
nodes, and random walking can increase the randomness of
node movement. The combination of repulsing behavior and
random walking ensures that the fish swarm jumps out of
local optimization.

3. AIFS Algorithm

3.1. Algorithm Idea. Considering the natural pursuit for full
coverage and efficient movement to save energy, an appropri-
ate method should provide a rapid and effective response that
faces the local optimization and boundary problem. There-
fore, we propose an AIFS algorithm based on AFSA. The
speed and efficiency of fish jumping out of local optimization
are improved by additional jumping behavior. Combined
with the K-level means idea [16], a new food concentration
at each pixel is redefined to reduce the probability of falling
into local optimization. Wall-dodging behavior is a valuable
addition due to the presented critical strategies for the nearby
boundaries of the nodes.Our significant parameters, 𝑠𝑡𝑒𝑝 and
V𝑖𝑠𝑢𝑎𝑙, are adaptively adjusted to ensure convergence stability.
3.2. Key Definitions. The food concentration of a pixel
directly determines the mobile attraction of this position
to a fish (i.e., sensor node). Basic experiences indicate that
covering a large blank area can provide high coverage quality.
Thus, food concentration is related not only to the coverage
ratio of the pixel’s location but also to that of adjacent pixels.
Therefore, the relevant parameters of AIFS are updated as
follows.

Definition 4 (food concentration 𝑇(𝑥,𝑦)). Given parameter 𝐾,
the food concentration𝑇(𝑥,𝑦) of pixel𝑀(𝑥,𝑦) is related to all the
pixels’ coverage within the 𝐾-level neighborhood of 𝑀(𝑥,𝑦)
and defined as follows:

𝑇(𝑥,𝑦) = −
𝐾

∑
𝑡=0

2𝐾−𝑡
2𝐾+1

𝑦+𝑡

∑
𝑓=𝑦−𝑡

𝑥+𝑡

∑
𝑒=𝑥−𝑡

𝑃 (𝑀(𝑒,𝑓), 𝑆) . (4)

The 𝐾-level means method is applied to calculate 𝑇(𝑥,𝑦),
in which the pixels’ coverage ratios within the 𝐾-level
neighborhood around 𝑀(𝑥,𝑦) are included in the calculation
process. The difference among the levels around 𝑀(𝑥,𝑦) is
characterized by setting the weight coefficient 2𝐾−𝑡/2𝐾+1 for
each layer of the neighborhood.

Definition 5 (crowding density). The sum of the coverage of
pixels within 𝑟 sensing range of 𝑆𝑘 is defined as the crowding
density of 𝑆𝑘.

𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑘 =
𝑦𝑘+ 𝑟
∑
𝑓=𝑦𝑘− 𝑟

𝑥𝑘+ 𝑟
∑
𝑒=𝑥𝑘− 𝑟

𝑃 (𝑀(𝑒,𝑓), 𝑆𝑘) (5)

𝑀(𝑒,𝑓) is a pixel that satisfies √(𝑒 − 𝑥)2 + (𝑓 − 𝑦)2 ≤ 𝑟
in area 𝐼, where 𝑟 represents rounded-down numbers of 𝑟.
𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑘 embodies the crowding density around 𝑆𝑘. Thus, it
is an important parameter for evaluating whether redundant
nodes exist within the sensing range of 𝑆𝑘 or not.

3.3. Updated Behavior. In addition to the four basic types of
behavior included in AFSA, two new behavior types, namely,
jumping and wall dodging, properly address the restrictions
originating from local optimization and the boundary prob-
lem. An attenuation factor, 0 < 𝜃 < 1, is introduced to
adjust the values of V𝑖𝑠𝑢𝑎𝑙 and 𝑠𝑡𝑒𝑝 to address the lack of
convergence, which is helpful in enhancing the adaptability
[19] of our AIFS. Several key parameters, such as variable
jumping factor 𝑝𝑘, jumping threshold 𝑃𝑡ℎ (0 < 𝑃𝑡ℎ < 1), and
crowding threshold 𝑄𝑡ℎ, are introduced.

Jumping: if node 𝑆𝑘 satisfies𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑘 > 𝑄𝑡ℎ and𝑝𝑘 > 𝑃𝑡ℎ,
the jumping behavior is executed, and 𝑆𝑘 jumps to the point of
the pixel argmax(𝑇(𝑥,𝑦)), where√(𝑥 − 𝑥𝑘)2 + (𝑦 − 𝑦𝑘)2 ≤ 𝑟 .
𝑆𝑘 prefers to randomly select one as its jumping destination
when more than one pixel fits in with argmax(𝑇(𝑥,𝑦)), where
argmax(𝑇(𝑥,𝑦)) represents the coordinate of maximum𝑇(𝑥,𝑦).

Wall dodging: if D(𝑆𝑘, 𝐼 ) < 𝑟/2, then node 𝑆𝑘 moves
𝑟𝑎𝑛𝑑 × (𝑟 − D(𝑆𝑘, 𝐼 )) toward the opposite direction of the
boundary, where 𝐼 means the boundaries of 𝐼.

Updating V𝑖𝑠𝑢𝑎𝑙 and 𝑠𝑡𝑒𝑝: after 𝐶𝑡ℎ rounds of optimiza-
tion, the values of V𝑖𝑠𝑢𝑎𝑙 and 𝑠𝑡𝑒𝑝 are updated to overcome
the weak convergence of 𝑌. If 𝑌 does not achieve a sufficient
inclement for itself after optimization, V𝑖𝑠𝑢𝑎𝑙 and 𝑠𝑡𝑒𝑝 should
be reduced as follows:

V𝑖𝑠𝑢𝑎𝑙 = V𝑖𝑠𝑢𝑎𝑙 × 𝜃, (6)

𝑠𝑡𝑒𝑝 = 𝑠𝑡𝑒𝑝 × 𝜃. (7)

The smaller V𝑖𝑠𝑢𝑎𝑙 and 𝑠𝑡𝑒𝑝 are, the more accurate the
moving destination is searched.

3.4. AIFS Algorithm Flow. As a virtual fish swarm, WSNs
use a distributed schedule in the initial stage of AIFS. In
each round of optimization, each node implements five types
of behavior (i.e., foraging, clustering, repulsing, jumping,
and wall dodging) and records its updated location in a
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Step 1: Foraging and to update Billboard.
Step 2: if min (D(𝑆𝑘, 𝑆𝑘 | 𝑆) > 𝛼, Clustering and to update Billboard.
Step 3: if min (D(𝑆𝑘, 𝑆𝑘 | 𝑆) < 𝛽, Repulsing and to update Billboard.
Step 4: if𝑝𝑘 ≥ 𝑃𝑡ℎ & 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 > 𝑄𝑡ℎ, Jumping and to update Billboard.
Step 5: Dodging and to update Billboard.

Pseudocode 1: The pseudo-code-steps for distributed node (PCS for DN) 𝑆𝑘.

Node S1

PCS for 
DN S1

Node S2

PCS for 
DN S2

Node SN

PCS for 
DN SN

Node Sk

PCS for 
DN Sk

... ...

Node SN

PCS for 
DN SN-1

Billboard

Y increase ?

Node/fish move step

Y>Yth or visual<Vth

Count>Cth

Updating step, visual;
count=0

Count++

Count=0

Start

N

Y

N
Y

N

End

Y

?

?

Figure 1: AIFS flowchart.

bulletin board (Billboard) after every behavioral instance.
The pseudo-code-steps executed by each distributed node are
shown in Pseudocode 1.

Each distributed node performs PCS to move itself to an
appropriate position without overlap and overflow, thereby
exhibiting an efficient use of sensing resources.However, such
local optimal coverage sourcing from a single node does not
necessarily converge to the global optimum for the entire
network. All of the nodes’ integrative behavior determines
their mobility.

A central scheduling mechanism is needed to achieve
optimal network coverage and efficient motion. As a mea-
surement of network coverage, 𝑌 is calculated and appraised
after each optimization round. Although the current 𝑌 is
above those before, 𝑆𝑘 moves to the location recorded by
Billboard; otherwise, a new round of optimization is per-
formed after updating the parameters.

In the factor synthesis, AIFS (shown in Figure 1)
is involved in the distributed and central scheduling

mechanisms at the same time. Each node independently
exhibits five types of behavior. All nodes have to work
together only for calculating 𝑌. This distributed phase tells
each node how to move, and the central phase verifies the
movement quality. Worthless movement can be avoided, and
behavior availability is evaluated before actual movement.
With the repetition of the two phases, nodes can move to
the appropriate positions. Here, two terminal thresholds [20],
namely, themain threshold𝑌𝑡ℎ and the threshold field of view𝑉𝑡ℎ, are set.

During the distributed phase, the complexity of Min or
Max in Jumping is 𝑜(𝑁). In the central phase, the main
complexity is 𝑜(𝑙2) obtained by calculating Y. Not more than
log(𝑉𝑡ℎ/V𝑖𝑠𝑢𝑎𝑙)
𝜃

round is carried out in AIFS. In sum, computa-
tional complexity can be counted as log(𝑉𝑡ℎ /V𝑖𝑠𝑢𝑎𝑙)𝜃 [𝑜(𝑙2)+𝑜(𝑁)].
Ordinarily, we think 𝑁 << 𝑙2 and log(𝑉𝑡ℎ/V𝑖𝑠𝑢𝑎𝑙)

𝜃
<< +∞.

Thus, log(𝑉𝑡ℎ/V𝑖𝑠𝑢𝑎𝑙)
𝜃

[𝑜(𝑙2) + 𝑜(𝑁)] 󳨀→ 𝑜(𝑙2). Furthermore,
log(𝑉𝑡ℎ/V𝑖𝑠𝑢𝑎𝑙)𝜃 ∈ (1, 5) in our simulation experiments.
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Table 1: Algorithm parameters.

Parameter PSO COSH VFDPSO AIFS/AFSA
𝑟 8m 8m 8m 8m
𝑁 50 50 50 50
V𝑖𝑠𝑢𝑎𝑙 26m 26m 26m 26m
- 𝐺max = 200 𝜔𝑇 = 10m 𝑠𝑡𝑒𝑝0 = 8m 𝐶𝑡ℎ = 10
- 𝑐1 = 𝑐2 = 3m 𝑁𝑇 = 10 𝑐1 = 𝑐2 = 𝑐3 = 3 𝑉𝑡ℎ = 6m
- 𝜔𝑖𝑛𝑖 = 0.9 󵄨󵄨󵄨󵄨𝐹𝑡ℎ󵄨󵄨󵄨󵄨 = 0.4m 𝑄𝑡ℎ = 200
- 𝜔𝑒𝑛𝑑 = 0.4 𝑑𝑉𝐹𝐷𝑃𝑆𝑂 = 8𝑚 𝑃𝑡ℎ = 0.5
- 𝑌𝑡ℎ = 0.9

AIFS
PSO

COSH
origin

30

40

50

60

70

80

Y

35 40 45 50 60 6530 55
numbers of sensors(N)

Figure 2: Influence of coverage performance 𝑌 with various
network sizes 𝑁.

4. Simulations

4.1. SceneDescription. Weuse theMATLABR2016b platform
to conduct simulation experiments and set up the experimen-
tal scenario as follows: 𝐼 = 100m×100m, 𝑟 = 8m, 𝑠𝑡𝑒𝑝0 = 8m,
and V𝑖𝑠𝑢𝑎𝑙 = 26m. The value of 𝛼 is the distance between
two nodes when their sensing boundaries are tangent, i.e.,
𝛼 = 2𝑟 = 16m. The repulsing threshold 𝛽 is adjustable
according to experimental requirements. In this experiment,
𝛽 = 𝑟 × √3/2 = 6.93m.

The proposed AIFS is compared with four other algo-
rithms, namely, COSH [8], VFDPSO [7], AFSA [11], and
PSO [10], to verify its performance. The other parameters are
provided in Table 1. The basic parameters of AIFS are similar
to those of AFSA. Given the randomness of the experiments,
all resulting data are themean of 30 independent experiments
to derive universal conclusions.

4.2. Network Coverage Analysis. The coverage performances
of the three algorithms (AIFS, PSO, andCOSH) are compared
and analyzed in the various scenarios in Figure 2. Network
size is adjusted by various 𝑁 ∈ [30, 65], and 𝑌 is calculated
to evaluate the coverage performance of the algorithms. The
algorithm “origin” represents 𝑌 in the original environment,
where original 𝑌 is used as the coverage reference.

The results of the comparative experiments shown in
Figure 2 indicate that the growth of Y proves that the coverage
performance of all algorithms is optimizedwith increasing𝑁.
When𝑁 > 40, the growth of Y is significant. Our AIFS shows
the best coverage performance among all of the compared
algorithms, followed by PSO. The nonintelligent algorithm
COSH cannot match the growth rate of the two previous
intelligent algorithms. With 𝑁 > 50 increasing further, AIFS
becomes more pronounced than PSO because the proposed
jumping and repulsing behavior types prevent the nodes from
crowding or gathering and expand the covered area. With
increasing 𝑁, crowding density becomes serious, and AIFS
becomes likely to exhibit its advantage of jumping out of
crowding.

4.3. Analysis of Local Optimization. Given node sets 𝑆 with
various crowding densities, we analyze their capability of
jumping out of local crowding for three algorithms (the
proposed AIFS, AFSA, and VFDPSO). Sets 𝑆 are randomly
arranged in a square with side length 𝑇𝑒𝑠𝑡 at the center of 𝐼,
where 𝑇𝑒𝑠𝑡 = 50m, 40m, 30m, and 20m. In each move for
nodes, the corresponding 𝑌 is investigated. The experimental
results are presented in Figure 3, where 𝑡𝑖𝑚𝑒𝑠 indicates the
number of node moves.

The simulation results indicate that AIFS, AFSA, and
VFDPSO can improve 𝑌 after the nodes move; thus, they can
bring sensor networks out of the local optimum. However,
unlike the faint progress of VFDPSO, 𝑌 results in smooth
growth in AIFS and AFSA. Therefore, AIFS and AFSA are
qualified in terms of working stability. Based on the rising
speeds of𝑌, we find that AIFS is superior to AFSA in terms of
speed in jumping out of the local optimum.This superiority is
pronounced with deteriorating local optimization (𝑇𝑒𝑠𝑡 ↓).

We conduct a comprehensive analysis for AIFS. We let
coverage gain Δ𝑌 indicate the speed of 𝑌 relative to the
previous movement. The statistics Δ𝑌 are extracted at five
time points (𝑡𝑖𝑚𝑒𝑠 = 2, 4, 6, 8, and 10), as shown in Figure 4.
Our AIFS can obtain Δ𝑌 = 7∼14% at an early time (𝑡𝑖𝑚𝑒𝑠 =
2), indicating that AIFS can quickly jump out of the local
optimum in the early stage of the algorithm even when it is
in the worst local optimum (𝑇𝑒𝑠𝑡 = 20𝑚). Thus, our AIFS
exhibits strong adaptability.

4.4. Boundary Analysis. This experiment investigates the per-
formance of three algorithms (AIFS, AFSA, andVFDPSO) on
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Figure 3: Analysis of coverage performance 𝑌 with movements and various local optimizations. (a) Test=50 m, (b) Test=40 m, (c) Test=30
m, and (d) Test=20 m.
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Figure 4: Analysis of Δ𝑌 with various 𝑇𝑒𝑠𝑡 for AIFS.

boundary problems by adjusting network size.The boundary
problem can be effectively solved if region 𝐼 is covered with

less overflowing coverage. Thus, boundary loss is defined as
follows:

𝑤𝑎𝑠𝑡𝑒 = (𝑡ℎ𝑒 𝑐𝑜V𝑒𝑟𝑒𝑑 𝑎𝑟𝑒𝑎 𝑏𝑦 𝑆) ∪ 𝐼 − 𝐼
𝑁 . (8)

When 𝑤𝑎𝑠𝑡𝑒 is small, the average covered area outside 𝐼 is
also small. The variations in𝑤𝑎𝑠𝑡𝑒 at each move are shown in
Figure 5.

Numerous nodes that are located near the boundaries
may not always appear in the initial phase (𝑡𝑖𝑚𝑒𝑠 ≤ 2), where
𝑤𝑎𝑠𝑡𝑒 < 0.5. When algorithms are implemented, nodes tend
to be evenly distributed, and several nodes gradually move
to the vicinity of the boundary. For AFSA and VFDPSO,
the variation curves of 𝑤𝑎𝑠𝑡𝑒 exhibit steep upward trends
with increasing 𝑡𝑖𝑚𝑒𝑠. Until 𝑡𝑖𝑚𝑒𝑠 > 6, the values of 𝑤𝑎𝑠𝑡𝑒
are stable with small fluctuations, indicating that the covered
area outside 𝐼 has stopped growing. Hopefully, the boundary
loss 𝑤𝑎𝑠𝑡𝑒 of AIFS is always controlled within the region of
𝑤𝑎𝑠𝑡𝑒 < 0.5 because of the provided valuable behavior of wall
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Figure 5: Boundary problem analyses with movements.

dodging. Thus, AIFS can work stably and efficiently on the
boundary problem.

5. Conclusions and Future Work

The balance between coverage and cost is given full consider-
ation in this study. The proposed AIFS solves two problems.
One is the local optimum problem, to which AIFS proposes
jumping behavior to enhance the speed of escaping from
the local optimum. The other is the boundary problem, in
which sensing resources are triggered by overflow coverage.
Such a dodging behavior is designed to reduce the wasted
area. Given such adaptive attenuation factors that attempt to
characterize positional relations among nodes and pixels, the
blindness and ineffectiveness in global search are avoided. All
introduced techniques guide networks to effectively cover the
monitoring area.

Although negative factors are disregarded in this study
because optimal assumptions can make the research feasible,
highly realistic environment settings and network modules
remain important. Specifically, heterogeneous properties on
sensing, communication, and processing should be regarded
as part of our extensive research. And, preserving energy
should be considered throughout the entire process of design.
Distribution is a fundamental reason why sensor networks
can be applied in many applications. Occasional dependency
on global information is required in our AIFS, although
each node performs its behavior independently in the initial
process. Thus, future research should focus on combining
our resulting work and a realistic model to achieve coverage
performance. The present schedule is limited to a mixed
methodology consisting of distributed elements combined
with the central mode, which should be further refined and
enhanced in future studies.
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